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Abstract

Efficient representation of images usually leads to improvements in storage ef-
ficiency, computational complexity and performance of image processing algo-
rithms. Efficient representation of images can be achieved by transforms. How-
ever, conventional transforms such as Fourier transform and wavelet transform
suffer from discontinuities such as edges in images. To address this problem, we
propose a new transform called ripplet transform. The ripplet transform is a
higher dimensional generalization of the curvelet transform, designed to repre-
sent images or two-dimensional signals at different scales and different directions.
Specifically, the ripplet transform allows arbitrary support c and degree d while
the curvelet transform is just a special case of the ripplet transform (Type I)
with c = 1 and d = 2. Our experimental results demonstrate that the ripplet
transform can provide efficient representation of edges in images. The ripplet
transform holds great potential for image processing such as image restoration,
image denoising and image compression.

Key words: Harmonic analysis, Fourier transform, wavelet transform,
transform coding, image denoising

1. Introduction

Efficient representation of images or signals is critical for image process-
ing, computer vision, pattern recognition, and image compression. Harmonic
analysis [1] provides a methodology to represent signals efficiently. Specifically,
harmonic analysis is intended to efficiently represent a signal by a weighted sum
of basis functions; here the weights are called coefficients, and the mapping
from the input signal to the coefficients is called transform. In image process-
ing, Fourier transform is usually used. However, Fourier transform can only
provide an efficient representation for smooth images but not for images that
contain edges. Edges or boundaries of objects cause discontinuities or singulari-
ties in image intensity. How to efficiently represent singularities in images poses
a great challenge to harmonic analysis. It is well known that one-dimensional
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(1D) singularities in a function (which has finite duration or is periodic) destroy
the sparsity of Fourier series representation of the function, which is known as
Gibbs phenomenon. In contrast, wavelet transform is able to efficiently repre-
sent a function with 1D singularities [2, 3]. However, typical wavelet transform
is unable to resolve two-dimensional (2D) singularities along arbitrarily shaped
curves since typical 2D wavelet transform is just a tensor product of two 1D
wavelet transforms, which resolve 1D horizontal and vertical singularities, re-
spectively.

To overcome the limitation of wavelet, ridgelet transform [4, 5] was intro-
duced. Ridgelet transform can resolve 1D singularities along an arbitrary direc-
tion (including horizontal and vertical direction). Ridgelet transform provides
information about orientation of linear edges in images since it is based on Radon
transform [6], which is capable of extracting lines of arbitrary orientation.

Since ridgelet transform is not able to resolve 2D singularities, Candes and
Donoho proposed the first generation curvelet transform based on multi-scale
ridgelet[7, 8]. Later, they proposed the second generation curvelet transform[9,
10]. Curvelet transform can resolve 2D singularities along smooth curves. Curvelet
transform uses a parabolic scaling law to achieve anisotropic directionality. From
the perspective of microlocal analysis, the anisotropic property of curvelet trans-
form guarantees resolving 2D singularities along C2 curves [11, 9, 10, 12]. Simi-
lar to curvelet, contourlet [13, 14] and bandlet [15] were proposed to resolve 2D
singularities.

However, it is not clear why parabolic scaling was chosen for curvelet to
achieve anisotropic directionality. Regarding this, we have two questions: Is the
parabolic scaling law optimal for all types of boundaries? If not, what scaling
law will be optimal? To address these two questions, we intend to generalize the
scaling law, which results in a new transform called ripplet transform Type I.
Ripplet transform Type I generalizes curvelet transform by adding two parame-
ters, i.e., support c and degree d; hence, curvelet transform is just a special case
of ripplet transform Type I with c = 1 and d = 2. The new parameters, i.e.,
support c and degree d, provide ripplet transform with anisotropy capability of
representing singularities along arbitrarily shaped curves. The ripplet transform
has the following capabilities.

• Multi-resolution : Ripplet transform provides a hierarchical represen-
tation of images. It can successively approximate images from coarse to
fine resolutions.

• Good localization: Ripplet functions have compact support in frequency
domain and decay very fast in spatial domain. So ripplet functions are
well localized in both spatial and frequency domains.

• High directionality: Ripplet functions orient at various directions. With
the increasing of resolution, ripplet functions can obtain more directions.

• General scaling and support: Ripplet functions can represent scaling
with arbitrary degree and support.
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• Anisotropy: The general scaling and support result in anisotropy of
ripplet functions, which guarantees to capture singularities along various
curves.

• Fast coefficient decay: The magnitudes of ripplet transform coefficients
decay faster than those of other transforms’, which means higher energy
concentration ability.

Note that we have also developed ripplet transform Type II and Type III,
which will be described in our future work.

To evaluate the performance of ripplet transform for image processing, we
conduct experiments on synthetic and natural images in image compression and
denoising applications. Our experimental results demonstrate that for some im-
ages, ripplet transform can represent images more efficiently than DCT and
discrete wavelet transform (DWT), when the compression ratio is high. When
used for image compression, ripplet transform based image coding outperforms
JPEG for the whole bit rate range; and it achieves performance comparable to
JPEG2000, when the compression ratio is high; but ripplet transform can pro-
vide better visual quality than JPEG2000. Our experimental results also show
that the ripplet transform achieves superior performance in image denoising.

The remainder of the paper is organized as below. In Section 2, we review
the continuous curvelet transform in spatial domain and frequency domain, and
analyze the relations between them. In Section 3, we generalize the scaling
law of curvelet to define ripplets and introduce continuous ripplet transform
and inverse continuous ripplet transform. Then we discuss the discretization of
ripplet transform in Section 4. We analyze ripplet functions from the perspective
of frames in Section 5. Section 6 presents experimental results that demonstrate
the good properties of ripplets. Section 7 concludes this paper and points out
future research directions.

2. CONTINUOUS CURVELET TRANSFORM

Similar to the definition of wavelets, the whole curvelet family is constructed
based on the element curvelet functions. The element curvelet functions vary
from coarse to fine scales. The curvelet functions are translated and rotated
versions of the element functions. The 2D curvelet function is defined as below
[7],[8]

γa~bθ(~x) = γa~00(Rθ(~x−~b)), (1)

where Rθ =
[

cos θ sin θ
− sin θ cos θ

]
is the rotation matrix, which rotates θ radians.

~x and ~b are 2D vectors. γa~00 is the element curvelet function.
The element curvelet function γa~00 with scale parameter a is defined in the

frequency domain in polar coordinates[8].

γ̂a(r, ω) = a3/4W (a · r)V (ω/
√

a), (2)
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where γ̂a(r, ω) is the Fourier transform of γa~00 in polar coordinate system. W (r)
is a ‘radial window’ and V (ω) is an ‘angular window’. These two windows have
compact supports on [1/2, 2] and [−1, 1], respectively. They satisfy the following
admissibility conditions ∫ 2

1/2

W 2(r)
dr

r
= 1, (3)

∫ 1

−1

V 2(t)dt = 1. (4)

These two windows partition the polar frequency domain into ‘wedges’ shown
in Fig. 1.

Figure 1: The tiling of polar frequency domain. The shadowed ‘wedge’ corresponds to the
frequency transform of the element function.

From Eq.(2), (3) and (4), we know that the Fourier transform of curvelet
function has a compact support in a small region which is the Cartesian product
of r ∈ [ 1

2a , 2
a ] and ω ∈ [−√a,

√
a]. Curvelet also has small effective regions and

decays rapidly in spatial domain. Compared to wavelets, in addition to the
scaling information and position information, curvelet functions have another
parameter to represent directional information. An intuitive way to obtain
direction information is using rotated wavelet. However, the isotropic property
of rotated wavelet transform makes the rotation unsuitable for resolving the
wavefront set [9],[10]. The parabolic scaling used in the definition of curvelet
functions guarantees the effective length and width of the region to satisfy:
width ≈ length2 and leads to anisotropic behavior of curvelets, which makes
curvelet transform suitable for resolving arbitrary wavefront. The parabolic
scaling is the most important property of curvelet transform and also the key
difference between the curvelet and the rotated wavelet.

Given a 2D integrable function f(~x), the continuous curvelet transform is
defined as the inner product of f(~x) and the curvelet function [9],[10],[16]

C(a,~b, θ) = 〈f, γa~bθ〉 =
∫

f(~x)γa~bθ(~x)d~x, (5)

4



where C(a,~b, θ) are the curvelet coefficients and (·) denotes the conjugate op-
erator. The curvelet coefficients describe the characteristics of signal at various
scales, locations and directions.

In fact, the curvelet transform only captures the characteristics of high fre-
quency components of f(~x), since the scale parameter a can not take the value of
infinity. So the ‘full’ continuous curvelet transform consists of fine-scale curvelet
transform and coarse-scale isotropic wavelet transform. The ‘full’ curvelet trans-
form is invertible. We can perfectly reconstruct the input function based on its
curvelet coefficients. With the ‘full’ curvelet transform, the Parseval formula
holds[9],[10],[16]. If f(~x) is a high-pass function, it can be reconstructed from
the coefficients obtained from Eq.(5) through

f̃(~x) =
∫

C(a,~b, θ)γa~bθ(~x)dad~bdθ/a3 (6)

and
‖f‖2 =

∫
|C(a,~b, θ)|2dad~bdθ/a3 (7)

3. CONTINUOUS RIPPLET TRANSFORM

In this section, we introduce ripplet functions and continuous ripplet trans-
form. We first generalize curvelet functions to define ripplet functions and then
present the definition of continuous ripplet transform.

3.1. Ripplets
From the review in Section 2, we know that parabolic scaling used in curvelets

leads to resolving of 2D singularities. However, there is no evidence to show that
the parabolic scaling is the optimal scaling law. We can define the scaling law
in a more broader scope and more flexible way. The ripplet function can be
generated following the same strategy in Eq. (1)

ρa~bθ(~x) = ρa~00(Rθ(~x−~b)), (8)

where ρa~00(~x) is the ripplet element function and Rθ =
[

cos θ sin θ
− sin θ cos θ

]
is the

rotation matrix. We define the element function of ripplet in frequency domain
as

ρ̂a(r, ω) =
1√
c

a
1+d
2d W (a · r)V (

a
1
d

c · a · ω), (9)

where ρ̂a(r, ω) are the Fourier transform of ρa~00(~x). W (r) is the ‘radial window’
on [1/2, 2] and V (ω) is the ‘angular window’ on [−1, 1]. They also obey the
admissibility conditions (3) and (4).

The set of functions {ρa~bθ} is defined as ripplet functions or ripplets for short,
because in spatial domain these functions have ripple-like shapes. c determines
the support of ripplets and d is defined as the degree of ripplets. Curvelet is
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(a) (b)

(c) (d)

Figure 2: Ripplets in spatial domain with different degrees and supports, which are all located
in the center, i.e., b = 0. (a) a = 3, θ = 3π/16, c = 1, d = 2, called curvelet particularly (b)
a = 3, θ = 3π/16, c = 1.5, d = 2 (c) a = 4, θ = 3π/16, c = 1, d = 4 (d) a = 4, θ = 3π/16, c
= 1.5, d = 4.

just the special case of ripplet for c = 1, d = 2. Fig. 2 shows ripplets with
different c and different d in spatial domain. From Fig. 2, we can see that
ripplet functions decay very fast outside the effective region, which is an ellipse
with the major axis pointing in the direction of the ripplet. The major axis is
defined as the effective length and the minor axis, which is orthogonal to the
major axis, is the effective width. The values of c and d will actually affect the
effective length and width of ripplets in spatial domain. The effective region has
the following properties for its length and width: width ≈ c× lengthd. For fixed
d, the larger c is, the shorter the width is and the longer the length is. When
c is fixed and d gets larger, the width gets shorter and the length is elongated.
The customizable effective region tuned by support c and degree d bespeaks the
most distinctive property of ripplets – the general scaling. For c = 1, d = 1,
both axis directions are scaled in the same way. So ripplet with d = 1 will not
have the anisotropic behavior. For d > 1, the anisotropic property is reserved
for ripplet transform. For d = 2, ripplets have parabolic scaling; For d = 3,
ripplets have cubic scaling; and so forth. Therefore, the anisotropy provides
ripplets the capability of capturing singularities along arbitrary curves.

The ripplets as the generalization of curvelet have almost all the properties of
curvelet except the parabolic scaling. Ripplets can get multi-resolution analysis
of data. For each scale, ripplets have different compact supports such that
ripplets can localize the singularities more accurately. Ripplets are also highly
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directional to capture the orientations of singularities.

3.2. Continuous ripplet transform
For a 2D integrable function f(~x), the continuous ripplet transform is defined

as the inner product of f(~x) and ripplets

R(a,~b, θ) = 〈f, ρa~bθ〉 =
∫

f(~x)ρa~bθ(~x)d~x, (10)

where R(a,~b, θ) are the ripplet coefficients. When the ripplet function intersects
with curves in images, the corresponding coefficients will have large magnitude,
and the coefficients decay rapidly along the direction of singularity as a → 0.

The ripplet transform defined in Eq. (10) has the same issues as curvelet
transform does, which is that the continuous ripplet transform can only capture
the behavior of f(~x) in high frequency bands. To establish the ‘full’ continuous
ripplet transform, we need to apply isotropic wavelet transform to represent the
low frequency information. However, what really matters is the behavior of the
transform in the high frequency bands, where the difference between curvelet
and ripplet lies.

Now we transform images into another domain that we call ripplet domain.
The challenges arise when we try to reconstruct images from ripplet coefficients.
The theorems below introduce the inverse ripplet transform.

Theorem 1. Let f ∈ L2 be a high-pass function,which means that its Fourier
transform vanishes for |ω| < 2/a0 and a0 is a constant. f can be reproduced by
its ripplet transform through

f(~x) =
∫

R(a,~b, θ)ρa~bθ(~x)dad~bdθ/a3, (11)

And a Parseval formula for f holds

‖f‖2L2
=

∫
|R(a,~b, θ)|2dad~bdθ/a3, (12)

Proof. For r > 2/a0, (3) can be rewritten as
∫ 2

1/2

W (a)2
da

a
=

∫ a0r

0

W (a)2
da

a
=

∫ a0

0

W (a · r)2 da

a
= 1 (13)

Based on the admissibility condition Eq.(3), we have
∫ 2π

0

V (
a

1
d

ca
(ω − θ))2dω = ca

d−1
d (14)

For a special ripplet ρa~0θ(x), its Fourier transform has the property as below.
∫ a0

0

∫ 2π

0

|ρ̂a0θ(ξ)|2dθ
da

a3

=
∫ a0

0

∫ 2π

0

W (a · r)2V (
a

1
d

ca
(ω − θ))2

1
c
a

1+d
d dθ

da

a3

= 1 (15)
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Define
ga,θ(x) =

∫
〈ρa~bθ, f〉ρa~bθdb (16)

We have ρa~bθ = ρa~0θ(x− b), so

ga,θ(x) =
∫

ρa~0θ(x− b)
(∫

ρa~0θ(x− b)(y − b)f(y)dy

)
db

=
∫

ρa~0θ(x− b)(ρa~0θ ∗ f)(b)db

= (ρa~0θ ∗ ρa~0θ ∗ f)(x) (17)

According to the property of convolution, we can obtain the Fourier transform
of g as

ĝa,θ(ω) = ρ̂a~0θρ̂a~0θf̂(ω) = |ρ̂a0θ(ω)|2f̂(ω) (18)

Using (15), we get
∫ ∫

ĝa,θ(ω)dθ
da

a3
=

∫ ∫
|ρ̂a0θ(ω)|2f̂(ω)dθ

da

a3
= f̂(ω) (19)

Further,

f(x) =
∫

f̂(ω)ejωxdω

=
∫ ∫ ∫

ĝa,θ(ω)dθ
da

a3
ejωxdω

=
∫ ∫

ga,θ(x)dθ
da

a3

=
∫ ∫ ∫

〈ρa~bθ, f〉ρa~bθ

dadbdθ

a3
(20)

Using Plancherel formula and Eq.(15), we have
∫
|R(a,~b, θ)|2dad~bdθ/a3 =

∫
|(ρa~0θ ∗ f)(b)|2dad~bdθ/a3

=
∫
|f̂(ω)|2|ρ̂a0θ(ω)|2dθ

da

a3
dω

=
∫
|f̂(ω)|2dω

= ‖f‖2L2
(21)

Theorem 2. Let f ∈ L2. There is a bandlimited purely radial function Φ in
L2 and of rapid decay so that, if Φa0,b(x) = Φ(x− b),

f(x) =
∫
〈Φa0,b, f〉Φa0,bdb +

∫ a0

0

∫ ∫
〈f, ρa~bθ〉ρa~bθ(x)dad~bdθ/a3 (22)
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and
‖f‖2 =

∫
|〈Φa0,b, f〉|2db +

∫ a0

0

∫ ∫
|〈f, ρa~bθ〉|2dad~bdθ/a3 (23)

Since the issue of interest is just the fine-scale elements or high frequency
bands, the choice of the wavelet transform for the coarse-scale can be very
flexible. Similarly, Theorem 2 can be easily proved using the same arguments
in [10].

4. DISCRETE RIPPLET TRANSFORM

In the previous section, we introduced ripplets and continuous ripplet trans-
form. Digital image processing needs discrete transforms instead of continuous
transforms. Discretization of ripplet transform is proposed and analyzed in this
section.

The discretization of continuous ripplet transform is actually based on the
discretization of the parameters of ripplets, which is similar to discrete curvelet
transform[16]. For the scale parameter a, we sample at dyadic intervals. The
position parameter b and rotation parameter θ are sampled at equal-spaced
intervals. a,~b and θ are substituted with discrete parameters aj ,~bk and θl, which
satisfy that aj = 2−j , ~bk = [c · 2−j · k1, 2−j/d · k2]T and θl = 2π

c · 2−bj(1−1/d)c · l,
where ~k = [k1, k2]T , (·)T denotes the transpose of a vector and j, k1, k2, l ∈ Z.
The degree of ripplets can take value from R. Since any real number can be
approximated by rational numbers, we can represent d with d = n/m, n, m 6=
0 ∈ Z. Usually, we prefer n,m ∈ N and n,m are both primes. In the frequency
domain, the corresponding frequency response of ripplet function is in the form

ρ̂j(r, ω) =
1√
c

a
m+n
2n W (2−j · r)V (

1
c
· 2−bj m−n

n c · ω − l). (24)

where W and V satisfy admissibility conditions as below.

+∞∑

j=0

|W (2−j · r)|2 = 1 (25)

+∞∑

l=−∞
|V (

1
c
· 2−bj(1−1/d)c · ω − l)|2 = 1, given c, d and j (26)

The ‘wedge’ corresponding to the ripplet function in the frequency domain is

Hj,l(r, θ) = {2j 6 |r| 6 22j , |θ − π

c
· 2−bj(1−1/d)c · l| 6 π

2
2−j}. (27)

In discrete case, we can have better understanding about the parameters
c and d. The parameter c controls the number of directions in the high-pass
bands. d controls how the number of directions changes across bands. For fixed
c, d helps to control the resolution in directions at each high-pass band. Given
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d, c controls the number of directions at all high-pass bands. c and d determine
the final number of directions at each band together.

The discrete ripplet transform of an M × N image f(n1, n2) will be in the
form of

Rj,~k,l =
M−1∑
n1=0

N−1∑
n2=0

f(n1, n2)ρj,~k,l(n1, n2), (28)

where Rj,~k,l are the ripplet coefficients.
The image can be reconstructed through inverse discrete ripplet transform

f̃(n1, n2) =
∑

j

∑

~k

∑

l

Rj,~k,lρj,~k,l(n1, n2). (29)

5. TIGHT FRAME

From the point of view of frame, ripplets provide a new tight frame with
sparse representations for images with discontinuities along Cd curves. Before
we start the proof of tight frame, we introduce a lemma to facilitate the proof
of the tight frame.

Lemma 3. Suppose that {Φ} ⊂ L2(R2) is a bandlimited function with

supp(Φ̂) ⊂ [−πA, πA]× [−πB, πB].

Suppose that g ∈ L2(R2) is defined in the frequency domain by

ĝ(ω) = |Φ̂(ω)|2f̂(ω)

where ĝ(ω), Φ̂(ω), and f̂(ω) are the Fourier transform of g, Φ and f , respec-
tively.

If we have a set of functions {Φk(x) = Φ(x1 − k1/A, x2 − k2/B)}, then we
have

g(x) =
∑

k

〈f, Φk〉Φk(x)

and
‖g‖2 =

∑

k

|〈f, Φk〉|2

Proof. Based on definition, we have Φk = Φ(x−k). Since the Fourier transform
of g is the multiplication of Φ̂ and f̂ , we have

g(x) = Φ ∗ Φ ∗ f(x)

=
∑

k

Φ(x− k)(Φ ∗ f)(k)

=
∑

k

Φk(x)
∫

Φ(x− k)f(x)dx

=
∑

k

〈f, Φk〉Φk(x) (30)
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‖g‖22 =
∫

g(x)g(x)dx

=
∫ ∑

k

〈f, Φk〉Φk(x)
∑

k

〈f, Φk〉Φk(x)dx

=
∑

k

∑

k

|〈f, Φk〉|2
∫

Φk(x)Φk(x)dx

=
∑

k

|〈f, Φk〉|2
∑

k

∫
|Φ̂k(ω)|2dω (31)

From the definition of ripplets, all translated version of element ripplet will
cover all the bands. Then we have

∑
k

∫ |Φ̂k(ω)|2dω = 1. So

‖g‖22 =
∑

k

|〈f, Φk〉|2 (32)

Theorem 4. Ripplet functions provide a tight frame given any L2 function f .

‖f‖2L2
=

∑

j,~k,l

|R(j,~k, l)|2 (33)

The theorem can be proved with the translation parameter ~b and l = 0,
based on the lemma above. For arbitrary l, we can rotate the coordinate to get
a l̃ = 0, where Lemma 3 applies.

6. EXPERIMENTAL RESULTS

In this section we present experimental results that demonstrate properties
of ripplet transform and its potential applications.

6.1. Nonlinear Approximation
To quantify the performance of sparse representation of transforms, nonlin-

ear approximation (NLA) [1] of images is adopted as a common comparison
approach. Suppose we have orthonormal basis {φk} and the corresponding co-
efficients ck =< g, φk >. These coefficients are sorted in descending order with
respect to the magnitude. The index k is defined by

|c0| > |c1| > |c2| > · · · > |ck| > · · · > |cn−1| > |cn| > . . .

The nonlinear approximation is obtained using n-largest coefficients as below

g ≈ ĝ =
n−1∑

i=0

ciφi. (34)
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Figure 3: The comparison of coefficients between ripplet transform and wavelet transform.(a)
Lena (b) Barbara (c) Coefficient decaying of Lena (d) Coefficient decaying of Barbara

Since ripplet transform provides a tight frame, the concentration of ripplet
coefficients will lead to more accurate approximation in NLA. The faster the
coefficients decay, the more compact energy will be allocated to the fewer large
coefficients. To demonstrate the decay rate of ripplet transform coefficients, we
first sort the ripplet coefficients with respect to their magnitudes and compare
them to sorted wavelet coefficients in Fig. 3. It suggests that the coefficients of
ripplet transform decay faster than those of wavelet transform. Similar patterns
are observed for most standard test images.

We use peak signal-to-noise ratio (PSNR) versus number of retained coeffi-
cients to measure the quality of reconstructed images. PSNR is defined as

PSNR = 10× log10(
f2

max

mse
), (35)

where fmax is the maximum value of image intensities and mse is the mean
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square error between the reconstructed image f̃M×N and original one fM×N

mse =
1

MN

M−1∑
n1=0

N−1∑
n2=0

|f(n1, n2)− f̃(n1, n2)|2. (36)

6.1.1. Ripplets with different degrees
The images we used in the experiments are synthetic images with differ-

ent edges which exhibit various 2D singularities along different curves shown
in Fig. 4. Multiple lines and curves are synthesized with different coordinates
to provide singularities along different curves. The truncated Gaussian im-
age(Fig. 4(a)) presents a smooth changing part as well as singularity introduced
by truncating. All images are of size 256×256 pixels.

(a) (b)

(c) (d)

Figure 4: Test images. (a) Truncated Gaussian image. (b) Multiple lines. (c) Parabolic
curves. (d) Cubic curves.

The performance comparison between ripplets with fixed support (c = 1) but
different degrees (d = 1, 2, 3, 4) is shown in Fig. 5. To achieve the same PSNR,
high degree ripplet needs fewer coefficients than low degree ripplet. There is
a big performance gap between degree 1 ripplet and others. For the same
number of coefficients, ripplet with degree 1 achieves almost 2 dB lower than
others in PSNR. In other words, the degree 1 ripplet needs more coefficients
to achieve the same PSNR as other high degree ripplets. Degree 1 ripplet has
isotropic behavior and is not directionally sensitive, whereas the other ripplets
are anisotropic and can capture the singularities along curves in the test images.
The gap between performance curves shows that the anisotropy helps a lot in
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Figure 5: Comparing nonlinear approximation performance of ripplets with fixed support
(c=1) and different degrees corresponding to the test images in Fig. 4. The d = 2 case is
curvelet. (a) Truncated Gaussian function image. (b) Multiple lines. (c) Parabolic curves.
(d) Cubic curves.

representing 2D singularities efficiently. Fig. 5 also shows that ripplets with
c = 1, d > 2 outperform curvelet (ripplet with c = 1, d = 2). Ripplets with d = 4
and d = 3 achieve the same highest PSNR for the same number of coefficients.
Ripplet transform with d >= 3 has more compact support and more directional
sensitivity than curvelet, which can capture more accurate information about
singularities. In our experiments, when d > 3, the performance is the same with
d = 3. Since the discrete implementation of ripplet is based on the power of 2,
the difference in performance brought by degree d only appears in fine scales.
The higher the degree is, the finer the scale is. Usually, for normal image size
such as 256× 256, d = 3 is the highest degree used in our experiments.

6.1.2. Comparison with other transforms
To make comparison among different transforms, we present the results of

nonlinear approximation using discrete wavelet transform, discrete cosine trans-
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form, discrete ripplet transform and discrete curvelet transform. The wavelet
used in DWT is ‘9-7’ biorthogonal wavelet [17],[18]. DCT has the support of
8×8. When sorting DCT coefficients, DCT coefficients from all blocks are con-
sidered together. The discrete ripplet transform uses ripplet with c = 1 and
d = 3.

The results in Fig. 6(a) show that ripplet outperforms curvelet and can
achieve the highest PSNR when the number of retained coefficients is less than
5500. Meanwhile, the reconstructed image by ripplet transform as shown in
Fig. 6(c) can provide better visual quality than DWT and DCT. We can see that
ripplet avoids the ‘ringing’ artifacts of wavelet as shown in Fig. 6(e) and blocky
artifacts of DCT as shown in Fig. 6(f). However, when using more coefficients,
ripplet will no longer be the best. Therefore, ripplets have the strong capability
of representing the structure of images with fewer number of coefficients.

6.2. Image compression
Inspired by the sparse representation of ripplet transform for images, we

applied ripplet transform to image compression. The application of curvelet
transform in image compression has been reported in [19], which demonstrated
the advantage of curvelet over wavelet based image compression algorithm in
terms of compress-ratio vs PSNR. However, curvelet transform is an overcom-
plete transform and so is ripplet transform. It’s more convincing to show the
performance in real bitrate vs PSNR. In this experiment, we provide ripplet
based image compression with real bitstreams and compare it to wavelet based
approaches. For image compression application, we simply replaced the trans-
form in a typical image coding scheme. The image compression codec we im-
plemented consists of ripplet transform, quantization of ripplet coefficients, co-
efficient coding and entropy coding. In this implementation, uniform scalar
quantizer was adopted. We employed the EBCOT[20] used in JPEG2000[21] to
code the coefficients, in which an adaptive binary arithmetic coder is used for
entropy coding[22].

We compared the performance of ripplet, JPEG and JPEG 2000, for three
cases, namely, the cropped image from ‘barbara’, the texture-rich images in the
USC database [23] and natural images.

6.2.1. Comparison on the cropped image
In this experiment, we conduct comparisons on a cropped patch of size

128×128 pixels with rich texture from test image ‘barbara’. The result shows
that the ripplet based codec achieves 3 dB higher PSNR than JPEG2000 for the
same bit-rate. Ripplet with c = 1, d = 3 can achieve higher PSNR than Curvelet
(ripplet with c = 1, d = 2) for the same bit-rate. In Fig. 7, we compare the sub-
jective quality of the ripplet(c = 1, d = 2, 3) based codec and JPEG2000. It is
obvious that the ripplet based codec preserves more details of texture, compared
to JPEG2000.
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Figure 6: (a) Performance comparison of nonlinear approximation using different transforms:
DCT, DWT and discrete ripplet transform. (b) Original image, 512×512 (c) Ripplet(c =
1, d = 3) based NLA with 5000 largest coefficients, PSNR = 31.13 dB. (d) Curvelet(Ripplet
c = 1, d = 2) based NLA with 5000 largest coefficients, PSNR = 30.66 dB. (e) Wavelet based
NLA with 5000 largest coefficients, PSNR = 30.13 dB. (f) DCT based NLA with 5000 largest
coefficients, PSNR = 29.90 dB.
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(a) (b)

(c) (d)

Figure 7: The visual quality comparison between ripplet based image codec and JPEG2000
for a patch cropped from ‘barbara’, when bpp is equal to 0.3. (a) original crop (b) Ripplet
c = 1, d = 3, PSNR = 25.39 dB (c) Curvelet (Ripplet c = 1, d = 2), PSNR = 24.12 dB (d)
JPEG2000, PSNR = 22.37 dB

6.2.2. Comparison on texture-rich images
We also tested the ripplet transform on texture-rich images of size 512×512

pixels given in Fig. 8. The ripplet transform searches over (c, d) pairs for the
highest PSNR. Results are listed in Table 1. As shown in Table 1, both rip-
plet and curvelet based codec achieves a slightly higher PSNR at low bit rate,
compared to JPEG2000. Table 1 shows that ripplet outperforms curvelet, since
curvelet is just a special case of ripplet.

Table 1: PSNR (dB) comparison of Ripplet, Curvelet and JPEG2000 at 0.03125 bpp

Texture images Ripplet JPEG 2000 Curvelet
(a) 14.87 14.76 14.87
(b) 11.58 11.45 11.54
(c) 11.77 11.59 11.77
(d) 20.82 20.72 20.81
(e) 21.13 20.96 21.13

6.2.3. Comparison on natural images
We compared the performance of ripplet transform on natural images of

size 512×512 pixels. In this simulation, we used ripplet with c = 1, d = 3
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Figure 8: Texture-rich images used in our experiment

and c = 1, d = 2 (e.g. curvelet). The results shown in Fig. 9 indicate that
the ripplet based codec outperforms JPEG by up to 3.3 dB on average at the
same bit-rate. The ripplet with degree 3 outperforms curvelet (degree 2) as
shown in Fig. 9(a), 9(b). In Fig. 9(c), ripplet with degree 3 can achieve similar
PSNR as curvelet does, especially in low bit-rate. Compared to JPEG2000,
the ripplet based codec achieves about 1 dB lower PSNR on average at the
same bit-rate. However, the ripplet based codec can provide better subjective
quality as shown in Fig. 10. When compression ratio is high, there are a lot
of white spots around the face in the image coded by JPEG2000 in Fig. 10(b),
while no obvious artifacts appear in the image coded using ripplet transform
in Fig. 10(a). Moreover, the ripplet based codec keeps more details around
the beard in ‘mandrill’ than JPEG2000 does. In this experiment, we presented
results of ripplet with c = 1, d = 3 and c = 1, d = 2. To achieve the best
performance, a set of pairs of (c, d) can be tested and we can pick up the
pair yielding the highest PSNR for given bitrate. Table 2 shows comparisons
between the best performance of ripplet and performance of curvelet, JPEG and
JPEG2000.

Table 2: Average PSNR gain of ripplet based codec, compared to JPEG, JPEG2000 and
curvelet.

Barbara Mandrill Tiffany
Average PSNR gain (dB) over JPEG 2.9 1.2 3.3

Average PSNR gain (dB) over JPEG2000 -1.3 -0.8 -1.5
Average PSNR gain (dB) over Curvelet 0.54 0.09 0

18



0 0.2 0.4 0.6 0.8 1 1.2
22

24

26

28

30

32

34

36

38

40

bpp

P
S

N
R

 (
dB

)

 

 

Curvelet(Ripplet c=1,d=2)
Ripplet c=1,d=3
JPEG2000
JPEG

(a)

0 0.2 0.4 0.6 0.8 1 1.2
18

20

22

24

26

28

30

bpp

P
S

N
R

 (
dB

)

 

 

Curvelet(Ripplet c=1,d=2)
Ripplet c=1,d=3
JPEG2000
JPEG

(b)

0 0.2 0.4 0.6 0.8 1 1.2
24

26

28

30

32

34

36

38

40

42

bpp

P
S

N
R

 (
dB

)

 

 

Curvelet(Ripplet c=1,d=2)
Ripplet c=1,d=3
JPEG2000
JPEG

(c)

Figure 9: PSNR vs. bpp for ripplet based image codec, curvelet based image codec, JPEG
and JPEG2000. (a) Barbara (b) Mandrill (c) Tiffany
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(a) (b)

(c) (d)

Figure 10: The visual quality comparison between ripplet based image codec, curvelet based
image codec and JPEG2000 for ‘mandrill’, when bpp is equal to 0.25. (a) Original image (b)
Ripplet, PSNR = 22.76 dB (c) JPEG2000, PSNR = 23.18 dB (d) Curvelet, PSNR = 22.7 dB
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6.3. Image denoising
The proposed ripplet transform can be applied as a new method for noise

removal in signals and images. Suppose an image f(n1, n2) is corrupted by the
additive noise,

g(n1, n2) = f(n1, n2) + n(n1, n2) (37)

where n(n1, n2) are independent, identically distributed Gaussian random vari-
ables with zero mean and variance σ2.

Image denoising algorithms vary from simple thresholding to complicate
model based methods. Since ripplet transform provides an overcomplete but
sparse representation of images, simple hard thresholding in ripplet transform
domain can remove most of noise. In our experiments, we use the following
hard thresholding scheme: in the transform domain, a coefficient whose magni-
tude is smaller than the pre-determined threshold is set to zero; otherwise, the
coefficient is unchanged. Then we reconstruct the image by inverse transform.
In the experiments of this paper, we search over a selected range for the opti-
mal threshold that provides the highest PSNR. To ensure a fair comparison, we
apply the same optimal thresholding searching strategy to other transforms to
be compared with.

As shown in Fig. 11, ripplet transform can achieve higher PSNR than curvelet
and DWT. Meanwhile, the ripplet transform (Fig. 11(c)) can restore the edges
better than curvelet(Fig. 11(d)) and DWT(Fig. 11(e)). The reason is that rip-
plet transform can represent these edges very sparsely, whereas noise will have
small values in all ripplet coefficients. Then hard thresholding can remove the
noise with little damage to images. On the other hand, wavelet transform can
not represent edges well; so edges are blurred due to hard thresholding.

7. CONCLUSION

To represent edges more efficiently in images, we proposed a new transform
called ripplet transform. Our ripplet transform generalizes the existing curvelet
transform and is capable of resolving 2D singularities. The nice properties of
the ripplet transform are

• Ripplets form a new tight frame in a function space. The ripplets have
good capability of localization in both spatial and frequency domain. The
new transform provides a more efficient representation for images or 2D
signals.

• The highly directional ripplets have general scaling with arbitrary degree
and support, which can capture 2D singularities along different curves in
any directions.

Our experimental results showed that the ripplet transform can provide a
more efficient representation for images with singularities along smooth curves.
When the number of retained coefficients is small, ripplet can outperform DCT
and wavelet transform in nonlinear approximation. When applied to image
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(a) (b)
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Figure 11: A scale-up details of denoised test image ‘barbara’. The standard variance of
noise is 15. (a) Original image (b) Noisy image, PSNR = 24.61 dB (c) Ripplet(c = 1, d = 3)
transform, PSNR = 27.55 dB (d) Curvelet transform, PSNR = 27.24 dB (e) DWT, PSNR =
27.01 dB
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compression, ripplet transform based image coding can achieve roughly 2 dB
higher PSNR on average than JPEG, and provide better visual quality than
JPEG2000 at low bit-rates.

From our experiments, we noticed that ripplet transform based image coding
is suitable for representing texture or edges in images. To further improve
the performance of ripplet based image compression, we may combine multiple
different transforms so that different regions of an image could be optimally
compressed by different transforms. For example, we can apply DCT to smooth
areas in an image; for areas with edges or high degree of texture, we can use
ripplet transform to preserve more details in these areas. We will pursue this in
the future.

The ripplet transform presented in this paper is Type I. The ripplet trans-
form also has Type II and Type III, which are based on parabolic radon trans-
form and cubic radon transform, and we will present Type II and Type III
ripplet transform in our future work.
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