
R
R
A
A

e

(

AMonte Carlo tree search conceptual framework for featuremodel
analyses✩

Jose-Miguel Horcas a,∗, José A. Galindo a, Ruben Heradio b, David Fernandez-Amoros b,
David Benavides a

a University of Seville, Seville, Spain
b National Distance Education University (UNED), Madrid, Spain

a r t i c l e i n f o

Article history:
eceived 3 February 2022
eceived in revised form 12 October 2022
ccepted 14 October 2022
vailable online 1 November 2022

Keywords:
Automated analysis
Configurable systems
Feature models
Monte Carlo tree search
Software product lines
Variability

a b s t r a c t

Challenging domains of the future such as Smart Cities, Cloud Computing, or Industry 4.0 expose
highly variable systems with colossal configuration spaces. The automated analysis of those systems’
variability has often relied on SAT solving and constraint programming. However, many of the analyses
have to deal with the uncertainty introduced by the fact that undertaking an exhaustive exploration
of the whole configuration space is usually intractable. In addition, not all analyses need to deal with
the configuration space of the feature models, but with different search spaces where analyses are
performed over the structure of the feature models, the constraints, or the implementation artifacts,
instead of configurations. This paper proposes a conceptual framework that tackles various of those
analyses using Monte Carlo tree search methods, which have proven to succeed in vast search spaces
(e.g., game theory, scheduling tasks, security, program synthesis, etc.). Our general framework is
formally described, and its flexibility to cope with a diversity of analysis problems is discussed.
We provide a Python implementation of the framework that shows the feasibility of our proposal,
identifying up to 11 lessons learned, and open challenges about the usage of the Monte Carlo methods
in the software product line context. With this contribution, we envision that different problems can
be addressed using Monte Carlo simulations and that our framework can be used to advance the
state-of-the-art one step forward.
2
t

i
r
c
t
t
o

2

i

1. Introduction

The Automated Analysis of Feature Models (AAFM) (Benavides
t al., 2010; Pol’la et al., 2020) is one of the most active Software

Product Line (SPL) research areas in the last decade (Benavides,
2019; Galindo et al., 2019; Raatikainen et al., 2019; Horcas et al.,
2022a). In highly configurable systems, AAFM is a challenging
task because it requires coping with a variety of problems which
involve inter-related features and colossal search spaces. For ex-
ample, we find multiple operations, such as counting the number
of products (Fernández-Amorós et al., 2014; Heradio et al., 2016;
Thüm, 2020) and optimizing configurations (Guo et al., 2019; Nair
et al., 2017; Karimpour and Ruhe, 2017), which are performed on
the entire configuration space. Other operations are performed
on feature models (e.g., evolution (Marques et al., 2019) and re-
verse engineering (Lopez-Herrejon et al., 2015b; Czarnecki et al.,

✩ Editor: Raffaela Mirandola.
∗ Corresponding author.

E-mail addresses: jhorcas@us.es (J.-M. Horcas), jagalindo@us.es
(J.A. Galindo), rheradio@issi.uned.es (R. Heradio), david@issi.uned.es
D. Fernandez-Amoros), benavides@us.es (D. Benavides).
 t

https://doi.org/10.1016/j.jss.2022.111551
008)). Finally, there are other analyses where the main subjects
o reason about are the products (e.g., testing (Galindo et al., 2016;
Pett et al., 2019)) or the constraints of the feature models (Temple
et al., 2016).

Many of these analyses have to deal with the uncertainty
ntroduced by the fact that undertaking an exhaustive explo-
ation of the whole search space is usually intractable. In some
ases, complex computations are required to take simple ac-
ions. For instance, deciding when to include or exclude a fea-
ure in a configuration impacts the convenience and analysis
f further selections (Pereira et al., 2018a,b). Moreover, those

decisions are not commonly intuitive. For instance, when re-
verse engineering feature models, practitioners have to decide the
structure of the resulting feature model in terms of the parent–
child relationships (Lopez-Herrejon et al., 2015b; Assunção et al.,
017b). Other situations require tackling uncertainty because of

the aforementioned combinatorial nature of the search space,
which includes different types of selections such as alternatives
(xor), or cardinality-based selections (Czarnecki et al., 2005). For
nstance, solving analyses of probability in configuration selec-
ions according to performance goals is challenging because the

https://doi.org/10.1016/j.jss.2022.111551
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111551&domain=pdf
mailto:jhorcas@us.es
mailto:jagalindo@us.es
mailto:rheradio@issi.uned.es
mailto:david@issi.uned.es
mailto:benavides@us.es
https://doi.org/10.1016/j.jss.2022.111551

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

t
p
(
t
H
a
a
d
t
o
f
s
i
r
e
a
i
i
c
o

M
f
o
l
c
s
C
2
d
e
s
c
t

M
f
s

whole configuration space is unknown for large-scale feature
models (Munoz et al., 2019; Oh et al., 2017).

AAFM has relied on propositional logic or SAT solving (Ba-
ory, 2005; Liang et al., 2015; Mendonca et al., 2009), constraint
rogramming (Benavides et al., 2010), Binary Decision Diagrams
BDD) (Heradio et al., 2016; Fernández-Amorós et al., 2017), sta-
istical analysis (Heradio et al., 2019), genetic algorithms (Lopez-
errejon et al., 2015b,a), or metaheuristics (Yadav et al., 2020),
mong others (Galindo et al., 2019). SAT solvers could face scal-
bility problems for large-scale models (Liang et al., 2015; Men-
onca et al., 2009). Some statistical analyses require the construc-
ion of BDDs (e.g., determining the distribution of the number
f features among all valid configurations or testing the uni-
ormity of a random sampler on complex models with thou-
ands of features) (Heradio et al., 2019, 2022a), which can be
ntractable (Thüm, 2020). Other approaches like genetic algo-
ithms (Lopez-Herrejon et al., 2015b,a) and metaheuristics (Yadav
t al., 2020) require to incorporate specific domain knowledge,
nd analyzing and inferring results from the final solutions which
s not straightforward. In addition, these techniques offer little
nformation about the intermediate steps of the analysis pro-
ess that allows considering other valuable alternatives before
btaining the final solution.
In this paper, we present a conceptual framework based on

onte Carlo methods (Kroese et al., 2014), which use randomness
or deterministic problems that can be represented as sequences
f step-wise decisions. Monte Carlo methods can be used with
ittle or no domain knowledge, and have succeeded on diffi-
ult problems where an exhaustive exploration of the search
pace cannot be performed. In particular, we adopt the Monte
arlo Tree Search (MCTS) (Browne et al., 2012; Chaslot et al.,
008a) method. MCTS has been successfully applied to several
omains (Browne et al., 2012), standing out in game theory (Silver
t al., 2017) where it has been shown to scale to large search
paces such as those that typically characterize SPLs. Thus, we
onjecture that MCTS may have a great impact in the AAFM. In
his paper, we make the following contributions:
• We formally present our MCTS framework, identify a set of

analysis problems in SPL that can be worthy of examining with
the MCTS method, and map them to the conceptual framework
(Section 3).
• We provide a complete implementation of the MCTS frame-

work1, including three different Monte Carlo methods (Sec-
tion 4).
• We formally model and solve different problems concerning

configurations (Section 5) and features models (Section 6)
using our framework, and explain the knowledge we can infer
with MCTS.
• We identify up to 11 lessons learned and open challenges of

applying Monte Carlo methods in the context of SPLs (Sec-
tions 5 and 6).

CTS has already had a profound impact on artificial intelligence
or domains that can be represented as trees of sequential deci-
ions, particularly games and planning problems (Section 7). In
the area of SPLs and AAFM, MCTS can provide an agent with
some decision-making capacity with very little domain-specific
knowledge, and its selective sampling approach may provide
insights into how other analysis techniques, such as search-based
algorithms, could be hybridized and potentially improved (Guo
et al., 2019). We envision that different problems can be ad-
dressed using Monte Carlo simulations with this contribution.
Accordingly, this new approach can be of considerable value to
advance the state of the art of the AAFM one step forward.

1 https://github.com/diverso-lab/fm_montecarlo
2

This paper extends the work published as a conference paper
in SPLC’21 (Horcas et al., 2021) by adding the following contribu-
tions: (1) a set of 11 lessons learned and open challenges for the
application of Monte Carlo methods in the context of SPLs and
AAFM; (2) a complete implementation of the MCTS conceptual
framework is provided, in contrast to the prototype presented
in the previous work (Section 4); (3) support for extended (at-
tributed) feature models (Section 2) and formalization of a new
analysis problem for optimizing configurations (Section 5.4); and
(4) all SPL problems previously proposed have been fully for-
malized, extending the applicability of two of them with up to
8 feature models comparing the different Monte Carlo methods
(Sections 5.2 and 5.3).

2. Background

This section introduces the feature model formalization and
the running example used throughout the paper.

Definition 1 (Feature, Feature model). A feature f is a charac-
teristic or end-user-visible behavior of a software system (Apel
et al., 2013). A feature model m is a set of features F and their
relationships. Formally, a feature model m is defined as a 4-tuple
(F , r,R, Π):

• F is a finite set of features.
• r ∈ F is the root feature.
• R ⊆ F × F n

× N2 is the finite set of decompositional
relationships between features. Each relationship is denoted
as

(
f , [g1, g2, . . . , gn], ⟨a..b⟩

)
meaning that f is the parent

feature of sub-features gi, 1 ≤ i ≤ n, with a multiplicity
⟨a..b⟩ (Czarnecki et al., 2005). Whenever f is included in a
configuration, at least a and at most b of the gi’s must be
included as well. We use ⟨0..1⟩ for optional features and
⟨1..1⟩ for mandatory features when n = 1; and ⟨1..1⟩ for
alternative-groups and ⟨1..n⟩ for or-groups when n > 1.
For convenience, we will also use the notation f ≺ g to
represent that the feature f is the parent of a feature g
regardless multiplicity; and we use the notation f ≺≺ g to
represent that the feature f is an ancestor of the feature g .
Note that a feature f can appear in more than one relation
r ∈ R as a parent feature.
• Π is a set of cross-tree constraints defined as arbitrary

propositional formulas over the set of features F , i.e., Π ⊆

B(F).

Feature models can be extended to incorporate additional
information about the features in terms of attributes.

Definition 2 (Attribute, Extended feature model). An attribute
is a non-functional property associated to a feature (e.g., cost,
energy consumption, etc.). Attributes are defined with a type (e.g.,
numeric) and a domain (e.g., positive integers), and optionally
also with a range. An extended feature model (also called attributed
feature model) is a feature model where additional information
about the features is provided in terms of attributes. ■

Fig. 1 shows an extended feature model representing a SPL for
a Python framework to support AAFM (Galindo and Benavides,
2020). AAFMFramework is the root of the feature model. The
mandatory relation between the root and the System feature
can be described by the relation (AAFMFramework, [System],
⟨1..1⟩), while the relations between the AAFMFramework fea-
ture and its optional children are described by the relations
(AAFMFramework, [Packages], ⟨0..1⟩) and (AAFMFramework,
[Solvers], ⟨0..1⟩), respectively. To reason about models and
implement analysis operations, the framework can use a selection

https://github.com/diverso-lab/fm_montecarlo

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

o
[
o
f
t

Fig. 1. Extended feature model of the SPL for an AAFM framework in Python.
t
t
a

D
p

,

n

f Solvers represented by the or-group relation (Solvers,
MiniSAT, PicoSAT, Glucose], ⟨1..3⟩). Each solver will require
ne or more Python packages which offer the implementation
or that solver. For instance, the MiniSAT solver is provided by
he python-sat package, while the PicoSAT solver is offered
by the pycosat or by the pyPicosat packages. These kinds
of relations are represented as textual cross-tree constraints,
as for example PicoSAT ⇒ pycosat ∨ pyPicosat. Features
representing the Python packages have two attributes associated:
the user rating values and the last release update date, both
values have been obtained from the Python Package Index (PyPI)
repository.2 Finally, a specific version of the framework can be
deployed in Linux or Windows systems, choices represented
with the alternative-group (System, [Linux, Win], ⟨1..1⟩).

Definition 3 (Configuration, Partial Configuration, Valid Configu-
ration). A configuration c of a feature model m is a subset of
its features, i.e., c ∈ P(F),3 meaning that the features in c
are selected to be part of the configuration, and the remaining
features in F are not included in c. A configuration c is partial if
there are features in F that need to be still decided in order to
be selected or not selected as part of the configuration c (Batory,
2005). A configuration is valid if and only if it fulfills all the feature
dependencies of m. The feature dependencies of m are given by
the set of decomposition relations R (i.e., the tree hierarchy) and
the set of cross-tree constraints Π . A partial configuration is valid
if the selected features do not neglect the dependencies of the
feature model m. ■

An example of a valid configuration of the feature model
depicted in Fig. 1 is {AAFMFramework, System, Linux, Solvers,
MiniSAT, Packages, python-sat}. An example of a valid partial
configuration is {AAFMFramework, System, Solver}.

3. MCTS conceptual framework for feature model analyses

In this section, we first present our conceptual framework
(Section 3.1) to model problems that can be solved with Monte
Carlo methods, especially with MCTS, and discuss the type of
analyses that can be performed with MCTS. Then, we define a
mapping between problems in SPLs and the concepts of the MCTS
framework (Section 3.2).

3.1. Monte Carlo methods and MCTS

MCTS is a method for finding optimal decisions in a given
domain by taking random samples in the search space (Chaslot
et al., 2008a). MCTS is based on decision and game theory (Russell
and Norvig, 2020), and on Monte Carlo (Kroese et al., 2014) and

2 https://pypi.org/
3 P(F) is the powerset of F (i.e., the set of all subsets of F).
3

bandit-based methods (Munos, 2014), where sequential decision
problems are modeled as a kind of search problems. Inspired by
Markov Decision Processes (Russell and Norvig, 2020) and follow-
ing the concepts used in game theory (Russell and Norvig, 2020)
o formally define a game as a kind of search problem, we provide
he following definition that allows representing SPL problems as
sequence of decisions to be solved by Monte Carlo methods:

efinition 4 (Monte Carlo decision process). A Monte Carlo decision
rocess is a 6-tuple with the following elements (S, s0, t,A, θ, µ):

• S: set of all possible states.
• s0 ∈ S: initial state that specifies how the problem is set up

at the start.
• t : S → B: terminal condition that is true when the

problem is over (or there are no more decisions to be taken)
and false otherwise. States that meet the terminal condition
are known as terminal states. The set of terminal states is
called ST ⊆ S.
• A: set of valid actions.
• θ : S × A → S: state transition function that defines the

result of applying an action, which leads to a new successor
state.
• µ : S → R: reward function (also known as utility, objective

or payoff function) that defines the final numeric value for
a problem that ends in a terminal state st ∈ ST . ■

Together, the initial state s0, the set of actions A, and the
transition function θ implicitly define the search space (or state
space) of the problem. Formally, we define the search space as
follows:

Definition 5 (Search Space). Given a problem p = (S, s0, t,A, θ, µ)
the search space is the set of all nodes reachable from the initial
state s0 by any sequence of actions in A. A node in the search space
consists of a pair (state, list[actions]) ∈ S × A∗. That is, each node
represents a state of the domain together with a list of actions
that trace the node back to the initial node (s0, ϵ), and the links
to child nodes represent actions that lead to successor nodes. ■

Please observe that since θ is a function, and as such, it is
deterministic, the nodes in the search space as defined form a tree
rooted in (s0, ϵ) in which there is a transition function between
odes θ ′ : S × A∗× A→ S × A∗ such that θ ′(s, ω, α) = (θ (s), ωα).

The concept of search space is illustrated in Fig. 2(a) where
the nodes are depicted as states for clarity of exposition. Note
that there are no replicated nodes, but there may be duplicated
states in different nodes whenever the same state can be attained
through different action sequences. Thus, overall decisions are
modeled as sequences of (state, action) pairs.

Basic Monte Carlo approach. Monte Carlo methods are used
to decide the optimal decision (i.e., choosing an action) from a
given state s by running simulations. A simulation is a random or

https://pypi.org/

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

1

S
r
c

Q

w
f
r
I

t

Fig. 2. Search space for a generic problem modeled as a sequence of (state, action) decisions (a), and the Monte Carlo simulations approach (b).
Algorithm 1 Basic Monte Carlo method.
1: function MonteCarlo(s)
2: Q ,N ← 0.0, 0 ▷ Initialize dictionaries of (action, float) and (action, int),

respectively.
3: while not stopping criteria do
4: a← random.choice(A) ▷ Select a random valid action.
5: z ← SIMULATION(s, a) ▷ Run a simulation.
6: N[s, a] ← N[s, a] + 1 ▷ Update visits count.
7: Q [s, a] ← Q [s, a] + z−Q [s,a]

N[s,a] ▷ Update the Q value.
8: end while

▷ Choose the best-performing action according to some criteria (e.g., action
with maximum Q).

9: return BEST_ACTION(s, Q , N)
0: end function

statistically biased sequence of actions applied to the given state
until a terminal state st is found. The terminal state st is then
evaluated using the reward function µ obtaining a reward value
zi associated with that simulation, as shown in Fig. 2(b). Running
a number of simulations N from the given state s, Monte Carlo
approximates the expected reward each action can achieve from
that state s, i.e., Q (s, a). The expected reward of an action is called
the Q -value (also called Monte-Carlo value or MC value) (Gelly and
ilver, 2011) of that action, and it is defined as the mean of all
ewards obtained from the simulations performed from state s
hoosing action a:

(s, a) =
1

N(s, a)

N(s)∑
i=1

Ii(s, a)zi (1)

here N(s, a) is the number of times action a has been selected
rom state s; N(s) is the number of times a simulation has been
un from state s; zi is the reward result of the ith simulation; and
i(s, a) is 1 if action a was selected from state s on the ith simula-
ion or 0 otherwise. Algorithm 1 summarizes in pseudocode the
basic (also called ‘‘flat’’) Monte Carlo method.

A great benefit of Monte Carlo methods is that the values of
intermediate states visited during the simulations do not have to
be evaluated. Only the value of the terminal state at the end of
each simulation is required.

Monte Carlo tree search. The MCTS method (Chaslot et al.,
2008a) extends the Monte Carlo principle by using the expected
reward (Q -values) obtained from simulations to build an in-
cremental and asymmetric tree search which is then used for
subsequent decisions. We use the term tree search for a tree,

generated by MCTS, that is superimposed on the full search space,

4

and examines enough nodes to allow the MCTS method to deter-
mine what decision to make. As shown in Fig. 3, the basic MCTS
algorithm (summarized in pseudocode in Algorithm 2) involves
iteratively building and using a tree search until some predefined
stopping criteria (e.g., time, memory, number of iterations) is
reached. Four steps are applied per search iteration (Chaslot et al.,
2008a):

1. Selection. Starting with the initial state s0, the tree search
is traversed by recursively applying a selection function
from the root node until a frontier node sl is reached in
the tree search. A frontier node is a leaf node in the tree
search that will be expanded in the following step. Several
strategies for selecting the nodes in the tree can be found
in Browne et al. (2012). The most popular one is the Upper
Confidence bound for Trees (UCT) (Kocsis and Szepesvári,
2006) that, using the Q -values, attempts to balance ex-
ploitation (i.e., search on areas that appear to be promising)
and exploration (i.e., search on areas that have not been
well explored yet).

2. Expansion. From the selected frontier node sl in the tree
search, one or more child nodes are added to expand the
tree according to the actions A. Note that at this point, the
frontier node is not a leaf node anymore in the tree search.

3. Simulation. A simulation is run from the new node(s) by
doing random actions until a terminal state is reached. The
terminal state is evaluated, producing an outcome z (i.e.,
the reward value).

4. Backpropagation. The statistics of each node in the tree
that was traversed during the selection step are updated.
That is, the visit counts N(s, a) are increased, and the ex-
pected reward Q (s, a) is modified according to the outcome
z from the simulation.

As soon as the search terminates, the best action of the
initial state s0 is selected (BEST_ACTION(s0)). Several criteria are
described in Chaslot et al. (2008c), such as choosing the action
with the highest reward. In addition to the best decision, MCTS
also provides useful knowledge in the form of statistics stored
in the tree search that can be used to make analyses, as we will
show throughout the paper.

In SPL, MCTS can be applied to find optimal decisions in
problems where decisions can be difficult to handle and take
because of the high number of potential configurations, products,
and variants. Some of the analyses that can be performed with

MCTS include:

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

p
t
F
i
s
t
c

Fig. 3. The MCTS approach (adapted from (Chaslot et al., 2008a)).
Algorithm 2 General Monte Carlo Tree Search method.
1: tree← ∅ ▷ Initialize tree search: dictionary of (node, list[node]).
2: Q ,N ← 0.0, 0 ▷ Initialize dictionaries of (action, float) and (action, int),

respectively.
3: function MCTS(s0)
4: while not stopping criteria do
5: sl ← SELECTION(s0) ▷ Apply the child selection tree policy.
6: EXPANSION(sl) ▷ Add one or more nodes to the tree search.
7: z ← SIMULATION(sl) ▷ Apply the default policy.
8: BACKPROPAGATION(z, sl) ▷ Backup the reward, updating Q and N .
9: end while

10: return BEST_ACTION(s0)
11: end function

▷ SELECTION, EXPANSION, SIMULATION, and BACKPROPAGATION are
illustrated in Figure 3. The implementation details are available online.

Analyses of complex systems from simple actions. There are
roblems where we can easily measure the complete set of ac-
ions within the system, but we are unsure of the aggregate result.
or example, selecting a feature to be incorporated in a product
s a very simple action to model, but analyzing how that feature
election contributes to the complete product is challenging due
o the existing relations in the feature model and the cross-tree
onstraints (Sayyad et al., 2013). Here, MCTS can examine how
each feature selection contributes to the complete product by
modeling the feature selection optimization problem (Guo et al.,
2019; Yadav et al., 2020; do Nascimento Ferreira et al., 2017; Xue
et al., 2016) as a sequence of decision steps. We illustrate this type
of analysis in Section 5.

Analyzing unintuitive results. Some problems admit multiple
solutions. For instance, in feature models’ reverse engineering
(Lopez-Herrejon et al., 2015b; Czarnecki et al., 2008), an input set
of configurations may correspond to many potential output fea-
ture models. Without taking into account domain knowledge, the
features appearing in all products (i.e., the core features Benavides
et al., 2010) may be considered interchangeable in the resulting
feature model. For that reason, MCTS can help a domain engineer
explore the alternatives to select the best model. We show this
type of analysis in Section 6.

Analyses of uncertainty. Some problems require handling un-
certainty due to the impossibility of dealing with the complete
search space. An example is the optimization of configurations
based on non-functional properties in large-scale feature mod-
els (Guo et al., 2019; Karimpour and Ruhe, 2017). The best config-
urations may be spread across the configuration space, leading to
a search-based software engineering technique to deal with many

local optima (Lopez-Herrejon et al., 2015a). In this case, MCTS

5

is useful to incorporate probability into the analysis. MCTS helps
understand the probability distribution of the best configurations
and analyze how such distribution impacts the search-based opti-
mization, so that we could penalize the uncertainty or incorporate
it into the search-based technique.

In addition to those analyses, in general, MCTS may be used for
analyses that have a probabilistic interpretation (Heradio et al.,
2019) or where simulation rather than optimization is the most
effective decision support tool (Browne et al., 2012). As stated
by Schmid (Ali et al., 2009), Monte Carlo techniques can be
promising for sensitivity analyses, but they require a sound un-
derstanding of the uncertainty in the problem to be analyzed for
achieving correct and useful results.

3.2. Mapping SPL problems to the MCTS conceptual framework

To apply MCTS to SPL problems, we need to formulate the
problem as a sequence of (state, action) decisions using the con-
ceptual framework (S, s0, t,A, θ, µ) introduced in the previous
section.

Fig. 4 shows a list of SPL problems that can be described as
a sequence of decisions and mapped to the MCTS conceptual
framework. The most important definition is the concept of state,
and thus, we classify the problems according to what a state rep-
resents. In SPLs, a state may represent a configuration of a feature
model, a partial configuration, a final product, a feature model, an
extended feature model, a configuration sample, a performance
model of a configuration sample, a variation point and the set
of its variants to be decided, etc. The definition of the state will
depend on the problem’s nature. For example, in product configu-
ration problems, the states will represent configurations (valid or
invalid) of a feature model, partial configurations, or both partial
and complete configurations; while in problems dealing with
the evolution of feature models, a state will represent a feature
model itself. Each definition of state will lead to a different set
of actions. States representing configurations will define actions
that allow moving from one configuration to another (e.g., actions
for selecting a feature and adding it to the configuration). States
representing feature models will define actions to modify the
feature model (e.g., adding a new mandatory or optional feature
to the model). Different definitions of states and actions will lead
to a different search space.

Some of the definitions in the framework (S, s0, t,A, θ, µ) can
be shared across several problems, while others will be specific
of a particular situation or problem instance. On the one hand,
the set of actions and the transition function are normally reused
across different problems that share the same definition of state.
For example, the actions for selecting a feature in problems where

J.-M. Horcas, J.A. Galindo, R. Heradio et al.
Fig. 4. Mapping of SPL problems to the MCTS framework (S, s0, t,A, θ, µ).
l
o
o
a
i
s
t

r

a state represents a configuration. On the other hand, the initial
state s0, the terminal condition t , and the reward function µ

are problem-specific or even different for a specific instance of
a particular problem. For example, the initial state is different in
each problem instance of the completion of partial configurations
being the initial state a different input partial configuration. The
terminal state can also be instance-specific, such as in the prob-
lem of the feature interaction coverage, where a state represents
a set of configurations and a terminal condition can be a sampling
of configurations satisfying the t-wise coverage for a specific
feature (Pett et al., 2019).

In the following, we detail how to model different types of
SPL problems using the MCTS conceptual framework and analyze
them.

4. Implementation of the MCTS framework

To demonstrate the applicability of our proposal, we provide
an implementation of our MCTS conceptual framework, as well
as an implementation of the analysis problems described in the
following sections. This section presents the architecture of the
framework, including the Monte Carlo methods available.

The framework is available online4, and has been developed
on top of the Python framework for AAFM proposed in Galindo
and Benavides (2020). Note that the AAFM tool has been tested in
front of well-known testing techniques for AAFM (e.g., metamor-
phic testing) (Segura et al., 2012). Fig. 5 overviews the core archi-
tecture of our implementation. It consists of three main modules:
(1) the search space, including the interfaces to model SPL prob-
lems; (2) the search-based algorithm module, which includes
the Monte Carlo methods; and (3) the knowledge information
inference with the output information from the search.

4 https://github.com/diverso-lab/fm_montecarlo
6

4.1. Search space and interfaces for (S, s0, t,A, θ, µ) modeling con-
cepts

We provide three main interfaces (State, Action, and Prob-
em) to be implemented for modeling SPL problems as sequences
f (state, actions) pairs. The State interface specifies the meth-
ds necessary to build and explore the search space, so that from
given initial state s0, we can reach all states in S. The State

nterface has to be implemented only once defining the state tran-
ition function θ (successors() and random_successor()),
he is_terminal() condition t , and the reward() function
µ. Additional implementation methods are required to guar-
antee the correct functioning of the algorithms: for example,
states must be comparable (eq()method) and hashable (hash()
method). The Action interface is defined for each applicable
action. The Problem interface specifies how a problem is set
up at the start by providing an initial state, and how a solution
is decoded from a terminal state to represent the solution in a
human-readable form. Finally, we provide an implementation of
TreeSearch that the MCTS method will use during the search.
The tree search is based on Nodes representing the states and the
list of actions that trace the path to the initial state.

4.2. Search-based algorithms and Monte Carlo methods

Although our framework focuses on Monte Carlo methods, it
can support any search-based algorithm that is built using the
previous interfaces, such as a classical A-star search (A*) (Russell
and Norvig, 2020) or genetic algorithms (Lopez-Herrejon et al.,
2015a). In the Algorithms module of Fig. 5, the algorithms and
methods highlighted in bold are fully implemented and ready
to be used in our framework; the algorithms in italics represent
interfaces that can be further specialized; and other algorithms
and methods in regular font are possible extensions worthy of
being incorporated into our framework in the future. The Algo-
ithm, Monte Carlo and Monte Carlo Tree Search interfaces

provide a base abstract implementations of any search-based al-
gorithm, Monte Carlo, and MCTS method, respectively, which can

https://github.com/diverso-lab/fm_montecarlo

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

b
C
s

M
a
C
f

Fig. 5. MCTS conceptual framework architecture.
T
M
s
2
M
a
s
a
a

C
s
b
p
f
(
i
a
o
c
n
i
m
a
c
w
a
o
a
t
M

e specialized with different algorithms and variants of Monte
arlo methods (Gelly and Silver, 2011). The following generic
earch-based algorithms are currently available:

• Random strategy. It chooses a random action from the
current state without running any simulation. This is not
a Monte Carlo method itself, but it is often used in game
theory to simulate a random player and it is widely used as
a baseline to compare Monte Carlo methods (Browne et al.,
2012).
• A* search. It is an implementation of the most widely

known form of best-first search (Russell and Norvig, 2020).
It evaluates nodes by combining the cost to reach the cur-
rent node and a heuristic of the cost to get from the current
node to a terminal node. This method is available only for
testing the correctness of the implementation of the states
and the actions because this method performs an exhaustive
search, which makes it infeasible in practice for medium and
large search spaces.

An implementation of several Monte Carlo methods, including
CTS, is available to solve any problem that implements the
forementioned interfaces (state, actions, problem). The Monte
arlo and MCTS methods available in our framework are the
ollowing:

• UCT algorithm. An implementation of MCTS (Algorithm 2)
that builds a search tree and uses the UCT selection strat-
egy (Kocsis and Szepesvári, 2006), which favors actions with
a higher Q -value but allows at the same time to explore
those actions that have not yet been sufficiently explored.
The exploration vs. exploitation balance is controlled with
an exploration constant (0 ≤ EC ≤ 1) parameter with a
default value of 0.5.
• Greedy MCTS. A best-first strategy that favors exploitation

against exploration. This method is equivalent to the UCT
Algorithm with the exploration constant EC = 0, and always
chooses the action with higher Q -value.
7

• Flat Monte Carlo. An implementation of the basic Monte
Carlo method (Algorithm 1) with random action selection
and no tree growth. It only considers the simulations from
the current state without using the information from previ-
ous simulations.

he framework is open for extension, and thus, further variants of
onte Carlo and MCTS methods can be added to the framework
uch as parallel versions of both methods (Steinmetz and Gini,
020; Chaslot et al., 2008b) to improve the efficiency, Heuristic
CTS (Gelly and Silver, 2011), MC-RAVE (Gelly and Silver, 2011),
nd further specialization that may include the use of minimal cut
ets (Budde and Stoelinga, 2020), rare event simulations (Rubino
nd Tuffin, 2009), or importance splitting (Jégourel et al., 2013),
mong others.

onfiguration of the algorithms and Monte Carlo methods. Each
earch-based algorithm, including the Monte Carlo methods, can
e configured with a stopping condition that specifies a com-
utational budget (e.g., time, memory, or a number of steps) to
ind a solution, after which the algorithm will return the solution
if found), as shown in Algorithm 3. If no stopping condition
s provided, the algorithm will run until a solution is found. In
ddition, each Monte Carlo method can be configured with a sec-
nd different stopping condition that allows specifying a stopping
riterion for making a decision during each algorithm step (e.g.,
umber of simulations or iterations, time to run a simulation or
teration), so that when the condition is reached, the Monte Carlo
ethod will return the best decision found at that particular step,
s shown in Algorithms 1 and 2. Currently, two different stopping
onditions are implemented: (1) an Iterations constraint
hich allows specifying a maximum number of steps for the
lgorithm to find a solution or a maximum number of simulations
r iterations for Monte Carlo methods to make a decision; and (2)
Time constraint that allows specifying a maximum execution
ime in seconds for the whole search or for making a decision in
onte Carlo methods.

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

w
a
i
h
b
r

t
r
t
A
e

F
r
t
h
a
a
i
s
t
t
i
d
f
t
w
f

a
t
r
c
r
i
(
k
t
a
v
a
t
m
t
s

t
a
b
a
p

2
r
c
2
o
a
w
t
s

t
o
o

t
c
(
I
a
c
S
a
r
i
o
e
m
m

a

f
o
a
s
S
t
t
s
b
f

a

a

a

Moreover, each Monte Carlo method can also be configured
ith a selection criterion for the best action decision. For ex-
mple, select the child with the highest reward, the most vis-
ted child, the child with both the highest visit count and the
ighest reward, or the child that maximizes a lower confidence
ound (Chaslot et al., 2008c). Currently, the selection criteria that
eturns the child with the highest reward is available.

Finally, additional configuration parameters can be provided
o Monte Carlo methods. Concretely, due to Monte Carlo methods
ely on randomness, we provide a seed parameter to initialize
he random generator and enable experimental reproducibility.
lso, a number of runs can be specified (default is 1) to repeat an
xperiment several times (e.g., 30) and obtain the median, means

and standard deviation of different statistics, as explained below.

Algorithm 3 Generic algorithm to solve a problem with MCTS.
1: function FindSolution(s0)
2: state← s0
3: while within computational budget and not is_terminal(state) do
4: state← MCTS(state) ▷ Run MCTS (Algorithm 2).
5: end while
6: return state
7: end function

4.3. Usage of the Monte Carlo methods and knowledge inference

Two main usages of the Monte Carlo methods are available.
irst, Monte Carlo methods can be used as a search-based algo-
ithm so that from a given initial state, the algorithm will look for
he best solution(s) — i.e., terminal state(s). Algorithm 3 illustrates
ow to use the MCTS method as a search-based algorithm to find
solution to a generic problem. Given an initial state (s0), the
lgorithm will run until some predefined computational budget
s reached or until a terminal state is reached (line 3). In each
tep, the algorithm calls the MCTS method in charge of choosing
he best action (line 4). In addition to the best solutions found by
he algorithm, the MCTS framework provides further knowledge
nformation gathered during the search. The partially optimal
ecisions made step by step are available, so that we can observe,
or example, which feature has been selected in each step during
he configuration process for configuration-based analyses, or
hich relation has been added to the feature model in each step

or evolution-based problems or reverse engineering problems.
Second, Monte Carlo methods can also be used to analyze
particular state and its possible alternatives. Given a state,

he method will analyze the possible alternatives that can be
eached from this state and will return information about the best
hoices, so that the practitioner can make better decisions. In this
espect, the MCTS framework also reports the information stored
n the tree search about the Q -values and visit accounts of each
state, action) pair gathered by the MCTS method. To illustrate the
nowledge stored in the tree search, we use a data visualization
echnique called heatmap (Lopez-Herrejon et al., 2018; Wilkinson
nd Friendly, 2009; Wong, 2010), which encodes quantitative
alues as colors (like in weather maps), so that it compacts large
mounts of information (our Q -values) to bring out coherent pat-
erns in the data (e.g., optimal feature selection over the feature
odel). In the following sections, we use heatmaps as one of the

ools to represent the contribution of each decision to the global
olution achieved by MCTS.
Finally, the MCTS framework also reports statistical informa-

ion about the execution time and memory consumption of the
lgorithms, such as the median, mean, and standard deviation for
oth the global solution and each step-wise decision, that allows
deep study of the different Monte Carlo methods and analysis
roblems. The experiments shown in the following sections were
8

performed on a desktop computer with Intel Core i9-9900K CPU
@ 3.60 GHz x 8, 32 GB of memory, Linux Mint 20.1 Cinnamon,
and Python 3.9.1.

5. Configuration based analysis

One of the most important and widely studied types of prob-
lems in AAFM deals with feature model configurations. Examples
of these problems are the optimization of configurations accord-
ing to non-functional properties (Guo et al., 2019; Yadav et al.,
020; Sayyad et al., 2013), the completion of partial configu-
ations (Vidal-Silva et al., 2021), the localization of defective
onfigurations in SPL testing (Gazzillo et al., 2018; Halin et al.,
019; Bhushan et al., 2021; Bogart et al., 2021), or the diagnosis
f configurations (Vidal-Silva et al., 2021; Felfernig et al., 2018),
mong many other problems. To analyze this kind of problems
ith MCTS, we first model the concepts that are shared among
hese problems. That is, the definition of the set of states S, the
et of actions A, and the state transition function θ .
The state set S encompasses all possible combinations of fea-

ures of the feature model. Depending on the definition of the set
f actions A, S may consider either valid or invalid configurations
r both, but also either partial or complete configurations or both.
The action set A. There are multiple possibilities to define

he set of valid actions that can be performed over a given
onfiguration. For instance, actions for configurations can include
de)selecting a unique feature or (de)selecting a set of features.
n this paper, we opt to follow an incremental approach in which
configuration is built from scratch (or from a given partial

onfiguration) by selecting features. Formally, given a state s ∈
representing a (partial) configuration c , the application of an
ction a ∈ A with argument f ∈ F will lead to a new state s′ ∈ S
epresenting a new (partial) configuration c ′ = {f } ∪ c. An action
s valid if it can be applied to a state under a certain Condition
f Applicability (CA). The condition of applicability is defined for
ach action and its result depends on the current state. An action
ay receive any kind of parameters in order to be executed. The
ost basic action is selecting a random feature from F :

0: SelectRandomFeature. This action adds a random feature f ∈ F to the
configuration c.

CA: f is not already part of the configuration c , that is, f /∈ c.

This action is independent of the relations defined in the
eature model (Definition 1), and thus it can be used for any
ther definition of the feature model as long as it is based on
set of features. However, this action leads to an intractable

earch space with all possible valid and invalid configurations (i.e.,
= P(F)) where most of the states represent invalid configura-

ions. A more convenient definition for the actions is considering
he relations of the feature model, reducing the resulting search
pace, but losing the independency from the feature model stated
efore. Following our feature model Definition 1, we specify the
ollowing set of actions A = {a1, a2, a3, a4, a5}:

1: SelectRootFeature. It adds the root r ∈ F of the feature model m to the
configuration c.

CA: The configuration is empty: c = ∅.

2: SelectMandatoryFeature. It adds a mandatory feature f ∈ F to the
configuration c.

CA: There is a mandatory relation between a feature g already present
in the configuration c and feature f . Formally, f /∈ c∧∃g ∈ c, ∃r ∈
R|r = (g, [f], ⟨1..1⟩).

3: SelectOptionalFeature. It adds an optional feature f ∈ F to the configuration
c.

CA: There is an optional relation between a feature g already present
in the configuration c and feature f . That is, f /∈ c ∧ ∃g ∈ c, ∃r ∈
R|r = (g, [f], ⟨0..1⟩).

J.-M. Horcas, J.A. Galindo, R. Heradio et al.
a4: SelectFeatureAlternative. It adds a feature fi ∈ F , which belongs to an
alternative-group, to the configuration c.

CA: There is an alternative relation between a feature g already present
in the configuration c and feature fi , and there is not any other
child of g already selected in c. That is, fi /∈ c ∧ ∃g ∈ c, ∃r ∈
R|r = (g, [f1, . . . , fi, . . . , fn], ⟨0..1⟩) ∧ fj /∈ c,∀j ̸= i.

a5: SelectFeatureOr. It adds a feature fi ∈ F of an or-group to the configuration
c .

CA: There is an or-group relation between a feature g already present
in the configuration c and feature fi . That is, fi /∈ c ∧∃g ∈ c, ∃r ∈
R|r = (g, [f1, . . . , fi, . . . , fn], ⟨0..1⟩). This action allows selecting
more than one child in an or-group.

Note that the configuration is always built incrementally step
by step. In each execution of the MCTS method, a unique feature
will be selected following the tree hierarchy structure of the
feature model. This way, we do not need to define actions for
deselecting a feature and avoid cycles in the search space. The
successive application of the actions A assures the validity of the
(partial) configurations according to the tree hierarchy structure
of the feature model, but not for cross-tree constraints. We can
define a generic condition of applicability for all actions so that
an action can only be applied if the resulting partial configuration
does not violate any relation nor cross-tree constraints in the
feature model (e.g., checking it with a SAT solver). Note also
that we may take into account atomic sets (Segura, 2008)5 of the
feature model to add several features in each step, reducing the
search space. However, this will limit the analysis of the decisions
made when features are added step by step as illustrated in the
following analysis problems. It is also worth mentioning that
actions a1, . . . , a5 fully characterize feature diagrams as defined
in FODA (Kang et al., 1990) (i.e., optional and mandatory features,
and xor and or-groups), but not all the possible feature models
as they are defined in Definition 1 because Definition 1 supports
more generic feature models that may include relations support-
ing mutex groups (i.e., ⟨0..n⟩) or arbitrary cardinality groups (i.e.,
⟨a..b⟩) (Czarnecki et al., 2005). To support these relations, one
may define additional actions to incorporate the required features
in the configuration to satisfy these relations. Moreover, in the
literature (Czarnecki et al., 2005; Knüppel et al., 2017) it has
been demonstrated that these relations can be refactored using
the FODA concepts and arbitrary cross-tree constraints (i.e., the
feature model can be transformed to an equivalent feature model
with the same semantics). For simplicity illustrating the problems
in this paper, we assume feature models only contain optional
and mandatory features, and xor and or-groups relations in the
feature diagram.

The state transition function θ : S × A → S defines the
result of applying an action a ∈ A to the given configuration c .
Starting from the initial empty configuration c0 and iteratively
applying the state transition function to all possible applicable
actions, we could build the whole search space. However, this
is an intractable task, and the Monte Carlo methods, and in
particular MCTS, will explore the search space resulting from
applying the transition function only to the most promising pairs
of (state, action).

The initial state, the terminal condition, and the reward func-
tion are specific for each problem. In the following, we show
how to model four concrete problems where a state represents a
configuration by providing complete definitions of the concepts
(S, s0, t,A, θ, µ).

5 An atomic set is a group of features that can be treated as a unit when
performing certain analyses, and therefore, those features appear together in
configurations.
9

5.1. Localizing defective configurations

A common problem in software testing and maintenance is
identifying the configurations that lead to a given defect or some
other undesired program behavior (Gazzillo et al., 2018; Halin
et al., 2019; Bhushan et al., 2021). Continuing with our running
example, let us suppose that we want to identify those valid con-
figurations in our feature model (Fig. 1) that present anomalies
when they are deployed. Anomalies in the Python framework
for AAFM may happen due to incompatible versions of packages,
deprecated libraries, or some other errors. Despite those defective
configurations can be found with a search-based software engi-
neering technique (Lopez-Herrejon et al., 2015a), localizing the
feature that causes the configuration to fail is not an easy task due
to the complex relations between the features, requiring complex
analysis for the complete configuration. Moreover, Python pack-
ages are often updated and may cause breaking changes. Kästner
et al. Bogart et al. (2021) define a breaking change as any change
in a package that would cause a fault in a dependent package if it
were to adopt that change blindly. Thus, to provide a robust AAFM
Framework, apart from identifying the defective configurations,
we need to identify those features that cause the defects. Using
a step-wise decision approach, we can infer which features are
causing the configuration to fail.

Modeling the problem. We model this problem in the MCTS
conceptual framework (S, s0, t,A, θ, µ) as follows:

• S: The set of all possible configurations of the feature model,
including partial and complete configurations, i.e., SSS ⊆ P(F).
• s0: The initial state is the empty configuration where no

feature has been already selected, i.e., s0 = ∅.
• t: The terminal condition determines if a configuration is

valid and complete, or no more valid actions can be applied
to the configuration:

t(s)t(s)t(s) =

{
True, if is_valid(s) ∨ applicable_actions(s) = ∅,
False, otherwise

The is_valid(s) operation is performed with a SAT solver
(Benavides et al., 2010).
• A: The set of valid actions AAA = {a1, . . . , a5} as previously

defined.
• θ: The state transition function is given by the definitions

of the actions and their conditions of applicability: θθθ =

S × A→ S.
• µ: The reward function for a terminal configuration s:

µ(s)µ(s)µ(s) =

{
errors(s), if is_valid(s) ∧ errors(s) > 0
−1, otherwise

where error(s) is a function that counts the number of errors
that the configuration presents when it is deployed. In our
running example, this value corresponds to the number of
Python packages selected that raise errors when installing
them. The reward value of partial and invalid configurations,
as well as for those valid configurations that do not contain
errors is -1. Note that the reward function for Monte Carlo
methods is usually defined in game theory with fixed values
(e.g., +1: win, -1: loss, 0: draw) with no intermediate values,
and we are defining here a continuous function based on the
number of errors found.

Solving the problem and analyzing the results. We can solve
the problem of finding defective configurations by consecutively
applying MCTS to the initial empty configuration (Algorithm 4).
We modify the stopping condition of the generic Algorithm 3 so

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

1

f
s
t
r
t
e
s
s
p
s
d
f
(
w
o
l

Fig. 6. Heatmap representing step-wise decisions for defective configurations.
w
t
s
p
d
{
P
i
c
s
o
d
a
t
¬

p

L
g
r
p
a
a
f
H
o
r
m
d
f
M
a
d
a
i
c

o
c
o
t
O
f
i

Algorithm 4 Finding defective configurations with MCTS.
1: function FindDefectiveConfiguration(state)
2: while reward(state) ≤ 0 and actions(state) ̸= ∅ do
3: state← MCTS(state) ▷ Run MCTS (Algorithm 2).
4: end while
5: if reward(state) > 0 then ▷ Defective configuration found!
6: return state
7: else
8: return False
9: end if
0: end function

that the search will run until a configuration with errors is found
or no valid action can be applied to the current configuration
(line 2 in Algorithm 4). Each execution of the MCTS method (line
3) will decide and add the most promising feature to the cur-
rent configuration following the four steps of the MCTS method
presented in Section 3.1. The most promising feature is the next
one in the feature model hierarchical tree (according to the set of
actions A) that moves the configuration closer to a complete valid
configuration with the highest number of errors.

The execution of the algorithm is illustrated step by step in
Fig. 6. We use a gray-scale heatmap for each algorithm step
to represent each feature’s contribution. Darker colors mean a
higher probability of finding a defective configuration. if that fea-
ture is selected. Given the empty configuration as the initial state,
in the first step, the only action available is to add the root feature
AAFMFramework (Step 1 in Fig. 6). In Step 2, three possible
eatures can be added to the configuration according to the action
et A. To make a choice, MCTS performs a number of simula-
ions (e.g., 100) that consist in completing the configuration with
andom selections (always following the action set A), evaluating
he number of errors for the complete configuration achieved in
ach simulation, and gathering the statistical outcomes of the
imulations as explained in Section 3.1 — i.e., the Q -values. Fig. 6
hows normalized Q -values in the range [0, 1], being 1 the most
romising feature decision. In Step 3, the pyPicosat package is
elected as part of the configuration, while, in Step 4, any possible
ecision will lead to defective configuration (i.e., all candidate
eatures are Q -values 1). This suggests that the previous choice
pyPicosat) is the feature provoking the failure. The algorithm
ill continue completing the configuration with a valid selection
f features (e.g., selecting mandatory features), despite the prob-
ematic feature that has already been discovered. From step 3
10
here pyPicosat is selected, the algorithm will find a defec-
ive configuration regardless of the selections of the following
teps, because all the complete configurations will contain the
yPicosat feature. The algorithm finishes when it finds a valid
efective configuration, as, for example, the final state found:
AAFMFramework, Solvers, System, Linux, Packages, pyPicosat,
icoSAT}. As Fig. 7 shows, when deploying that configuration
n Python some errors raise: the package pyPicosat cannot be
orrectly installed in Linux. Thanks to the heatmap shown step by
tep, we are able to identify that the feature pyPicosat is one
f the problematic features that provokes the configuration to be
efective. Following this procedure, we can find that deploying
ny configuration with pyPicosat in the Linux system leads
o failures, so we opt to update the original constraint Win ⇒
pyPicosat to Win ∨ Linux ⇒ ¬ pyPicosat, converting

yPicosat into a dead feature (Benavides et al., 2010).

essons learned and open challenges. Using the knowledge
athered by MCTS in the tree search, we can infer two interesting
esults: (1) which features are more probable to be the cause
rovoking the defect in the configuration; and (2) which features
re contributing more to the solution found, so that we may find
dditional defective configurations by following the sequence of
eature selections done by MCTS to find the current configuration.
owever, two limitations arose at this point on the applicability
f MCTS. First, the problem of finding defective configurations
equires specific domain knowledge represented by the infor-
ation about what configurations present errors when they are
eployed. This limits the applicability of this analysis to those
eature models that contain such domain knowledge. Second,
CTS can function as a search-based algorithm, but it is more
ppropriate to find just one solution, not all of them. To find all
efective configurations, we need to track the solutions found
nd use that information as part of the reward function so that
t penalizes (return -1) those simulations that reach the defective
onfigurations already found.
To illustrate these concerns and show the applicability of

ur Monte Carlo methods, we apply them for finding defective
onfigurations in two real-world SPLs: the JHipster Web devel-
pment stack (Halin et al., 2019), and the complete version of
he Python framework for AAFM (Galindo and Benavides, 2020).
n the one hand, we choose the JHipster SPL because its con-
iguration space (26,256 configurations) has been fully evaluated
n Halin et al. (2019) (having 9,376 defective configurations, i.e.,

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

B
a
t
b
e
i
s
c
t
u
i
c
F
w
e
f
e
(

Fig. 7. Deploying a defective configuration.
Fig. 8. Finding defective configurations.
35.70%) and can be used to evaluate the results obtained with
Monte Carlo methods (Aguilera et al., 2021). On the other hand,
the complete AAFMFramework product line presented in Sec-
tion 2 has 53 features, 26 relations, and 10 cross-tree constraints,
leading to a total of 3.1264 · 109 configurations. It serves as a
large-scale configuration space where we have already identified
the specific features that cause errors when the configurations
are deployed by manually testing each feature individually. We
compare three Monte Carlo methods for different numbers of
simulations w.r.t. uniform random sampling (URS) (Heradio et al.,
2022a). URS is the simplest way to solve search-related problems
on configurable systems (Oh et al., 2017; Heradio et al., 2022b;
atory et al., 2021). URS-based search consists of generating
random sample of configurations, testing (or benchmarking)

hem, and selecting the ones that fail (or the one that achieves the
est performance). Accordingly, URS is the baseline of any more
laborated search algorithms, whose existence only makes sense
f they can beat pure random. In contrast to URS, the random
trategy presented in Section 4.2 is not able to find any defective
onfiguration in most cases because the random strategy selects
he actions randomly, but the resulting configurations are not
niformly selected from the full search space as URS does. Thus,
n this particular problem, URS is a more reasonable base line to
ompare Monte Carlo methods. The results are summarized in
igs. 8, 9, and 10. We present the number of configurations found
ith defects (a), the number of configurations (terminal states)
valuated (b), the efficiency as the percentage of defective con-
igurations found w.r.t. the configurations evaluated (c), and the
xecution time (d). We identified the following Lessons Learned
LS) and Open Challenges (OC).
11
LS1 MCTS is a selective sampling method which balances exploita-
tion and exploration, in contrast to uniform random sampling.
A first observation is a higher fluctuation in the MCTS.
Especially in the UCT Algorithm where we set the ex-
ploration constant to 0.5, leading to a balance between
exploitation and exploration (Gelly and Silver, 2011; Koc-
sis and Szepesvári, 2006). In JHipster (Fig. 8(a)), defective
configurations are localized in regions, making the MCTS
method focuses on that area until the region is sufficiently
explored. On the contrary, in the AAFM Python framework
(Fig. 8(b)), defective configurations are scattered through
the configuration space, and MCTS will find more defec-
tive configurations with the same number of simulations.
The Greedy MCTS method favors exploitation in contrast
to exploration (the exploration constant is set to 0), and
therefore the greedy version of MCTS finds the same de-
fective configurations more than once during simulations
than the other methods. This occurs because greedy MCTS
chooses the action with the highest Q -value and the subse-
quent simulations will choose the same action with highest
Q -value. Regarding the flat version of Monte Carlo method,
it behaves more similar to random sampling because it
does not use the information gathered in previous simula-
tions for the subsequent decisions, but it still gets benefits
from the current simulations run. OC1: The challenge is
identifying the most appropriate Monte Carlo method for a
specific SPL problem. Monte Carlo methods are not a silver
bullet for analyzing SPL problems, but these results show that
MCTS can also be used as a search-based optimization tech-
nique in SPL, possibly as a complement of existing approaches
(e.g., genetic algorithms (Lopez-Herrejon et al., 2015a)).

J.-M. Horcas, J.A. Galindo, R. Heradio et al.
Fig. 9. Efficiency of the search for defective configurations.
Fig. 10. Evaluation of terminal states.
p
f

5

o
n
e
n

LS2 The efficiency of Monte Carlo methods depends on the distri-
bution of the configuration space and the structure of the
feature model. A second observation is the efficiency of
Monte Carlo methods (Fig. 9). Monte Carlo methods are
superior on average to URS when comparing the amount
of defective configurations found w.r.t. the configurations
evaluated. In JHipster, with 5000 simulations, the UCT Al-
gorithm evaluates 5000 configurations, of which 36% are
defective configurations, flat Monte Carlo finds 48%, and
Greedy MCTS finds 54%, in contrast to URS, which finds 36%
of defective configurations. In the AAFM Python framework
feature model, with 5000 simulations, the UCT Algorithm
finds 98% of defective configurations, flat Monte Carlo finds
84%, and Greedy MCTS finds 94%, in contrast to URS that
finds 77% of defective configurations. This result is not
surprising since MCTS is a selective sampling approach.
However, the number of solutions found (Fig. 9), as well
as the number of solutions evaluated, that is, the num-
ber of terminal states evaluated with the reward function
(Fig. 10) by MCTS will depend on the distribution of the
configuration space (Heradio et al., 2019). This implies that
the same configurations may be found more than once,
requiring MCTS more simulations and evaluations to find
distinct defective configurations because several simula-
tions may lead to the same terminal states. Furthermore,
the performance of flat Monte Carlo is better in one case
study (AAFM Framework) and worst in the other (JHipster)
because of the structure of the feature model, and thus,
the structure of the search space. In the JHipster, despite
having only 26,256 configurations, the valid configurations
are larger in the number of features requiring more steps
(decisions) of flat Monte Carlo to find a valid configuration.
In contrast, in the AAFM Framework, despite having more
than 109 configurations, those configurations are smaller in

the number of features, requiring fewer steps (decisions)

12
from flat Monte Carlo (Heradio et al., 2019). Remember
that the configuration is built from scratch following the
top-down structure of the feature model. The same reason
applies to the performance of Greedy MCTS, but take into
account that when Greedy MCTS finds a ‘‘good’’ solution
it will continue exploring that part of the search space
in depth because its exploration constant is always zero.
For instance, in JHipster (Figs. 8(a), 9(a), and 10(a)), when
Greedy MCTS finds a ‘‘good’’ solution with a lower number
of features, the subsequent valid configurations it finds are
similar or even the same configuration previously found.
A selective sampling algorithm may help to better under-
stand the configuration space of large-scale feature models.
OC2: The challenge here is twofold: (1) to investigate how
Monte Carlo methods can be employed in the understand-
ing of the configuration spaces, since a selective sampling
algorithm may help to identify the structure and form of the
configuration space of large-scale feature models; and (2) use
the information about the configuration space to improve the
efficiency of Monte Carlo methods in search-based algorithms
(e.g., enhancing Monte Carlo methods with transpositions
and action groups (Childs et al., 2008)).

In the following section, we show how we can solve another
roblem where a state represents a configuration by only modi-
ying the reward function and reusing the other definitions.

.2. Finding minimum valid configurations

In our running example, a requirement for the development
f the AAFM framework in Python is to depend on the smallest
umber of third-party packages as possible. Thus, another inter-
sting problem is finding a valid configuration with the minimum
umber of features (Vidal-Silva et al., 2021).

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

A

i
t
f

S
g
s
s
t
v
a
t
p
p
s
o
e
w
f
c
i
a
⇒

c

L
C

L

Fig. 11. Minimum valid configurations found by Monte Carlo methods in the
AFM Framework feature model (excerpt) for 30 runs. Higher marks w.r.t.

the y-axis indicate more distinct configurations found for the same number of
features.

Modeling the problem. We reuse the definitions of states (S),
nitial state (s0), terminal condition (t), actions (A), and state
ransition function (θ) of the previous problem, while the reward
unction µ changes.

• S: All possible partial and complete configurations (SSS =
P(F)).
• s0: The empty configuration with no feature selected (s0 =
∅).
• t: A configuration is terminal if it is valid and complete:

t(s)t(s)t(s) =

{
True, if is_valid(s) ∨ applicable_actions(s) = ∅,
False, otherwise

• A: The set of valid actions AAA = {a1, . . . , a5}.
• θ: S × A→ S.
• µ: The reward function counts the difference between the

number of features in the feature model (|F |) and the num-
ber of features in the configuration represented by the state
s:

µ(s)µ(s)µ(s) =

{
|F | − |s|, if is_valid(s)
−1, otherwise

olving the problem and analyzing results. We use generic Al-
orithm 3 where the terminal condition checks if the current
tate is a complete valid configuration. In this problem, the tree
earch built by MCTS contains statistical information regarding
he decisions to select the minimum set of features to form a
alid configuration. Fig. 13 shows the resulting heatmap with the
ccumulated Q -values when we use a partial configuration as
he initial state. As we will show in the following section, the
roblem of finding minimum valid configurations is similar to the
roblem of completing partial configurations, thus the heatmaps
how similar information. Q -values capture the expected reward
f a decision if we decide to make such choice. When using the
mpty configuration as the initial state, higher Q -values indicate
hich feature may be selected to obtain a minimum valid con-

iguration, and features in darker colors will approximate to the
ore features. In addition, the heatmap shows the feature pyP-
cosat in blank, indicating that it has never been considered in
decision. Effectively, the constraint we updated (Win ∨ Linux
¬ pyPicosat) prevents that feature from being part of any

onfiguration, indicating that it is a dead feature.

essons learned and open challenges. As discussed in LS2 Monte

arlo methods can help to explore the configuration space of a

13
Fig. 12. Finding minimum valid configurations in the complete AAFM Frame-
work feature model with MCTS. We vary the number of simulations of MCTS
from 1 to 100 and execute 30 times the search algorithm (Algorithm 3) for each
number of simulations to calculate the median.

feature model, offering information to make better decisions, in
contrast to an exact method to find the best solution. To illustrate
this, Fig. 11 shows the minimum valid configurations found by
the Monte Carlo methods (100 simulations) for 30 runs of each
algorithm. Most of the configurations found are concentrated
in the real minimum valid configuration with only 3 features.
The MCTS methods have also found others (non-minimum) valid
configurations because of the balancing behavior discussed in LS1
which is useful in the case that the minimum valid configuration
is not unique. Fig. 12 shows the number of decisions (features)
taken by MCTS to find minimum valid configurations starting
from the empty configuration. We run 30 executions for each
number of iterations (simulations). Using the complete version
of the AAFM Python framework, we can observe as the number
of decisions decreases as long as we increase the number of
simulations, improving the solutions found. The following lessons
learned and open challenges have been extracted.

LS3 Monte Carlo methods are very sensitive to the various in-
puts and parameters. Monte Carlo methods are techniques
that rely on randomness, and thus, as stated by Lopez-
Herrejón (Lopez-Herrejon et al., 2015a) these techniques
are very sensitive to various inputs and parameters, mean-
ing that slightly changing a value (e.g., the number of
simulations) can totally change how you would infer the
results. For example, the UCT MCTS and the Greedy MCTS
only differ in the value used as the exploration constant,
leading to a totally different result as discussed in LS1
(Fig. 8). OC3: The challenge is to find the most appropriate
set of configuration parameters of the Monte Carlo methods
for a specific feature model input.

S4 Monte Carlo methods are anytime algorithms which accomplish
better results the longer they keep running. As shown in
Fig. 12, the number of Monte Carlo simulations affects both
the solution quality and the number of steps (decisions)
to obtain the solution. As the number of simulations in-
creases, the number of decisions decreases because MCTS
can make better decisions, and thus the solutions found
are also better. Establishing the appropriate number of
simulations is a complex task, and it depends on the size
of the search space. A large number of simulations are
needed before significant learning could occur in MCTS.
OC4: Despite the implementation of our MCTS framework also
offers a time constraint in seconds as stopping condition for
the Monte Carlo decisions, the open challenge here is deter-
mining the appropriate number of simulations or specifying
the time needed in advance to guarantee a certain quality in
the solutions.

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

s
p

5

f
c
e
c
I
t
i
u

M
l
p

r
e
c
p
p
t
s
t
P
i
t
c
t
p
f
s
w
p
t
t
R
a
v

L
u
f
t
f
v
T
l

L

LS5 There exist important trade-offs between reproducibility of re-
sults, randomness, and performance in Monte Carlo methods.
The results’ reproducibility is compromised as Monte Carlo
methods rely on randomness to solve problems. Monte
Carlo methods make intensive use of random operations
such as ‘‘choice’’, ‘‘shuffle’’, or ‘‘sample’’ of actions during
both the selection and the simulation phase. Furthermore,
the random module is not the only source of randomness,
and the results can still present a small variation when
using an initialized random seed in Monte Carlo methods
and especially in MCTS. The implementation of the MCTS
method is usually based on data structures (e.g., the tree
search) that do not maintain the order of the states (e.g.,
sets, maps, or dictionaries). For instance, in a configuration
of a feature model, the order of the features is irrelevant.
Using those structures does not guarantee obtaining identi-
cal results when using random operations such as choosing
a random feature in a configuration. Moreover, the states
in our framework can represent features, configurations,
or even feature models like in the reverse engineering
problem. Maintaining a total order for these concepts is
not straightforward. For example, defining that a feature
model is smaller than others is not trivial. Providing re-
producibility also impacts and significatively degrades the
performance of the solution because it requires continu-
ously sorting the collections or using inefficient sorted data
structures, which Monte Carlo methods do not really need.
OC5: The challenge is to address the trade-off between per-
formance and reproducibility due to the randomness nature
of the Monte Carlo methods. To mitigate these issues and
provide reproducibility in our MCTS framework, we allow
setting a random seed as an argument to initialize the
random module and our implementation relies on sorted
data structures (i.e., lists) in contrast to sets.

The problem of finding minimum valid configurations can be
een as a specialization of the following problem of completing
artial configurations (Vidal-Silva et al., 2021).

.3. Completion of partial configurations

The completion of partial configurations problem consists of
inding the set of non-selected features necessary for getting a
omplete valid configuration. While in a complete configuration
ach feature is decided to be either present or absent, in partial
onfigurations, some features are undecided (see Definition 3).
n our running example, let us suppose we have decided to use
he Glucose solver in our AAFM framework. We are interested
n finding the minimum valid complete configuration with such
ser’s requirement.

odeling the problem. We modify the initial state s0, while
eaving the other definitions S, t , A, θ, and µ as in the previous
roblem:

• S: All possible partial and complete configurations (SSS =
P(F)).
• s0: A given partial configuration. To guarantee that the initial

partial configuration does not violate the tree hierarchy of
the feature model and allows applying our actions A, we
preprocess the initial configuration provided by the user by
recursively selecting all parents for the features already se-
lected. If the resulting partial configuration does not violate
the tree hierarchy nor the cross-tree constraints, we can use
it as the initial state s0 for MCTS. In the other case, the partial
selection made by the user is not valid.
14
• t: A configuration is terminal if it is valid and complete:

t(s)t(s)t(s) =

{
True, if is_valid(s) ∨ applicable_actions(s) = ∅,
False, otherwise

• A: The set of valid actions AAA = {a1, . . . , a5}.
• θ: S × A→ S.
• µ: Difference between the number of features in the feature

model (|F |) and the number of features in the configuration
(|s|):

µ(s)µ(s)µ(s) =

{
|F | − |s|, if is_valid(s)
−1, otherwise

Solving the problem and analyzing results. To form a valid
initial configuration with the user requirements (i.e., the Glucose
feature selected), we automatically select the parent features of
Glucose recursively, obtaining the set of features {AAFMFramewo-
k, Solver, Glucose} to be used as the initial configuration. We
xecute Algorithm 3, whose terminal condition checks if the
urrent state is a valid complete configuration, as in the previous
roblem. Fig. 13 shows the resulting heatmap for completing the
artial configuration given as the initial state by the user with
he minimum valid selections. Features in darker colors indicate
elections to be first made to get closer to a complete configura-
ion, as, for example the Packages and the System features. The
ackages features appears with a higher normalized Q -value,
ndicating that MCTS has first explored that feature (in contrast
o the mandatory feature System). That is because a complete
onfiguration needs to include both features, satisfying the cross-
ree constraints (i.e., the Glucose solver is implemented by the
ython-sat or the pyglucose package), so that the Packages
eature must be selected. To satisfy the constraint, the python-
at or the pyglucose package must be selected. They appear
ith a higher normalized Q -value than the other alternative
ackages. Note that how other features like pycosat (0.08) or
he solver MiniSAT (0.02) are not strictly necessary to complete
he configuration, but have been marked as possible candidates.
emember that MCTS is based on simulations and probabilities
nd those feature selections have also been explored resulting in
alid configurations.

essons learned and open challenges. Completing valid config-
rations is an example of an analysis problem which uses the
eature model without additional domain information. Therefore,
he analysis can be extended to any feature model. To show the
easibility of Monte Carlo methods, we use a set of feature models
arying in size and structure (Table 1). Results are shown in
able 2 for all Monte Carlo methods. We identify the following
essons learned and open challenges.

S6 Despite Monte Carlo methods often scale to large search spaces
(Browne et al., 2012), SPL problems introduce additional com-
plexity that can affect the feasibility of Monte Carlo methods.
The feasibility of Monte Carlo methods relies on the perfor-
mance of the simulations. To obtain good solutions with
Monte Carlo methods, they need to run a large number
of simulations (e.g., hundreds or thousands). Therefore, a
simulation must be a lightweight operation, in contrast to
a computationally expensive task. In configuration-based
analysis, we have identified a bottleneck during the simu-
lations due to the high number of calls to the SAT solver
employed to check if the selection of a feature leads to a
valid partial configuration. This check needs to be done for
each possible feature that can be added to the configura-
tion when applying the actions to select the next feature. A
simple cross-tree constraint involving a feature at the top

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

L

Fig. 13. Global heatmap for completion of partial configurations. The initial (input) state is {AAFMFramework, Solver, Glucose}. The heatmap indicates the
selections to be first made to get closer to a complete configuration. Features Packages and System are the two features added in the first steps.
Table 1
Feature models corpus used for evaluation, with number of features (#Features), optional features (#Opt), mandatory features (#Mnd),
or-group features (#Or), alternative group features (#Xor), the average branching factor (AvgBF), number of cross-tree constraints
(#CTCs), and configurations (#Configs).
Feature model #Features #Opt #Mand #Or #Xor AvgBF #CTCs #Configs

Pizzas (Knüppel et al., 2017) 12 8 4 1 2 2.75 1 42
GPL (Apel et al., 2013) 18 13 5 1 0 3.40 13 436
Wget (Siegmund et al., 2013) 17 15 2 0 1 8.00 0 8192
jHipster (Halin et al., 2019) 45 36 9 0 10 3.38 13 26256
Tank war (Siegmund et al., 2013) 37 30 7 2 6 3.27 0 1.74e6
Mobile media (Figueiredo et al., 2008) 43 30 13 4 3 3.50 3 2.12e6
AAFM Framework (Horcas et al., 2021) 59 52 7 6 1 4.14 14 1.32e11
WeaFQAs (Horcas et al., 2019) 179 138 41 13 23 3.24 7 2.93e24
Table 2
Completion of partial configurations. For each feature model (FM), we show the number of
features in the minimum valid configuration (Min. |F |). We performed 30 execution runs,
and show the median values for the number of features in the minimum valid configuration,
time (in seconds), and memory (in MB) of each method to complete the initial empty
configuration with the minimum number of features.

Feature model Min Random strategy Flat Monte Carlo UCT MCTS Greedy MCTS
|F | |F | Time Mem. |F | Time Mem. |F | Time Mem. |F | Time Mem.

Pizzas 7 9 4e-4 0.20 7 0.12 0.35 7 0.55 1.14 7 0.52 0.90
GPL 7 16 9e-4 0.36 10 0.46 0.88 12 3.44 7.30 11 3.13 6.94
Wget 2 11.5 8e-4 0.25 2 0.05 0.19 2 0.16 3.11 2 0.16 3.10
jHipster 11 20 1.8e-3 0.61 14 1.38 1.79 13 3.23 9.07 13.5 2.33 5.65
Tank war 12 26 2.6e-3 0.70 14.5 2.42 2.35 12 4.27 25.31 14 5.44 23.38
Mobile media 14 36 4e-3 1.04 20 4.65 3.63 17.5 8.72 42.95 16 8.39 36.83
AAFM Framework 4 52.5 0.01 1.54 4 2.07 0.67 5.5 4.15 15.97 6.5 5.00 15.10
WeaFQAs 3 129 0.10 7.44 3 14.03 0.90 3 23.08 18.51 3 22.44 18.57

Runs: 30. Simulations for Monte Carlo methods: 100. Highlighted the best results for time
and memory for those methods with the minimum number of features in the configurations
found.
of the feature model can increase considerably the steps
needed to complete a valid configuration. Even with only
just one simulation, the number of calls to the SAT solver
can be exponential in the number of features in the feature
model during simulation. OC6: The challenge is to define and
implement lightweight simulations for configuration-based
analysis. Note that we refer in this challenge to the simula-
tion process (i.e., the successive random application of the
actions), without considering the execution of the reward
function that we will discuss in LS10.

S7 Uniform random sampling may improve the performance of
Monte Carlo simulations. A possible solution to address the
previous challenge is to replace the actions (Section 5) for
selecting the features individually with uniform random
sampling (Heradio et al., 2022a; Batory et al., 2021; Oh
et al., 2017), which returns a sample of configurations of
size equal to the number of simulations needed. We can
15
substitute the random choices during the simulation step
of the MCTS method by a random sample representing
the terminal states reached by the simulations. Adopting
this solution implies three important changes in our MCTS
framework. First, we need to separate the actions used
to generate the possible successors of a given state from
the actions used during simulations, since we still need to
know which are the possible alternatives from a given state
to analyze and choose the most promising one. Second, to
implement random sampling and guarantee uniformity, we
can use a Binary Decision Diagram (BDD) solver (Heradio
et al., 2022a, 2016). Given a partial configuration, the BDD
solver returns a sample of complete configurations that
includes the features of the provided partial configuration.
However, the BDD solver also presents scalability issues
regarding memory when dealing with large-scale feature
models (Thüm, 2020), and therefore, it limits the appli-
cability of our MCTS framework to those feature models

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

S
m
i
u
t
w
f
l
t
s
f
r
{
S
f
p
w
w
b
s
u
c
P

a

L
s
a
a
M
c
o

whose associated BDD can be built. OC7: Providing uniform
random sampling for large-scale feature models is actually
one of the open challenges in the SPL community (Pett et al.,
2019). Moreover, building a BDD for large-scale feature mod-
els is also a well-known identified challenge (Thüm, 2020),
and the application of BDDs to our MCTS framework evidences
the need of addressing this challenge. And third, we need
to determine the size of the sampling for each possible
feature alternative available, in contrast to determine only
the global number of simulations to be performed to make
a decision. In Aguilera et al. (2021), the required sample
size is calculated based on the product distribution (i.e.,
the number of configurations containing a specific fea-
ture) by specifying a shared percentage of configurations
to be sampled for all alternatives, so that the same ratio of
simulations are done for each possible alternative. How-
ever, this calculation is only valid for the flat Monte Carlo
method, but not for MCTS which balances exploration and
exploitation.

LS8 The independent nature of each simulation in Monte Carlo
methods makes them a good target for parallelization to im-
prove the performance, but it requires a deep understanding
of Monte Carlo methods, the parallelization mechanisms, and
application context (e.g., SPL in this paper). Parallelization
has the advantage that more simulations can be performed
in a given amount of time. There is a vast literature about
parallelizing Monte Carlo methods (Browne et al., 2012;
Steinmetz and Gini, 2020; Chaslot et al., 2008b) which
identify different parts to be parallelized (e.g., the simula-
tion phase, selection phase, global iterations of MCTS, etc.).
Parallelization raises issues such as the combination of the
results (Q -values) from different simulations, synchroniza-
tion of threads/processes when simulations differ in time,
or when the simulations depend on the previous ones as
in the MCTS method. OC8: The challenge is to implement
parallel versions of Monte Carlo methods in the context of the
SPL problem that guarantee the soundness/correctness of the
methods and reliability of the results.

The next problem modifies the reward function while reusing
the other definitions of the MCTS conceptual framework.

5.4. Optimization of configurations: optimal feature selection prob-
lem

The goal of this problem is to find optimum configurations
according to some criteria, usually non-functional properties. In
our running example, let us suppose that we want to use the
most updated and user-rated packages in Python for our AAFM
framework.

Modeling the problem. We use the attributes information about
the features to define a reward function µ that serves as a multi-
objective function to guide the search. Concretely, we use the
release update date and the user rating values publicly available
in the Python Package Index (PyPI) repository6 to enrich our
feature model with those attributes (see Definition 2), so that
now our reward function µ can use such information (the other
definitions remain the same as in the previous problems):

• S: All possible partial and complete configurations (SSS =
P(F)).
• s0: The empty configuration with no feature selected (s0 =
∅).

6 https://pypi.org/
16
• t: A configuration is terminal if it is valid and complete:

t(s)t(s)t(s) =

{
True, if is_valid(s) ∨ applicable_actions(s) = ∅,
False, otherwise

• A: The set of valid actions AAA = {a1, . . . , a5}.
• θ: S × A→ S.
• µ: The reward function for a terminal configuration is an

objective function that evaluates the configuration if it is
valid, or returns a penalization if the configuration is not
valid:

µ(s)µ(s)µ(s) =
{
ObjectiveFunction(s), if is_valid(s)
Penalization(s), otherwise

For instance, for this problem, we define the ObjectiveFunc-
tion(s) as a multi-objective function considering the release
update date and the user rating of the Python packages in
the PyPI repository:

ObjectiveFunction(s) = −w1
LastUpdate(s)

NLU
+ w2

UserRate(s)
NUR

where LastUpdate(s) is the median difference in days of the
current date and the last update date for all Python packages
in the configuration s, and UserRate(s) is the median of the
user ratings for all packages in the configuration. w1 and
w2 are the weights for each objective function, and NLU
and NUR are normalization constants. By assigning different
weights to each objective, all possible optimum configura-
tions of the Pareto optimal solutions can be generated. The
Penalization(s) function returns a negative value (e.g., −1000
in this case) if the configuration is not valid.

olving the problem and analyzing the results. As we have only
odified the reward function w.r.t. the problem of finding min-

mum configurations, this optimization problem can be solved
sing the same generic Algorithm 3. The only difference is that
he new reward function requires domain-specific knowledge
hich is provided as attribute information associated with each

eature, so we have provided a guided search for MCTS which
eads to those valid configurations which maximize the objec-
ive function. Fig. 14 shows the heatmap that corresponds with
tep 4 of the search algorithm in which MCTS will select the
eature package that get closer to the optimum valid configu-
ation. The user has provided as input the initial configuration
AAFMFramework, Solver}, and MCTS has selected the features
ystem, Linux, and Packages in the first three steps. In the
our step, according to the values of the attributes, the feature
ython-sat is the most promising, in contrast to pyGlucose
hich is a poorly valued package by the users and pycosat
hich is a too old package. Feature pyPicosat is not considered
ecause it is a dead feature. After selecting the package python-
at, MCTS will select the next feature to complete a valid config-
ration (i.e., Glucose or MiniSAT), resulting in an optimum valid
onfiguration: the configuration with features AAFMFramework,
ackages, Solver, System, python-sat, the solver Glucose,

and the Linux system. Note that there are more configurations
in the Pareto optimal solutions since the configuration could be
completed with MiniSAT instead of Glucose, or choosing Win
s system instead of Linux in step 2.

essons learned and open challenges. While providing domain-
pecific knowledge to the reward function can help MCTS with
more direct search, it can also limit the efficiency of the bal-
nced approach between exploration and exploitation because
CTS will easily stack on local optima. For instance, multiple
onfigurations with the same updated well-rated packages exist,
r configurations where several packages are selected since the

https://pypi.org/

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

f
a
s
c
a

L

Fig. 14. Heatmap of the 4th step of MCTS in the optimal feature selection problem according to the values of the feature attributes.
f

f

t

b
u
t
b
T
b

b

eature model allows selecting more than one package. We may
lso add little domain knowledge to improve the reward function
o that, for example, we can penalize those configurations that
ontain more than one package for implementing a solver (e.g.,
ssigning a negative value to those configurations).

S9 Introducing domain-specific knowledge drastically reduces the
number of simulations needed, but may also reduce the vari-
ance of simulation results. Apart from the domain knowl-
edge introduced in the reward function which primarily
guides the search, other parts of Monte Carlo methods
can benefit from feature model knowledge to improve
the search. For instance, in our implementation of the
MCTS framework, we provide an optional parameter as
an argument to allow using as the initial state the par-
tial configuration with the core features7 (Benavides et al.,
2010) selected, instead of using an empty configuration.
This reduces the number of simulations required as well
as the steps done by Monte Carlo methods because there
are fewer features to be decided until finding an optimum
valid configuration. However, this may also affect the final
output because Monte Carlo methods, and especially MCTS,
are step-wise techniques in which the selection order of
the decisions may affect the subsequent simulations, and
MCTS may ignore some regions of the search space, as
discussed in LS1. OC9: The challenge is to improve the ef-
ficiency of Monte Carlo methods by providing as little domain
knowledge as possible while maintaining the feasibility of the
methods.

6. Analysis with feature models as states

Analyses with MCTS can also be performed over other con-
cepts beyond the configuration space of a SPL, such as feature
models, extended feature models, variation points and variants,
or products. This section shows how to model and analyze a
problem where the concept of state represents a feature model.
Examples of these problems are the reverse engineering of feature
models (Lopez-Herrejon et al., 2015b; Assunção et al., 2017b), the

7 The core features are those features that are selected in all configurations.
 c

17
extraction of feature models from propositional formulas (Czar-
necki and Wasowski, 2007), or the evolution of feature mod-
els (Marques et al., 2019).

Here, we illustrate the reverse engineering of feature models
problem (Lopez-Herrejon et al., 2015b; Assunção et al., 2017b)
defined as follows. Given a set of feature combinations present
in a SPL (i.e., a set of configurations), the goal is to extract a
feature model that represents all the configurations. Formally,
let be Ci the set of configurations given as input. Fi is the set of
eatures present in Ci. The problem is to build a feature model m
with features in Fi so that Ci ⊆ Cm where Cm is the set of valid
configurations of the feature model m.

Modeling the problem. We formulate the problem with the fol-
lowing definitions of (S, s0, t,A, θ, µ):

The set of states S encompasses all feature models that can be
built with any combination of the input features Fi following Def-
inition 1 of feature model. Thus, S = {m|m = (F , r,R, Π)} where
F ∈ P(Fi) and Π ⊂ {f ⇒ g, f ⇒ ¬g|f , g ∈ Fi}8, r is the root
of the feature model, and the set of relations R is the same as in
Definition 1 (i.e., optional, mandatory, alternative, and or).

The initial state s0 is the empty feature model, with no
eatures.

The terminal condition t determines that a feature model is
erminal if it contains all features given as input (i.e., F = Fi).

The set of actions A includes 9 actions (A = {b1, . . . , b9}) to
e performed over a feature model. Each action is also applicable
nder a certain condition of applicability (CA). An invariant condi-
ion of applicability that holds for all actions is that the features to
e added are not already in the feature model (i.e., ∃f ∈ Fi, f /∈ F).
he set of actions is:
1: AddRootFeature. This action adds a feature f ∈ Fi as the root r of the

feature model m.

CA: The feature model m is empty: F = ∅.

2: AddOptionalFeature. This action adds a new feature f ∈ Fi to the feature
model m with the optional relation (g, [f], ⟨0..1⟩) where g ∈ F is a feature
already present in m.

CA: The feature model m contains at least one feature: F ̸= ∅.

8 To simplify the problem we consider here only ‘‘requires’’ and ‘‘excludes’’
onstraints.

J.-M. Horcas, J.A. Galindo, R. Heradio et al.
b3: AddMandatoryFeature. This action adds a new feature f ∈ Fi to the feature
model m with the mandatory relation (g, [f], ⟨1..1⟩) where g ∈ F is a feature
already present in m.

CA: The feature model m contains at least one feature: F ̸= ∅.

b4: AddOrGroupRelation. This action adds a new or-group relation (g, [f1, f2],
⟨1..2⟩) with two features f1, f2 ∈ Fi as children of an existing non-group
feature g ∈ F in the model m.

CA: There is a feature g in m that is not the parent of an alternative-group
nor or-group relation already created in m. That is, ∃g ∈ F , ∄r ∈
R|r = (g, [g1, . . . , gn], ⟨1..1⟩) ∨ r = (g, [g1, . . . , gn], ⟨1..n⟩) where
n ≥ 2 and gi are the children of g .

b5: AddAlternativeGroupRelation. It adds a new alternative-group relation
(g, [f1, f2], ⟨1..1⟩) with two features f1, f2 ∈ Fi as children of an existing
non-group feature g ∈ F in m.

CA: Same condition as for action b4 .

b6: AddFeatureToOrGroup. This action adds a new feature f ∈ Fi to an existing
or-group relation r in the feature model m and updates the upper cardinality
of r increased by 1.

CA: There is an or-group relation in the model m: ∃r ∈ R|r = (g, [g1, . . . ,
gn], ⟨1..n⟩), n ≥ 2 and gi are the children of g .

b7: AddFeatureToAlternativeGroup. It adds a feature f ∈ Fi to an existing
alternative-group relation r in the feature model m.

CA: There is an alternative-group relation in m: ∃r ∈ R|r = (g, [g1, . . . ,
gn], ⟨1..1⟩), n ≥ 2 and gi are the children of g .

b8: AddRequiresConstraint. It adds a new ‘‘requires’’ constraint (f ⇒ g)
involving two existing features f , g ∈ F in the model m.

CA: Three conditions apply: (1) there are at least two features in m without
considering the root feature r — i.e., |F | ≥ 3; (2) both features f , g ∈ F
cannot be related between them with a parent–child relation — i.e.,
∃f , g ∈ F |¬(f ≺ g ∨ g ≺ f); and (3) there is not an ‘‘excludes’’
constraint between both features (i.e., f ⇒ ¬g or g ⇒ ¬f), nor a
‘‘requires’’ constraint such that f ⇒ g already created in m.

b9: AddExcludesConstraint. It adds a new ‘‘excludes’’ constraint (f ⇒ ¬g)
involving two existing features f , g ∈ F in m.

CA: Three conditions apply: (1) there are at least two features in m without
considering the root feature r — i.e., |F | ≥ 3; (2) both features f , g ∈ F
cannot be related between them with a parent–child relation — i.e.,
∃f , g ∈ F |¬(f ≺ g ∨ g ≺ f); and (3) there is not an ‘‘excludes’’
constraint between both features (i.e., f ⇒ ¬g or g ⇒ ¬f), nor a
‘‘requires’’ constraints such that f ⇒ g or g ⇒ f already created in
m.

The state transition function θ defines the result of applying
an action a ∈ A to the given feature model m.

The reward function µ : for a terminal feature model is a
combination of two objective functions extracted from (Lopez-
Herrejon et al., 2015b):

µ(s) = Relaxed(s)−MinDiff (s)

where Relaxed(s) expresses the concern of capturing primarily
the configurations provided as input. Its value is the number of
configurations in Ci that are valid according to the feature model
m represented by this state. We want to maximize the Relaxed(s)
value. MinDiff (s) is a minimal difference function expressing the
concern of obtaining a closer fit to the configurations provided
Ci while other configurations are not relevant. Its value is the
sum of the number of configurations in Ci that are not contained
in the configurations Cm of the feature model (also called the
deficit value), and the number of configurations in Cm that are
not contained in the required input configurations Ci (also called
the surplus value). So MinDiff (s) = deficit(s)+ surplus(s), value to
be minimized.
18
Solving the problem and analyzing the results. We use as input
the set of 110 configurations of our running example (an excerpt
is shown in Fig. 1). We can use the same generic Algorithm 3 to
solve this problem. Starting from the empty (void) feature model
(i.e., initial state), MCTS will incorporate in each decision step a
feature or a cross-tree constraint to the feature model until all
features contained in the given configurations are present in the
feature model. Fig. 15 shows the first four decision steps made
by MCTS and the final extracted feature model. The resulting
feature model looks similar to the expected one (Fig. 1) with some
significant differences. It leads to a total of 191 configurations,
60 of which correspond to the 110 configurations provided as
input, presenting a deficit of 50 configurations (almost half of the
configurations). Such deficit may be corrected with a couple of
manual changes over the resulting feature model. In each step,
MCTS has run 1000 simulations, meaning that to make a decision,
it has completed up to 1000 random feature models, enumerating
their configurations with a SAT solver, and calculating the reward
value for each model.

An interesting result obtained from MCTS is the information
gathered in its tree search over the process. In this case, the
tree search contains statistical information about how promising
it is to add a specific feature, relation, or constraint. As illus-
trated in Fig. 15, for each step, we show the best three possible
decisions (with normalized Q -values), highlighting the choice
selected. For example, step 1 adds the root feature, where the
three most promising options (from 13 candidates) are to use
AAFMFramework, Packages, or System as root. In the follow-
ing step, or-group relations are added with features Packages
and System as children, but the tree search offers information
about how promising other alternatives are out of a total of 156
possibilities.

Lessons learned and open challenges. MCTS can be employed as
a user assistant to make better decisions, providing alternatives
so that she does not have to blindly rely on the result of a black-
box tool, as occurs in genetic algorithms or neural networks (Guo
et al., 2019; Yadav et al., 2020; Sayyad et al., 2013). Therefore,
MCTS can be integrated as part of a recommender system (Rodas-
Silva et al., 2019; Nöhrer and Egyed, 2011; Pereira et al., 2016) to
assist the user. However, some considerations should be taken
into account when engineering a SPL solution based on Monte
Carlo methods, as exposed in the following lessons learned and
open challenges.

LS10 The reward function must be a lightweight function. As ob-
served in Fig. 15, the total time MCTS consumes is con-
siderably high for a small feature model with only 13
features (Lopez-Herrejon et al., 2015b). This is because
the reward function in the reverse engineering problem
requires generating all configurations of a feature model
every time a simulation reaches a final state (a new feature
model). Generating all valid configurations from a feature
model is one of the most expensive computational tasks in
SPLs. OC10: Since the efficiency of the Monte Carlo methods
is based on performing as many simulations as possible, a
challenge to enable the applicability of Monte Carlo methods
is to define lightweight reward functions in the context of the
SPL that can evaluate a terminal state as faster as possible,
ideally in constant time.

LS11 Monte Carlo methods are appropriate for problems that do
not require achieving immediate results but taking optimum
decisions in the medium and long term. Providing a high-
performance Monte Carlo method is a complex task
(Browne et al., 2012) due to the restrictive requirements

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

7

M
c
w
r
p

A
a
o
a
v
c
o
2
b
i

Fig. 15. Step-wise decisions for reverse engineering of feature models.
2
l
M
r
t

M
o
i
e

M
(
i
e
d
t
i

R
a
w
e
t
f
s
e
f

of the simulations and reward function regarding perfor-
mance. There are other techniques such as genetic algo-
rithms and meta-heuristics (Guo et al., 2019; Yadav et al.,
2020; Sayyad et al., 2013) that have achieved great suc-
cess in the AAFM area for several problems where both
configurations and feature models are the main concepts,
such as the feature selection optimization problem (Guo
et al., 2019; Yadav et al., 2020; do Nascimento Ferreira
et al., 2017), or the reverse engineering of feature models
problem (Lopez-Herrejon et al., 2015b; Assunção et al.,
2017b, 2020, 2017a; Linsbauer et al., 2017). While genetic
algorithms and meta-heuristics provide better results for
search-based optimization problems, Monte Carlo methods
are more appropriate for analyzing step-wise decisions
and provide knowledge about the possible alternatives as
shown through this paper. Despite MCTS and genetic al-
gorithms share some similarities when applied for search-
based optimization, they have important differences as
Table 3 details. OC11: The challenge is twofold: (1) to find ad-
ditional SPL problems to those presented in this paper where
the application of the Monte Carlo methods makes sense;
and (2) to quantitatively compare Monte Carlo methods with
other techniques such as genetic algorithms that can handle
the same problems.

. Related work

This section presents related work about the applications of
onte Carlo methods, especially the MCTS method, and con-
retely in the context of SPL and AAFM. We also compare MCTS
ith other techniques such as sampling techniques, genetic algo-
ithms, and traditional approaches (SAT solvers, BDD, constraints
rogramming,. . .) that have been used in the context of the AAFM.

pplications of MCTS. Over the last decade, MCTS has been
dopted as part of the solution to many problems in a variety
f domains beyond AI games (Silver et al., 2017), where it has
chieved transcendental results (i.e., playing Go and Chess) (Sil-
er et al., 2017). For instance, MCTS has achieved great suc-
ess on complex real-world problems, such as combinatorial
ptimization to evaluate system vulnerabilities (Tanabe et al.,
009), constraint satisfaction problems (CSP) (Baba et al., 2011),
oolean satisfiability (Previti et al., 2011), model checking (Pould-
ng and Feldt, 2015), scheduling problems (Nakhost and Müller,
19
009), and feature selection problems in the field of machine
earning (Chaudhry and Lee, 2018), among others. In particular,
CTS has shown great promise in applications where simulation

ather than optimization is the most effective decision support
ool (Browne et al., 2012).

onte Carlo methods in software product lines. To the best of
ur knowledge, Monte Carlo methods have been mainly applied
n SPL from an economic point of view (Cantor, 2011; Ganesan
t al., 2007; Nonaka and Zhu, 2007). For example, analyze the

return on investment expectations of an SPL (Nonaka and Zhu,
2007) and to understand the effort required for building reusable
assets (Cantor, 2011), to compare the costs and benefits of differ-
ent test strategies (Ganesan et al., 2007), or to estimate the payoff
of an SPL (Heradio et al., 2012). Monte Carlo simulations have
also been used for validation when there is a lack of available
data (Ali et al., 2009), as for example, to check the stability
of solutions in SPL optimization (Karimpour and Ruhe, 2017;
arseguerra et al., 2007). Marseguerra et al. Marseguerra et al.

2007) combine Genetic Algorithms and Monte Carlo simulation,
ntroducing the concept of Gradual Monte Carlo optimization, to
valuate the stability of the solutions in the context of system
esign (e.g., choice of redundancy configuration and component
ypes). Regarding MCTS, our work is the first study that proposes
ts application to SPLs.

andomness in the AAFM. Despite MCTS has not been already
pplied in the context of AAFM (Galindo et al., 2019). Several
orks have incorporated randomness into AAFM. Czarnecki
t al. Czarnecki et al. (2008) introduced the concept of probabilis-
ic feature models (PFM) to automate the choice propagation of
eatures according to the constraints and apply an entropy mea-
ure to guide the configuration process. Martinez et al. Martinez
t al. (2014) also estimate the feature probabilities to provide
eedback to the user. Both works (Czarnecki et al., 2008; Mar-
tinez et al., 2014) rely on historical data to extract probabilities.
Heradio et al. Heradio et al. (2019) propose statistical analysis
to reason on variability models. They extract probability distri-
butions from the whole configuration space to make different
analyses, including a uniform random sampling technique (Hera-
dio et al., 2022a, 2020), but their analyses require building a BDD
of the feature model, and this task is intractable for very large-
scale models like the Linux kernel (She et al., 2010), existing even
a specific challenge for this purpose (Thüm, 2020). MCTS can
work directly with the feature model or some other knowledge
compilation technique (Thüm, 2020) (e.g., BDD) as long as it can

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

w
h
a
R
2

c
s
f
s
c
a
T
e
2
2
2
C
s
I

Table 3
Comparison of the MCTS conceptual framework and Genetic Algorithms as search-based techniques for SPL.
Monte Carlo Tree Search Genetic Algorithms

States. They represent the possible status of the problem (e.g.,
valid/invalid and partial/complete configurations, or feature
models). They do not require a special encoding.

Population (chromosomes). Set of candidate solutions. They
represent complete configurations or feature models which
need to be encoded (e.g., as binary strings) and decoded to be
evaluated.

Initial state. It is a unique well defined state (e.g., empty or
partial configuration, void feature model) that will transition
to a terminal one.

Initial population. It is randomly initialized with a number of
(normally valid) completed configurations (or feature models).

Terminal condition. It is determined by the status of the
current configuration or feature model (e.g., a complete
configuration or feature model).

Stopping condition. It is always a predefined computational
budget (e.g., number of generations, time) or a specific fitness
value achieved.

Actions. They define the set of successors for a given state
(e.g., a configuration with more features selected, or a feature
model with an additional cross-tree constraint).

Mutation and crossover operators. They define modifications
or combinations, to the candidate solutions (e.g.,
selecting/deselecting a feature, making mandatory an optional
feature).

State transition function. It applies the possible valid actions
to the current state. Actions can be exhaustive applied (during
expansion), or randomly (e.g., during simulation). Only the
current state is considered at a given time.

Evolution of the population. It requires to evaluate (using
the fitness function) each individual solution in the
population. Mutation and crossover operators are then applied
with a given probability to the selected candidate solutions.

Reward function. It is only applied to final solutions, while
intermediate states do not need to be evaluated. The utility
values may be arbitrary (e.g., positive values for accumulated
reward, negative values for cost incurred).

Fitness function. It is evaluated for each candidate solution of
the whole population. Its values are defined in order to be
maximized or minimized. Additional constraints of the
problem are encoded in the fitness function by penalizing
solutions.

Results. A unique optimal solution and statistics about each
decision step (i.e., the tree search).

Results. A set of optimal solutions (e.g., a Pareto front in case
of multi-objective optimization).
c
b
a
c
c
e
c
o

S
n
s
r
e
i
a
h
2
p
m
e
o
2
L
g
i
t
w
p

T
a
2
e
2
2
W
a
t
d
(

be modeled using the concepts (S, s0, t, A, θ, µ). One of the most
idespread applications of incorporating probability into AAFM
as been to assist the user by means of recommendation systems
nd interactive configuration processes (Pereira et al., 2018b;
odas-Silva et al., 2019; Nöhrer and Egyed, 2011; Pereira et al.,
016; Martinez et al., 2014). For instance, Pereira et al. Pereira

et al. (2018b, 2016) propose different algorithms (Pereira et al.,
2016) for recommender systems in SPL configuration, as well as
visualization mechanisms (Pereira et al., 2018b) to aid the user.
Nöhrer et al. Nöhrer and Egyed (2011) investigate the order-
ing of the decisions in the decision-making process. Rodas-Silva
et al. Rodas-Silva et al. (2019) propose a recommender system to
select the implementation components of an SPL based on users’
rating of such components. However, those works are based on
historical data from previous users’ configurations. While MCTS
does not require domain knowledge, it can use it to improve, for
example, the reward function. Moreover, they mainly focus on
the configuration space, while MCTS can also be applied to other
analyses, such as in the reverse engineering of feature models
problem.

Sampling techniques for AAFM. Configuration sampling (Pett
et al., 2019) is a technique used to avoid exhaustive analysis,
providing a subset of all valid configurations. Several sampling
strategies have been proposed in the SPL literature (Varshosaz
et al., 2018): uniform random sampling (Munoz et al., 2019;
Oh et al., 2017; Heradio et al., 2022a) to select configurations
uniformly, coverage-based sampling (Czarnecki et al., 2008; Fis-
her et al., 2016; Pereira et al., 2020; Johansen et al., 2012) to
elect configurations that cover all combinations of t selected
eatures (e.g., pair-wise sampling for t = 2), or distance-based
ampling (Kaltenecker et al., 2019) to select configurations ac-
ording to a given probability distribution and a distance metric,
mong other techniques reviewed in Varshosaz et al. (2018).
hese techniques have shown great results in SPL testing (Galindo
t al., 2016) and learning configuration spaces (Pereira et al.,
019), and despite recent studies (Acher et al., 2021; Oh et al.,
020) have been able to face the scalability challenge (Pett et al.,
019), they present some limitations when compared with Monte
arlo techniques for the AAFM. Sampling techniques produce
amples which are too large to be analyzed (Pett et al., 2019).

n addition, analyzing and making decisions from a sample of c

20
onfigurations that considers the whole configuration space can
e difficult for the user that configures a product. Finally, from the
nalysis of a particular complete configuration, it is challenging to
omprehend a priori the influence of each feature variant in such
onfiguration and in the rest of configurations of the SPL (Pereira
t al., 2020). MCTS can be seen as a selective sampling that
ombines randomness and evaluation (the reward function) to
btain samples built from step-wise decisions.

earch-based techniques for AAFM. Although sampling tech-
iques, especially uniform random sampling, can be used as a
imple way to solve search-related problems on highly-configu-
able systems (Oh et al., 2017; Heradio et al., 2022b; Batory
t al., 2021), there exist other search-based software engineer-
ng techniques (Lopez-Herrejon et al., 2015a) that have been
pplied in AAFM. For instance, genetic algorithms and meta-
euristics (Yadav et al., 2020; Guo et al., 2019; Sayyad et al.,
013) have achieved great success in the AAFMs area for several
roblems where both configurations and feature models are the
ain concepts, such as the feature selection optimization (Yadav
t al., 2020; Guo et al., 2019; do Nascimento Ferreira et al., 2017),
r the reverse engineering of feature models (Assunção et al.,
017b; Lopez-Herrejon et al., 2015b; Assunção et al., 2020, 2017a;
insbauer et al., 2017). A quantitative comparison of MCTS and
enetic algorithms is out of the scope of this paper and has been
dentified as an open challenge in Section 6. To help address
his challenge, Table 3 maps the concepts of our MCTS frame-
ork to the concepts used in genetic algorithms for search-based
roblems and exposes the differences between both techniques.

raditional approaches for AAFM. AAFMs have been tradition-
lly addressed using SAT solving (Batory, 2005; Mendonca et al.,
009; Liang et al., 2015), constraint programming (Benavides
t al., 2005), description logic (Wang et al., 2007; Fan and Zhang,
006), BDD solvers (Heradio et al., 2016; Fernández-Amorós et al.,
017), or ad-hoc algorithms (Bachmeyer and Delugach, 2007;
hite et al., 2009; Gheyi et al., 2008). An extensive review of

bout 30 analysis operations that can be performed with these
echniques was reported in Benavides et al. (2010); and Men-
onca et al. (Mendonca et al., 2009) and Liang et al. Liang et al.
2015) report that analyzing feature models with SAT is typi-

ally easy. These analysis operations are at a different level of

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

p
o
e
t
t
n
w
a
l
e
d

8

u
d
M
s
a
p
m
m
v
a
m
e
p
o
f
b

s
a
t
g
M
m
n
g
e
t
u
s
g
f
e

M

a

D

c
t

D

d

A

g
J
M
c
2
u
N
F
f
s
R

R

A

A

A

A

A

A

A

B

B

B

B

B

abstraction that the analysis problems presented in this paper.
In fact, MCTS often relies on SAT solvers to perform some opera-
tions such as checking whether a partial configuration is valid.
While there are different approaches to address those analysis
problems such as FastDiag (Vidal-Silva et al., 2021) for completing
artial configurations, or genetic algorithms for configuration
ptimization (Horcas et al., 2022b; Guo et al., 2019) and reverse
ngineering of feature models (Lopez-Herrejon et al., 2015b),
hey report the final result (e.g., the complete valid configuration,
he optimum configuration, the feature models generated) but
o information about the process regarding the decisions that
ere considered or made, as our MCTS framework offers. Such
dditional knowledge inferenced during the analysis of the prob-
em allows users to be aware of which decisions were made in
ach step and to consider alternative decisions that can lead to
ifferent desired solutions.

. Conclusions and future work

We have presented a conceptual framework that enables the
se of Monte Carlo methods on AAFM, and we have mapped
ifferent problems that can be analyzed with the MCTS method.
onte Carlo methods incorporate probability into analysis to
olve problems that are difficult to handle using deterministic
pproaches (Kroese et al., 2014) due to the large search space. Es-
ecially, MCTS can provide existing analyses with some decision-
aking capacity, working directly with the feature models, and
odeling the problem as a sequence of decision steps with
ery little domain-specific knowledge. The selective sampling
pproach of MCTS may provide insights into how other analysis
ethods could be hybridized and potentially improved (Guo
t al., 2019). With this contribution, we envision that different
roblems and analyses can be addressed using Monte Carlo meth-
ds, becoming part of the SPL engineer’s toolkit when analyzing
eature models and their configurations. This new approach can
e of big value to advance the AAFM state-of-the-art.
As part of our ongoing work, we plan to model other problems

ubject to be analyzed with Monte Carlo methods. Moreover,
quantitative comparison with existing search-based optimiza-

ion techniques (Lopez-Herrejon et al., 2015a) (e.g., genetic al-
orithms) is also on our agenda. Finally, we plan to extend our
CTS conceptual framework with other variants of the MCTS
ethod (Browne et al., 2012). For instance, the independent
ature of each simulation in MCTS means that the algorithm is a
ood target for parallelization (Steinmetz and Gini, 2020; Chaslot
t al., 2008b), so that we can improve its performance. Also, other
echniques and extensions of Monte Carlo methods, such as the
se of minimal cut sets (Budde and Stoelinga, 2020), rare event
imulations (Rubino and Tuffin, 2009), or importance splitting (Jé-
ourel et al., 2013) can be applied to specific problems (e.g., the
inding defective configuration problem) to guide the search to
ffectively handle rare properties and improve the results.

aterial

Following open science’s good practices, our software artifacts
re available publicly.

• MCTS Conceptual Framework: https://github.com/diverso-
lab/fm_montecarlo

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
21
ata availability

The MCTS framework is available online at https://github.com/
iverso-lab/fm_montecarlo

cknowledgments

This work has been partially funded by the EU FEDER pro-
ram, the MINECO project OPHELIA (RTI2018-101204-B-C22), the
unta de Andalucia COPERNICA, Spain (P20_01224) and META-
ORFOSIS (FEDER_US-1381375) projects, the Universidad Na-
ional de Educacion a Distancia, Spain under grant 096-034091
021V/PUNED/008 (OPTIVAC), the Community of Madrid, Spain,
nder the research network CAM ROBOCITY2030-DIH-CM S2018/
MT-4331, and the Spanish Government under Juan de la Cierva—
ormación 2019 grant. We would like to thank José A. Troyano
or having inspired us in the usage of Monte Carlo methods in
oftware product line analyses, and to A. Germán Márquez, David
omero, and Pablo Pazo for technical support.

eferences

cher, M., Perrouin, G., Cordy, M., 2021. BURST: A benchmarking platform for
uniform random sampling techniques. In: Proceedings of the 25th ACM
International Systems and Software Product Line Conference - Volume B.
Association for Computing Machinery, New York, NY, USA, pp. 36–40. http:
//dx.doi.org/10.1145/3461002.3473070.

guilera, J.M.H., Márquez, A.G., Galindo, J.A., Benavides, D., 2021. Monte Carlo
simulations for variability analyses in highly configurable systems. In: Al-
danondo, M., Falkner, A.A., Felfernig, A., Stettinger, M. (Eds.), Proceedings
of the 23rd International Configuration Workshop. CWS/ConfWS 2021, Vi-
enna, Austria, 16-17 September, 2021, In: CEUR Workshop Proceedings, vol.
2945, CEUR-WS.org, pp. 37–44, URL http://ceur-ws.org/Vol-2945/32-JMHA-
ConfWS21_paper_19.pdf.

li, M.S., Babar, M.A., Schmid, K., 2009. A comparative survey of economic
models for software product lines. In: 35th Euromicro Conference on Soft-
ware Engineering and Advanced Applications. SEAA, IEEE Computer Society,
pp. 275–278. http://dx.doi.org/10.1109/SEAA.2009.89.

pel, S., Batory, D.S., Kästner, C., Saake, G., 2013. Feature-oriented software
product lines - concepts and implementation. 10.1007/978-3-642-37521-7,
Springer, http://dx.doi.org/10.1007/978-3-642-37521-7.

ssunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.,
2017a. Multi-objective reverse engineering of variability-safe feature models
based on code dependencies of system variants. Empir. Softw. Eng. 22 (4),
1763–1794. http://dx.doi.org/10.1007/s10664-016-9462-4.

ssunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.,
2017b. Reengineering legacy applications into software product lines: a
systematic mapping. Empir. Softw. Eng. 22 (6), 2972–3016. http://dx.doi.org/
10.1007/s10664-017-9499-z.

ssunção, W.K.G., Vergilio, S.R., Lopez-Herrejon, R.E., 2020. Automatic extrac-
tion of product line architecture and feature models from UML class
diagram variants. Inf. Softw. Technol. 117, http://dx.doi.org/10.1016/j.infsof.
2019.106198.

aba, S., Joe, Y., Iwasaki, A., Yokoo, M., 2011. Real-time solving of quantified
CSPs based on Monte-Carlo game tree search. In: 22nd International Joint
Conference on Artificial Intelligence. IJCAI, Barcelona, Spain, pp. 655–661.
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-116.

achmeyer, R.C., Delugach, H.S., 2007. A conceptual graph approach to feature
modeling. In: Priss, U., Polovina, S., Hill, R. (Eds.), Conceptual Structures:
Knowledge Architectures for Smart Applications. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 179–191.

atory, D.S., 2005. Feature models, grammars, and propositional formulas. In:
9th International Conference on Software Product Lines. SPLC, pp. 7–20.
http://dx.doi.org/10.1007/11554844_3.

atory, D.S., Oh, J., Heradio, R., Benavides, D., 2021. Logic, Computation and
Rigorous Methods - Essays Dedicated to Egon Börger on the Occasion of
His 75th Birthday. Springer, pp. 63–81. http://dx.doi.org/10.1007/978-3-030-
76020-5_4.

enavides, D., 2019. Variability modelling and analysis during 30 years. In: From
Software Engineering to Formal Methods and Tools, and Back. In: LNCS, vol.
11865, Springer, pp. 365–373. http://dx.doi.org/10.1007/978-3-030-30985-
5_21.

https://github.com/diverso-lab/fm_montecarlo
https://github.com/diverso-lab/fm_montecarlo
https://github.com/diverso-lab/fm_montecarlo
https://github.com/diverso-lab/fm_montecarlo
https://github.com/diverso-lab/fm_montecarlo
https://github.com/diverso-lab/fm_montecarlo
http://dx.doi.org/10.1145/3461002.3473070
http://dx.doi.org/10.1145/3461002.3473070
http://dx.doi.org/10.1145/3461002.3473070
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://ceur-ws.org/Vol-2945/32-JMHA-ConfWS21_paper_19.pdf
http://dx.doi.org/10.1109/SEAA.2009.89
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/s10664-016-9462-4
http://dx.doi.org/10.1007/s10664-017-9499-z
http://dx.doi.org/10.1007/s10664-017-9499-z
http://dx.doi.org/10.1007/s10664-017-9499-z
http://dx.doi.org/10.1016/j.infsof.2019.106198
http://dx.doi.org/10.1016/j.infsof.2019.106198
http://dx.doi.org/10.1016/j.infsof.2019.106198
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-116
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb9
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/978-3-030-76020-5_4
http://dx.doi.org/10.1007/978-3-030-76020-5_4
http://dx.doi.org/10.1007/978-3-030-76020-5_4
http://dx.doi.org/10.1007/978-3-030-30985-5_21
http://dx.doi.org/10.1007/978-3-030-30985-5_21
http://dx.doi.org/10.1007/978-3-030-30985-5_21

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

B

B

B

B

C

C

C

C

C

C

C

C

F

F

F

F

F

F

G

G

G

G

G

G

G

H

H

H

H

H

H

H

H

H

H

H

J

Benavides, D., Martín-Arroyo, P.T., Cortés, A.R., 2005. Automated reasoning
on feature models. In: Pastor, O., ao Falcão e Cunha, J. (Eds.), Advanced
Information Systems Engineering, 17th International Conference. CAiSE 2005,
Porto, Portugal, June 13-17, 2005, Proceedings, In: Lecture Notes in Com-
puter Science, vol. 3520, Springer, pp. 491–503. http://dx.doi.org/10.1007/
11431855_34.

enavides, D., Segura, S., Cortés, A.R., 2010. Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35 (6), 615–636. http://dx.doi.
org/10.1016/j.is.2010.01.001.

hushan, M., Ángel Galindo Duarte, J., Samant, P., Kumar, A., Negi, A., 2021. Clas-
sifying and resolving software product line redundancies using an ontological
first-order logic rule based method. Expert Syst. Appl. 168, 114167. http://
dx.doi.org/10.1016/j.eswa.2020.114167, URL https://www.sciencedirect.com/
science/article/pii/S0957417420309052.

ogart, C., Kästner, C., Herbsleb, J., Thung, F., 2021. When and how to make
breaking changes. ACM Trans. Softw. Eng. Methodol. 1 (1).

rowne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S., 2012. A survey of
Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4
(1), 1–43. http://dx.doi.org/10.1109/TCIAIG.2012.2186810.

Budde, C.E., Stoelinga, M., 2020. Automated rare event simulation for fault tree
analysis via minimal cut sets. In: International Conference on Measurement,
Modelling and Evaluation of Computing Systems. Springer, pp. 259–277.

antor, M., 2011. Calculating and improving ROI in software and system pro-
grams. Commun. ACM 54 (9), 121–130. http://dx.doi.org/10.1145/1995376.
1995404.

haslot, G., Bakkes, S., Szita, I., Spronck, P., 2008a. Monte-Carlo tree search: A
new framework for game AI. In: 4th Conference on Artificial Intelligence and
Interactive Digital Entertainment. AIIDE, AAAI Press, pp. 216–217.

haslot, G., Winands, M.H.M., van den Herik, H.J., 2008b. Parallel Monte-Carlo
tree search. In: 6th International Conference on Computers and Games. CG,
In: LNCS, vol. 5131, Springer, pp. 60–71. http://dx.doi.org/10.1007/978-3-
540-87608-3_6.

haslot, G., Winands, M., Herik, H., Uiterwijk, J., Bouzy, B., 2008c. Progressive
strategies for Monte-Carlo tree search. New Math. Nat. Comput. 04, 343–357.
http://dx.doi.org/10.1142/S1793005708001094.

haudhry, M.U., Lee, J.-H., 2018. MOTiFS: Monte Carlo tree search based feature
selection. Entropy 20 (5), http://dx.doi.org/10.3390/e20050385, URL https:
//www.mdpi.com/1099-4300/20/5/385.

hilds, B.E., Brodeur, J.H., Kocsis, L., 2008. Transpositions and move groups
in Monte Carlo tree search. In: 2008 IEEE Symposium on Computational
Intelligence and Games. pp. 389–395. http://dx.doi.org/10.1109/CIG.2008.
5035667.

zarnecki, K., Helsen, S., Eisenecker, U.W., 2005. Formalizing cardinality-based
feature models and their specialization. Softw. Process. Improv. Pract. 10
(1), 7–29. http://dx.doi.org/10.1002/spip.213.

Czarnecki, K., She, S., Wasowski, A., 2008. Sample spaces and feature models:
There and back again. In: 12th International Conference on Software Product
Lines. SPLC, IEEE Computer Society, pp. 22–31. http://dx.doi.org/10.1109/
SPLC.2008.49.

zarnecki, K., Wasowski, A., 2007. Feature diagrams and logics: There and back
again. In: 11th International Conference on Software Product Lines. SPLC,
IEEE Computer Society, pp. 23–34. http://dx.doi.org/10.1109/SPLINE.2007.24.

do Nascimento Ferreira, T., Lima, J.A.P., Strickler, A., Kuk, J.N., Vergilio, S.R.,
Pozo, A.T.R., 2017. Hyper-heuristic based product selection for software
product line testing. IEEE Comput. Intell. Mag. 12 (2), 34–45. http://dx.doi.
org/10.1109/MCI.2017.2670461.

an, S., Zhang, N., 2006. Feature model based on description logics. In: Gabrys, B.,
Howlett, R.J., Jain, L.C. (Eds.), Knowledge-Based Intelligent Information
and Engineering Systems. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 1144–1151.

elfernig, A., Walter, R., Galindo, J.A., Benavides, D., Erdeniz, S.P., Atas, M.,
Reiterer, S., 2018. Anytime diagnosis for reconfiguration. J. Intell. Inf. Syst.
51 (1), 161–182. http://dx.doi.org/10.1007/s10844-017-0492-1.

ernández-Amorós, D., Heradio, R., Cerrada, J.A., Cerrada, C., 2014. A scalable
approach to exact model and commonality counting for extended feature
models. IEEE Trans. Softw. Eng. 40 (9), 895–910. http://dx.doi.org/10.1109/
TSE.2014.2331073.

ernández-Amorós, D., Heradio, R., Cerrada, C., Herrera-Viedma, E., Cobo, M.J.,
2017. Towards taming variability models in the wild. In: 16th International
Conference on New Trends in Intelligent Software Methodologies, Tools and
Techniques. SoMeT, In: Frontiers in Artificial Intelligence and Applications,
vol. 297, pp. 454–465. http://dx.doi.org/10.3233/978-1-61499-800-6-454.

igueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F., Khan, S., Castor Filho, F., et al., 2008. Evolving software
product lines with aspects. In: ACM/IEEE 30th International Conference on
Software Engineering. pp. 261–270.

ischer, S., Lopez-Herrejon, R.E., Ramler, R., Egyed, A., 2016. A preliminary
empirical assessment of similarity for combinatorial interaction testing of
software product lines. In: 9th Workshop on Search-Based Software Testing.
SBST@ICSE, pp. 15–18. http://dx.doi.org/10.1145/2897010.2897011.
22
Galindo, J.A., Benavides, D., 2020. A python framework for the automated
analysis of feature models: A first step to integrate community efforts.
In: 24th ACM International Systems and Software Product Line Conference,
Vol. B. SPLC, ACM, Montreal, Canada, pp. 52–55. http://dx.doi.org/10.1145/
3382026.3425773.

alindo, J.A., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A.M., Ruiz-
Cortés, A., 2019. Automated analysis of feature models: Quo vadis? Com-
puting 101 (5), 387–433. http://dx.doi.org/10.1007/s00607-018-0646-1.

alindo, J.A., Turner, H.A., Benavides, D., White, J., 2016. Testing variability-
intensive systems using automated analysis: an application to android. Softw.
Qual. J. 24 (2), 365–405. http://dx.doi.org/10.1007/s11219-014-9258-y.

anesan, D., Knodel, J., Kolb, R., Haury, U., Meier, G., 2007. Comparing costs and
benefits of different test strategies for a software product line: A study from
testo AG. In: 11th International Conference on Software Product Lines. SPLC,
pp. 74–83. http://dx.doi.org/10.1109/SPLINE.2007.21.

azzillo, P., Koc, U., Nguyen, T., Wei, S., 2018. Localizing configurations in highly-
configurable systems. In: 22nd International Systems and Software Product
Line Conference, Vol. 1. SPLC, ACM, Gothenburg, Sweden, pp. 269–273.
http://dx.doi.org/10.1145/3233027.3236404.

elly, S., Silver, D., 2011. Monte-Carlo tree search and rapid action value
estimation in computer go. Artificial Intelligence 175 (11), 1856–1875. http://
dx.doi.org/10.1016/j.artint.2011.03.007, URL https://www.sciencedirect.com/
science/article/pii/S000437021100052X.

heyi, R., Massoni, T., Borba, P., 2008. Algebraic laws for feature models. J.
Univers. Comput. Sci. 14 (21), 3573–3591. http://dx.doi.org/10.3217/jucs-
014-21-3573.

uo, J., Liang, J.H., Shi, K., Yang, D., Zhang, J., Czarnecki, K., Ganesh, V.,
Yu, H., 2019. SMTIBEA: a hybrid multi-objective optimization algorithm for
configuring large constrained software product lines. Softw. Syst. Model. 18
(2), 1447–1466. http://dx.doi.org/10.1007/s10270-017-0610-0.

alin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry, B., 2019.
Test them all, is it worth it? Assessing configuration sampling on the
JHipster web development stack. Empir. Softw. Eng. 24 (2), 674–717. http:
//dx.doi.org/10.1007/s10664-018-9635-4.

eradio, R., Fernández-Amorós, D., Galindo, J.A., Benavides, D., 2020. Uniform and
scalable SAT-sampling for configurable systems. In: 24th ACM International
Systems and Software Product Line Conference, Vol. A. SPLC, ACM, Montreal,
Canada, pp. 17:1–17:11. http://dx.doi.org/10.1145/3382025.3414951.

eradio, R., Fernández-Amorós, D., Galindo, J.A., Benavides, D., Batory, D., 2022a.
Uniform and scalable sampling of highly configurable systems. Empir. Softw.
Eng. 27 (44), http://dx.doi.org/10.1007/s10664-021-10102-5.

eradio, R., Fernández-Amorós, D., Mayr-Dorn, C., Egyed, A., 2019. Supporting
the statistical analysis of variability models. In: 41st International Conference
on Software Engineering. ICSE, IEEE / ACM, pp. 843–853. http://dx.doi.org/
10.1109/ICSE.2019.00091.

eradio, R., Fernández-Amorós, D., Ruiz, V., Cobo, M.J., 2022b. A rule-learning
approach for detecting faults in highly configurable software systems from
uniform random samples. In: 55th Hawaii International Conference on
System Sciences. HICSS, ScholarSpace, Maui, Hawaii, USA, pp. 1–10, URL
http://hdl.handle.net/10125/79595.

eradio, R., Fernández-Amorós, D., Torre-Cubillo, L., García-Plaza, A.P., 2012.
Improving the accuracy of COPLIMO to estimate the payoff of a software
product line. Expert Syst. Appl. 39 (9), 7919–7928. http://dx.doi.org/10.1016/
j.eswa.2012.01.109.

eradio, R., Perez-Morago, H., Fernández-Amorós, D., Bean, R., Cabrerizo, F.J.,
Cerrada, C., Herrera-Viedma, E., 2016. Binary decision diagram algorithms to
perform hard analysis operations on variability models. In: 15th International
Conference on New Trends in Software Methodologies, Tools and Techniques.
SoMeT, In: Frontiers in Artificial Intelligence and Applications, vol. 286,
pp. 139–154. http://dx.doi.org/10.3233/978-1-61499-674-3-139.

orcas, J.M., Galindo, J.A., Heradio, R., Fernández-Amorós, D., Benavides, D., 2021.
Monte Carlo tree search for feature model analyses: a general framework
for decision-making. In: Mousavi, M., Schobbens, P. (Eds.), SPLC ’21: 25th
ACM International Systems and Software Product Line Conference. Leicester,
United Kingdom, September 6-11, 2021, Volume a, ACM, pp. 190–201. http:
//dx.doi.org/10.1145/3461001.3471146.

orcas, J., Pinto, M., Fuentes, L., 2019. Software product line engineering: a
practical experience. In: 23rd International Systems and Software Product
Line Conference. SPLC 2019, ACM, pp. 25:1–25:13.

orcas, J.M., Pinto, M., Fuentes, L., 2022a. Empirical analysis of the tool support
for software product lines. Softw. Syst. Model. http://dx.doi.org/10.1007/
s10270-022-01011-2.

orcas, J.M., Struber, D., Burdusel, A., Martinez, J., Zschaler, S., 2022b. We’re not
gonna break it! consistency-preserving operators for efficient product line
configuration. IEEE Trans. Softw. Eng. 1. http://dx.doi.org/10.1109/TSE.2022.
3171404.

égourel, C., Legay, A., Sedwards, S., 2013. Importance splitting for statistical
model checking rare properties. In: 25th International Conference on Com-
puter Aided Verification. CAV, In: LNCS, vol. 8044, Springer, pp. 576–591.
http://dx.doi.org/10.1007/978-3-642-39799-8_38.

http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.eswa.2020.114167
http://dx.doi.org/10.1016/j.eswa.2020.114167
http://dx.doi.org/10.1016/j.eswa.2020.114167
https://www.sciencedirect.com/science/article/pii/S0957417420309052
https://www.sciencedirect.com/science/article/pii/S0957417420309052
https://www.sciencedirect.com/science/article/pii/S0957417420309052
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb16
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb16
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb16
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb18
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb18
http://dx.doi.org/10.1145/1995376.1995404
http://dx.doi.org/10.1145/1995376.1995404
http://dx.doi.org/10.1145/1995376.1995404
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb20
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb20
http://dx.doi.org/10.1007/978-3-540-87608-3_6
http://dx.doi.org/10.1007/978-3-540-87608-3_6
http://dx.doi.org/10.1007/978-3-540-87608-3_6
http://dx.doi.org/10.1142/S1793005708001094
http://dx.doi.org/10.3390/e20050385
https://www.mdpi.com/1099-4300/20/5/385
https://www.mdpi.com/1099-4300/20/5/385
https://www.mdpi.com/1099-4300/20/5/385
http://dx.doi.org/10.1109/CIG.2008.5035667
http://dx.doi.org/10.1109/CIG.2008.5035667
http://dx.doi.org/10.1109/CIG.2008.5035667
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1109/SPLC.2008.49
http://dx.doi.org/10.1109/SPLC.2008.49
http://dx.doi.org/10.1109/SPLC.2008.49
http://dx.doi.org/10.1109/SPLINE.2007.24
http://dx.doi.org/10.1109/MCI.2017.2670461
http://dx.doi.org/10.1109/MCI.2017.2670461
http://dx.doi.org/10.1109/MCI.2017.2670461
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb29
http://dx.doi.org/10.1007/s10844-017-0492-1
http://dx.doi.org/10.1109/TSE.2014.2331073
http://dx.doi.org/10.1109/TSE.2014.2331073
http://dx.doi.org/10.1109/TSE.2014.2331073
http://dx.doi.org/10.3233/978-1-61499-800-6-454
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb33
http://dx.doi.org/10.1145/2897010.2897011
http://dx.doi.org/10.1145/3382026.3425773
http://dx.doi.org/10.1145/3382026.3425773
http://dx.doi.org/10.1145/3382026.3425773
http://dx.doi.org/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1007/s11219-014-9258-y
http://dx.doi.org/10.1109/SPLINE.2007.21
http://dx.doi.org/10.1145/3233027.3236404
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://dx.doi.org/10.1016/j.artint.2011.03.007
https://www.sciencedirect.com/science/article/pii/S000437021100052X
https://www.sciencedirect.com/science/article/pii/S000437021100052X
https://www.sciencedirect.com/science/article/pii/S000437021100052X
http://dx.doi.org/10.3217/jucs-014-21-3573
http://dx.doi.org/10.3217/jucs-014-21-3573
http://dx.doi.org/10.3217/jucs-014-21-3573
http://dx.doi.org/10.1007/s10270-017-0610-0
http://dx.doi.org/10.1007/s10664-018-9635-4
http://dx.doi.org/10.1007/s10664-018-9635-4
http://dx.doi.org/10.1007/s10664-018-9635-4
http://dx.doi.org/10.1145/3382025.3414951
http://dx.doi.org/10.1007/s10664-021-10102-5
http://dx.doi.org/10.1109/ICSE.2019.00091
http://dx.doi.org/10.1109/ICSE.2019.00091
http://dx.doi.org/10.1109/ICSE.2019.00091
http://hdl.handle.net/10125/79595
http://dx.doi.org/10.1016/j.eswa.2012.01.109
http://dx.doi.org/10.1016/j.eswa.2012.01.109
http://dx.doi.org/10.1016/j.eswa.2012.01.109
http://dx.doi.org/10.3233/978-1-61499-674-3-139
http://dx.doi.org/10.1145/3461001.3471146
http://dx.doi.org/10.1145/3461001.3471146
http://dx.doi.org/10.1145/3461001.3471146
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb51
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb51
http://dx.doi.org/10.1007/s10270-022-01011-2
http://dx.doi.org/10.1007/s10270-022-01011-2
http://dx.doi.org/10.1007/s10270-022-01011-2
http://dx.doi.org/10.1109/TSE.2022.3171404
http://dx.doi.org/10.1109/TSE.2022.3171404
http://dx.doi.org/10.1109/TSE.2022.3171404
http://dx.doi.org/10.1007/978-3-642-39799-8_38

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

M

N

N

N

P

P

P

R

R

R

R

S

S

S

S

S

Johansen, M.F., Haugen, O., Fleurey, F., 2012. An algorithm for generating T-
wise covering arrays from large feature models. In: Proceedings of the
16th International Software Product Line Conference - Volume 1. SPLC ’12,
Association for Computing Machinery, New York, NY, USA, pp. 46–55. http:
//dx.doi.org/10.1145/2362536.2362547.

Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., Apel, S., 2019. Distance-based
sampling of software configuration spaces. In: 41st International Conference
on Software Engineering. ICSE, IEEE/ACM, pp. 1084–1094. http://dx.doi.org/
10.1109/ICSE.2019.00112.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-
oriented domain analysis (FODA) feasibility study. Tech. rep., Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Technical Report
CMU/SEI-90-TR-21.

Karimpour, R., Ruhe, G., 2017. Evolutionary robust optimization for software
product line scoping: An explorative study. Comput. Lang. Syst. Struct. 47,
189–210. http://dx.doi.org/10.1016/j.cl.2016.07.007.

Knüppel, A., Thüm, T., Mennicke, S., Meinicke, J., Schaefer, I., 2017. Is there a
mismatch between real-world feature models and product-line research? In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. pp. 291–302.

Kocsis, L., Szepesvári, C., 2006. Bandit based Monte-Carlo planning. In: Machine
Learning: ECML 2006. Berlin, Heidelberg, pp. 282–293.

Kroese, D.P., Brereton, T., Taimre, T., Botev, Z.I., 2014. Why the Monte Carlo
method is so important today. WIREs Comput. Stat. 6 (6), 386–392. http:
//dx.doi.org/10.1002/wics.1314, URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/wics.1314.

Liang, J.H., Ganesh, V., Czarnecki, K., Raman, V., 2015. SAT-based analysis
of large real-world feature models is easy. In: Proceedings of the 19th
International Conference on Software Product Line. SPLC ’15, Association for
Computing Machinery, New York, NY, USA, pp. 91–100. http://dx.doi.org/10.
1145/2791060.2791070.

Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A., 2017. Variability extraction and
modeling for product variants. Softw. Syst. Model. 16 (4), 1179–1199. http:
//dx.doi.org/10.1007/s10270-015-0512-y.

Lopez-Herrejon, R.E., Illescas, S., Egyed, A., 2018. A systematic mapping study
of information visualization for software product line engineering. J. Softw.
Evol. Process. 30 (2), http://dx.doi.org/10.1002/smr.1912.

Lopez-Herrejon, R.E., Linsbauer, L., Egyed, A., 2015a. A systematic mapping study
of search-based software engineering for software product lines. Inf. Softw.
Technol. 61, 33–51. http://dx.doi.org/10.1016/j.infsof.2015.01.008.

Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A., Benavides, D.,
Segura, S., Egyed, A., 2015b. An assessment of search-based techniques
for reverse engineering feature models. J. Syst. Softw. 103, 353–369. http:
//dx.doi.org/10.1016/j.jss.2014.10.037.

Marques, M., Simmonds, J., Rossel, P.O., Bastarrica, M.C., 2019. Software product
line evolution: A systematic literature review. Inf. Softw. Technol. 105,
190–208. http://dx.doi.org/10.1016/j.infsof.2018.08.014.

Marseguerra, M., Zio, E., Podofillini, L., 2007. Genetic algorithms and Monte
Carlo simulation for the optimization of system design and operation. In:
Computational Intelligence in Reliability Engineering: Evolutionary Tech-
niques in Reliability Analysis and Optimization. In: Studies in Computational
Intelligence, vol. 39, 10.1007/978-3-540-37368-1_4, Springer, pp. 101–150.
http://dx.doi.org/10.1007/978-3-540-37368-1_4.

Martinez, J., Ziadi, T., Mazo, R., Bissyandé, T.F., Klein, J., Traon, Y.L., 2014.
Feature relations graphs: A visualisation paradigm for feature constraints
in software product lines. In: 2nd IEEE Working Conference on Software
Visualization. VISSOFT, IEEE Computer Society, Victoria, BC, Canada, pp.
50–59. http://dx.doi.org/10.1109/VISSOFT.2014.18.

Mendonca, M., Wasowski, A., Czarnecki, K., 2009. SAT-based analysis of feature
models is easy. In: Proceedings of the 13th International Software Product
Line Conference. SPLC ’09, Carnegie Mellon University, USA, pp. 231–240.

Munos, R., 2014. From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning. http://dx.doi.org/10.1561/
2200000038.

unoz, D.-J., Oh, J., Pinto, M., Fuentes, L., Batory, D., 2019. Uniform random sam-
pling product configurations of feature models that have numerical features.
In: 23rd International Systems and Software Product Line Conference, Vol.
A. SPLC, pp. 289–301.

air, V., Menzies, T., Siegmund, N., Apel, S., 2017. Using bad learners to find
good configurations. In: 11th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE, ACM, Paderborn, Germany, pp. 257–267. http://dx.
doi.org/10.1145/3106237.3106238.

akhost, H., Müller, M., 2009. Monte-Carlo exploration for deterministic plan-
ning. In: 21st International Jont Conference on Artifical Intelligence. IJCAI,
Morgan Kaufmann Publishers Inc., San Francisco, USA, pp. 1766–1771.

öhrer, A., Egyed, A., 2011. Optimizing user guidance during decision-making.
In: 15th International Conference on Software Product Lines. SPLC, IEEE
Computer Society, pp. 25–34. http://dx.doi.org/10.1109/SPLC.2011.45.
23
Nonaka, M., Zhu, L., 2007. Impact of architecture and quality investment
in software product line development. In: 11th International Conference
on Software Product Lines. SPLC, IEEE Computer Society, Kyoto, Japan,
pp. 63–73. http://dx.doi.org/10.1109/SPLINE.2007.35.

Oh, J., Batory, D.S., Myers, M., Siegmund, N., 2017. Finding near-optimal con-
figurations in product lines by random sampling. In: 11th Joint Meeting
on Foundations of Software Engineering. ESEC/FSE, Paderborn, Germany,
pp. 61–71. http://dx.doi.org/10.1145/3106237.3106273.

Oh, J., Gazzillo, P., Batory, D., Heule, M., Myers, M., 2020. Scalable Uniform
Sampling for Real-World Software Product Lines. Technical Report TR-20-01,
Dept. of Computer Science, University of Texas at

Pereira, J.A., Acher, M., Martin, H., Jézéquel, J., 2020. Sampling effect on per-
formance prediction of configurable systems: A case study. In: ACM/SPEC
International Conference on Performance Engineering. ICPE, Amsterdam, The
Netherlands, pp. 277–288. http://dx.doi.org/10.1145/3358960.3379137.

Pereira, J.A., Maciel, L., Noronha, T.F., Figueiredo, E., 2018a. Heuristic and exact
algorithms for product configuration in software product lines. In: 22nd
International Systems and Software Product Line Conference, Vol. 1. SPLC,
Gothenburg, Sweden, p. 247. http://dx.doi.org/10.1145/3233027.3236395.

Pereira, J.A., Martin, H., Acher, M., Jézéquel, J., Botterweck, G., Ventresque, A.,
2019. Learning software configuration spaces: A systematic literature review.
CoRR abs/1906.03018, arXiv:1906.03018.

Pereira, J.A., Martinez, J., Gurudu, H.K., Krieter, S., Saake, G., 2018b. Vi-
sual guidance for product line configuration using recommendations and
non-functional properties. In: 33rd Annual ACM Symposium on Applied
Computing. SAC, pp. 2058–2065. http://dx.doi.org/10.1145/3167132.3167353.

Pereira, J.A., Matuszyk, P., Krieter, S., Spiliopoulou, M., Saake, G., 2016. A feature-
based personalized recommender system for product-line configuration.
In: ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. GPCE, ACM, Pau, France, pp. 120–131. http:
//dx.doi.org/10.1145/2993236.2993249.

Pett, T., Thüm, T., Runge, T., Krieter, S., Lochau, M., Schaefer, I., 2019. Product
sampling for product lines: the scalability challenge. In: 23rd International
Systems and Software Product Line Conference. SPLC, ACM, Paris, France,
pp. 14:1–14:6. http://dx.doi.org/10.1145/3336294.3336322.

ol’la, M., Buccella, A., Cechich, A., 2020. Analysis of variability models: a
systematic literature review. Softw. Syst. Model. 20 (4), 1–35.

oulding, S., Feldt, R., 2015. Heuristic model checking using a Monte-Carlo
tree search algorithm. In: Annual Conference on Genetic and Evolutionary
Computation. GECCO, Association for Computing Machinery, pp. 1359–1366.
http://dx.doi.org/10.1145/2739480.2754767.

reviti, A., Ramanujan, R., Schaerf, M., Selman, B., 2011. Monte-Carlo style UCT
search for Boolean satisfiability. In: Artificial Intelligence Around Man and
beyond. AI*IA, Berlin, Heidelberg, pp. 177–188.

aatikainen, M., Tiihonen, J., Männistö, T., 2019. Software product lines and
variability modeling: A tertiary study. J. Syst. Softw. 149, 485–510. http:
//dx.doi.org/10.1016/j.jss.2018.12.027.

odas-Silva, J., Galindo, J.A., García-Gutiérrez, J., Benavides, D., 2019. Selection
of software product line implementation components using recommender
systems: An application to wordpress. IEEE Access 7, 69226–69245. http:
//dx.doi.org/10.1109/ACCESS.2019.2918469.

ubino, G., Tuffin, B., 2009. Rare Event Simulation using Monte Carlo Methods.
John Wiley & Sons.

ussell, S.J., Norvig, P., 2020. Artificial Intelligence - a Modern Approach, Fourth
Edition. Pearson Education, URL http://vig.pearsoned.com/store/product/1,
1207,store-12521_isbn-0136042597,00.html.

ayyad, A.S., Ingram, J., Menzies, T., Ammar, H.H., 2013. Optimum feature
selection in software product lines: Let your model and values guide
your search. In: 1st International Workshop on Combining Modelling and
Search-Based Software Engineering. CMSBSE@ICSE, San Francisco, CA, USA,
pp. 22–27. http://dx.doi.org/10.1109/CMSBSE.2013.6604432.

egura, S., 2008. Automated analysis of feature models using atomic sets. In:
Software Product Lines, 12th International Conference. SPLC 2008, Limerick,
Ireland, September 8-12, 2008, Proceedings. Second Volume Workshops,
pp. 201–207.

egura, S., Galindo, J.A., Benavides, D., Parejo, J.A., Cortés, A.R., 2012. Betty:
benchmarking and testing on the automated analysis of feature models.
In: Eisenecker, U.W., Apel, S., Gnesi, S. (Eds.), Sixth International Workshop
on Variability Modelling of Software-Intensive Systems. Leipzig, Germany,
January 25-27, 2012. Proceedings, ACM, pp. 63–71. http://dx.doi.org/10.1145/
2110147.2110155.

he, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K., 2010. The variability
model of the Linux kernel. In: 4th International Workshop on Variability
Modelling of Software-Intensive Systems. VaMoS, In: ICB-Research Report,
vol. 37, Universität Duisburg-Essen, Linz, Austria, pp. 45–51, URL http:
//www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf.

iegmund, N., Rosenmüller, M., Kästner, C., Giarrusso, P.G., Apel, S.,
Kolesnikov, S.S., 2013. Scalable prediction of non-functional properties in
software product lines: Footprint and memory consumption. Inf. Softw.
Technol. 55 (3), 491–507.

http://dx.doi.org/10.1145/2362536.2362547
http://dx.doi.org/10.1145/2362536.2362547
http://dx.doi.org/10.1145/2362536.2362547
http://dx.doi.org/10.1109/ICSE.2019.00112
http://dx.doi.org/10.1109/ICSE.2019.00112
http://dx.doi.org/10.1109/ICSE.2019.00112
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb57
http://dx.doi.org/10.1016/j.cl.2016.07.007
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb59
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb60
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb60
http://dx.doi.org/10.1002/wics.1314
http://dx.doi.org/10.1002/wics.1314
http://dx.doi.org/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
http://dx.doi.org/10.1145/2791060.2791070
http://dx.doi.org/10.1145/2791060.2791070
http://dx.doi.org/10.1145/2791060.2791070
http://dx.doi.org/10.1007/s10270-015-0512-y
http://dx.doi.org/10.1007/s10270-015-0512-y
http://dx.doi.org/10.1007/s10270-015-0512-y
http://dx.doi.org/10.1002/smr.1912
http://dx.doi.org/10.1016/j.infsof.2015.01.008
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/10.1016/j.infsof.2018.08.014
http://dx.doi.org/10.1007/978-3-540-37368-1_4
http://dx.doi.org/10.1109/VISSOFT.2014.18
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb70
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb70
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb70
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb70
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb70
http://dx.doi.org/10.1561/2200000038
http://dx.doi.org/10.1561/2200000038
http://dx.doi.org/10.1561/2200000038
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb72
http://dx.doi.org/10.1145/3106237.3106238
http://dx.doi.org/10.1145/3106237.3106238
http://dx.doi.org/10.1145/3106237.3106238
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb74
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb74
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb74
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb74
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb74
http://dx.doi.org/10.1109/SPLC.2011.45
http://dx.doi.org/10.1109/SPLINE.2007.35
http://dx.doi.org/10.1145/3106237.3106273
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb78
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb78
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb78
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb78
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb78
http://dx.doi.org/10.1145/3358960.3379137
http://dx.doi.org/10.1145/3233027.3236395
http://arxiv.org/abs/1906.03018
http://dx.doi.org/10.1145/3167132.3167353
http://dx.doi.org/10.1145/2993236.2993249
http://dx.doi.org/10.1145/2993236.2993249
http://dx.doi.org/10.1145/2993236.2993249
http://dx.doi.org/10.1145/3336294.3336322
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb85
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb85
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb85
http://dx.doi.org/10.1145/2739480.2754767
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb87
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb87
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb87
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb87
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb87
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1109/ACCESS.2019.2918469
http://dx.doi.org/10.1109/ACCESS.2019.2918469
http://dx.doi.org/10.1109/ACCESS.2019.2918469
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb90
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb90
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb90
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://dx.doi.org/10.1109/CMSBSE.2013.6604432
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb93
http://dx.doi.org/10.1145/2110147.2110155
http://dx.doi.org/10.1145/2110147.2110155
http://dx.doi.org/10.1145/2110147.2110155
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb96

J.-M. Horcas, J.A. Galindo, R. Heradio et al.

S

T

V

W

W

W

X

Y

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F.,
Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D., 2017. Mastering
the game of go without human knowledge. Nature 550 (7676), 354–359.
http://dx.doi.org/10.1038/nature24270.

teinmetz, E.S., Gini, M., 2020. More trees or larger trees: Parallelizing Monte
Carlo tree search. IEEE Trans. Games 1. http://dx.doi.org/10.1109/TG.2020.
3048331.

anabe, Y., Yoshizoe, K., Imai, H., 2009. A study on security evaluation method-
ology for image-based biometrics authentication systems. In: 3rd IEEE
International Conference on Biometrics: Theory, Applications, and Systems.
pp. 1–6. http://dx.doi.org/10.1109/BTAS.2009.5339016.

Temple, P., Galindo, J.A., Acher, M., Jézéquel, J., 2016. Using machine learning
to infer constraints for product lines. In: 20th International Systems and
Software Product Line Conference. SPLC, ACM, Beijing, China, pp. 209–218.
http://dx.doi.org/10.1145/2934466.2934472.

Thüm, T., 2020. A BDD for Linux?: the knowledge compilation challenge for
variability. In: 24th ACM International Systems and Software Product Line
Conference, Vol. A. SPLC, pp. 16:1–16:6. http://dx.doi.org/10.1145/3382025.
3414943.

arshosaz, M., Al-Hajjaji, M., Thüm, T., Runge, T., Mousavi, M.R., Schaefer, I.,
2018. A classification of product sampling for software product lines. In:
22nd International Systems and Software Product Line Conference. SPLC,
pp. 1–13. http://dx.doi.org/10.1145/3233027.3233035.
24
Vidal-Silva, C., Galindo, J.A., Giráldez-Cru, J., Benavides, D., 2021. Automated
completion of partial configurations as a diagnosis task using FastDiag
to improve performance. In: Intelligent Systems in Industrial Applications.
Springer International Publishing, Cham, pp. 107–117.

Wang, H.H., Li, Y.F., Sun, J., Zhang, H., Pan, J., 2007. Verifying feature models using
OWL. J. Web Semant. 5 (2), 117–129. http://dx.doi.org/10.1016/j.websem.
2006.11.006, Software Engineering and the Semantic Web, URL https://www.
sciencedirect.com/science/article/pii/S1570826807000042.

hite, J., Dougherty, B., Schmidt, D.C., 2009. Selecting highly optimal archi-
tectural feature sets with filtered cartesian flattening. J. Syst. Softw. 82
(8), 1268–1284. http://dx.doi.org/10.1016/j.jss.2009.02.011, SI: Architectural
Decisions and Rationale, URL https://www.sciencedirect.com/science/article/
pii/S0164121209000284.

ilkinson, L., Friendly, M., 2009. The history of the cluster heat map. Amer.
Statist. 63 (2), 179–184. http://dx.doi.org/10.1198/tas.2009.0033.

ong, B., 2010. Color coding. Nature Methods 7 (8), 573. http://dx.doi.org/10.
1038/nmeth0810-573.

ue, Y., Zhong, J., Tan, T.H., Liu, Y., Cai, W., Chen, M., Sun, J., 2016. IBED:
combining IBEA and DE for optimal feature selection in software product line
engineering. Appl. Soft Comput. 49, 1215–1231. http://dx.doi.org/10.1016/j.
asoc.2016.07.040.

adav, H., Kumari, A.C., Chhikara, R., 2020. Feature selection optimisation of
software product line using metaheuristic techniques. Int. J. Embed. Syst. 13
(1), 50–64. http://dx.doi.org/10.1504/IJES.2020.108284.

http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1109/TG.2020.3048331
http://dx.doi.org/10.1109/TG.2020.3048331
http://dx.doi.org/10.1109/TG.2020.3048331
http://dx.doi.org/10.1109/BTAS.2009.5339016
http://dx.doi.org/10.1145/2934466.2934472
http://dx.doi.org/10.1145/3382025.3414943
http://dx.doi.org/10.1145/3382025.3414943
http://dx.doi.org/10.1145/3382025.3414943
http://dx.doi.org/10.1145/3233027.3233035
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://refhub.elsevier.com/S0164-1212(22)00227-8/sb103
http://dx.doi.org/10.1016/j.websem.2006.11.006
http://dx.doi.org/10.1016/j.websem.2006.11.006
http://dx.doi.org/10.1016/j.websem.2006.11.006
https://www.sciencedirect.com/science/article/pii/S1570826807000042
https://www.sciencedirect.com/science/article/pii/S1570826807000042
https://www.sciencedirect.com/science/article/pii/S1570826807000042
http://dx.doi.org/10.1016/j.jss.2009.02.011
https://www.sciencedirect.com/science/article/pii/S0164121209000284
https://www.sciencedirect.com/science/article/pii/S0164121209000284
https://www.sciencedirect.com/science/article/pii/S0164121209000284
http://dx.doi.org/10.1198/tas.2009.0033
http://dx.doi.org/10.1038/nmeth0810-573
http://dx.doi.org/10.1038/nmeth0810-573
http://dx.doi.org/10.1038/nmeth0810-573
http://dx.doi.org/10.1016/j.asoc.2016.07.040
http://dx.doi.org/10.1016/j.asoc.2016.07.040
http://dx.doi.org/10.1016/j.asoc.2016.07.040
http://dx.doi.org/10.1504/IJES.2020.108284

	A Monte Carlo tree search conceptual framework for feature model analyses
	Introduction
	Background
	MCTS Conceptual Framework for feature model analyses
	Monte Carlo methods and MCTS
	Mapping SPL problems to the MCTS conceptual framework

	Implementation of the MCTS framework
	Search space and interfaces for (S, s0, t, A, θ, µ) modeling concepts
	Search-based algorithms and Monte Carlo methods
	Usage of the Monte Carlo methods and knowledge inference

	Configuration based analysis
	Localizing defective configurations
	Finding minimum valid configurations
	Completion of partial configurations
	Optimization of configurations: optimal feature selection problem

	Analysis with Feature Models as States
	Related Work
	Conclusions and Future Work
	Material
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

