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This paper addresses the problem of correlation estimation in sets of compressed images. We consider a
framework where the images are represented under the form of linear measurements due to low com-
plexity sensing or security requirements. We assume that the images are correlated through the displace-
ment of visual objects due to motion or viewpoint change and the correlation is effectively represented
by optical flow or motion field models. The correlation is estimated in the compressed domain by jointly
processing the linear measurements. We first show that the correlated images can be efficiently related
using a linear operator. Using this linear relationship we then describe the dependencies between images
in the compressed domain. We further cast a regularized optimization problem where the correlation is
estimated in order to satisfy both data consistency and motion smoothness objectives with a Graph Cut
algorithm. We analyze in detail the correlation estimation performance and quantify the penalty due to
image compression. Extensive experiments in stereo and video imaging applications show that our novel
solution stays competitive with methods that implement complex image reconstruction steps prior to
correlation estimation. We finally use the estimated correlation in a novel joint image reconstruction
scheme that is based on an optimization problem with sparsity priors on the reconstructed images. Addi-
tional experiments show that our correlation estimation algorithm leads to an effective reconstruction of
pairs of images in distributed image coding schemes that outperform independent reconstruction algo-
rithms by 2–4 dB.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the increasing popularity of vision sensor net-
works has led to the generation of huge volume of visual informa-
tion. This creates the need for effective information processing
systems that are able to efficiently compress, analyze and store
highly redundant information streams captured by multiple de-
vices. Distributed processing solutions become highly attractive
in such a context, as they permit to reduce the communication
and computational power requirements in the sensors. The visual
information is typically compressed and transmitted indepen-
dently from each sensor node to a common decoder that jointly
processes the correlated information streams. The inter-sensor
communication needs are relaxed and the computational burden
is shifted to the decoder. The estimation of the image correlation
at decoder becomes however crucial in such distributed settings
for image reconstruction or analysis tasks.
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In this paper, we consider the problem of correlation estimation
in a framework where multiple sensors transmit compressed
images that have been obtained by a small number of linear pro-
jections of the original images, as illustrated in Fig. 1. Such linear
projections typically represent simple measurements in low com-
plexity sensing systems [2,3]. We propose a novel solution for cor-
relation estimation at the joint decoder where the analysis is
performed directly in the compressed domain in order to avoid
expensive image reconstruction tasks. This is especially useful for
the analysis applications that do not target image reconstruction.
We assume that the correlation between images corresponds to
camera or object motion; this can be efficiently represented by
optical flow or motion field models. We show that such a correla-
tion model can be described by a linear operator and we further
analyze in detail the effect of such operator in the compressed do-
main. Later, we cast the correlation estimation as a regularized en-
ergy minimization problem with constraints on data consistency
as well as consistency of the motion field. In particular, we regular-
ize the correlation model such that the motion values in neighbor-
ing pixels are similar except at image discontinuities. Such an
optimization problem can be solved by Graph Cuts algorithms.

We analyze in details the performance of our novel correlation
estimation framework. In particular, we study the penalty in the
correlation estimation that is due to working in the compressed
imation from compressed images, J. Vis. Commun. (2012), doi:10.1016/
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Fig. 1. Schematic representation of the proposed scheme. The images I1 and I2 are correlated through displacement of scene objects due to viewpoint change or motion of
scene objects. The correlation model is estimated directly in the compressed domain without any intermediate image reconstruction. The correlation information can be used
for an optional joint reconstruction.
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domain as opposed to the original image domain as in traditional
correlation estimation problems. We show that the penalty de-
creases when the number of measurements increases and that
our algorithm tends to the optimal correlation estimate at high
measurement rate. Extensive simulations in distributed stereo
and video imaging applications confirm that the proposed solution
provides effective estimates of the relative motion between images
and even competes with solutions that implement expensive im-
age reconstruction prior to correlation estimation. We finally study
the performance of a novel joint reconstruction algorithm that uses
our correlation estimates for decoding pairs of images. The joint
reconstruction is cast as an optimization problem where the recon-
structed images have to satisfy sparsity priors as well as consis-
tency with both the measurements and the correlation estimates.
We solve this joint reconstruction problem by effective proximal
splitting methods and show that accurate correlation estimation
in distributed image representation permits to outperform inde-
pendent decoding solutions in terms of image quality.

The rest of the paper is organized as follows. Section 2 briefly
overviews the related work. In Section 3, we describe the proposed
framework and show how the correlation estimation problem car-
ries out to the compressed domain. Section 4 describes the pro-
posed correlation estimation algorithm and its performance are
analyzed in details on Section 5. In Section 6 we draw some con-
cluding remarks.
2. Related work

This section describes the literature related to the framework
proposed in this paper. We first present sensing solutions based
on linear measurements. We then review the correlation estima-
tion algorithms in distributed image representation systems.
Finally, we discuss the most relevant works about joint reconstruc-
tion of correlated images.

In recent years, signal acquisition based on random projections
received a significant attention in many applications like medical
imaging, compressive imaging and even sensor networks. Donoho
[2] and Candes et al. [3] show that the small number of linear mea-
surements contain enough information to reconstruct a sparse or a
compressible signal. In particular, they show that if a signal has a
sparse representation in one basis then it can be recovered from
a small number of linear measurements taken on another (ran-
dom) basis that is incoherent with the first one. Essentially, if the
signal is K-sparse (i.e., if the signal contains K significant compo-
nents), then one need approximately cK linear measurements (typ-
ically c = 3 or 4) to reconstruct the signal with high probability [4].
Such results open the door to novel low complexity sensing solu-
tions where the computational complexity for signal reconstruc-
tion or analysis is pushed to the decoder. These ideas have been
applied to image acquisition [5–7] and later extended to video
sequences [8–11]. The effect of measurement quantization and
the lossy compression of linear measurements has been studied
in [12].
Please cite this article in press as: V. Thirumalai, P. Frossard, Correlation es
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One of the key characteristics in imaging applications resides in
the high correlation between multi-view images or successive
images in a video sequence. The correlation could be exploited
for effective reconstruction of image sets or for joint analysis tasks
in distributed systems. Duarte et al. [13,14] have proposed differ-
ent correlation models for the distributed compression of corre-
lated signals from linear measurements. In particular, they
introduce three joint sparsity models (JSM) in order to exploit
the inter-signal correlation for the joint reconstruction. They are
respectively described by (i) JSM-1, where the signals share a com-
mon sparse support plus a sparse innovation part specific to each
signal, (ii) JSM-2, where the signals share a common sparse support
with different coefficients, and (iii) JSM-3 with a non-sparse com-
mon signal with an individual sparse innovation in each signal.
These correlation models permit an effective joint reconstruction
with a small number of measurements compared to the indepen-
dent reconstruction. These simple joint sparsity models are how-
ever not ideal for multi-view images or video sequences, as the
correlation model in such scenarios is usually given in the form
of disparity or motion vectors respectively. The authors in [15–
17] have proposed a distributed joint reconstruction scheme for vi-
deo sequences based on linear measurements. These schemes split
the video sequences into key frames and compressed sensing (CS)
frames. The random measurements are computed independently
for each compressed sensing frame and are transmitted to the joint
decoder. The key frames are intra coded and the joint decoder
builds the side information from the intra coded key frames. The
generated side information is then used to decode the CS frame
by solving an optimization problem which assumes that the pre-
diction error for the CS frame is sparse in an orthonormal basis
[16] or block-based adaptive dictionary [17]. Similar ideas have
been used by Trocan et al. [18,19] for distributed multi-view com-
pression where all the images are however given in the form of lin-
ear measurements. The joint decoder first reconstructs all the
views by solving a regularized optimization problem. Then, the
independently reconstructed views are used to estimate the under-
lying correlation model in the form of disparity image. The dispar-
ity image is used to jointly reconstruct all the views in a multistage
refinement framework in which each refinement stage recon-
structs a view by assuming that the prediction error is sparse in
a dual tree wavelet basis. In our previous work [20], we have
proposed a methodology to estimate the correlation between pairs
of frames where one image serves as a reference image. Unfortu-
nately, reconstructing the reference images in a compressed
measurements framework typically requires methods based on
solving l2–l1 optimization problems that are highly complex. The
works in the literature typically use reference frames that are en-
coded as intra-frames or reconstructed with complex optimization
tools prior to correlation estimation. In this paper, we rather
propose to avoid the explicit reconstruction of the images and
directly estimate the correlation in the compressed domain. In
general, it permits to reduce the computational complexity at the
decoder, especially in applications where image reconstruction is
not necessary.
timation from compressed images, J. Vis. Commun. (2012), doi:10.1016/
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Finally, other works have recently addressed the problem of
joint reconstruction of correlated images given in compressed
form. For example, Park et al. [21] have proposed an image regis-
tration and joint reconstruction algorithm for multi-view images
based on manifold lifting. The underlying correlation between
views is exploited by constructing an image appearance manifold
in which the images represent sample points on the manifold;
these points are controlled by a few camera parameters (e.g., rota-
tion, translation etc.). By knowing the initial camera positions the
images are jointly reconstructed based on an l2–l1 optimization
framework. Then, the reconstructed scene is used to refine the
camera parameters and thus both the camera positions and the
scene are jointly estimated using alternating minimization tech-
niques. In another framework [22], the authors have proposed a
joint reconstruction scheme based on a regularized optimization
framework. The two regularization terms encourage sparse priors
of multi-view images and the difference between images. How-
ever, the correlation between images is not efficiently exploited
as the correlation model in multi-view image settings is usually gi-
ven in the form of disparity image and not as a sparsity prior of the
signal differences. The joint reconstruction scheme proposed in
this paper rather builds the correlation model in the form of dis-
parity or motion field and thus facilitates an efficient joint image
representation. Furthermore, the correlation model is built directly
from the linear measurements in the compressed domain and thus
avoids the computational complexity of reconstructing the refer-
ence images. The proposed scheme is based on low complexity lin-
ear measurements and it provides an interesting flexible solution
for distributed processing in vision sensors, targeting applications
like object detection, distributed rendering or distributed joint sig-
nal reconstruction.

3. Distributed representation of correlated images

3.1. Framework

We consider a framework where the images represent a scene
at different time instants or from different viewpoints. For the sake
of clarity, we consider a pair of images I1 and I2 (with resolution
N = N1 � N2) but the framework extends to larger number of
images. These images are represented by linear measurements that
correspond to the projection of the image pixel values on a set of
coding vectors. Typically, the coding vectors can be constructed
from Gaussian or Bernoulli distributions [2] or with a block struc-
ture [7,23] for easier handling and fast sampling of large images.
The measurements are transmitted to a joint decoder that can esti-
mate the correlation between the compressed images and possibly
perform a joint reconstruction of the image set. The framework is
illustrated in Fig. 1.

In more details, the sensors process images row by row. Let I1,k

and I2,k represent the kth row of the images I1 and I2 respectively,
and Y1,k and Y2,k represent the linear measurements computed
from I1,k and I2,k using the measurement matrices /k

1 and /k
2 respec-

tively. The measurements Y1,k and Y2,k are computed as

Y1;k ¼ /k
1IT

1;k; 8k ¼ 1;2; . . . ;N1;

Y2;k ¼ /k
2IT

2;k; 8k ¼ 1;2; . . . ;N1;
ð1Þ

where (�)T denotes the transpose operator. It should be noted that
/k

1 and /k
2 are of dimensions M � N2, where M� N2 is the number

of measurements computed for each row in the image. From
Eq. (1) it is easy to check that the measurements Y1 ¼
½Y1;1; Y1;2; . . . ; Y1;N1 �

T and Y2 ¼ ½Y2;1;Y2;2; . . . ;Y2;N1 �
T can be computed

as
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Yi;1

Yi;2

..

.

Yi;N1

266664
377775 ¼ Ui

IT
i;1

IT
i;2

..

.

IT
i;N1

2666664

3777775
|fflfflfflffl{zfflfflfflffl}

Ii

; 8i 2 f1;2g;
ð2Þ

where Ui is the measurement matrix used to sample the ith image.
It is represented as

Ui ¼

/1
i 0 . . . 0

0 /2
i . . . 0

..

. ..
. . .

. ..
.

0 0 . . . /N1
i

2666664

3777775
K�N

; 8i 2 f1;2g; ð3Þ

where K = MN1, N = N1N2 and K/N represents the measurement rate.

3.2. Correlation model

In the above settings, the correlation between images is mainly
explained by the relative displacement of objects in the scene. This
can be effectively modeled by the optical flow that determines the
amount of displacement of objects or pixels in different images.
We show now, how such a correlation model can be described
by a linear operator. Let mh and mv represent the horizontal and
vertical motion components. As the visual objects in the images
I1 and I2 are displaced, it is likely that the pixel at position
z = (k, l) in one image moves to z0 = (k + mh(k, l), l + mv(k, l)) in the
second image. Thus, the images I1 and I2 can be simply related
by a linear operator T that changes the coordinate system from
(k, l) in the first image to (k + mh(k, l), l + mv(k, l)) in the second im-
age, i.e.,

I2 ¼ T fI1g;
I2;kðlÞ ¼ I1;ðkþmhðk;lÞÞðlþmvðk; lÞÞ:

ð4Þ

For mathematical convenience we use an equivalent representation
of Eq. (4) in the form of matrix multiplication:

IT
2;k ¼ Ak

IT
1;1

IT
1;2

..

.

IT
1;N1

2666664

3777775
|fflfflfflffl{zfflfflfflffl}

I1

; 8k ¼ 1;2; . . . ;N1; ð5Þ

where Ak is a matrix of dimensions N2 � N1N2 whose entries are
determined by the horizontal and vertical components of the mo-
tion field in the kth row of pixels, i.e., mh(k, �) and mv(k, �). The ele-
ments of the matrix Ak are given by

Akðl; lþ b1 þ b2N2Þ ¼
1 if mhðk; lÞ ¼ b1; mvðk; lÞ ¼ b2

0 otherwise:

(
ð6Þ

If l + b1 + b2N2 > N1N2 (e.g., at image boundaries), we set
l + b1 + b2N2 = N1N2 so that the dimensions of the matrix Ak stays
N2 � N1N2. It is easy to check that the matrix Ak formed using Eq.
(6) contains only one ‘1’ in each row; this implies I2;kðlÞ ¼
I1;kþb1

ðlþ b2Þ if Ak(l, l + b1 + b2N2) = 1. The action of the matrix Ak

shifts the pixels in I1 according to the motion given as mh(k, �) and
mv(k, �) and forms an estimate of the image I2,k. It should be noted
that the matrix Ak is completely determined by the kth row of
motion vectors mh(k, �) and mv(k, �).

The relation given in Eq. (5) can be extended to all rows of the
image I2. The images I1 and I2 are finally related by a linear operator
A such that I2 = AI1 which can be written as
imation from compressed images, J. Vis. Commun. (2012), doi:10.1016/
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IT
2;1

IT
2;2

..

.

IT
2;N1

2666664

3777775
|fflfflfflffl{zfflfflfflffl}

I2

¼

A1

A2

..

.

AN1

266664
377775

|fflfflfflffl{zfflfflfflffl}
A

IT
1;1

IT
1;2

..

.

IT
1;N1

2666664

3777775
|fflfflfflffl{zfflfflfflffl}

I1

:
ð7Þ

This relation is illustrated on the lefthand side of Fig. 2.

3.3. Correlation in the measurement domain

We now extend the above correlation model in the compressed
domain. Without loss of generality, we first assume that the mea-
surements Y1 and Y2 can be related by a linear transformation B,
i.e.,

Y2;1

Y2;2

..

.

Y2;N1

266664
377775

|fflfflfflfflffl{zfflfflfflfflffl}
Y1

¼

B1

B2

..

.

BN1

266664
377775

|fflfflfflffl{zfflfflfflffl}
B

Y1;1

Y1;2

..

.

Y1;N1

266664
377775

|fflfflfflfflffl{zfflfflfflfflffl}
Y2

;
ð8Þ

where Bk, "k = 1,2, . . . ,N1 is a matrix with dimensions M �MN1, i.e.,
the measurements Y2,k can be related to Y1 as

Y2;k ¼ BkY1; 8k ¼ 1;2; . . . ;N1: ð9Þ

Any two vectors Y1; Y2 2 RMN1 can be related by a linear transfor-
mation B as long as Y1 – 0, which is the case in our framework.
However, this linear transformation B a priori does not have any
special form. We are interested in understanding the relation be-
tween this matrix and the matrix A that shifts the pixels between
images I1 and I2. Pre-multiplying Eq. (7) by U2 on both sides, one
can write

Y2 ¼ U2I2 ¼ U2AI1: ð10Þ

In addition, by replacing Y1 = U1I1 in Eq. (8), one obtains

Y2 ¼ BY1 ¼ BU1I1: ð11Þ

From Eqs. (10) and (11) the relation between B and A can finally be
given as

BU1 ¼ U2A: ð12Þ

This forms an over-determined system of linear equations, as the
number of unknown in matrix B is smaller than the number of
equations in U2A. In this case, the optimal matrix bB that minimizes
kBU1 �U2Ak2 is given bybB ¼ U2AUy1; ð13Þ
Fig. 2. Illustration of the relation between the matrices A and B. On the left the
images I1; I2 2 RN are related using the matrix A where N = N1N2. In the compressed
domain, the measurement vectors Y1; Y2 2 RK are related using the matrix B where
K = MN1. The matrices A and B can be related by B � U2AUy1 where Ui’s are the
sensing matrices.
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where � denotes the pseudo-inverse operator. As the rows in U1 are
generally orthonormal, the pseudo-inverse can be computed using
the transpose operator, i.e., Uy1 ¼ UT

1. Substituting bB ¼ U2AUT
1 in

Eq. (8) the relation between the measurements becomes

Y2 � U2AUy1Y1 ¼ U2AUT
1Y1; ð14Þ

Y2;k � /k
2AkUT

1Y1; 8k ¼ 1;2; . . . ;N1: ð15Þ

Eq. (15) comes from the fact that measurements are computed
across rows of pixels in our framework. The relationship between
the matrices A and B is illustrated in Fig. 2, where the matrices A
and B are used to relate the points in the original and compressed
domains, respectively. In the next section, we propose an algorithm
for estimating the correlation model directly from the linear mea-
surements Y1 and Y2.

4. Correlation estimation from linear measurements

4.1. Regularized energy minimization problem

We propose in this section a method for estimating the correla-
tion between images from the compressed measurements without
any explicit image reconstruction steps. The objective is to com-
pute a flow or motion field that represents the motion between
images I1 and I2. We denote this flow field asM¼ ðmh;mv Þ, where
mh and mv are horizontal and vertical components of the motion,
respectively. The problem then consists in finding the value of
the flow field M at each pixel position z = (k, l) such that the esti-
mated correlation is consistent with the measurement vectors Y1

and Y2. At the same time, the motion field has to be piecewise
smooth in order to model consistent motion of visual objects. We
propose to cast the correlation estimation as a regularized energy
minimization problem, where the energy EðMÞ is composed of a
data term EdðMÞ and a smoothness term EsðMÞ. The optimal map-
ping M� is obtained by minimizing the energy function EðMÞ as

M� ¼ arg min
M

EðMÞ ¼ arg min
M

½EdðMÞ þ kEsðMÞ�; ð16Þ

where k balances the importance of the data and smoothness terms.
We now discuss in more details the components of the energy

function. The smoothness term measures the penalty of assigning
different motion values to the adjacent pixels. We write it as

EsðMÞ ¼
X

z;z02N
VMðz; z0Þ; ð17Þ

where z, z0 are neighbour pixels in the 4-pixel neighbourhood de-
noted by N . The term VMðz; z0Þ is given as

VMðz; z0Þ ¼ minðjmhðzÞ �mhðz0Þj þ jmvðzÞ �mvðz0Þj; sÞ; ð18Þ

where s sets an upper level on the smoothness penalty that helps
preserving the discontinuities [24].

Next, the data function measures the consistency of a particular
motion value for pixel z with the vectors Y1 and Y2. Classically, the
accuracy of the motion values is evaluated with the original images
[25] and the data cost is typically given as

eEdðMÞ ¼
XN1

k¼1

XN2

l¼1

DMðk; lÞ; ð19Þ

where DMðk; lÞ ¼ kI2;kðlÞ � I1;kþmhðk;lÞðlþmvðk; lÞÞk2
2 represents the er-

ror of matching the pixel at position (k, l) in the second image with a
pixel in the first image that is selected according to the motion
information. As discussed in Section 3.2, the effect of motion
between images can be captured by a linear operator A that is a
composition of sub-matrices Ak. We can therefore rewrite Eq. (19)
as
timation from compressed images, J. Vis. Commun. (2012), doi:10.1016/
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eEdðMÞ ¼
XN1

k¼1

kIT
2;k � Ak

MI1k2
2; ð20Þ

where the sub-matrix Ak depends on the motion fieldM according
to Eq. (6). In the rest of the development, we drop the index M as
the dependency on the motion field is clear from the context.

In our framework however we do not have access to the original
images, but only to the measurement vectors Y1 and Y2. We thus
approximate the data cost eEdðMÞ by EdðMÞ that is computed di-
rectly from the measurement vectors. It can be written as

eEdðMÞ ¼
XN1

k¼1

IT
2;k � AkI1

��� ���2

2
ð21Þ

�
XN1

k¼1

kY2;k � BkY1k2
2 ð22Þ

�
XN1

k¼1

kY2;k � /k
2AkUT

1Y1k2
2 ð23Þ

¼ EdðMÞ: ð24Þ

Note that the data cost approximation due to working in the com-
pressed domain comes from the relation between the matrices A
and B that is given as B � U2AUT

1. We study in details the effect of
this approximation in the next section.

We can finally rewrite the regularized energy objective function
for the correlation estimation problem. It reads as

EðMÞ ¼
XN1

k¼1

Y2;k � /k
2Ak
MUT

1Y1

��� ���2

2
þ k

X
z;z02N

VMðz; z0Þ: ð25Þ

This cost function is used in the optimization problem of Eq. (16),
which becomes a non-convex problem. The search space is discrete
and usually constrained by limits on each of the motion values
which typically define a motion search window. The solution to this
problem can be determined with strong optimization techniques
based on Graph Cuts [24,26] or Belief Propagation [27]. A compre-
hensive overview of various energy minimization techniques is
summarized in [28]. In this paper, we use an optimization algorithm
based on a-expansion mode in Graph Cuts whose complexity is
bounded by a low order polynomial [26].

Finally, it should be noted that the correlation estimation can
also be performed by block of pixels. In this case, each block of pix-
els is assumed to move in a coherent way, and the objective of the
correlation estimation problem is to compute one motion vector
per block. The data cost function can then be modified in a
straightforward way by imposing the same motion vector for all
the pixels in a block. The smoothness function is also modified in
this case such that it penalizes the difference between the motion
values of adjacent blocks rather than neighboring pixels. The
optimization problem keeps the same form in block-based motion
estimation but the search space is dramatically reduced as the
number of motion vectors is smaller.
4.2. Compressed domain penalty

We now discuss the penalty of estimating the correlation from
measurements instead of original images. When the correlationM
is given, this penalty corresponds to the difference between the
values of the regularized energy function of Eq. (16) that is evalu-
ated from the original images and the respective linear measure-
ments. Recall that the smoothness cost function EsðMÞ depends
only on the correlation (see Eq. (17)). Therefore, the estimation
penalty is identical to the error between the data cost functionseEdðMÞ and EdðMÞ that are computed in the original and com-
pressed domains respectively. In what follows, we first show that
Please cite this article in press as: V. Thirumalai, P. Frossard, Correlation est
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the penalty is bounded. Then, we show that the penalty decreases
monotonically when the number of measurements increases.

Proposition 1. The penalty of estimating the correlation from

measurements is bounded. In particular we have jð1� dÞ2eEdðMÞ
�Clj 6 EdðMÞ 6 ð1þ dÞ2eEdðMÞþ Cu, where d > 0; Cl ¼ g2 þ 2ð1� dÞ
ag; Cu ¼ g2 þ 2ð1 þ dÞag; a ¼

PN1
k¼1kI

T
2;k � AkI1k2; g ¼

PN1
k¼1rmax

ðAkÞ
Pkþwy

p¼k�wy
keI1;p � I1;pk2 and eI1 ¼ UT

1Y1.
Proof 1. Let us assume thatM or equivalently A is given. Then, the
points P ¼ IT

2;k;A
kI1 : k ¼ 1;2; . . . ;N1

n o
forms a finite set. According

to the Johnson–Lindenstrauss (JL) lemma, the distances between
points in P are preserved in the measurement domain RM when
M ¼ Oðd�2logjPjÞ measurements are computed with a measure-
ment matrix /k

2 [29,30], where jPj denotes the number of points
in P. Mathematically, the JL-embedding is given as

ð1� dÞ IT
2;k � AkI1

��� ���
2
6 /k

2IT
2;k � /k

2AkI1

��� ���
2
6 ð1þ dÞkIT

2;k � AkI1k2;

ð26Þ

for a positive constant d. It should be noted that, when the
measurement matrix /k

2 satisfies Eq. (26), then with high probabil-
ity it satisfies the restricted isometry property (RIP). For more de-
tails related to the connection between the JL-lemma and the RIP
we refer the reader to [29,30]. Eq. (26) holds with high probability
not only for measurement matrices constructed using Gaussian and
Bernoulli distributions but also for structured measurement
matrices constructed using orthonormal bases, e.g., DCT, FFT [30].
In our experiments we construct measurement matrices using
structured FFT.

For a given row index k, the term Y2;k � /k
2AkUT

1Y1 in Eq. (23) we
can write as

Y2;k � /k
2AkUT

1Y1 ¼/k
2IT

2;k � /k
2AkUT

1U1I1

¼/k
2IT

2;k � /k
2AkI1 þ /k

2AkI1 � /k
2AkUT

1U1I1

¼/k
2IT

2;k � /k
2AkI1 þ EI1; ð27Þ

where E ¼ /k
2Ak � /k

2AkUT
1U1. The term kY2;k � /k

2AkUT
1Y1k2 can be

upper bounded as

kY2;k � /k
2AkUT

1Y1k2 ¼k/
k
2IT

2;k � /k
2AkI1 þ EI1k2

6 /k
2IT

2;k � /k
2AkI1

��� ���
2
þ kEI1k2

6ð1þ dÞ IT
2;k � AkI1

��� ���
2
þ kEI1k2; ð28Þ

where the last inequality is derived from Eq. (26). Similarly the term

Y2;k � /k
2AkUT

1Y1

��� ���
2

can be lower bounded as

Y2;k � /k
2AkUT

1Y1

��� ���
2
¼ /k

2IT
2;k � /k

2AkI1 þ EI1

��� ���
2

¼ /k
2IT

2;k � /k
2AkI1 � ð�EI1Þ

��� ���
2

P /k
2IT

2;k � /k
2AkI1

��� ���
2
� kEI1k2

��� ��� ð29Þ

Pjð1� dÞ IT
2;k � AkI1

��� ���
2
� kEI1k2j; ð30Þ

where Eq. (29) follows from kx � yk2 P jkxk2 � kyk2j, and Eq. (30) is
derived from Eq. (26). The term kEI1k2 in Eqs. (28) and (30) can also
be bounded as
imation from compressed images, J. Vis. Commun. (2012), doi:10.1016/
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kEI1k2 ¼ /k
2AkI1 � /k

2AkUT
1U1I1

��� ���
2

¼ /k
2Ak UT

1U1I1 � I1
� ���� ���

2

6kAkðeI1 � I1Þk2 ð31Þ

6kAkk2

Xkþwy

p¼k�wy

keI1;p � I1;pk2

¼rmaxðAkÞ
Xkþwy

p¼k�wy

keI1;p � I1;pk2 ¼ gk; ð32Þ

where Eq. (31) follows from kUxk2 6 kxk2, as U is a non expanding
operator [29] and eI1 ¼ UT

1U1I1 is the pre-image of I1. rmax(Ak) in Eq.
(32) denotes the largest singular value of Ak. The summation in Eq.
(32) is carried out from rows k � wy to k + wy as the search window
is usually bounded, where wy is the admissible search size along the
vertical direction. Combining Eqs. (28), (30) and (32), and by taking
squares we get for each row of pixels

jð1� dÞ IT
2;k � AkI1

��� ���
2
� gkj

� �2
6 Y2;k � /k

2AkUT
1Y1

��� ���2

2

6 ð1þ dÞ IT
2;k � AkI1

��� ���
2
þ gk

� �2
:

ð33Þ

Adding the second and third inequality terms of Eq. (33) for all rows
k = 1,2, . . . ,N1 results in

EdðMÞ ¼
XN1

k¼1

Y2;k � /k
2AkUT

1Y1

��� ���2

2

6 ð1þ dÞ2
XN1

k¼1

IT
2;k � AkI1

��� ���2

2
þ
XN1

k¼1

g2
k

þ
XN1

k¼1

2ð1þ dÞgk IT
2;k � AkI1

��� ���
2

6 ð1þ dÞ2eEdðMÞ þ
XN1

k¼1

gk

 !2

þ 2ð1þ dÞ
XN1

k¼1
gk|fflfflfflfflffl{zfflfflfflfflffl}

g

XN1

k¼1
IT
2;k � AkI1

��� ���
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

¼ ð1þ dÞ2eEdðMÞ þ g2 þ 2ð1þ dÞga

¼ ð1þ dÞ2eEdðMÞ þ Cu; ð34Þ

where

Cu ¼ g2 þ 2ð1þ dÞga ð35Þ

and

g ¼
XN1

k¼1

gk ¼
XN1

k¼1

rmaxðAkÞ
Xkþwy

p¼k�wy

keI1;p � I1;pk2: ð36Þ

In a similar way, from the first and second inequality terms of Eq.
(33) we get

EdðMÞ ¼
XN1

k¼1

Y2;k � /k
2AkUT

1Y1

��� ���2

2

P
XN1

k¼1

ð1� dÞ2 IT
2;k � AkI1

��� ���2

2
þ g2

k � 2ð1� dÞgk IT
2;k � AkI1

��� ���
2

���� ����	 


P
XN1

k¼1

ð1� dÞ2 IT
2;k � AkI1

��� ���2

2
þ
XN1

k¼1

g2
k �

XN1

k¼1

2ð1� dÞgk IT
2;k � AkI1

��� ���
2

�����
�����

P ð1� dÞ2
XN1

k¼1

kIT
2;k � AkI1k2

2 �
XN1

k¼1

gk

 !2

� 2ð1� dÞ
XN1

k¼1

gk

XN1

k¼1

kIT
2;k � AkI1k2

������
������

¼jð1� dÞ2eEdðMÞ � ðg2 þ 2ð1� dÞgaÞj
¼jð1� dÞ2eEdðMÞ � Clj; ð37Þ
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where

Cl ¼ g2 þ 2ð1� dÞga ð38Þ

and g is given in Eq. (36). h
Proposition 2. The penalty of estimating the correlation from mea-
surements monotonically decreases when the measurement rate K/N
increases. It further becomes negligible at high measurement rate.
Proof 2. In Proposition 1 we have shown that the difference
between the data cost functions estimated from compressed mea-
surements EdðMÞ and images eEdðMÞ is lower and upper bounded
by errors Cl and Cu, respectively given in Eq. (38) and Eq. (35).
The error g ¼

PN1
k¼1gk /

PN1
k¼1keI1;k � I1;kk2 (see Eq. (36)) decreases

with increasing measurement rate because ð/k
1Þ

T/k
1 is an orthogo-

nal projection operator. Eventually, eI1 ¼ UT
1U1I1 becomes arbi-

trarily close to I1 when the number of measurements increases.
Therefore, the errors Cl and Cu decrease as the measurement rate
increases and when sufficient number of measurements are taken
the errors Cl and Cu become negligible, i.e., EdðMÞ � eEdðMÞ. h

Due to the error between the cost functions EdðMÞ and eEdðMÞ,
the solution M estimated from the linear measurements is not
accurate especially at low measurement rates. The solution of the
correlation estimation problem in the compressed domain might
thus be quite far from the actual correlation between images. How-
ever, as the number of measurements increases the approximation
in the compressed domain becomes more accurate and the solu-
tion of the correlation estimation tends to the actual correlation
between original images.
5. Experimental results

5.1. Setup

We analyze the performance of the correlation estimation in
both stereo and video imaging applications. The random projec-
tions are computed using a scrambled Fourier measurement ma-
trix where the scrambled operator is a diagonal matrix with
entries ±1 taken from an i.i.d. Bernoulli random variable with equal
probability [30]. In all our experiments, we sample both the images
using a same measurement rate. The correlation is estimated with-
out prior reconstruction of images by minimizing the objective
function in Eq. (25).

For the stereo imaging case, we evaluate the disparity estima-
tion performance in two natural image sets namely Tsukuba and
Venus1 [31]. These datasets have been captured by a camera array
where the different viewpoints correspond to translating the cam-
era along one of the image coordinate axis. In such a scenario the
motion of objects due to the viewpoint change is restricted to the
horizontal direction with no motion along the vertical direction.
The disparity estimation is thus a one-dimensional search problem,
and the smoothness and data cost functions are modified accord-
ingly by assuming that mv = 0. The size of the search windows used
in our experiments are 16 pixels for Tsukuba and 20 pixels for
Venus. In our experiments we estimate disparity in both dense
(per pixel) and block settings, where the block size is fixed to
4 � 4 pixels.

In the video scenario, we analyze the motion estimation accu-
racy in two synthetic scenes, namely Yosemite and Grove, and
one natural scene Mequon.2 The Grove and Mequon datasets are
resampled to a resolution of 160 � 120 pixels using bilinear filters.
Available at http://vision.middlebury.edu/flow.
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The size of search windows is of ±3 pixels in both horizontal and ver-
tical directions. For the sake of simplicity, we estimate a motion field
for blocks of pixels with size of 4 � 4 pixels and not motion vectors
for each pixel.

The accuracy of the correlation estimation is evaluated by com-
paring to the groundtruth information and to the correlation esti-
mated from the reconstructed images. We propose another
representation of the accuracy of the correlation by discussing
the quality of the second view bI2 that is reconstructed by predic-
tion of the first frame according to the estimated correlation. We
then analyze the influence of the sampling matrix and the effect
of measurement quantization on the correlation estimation perfor-
mance. We finally show the importance of accurate correlation
estimation in a novel joint reconstruction algorithm where images
are reconstructed from measurements while satisfying sparsity
constraints as well as consistency with the correlation information.
Note that in practice, the groundtruth correlation model and the
original images are not available a priori to estimate an optimal
regularization parameter k. In such cases, the regularization
parameter k can be estimated based on learning from a set of train-
ing images or using the automated method proposed in [32]. In our
experiments, we however select the parameter k based on trial and
error experiments.

5.2. Disparity estimation performance

We first illustrate disparity maps for the Venus dataset where
the compressed data have been obtained with a different measure-
ment matrix for each image, i.e., U1 – U2. Fig. 3(b) and Fig. 3(d)
show the disparity map from a measurement rate 0.2 and 0.7
respectively. Fig. 3(c) and Fig. 3(e) represent the corresponding dis-
parity errors. Comparing the results with the groundtruth given in
Fig. 3(a) we see that at low measurement rate (corresponding to
0.2) we estimate a coarse version of the disparity map. Quantita-
tively, the disparity error with respect to the groundtruth is found
Fig. 4. Evaluating the accuracy of disparity image in Fig. 3(b) and Fig. 3(d) in terms of im
Fig. 3(d) are used to predict the image bI2 at measurement rates 0.2 and 0.7 respectively. (a
1� jbI2 � I1j at a measurement rate of 0.2; (c) inverse prediction 1� jbI2 � I2j at a measurem
error is inverted, so that the white pixels correspond to no error.

Fig. 3. Comparison of the estimated disparity image with respect to groundtruth info
disparity image Mh; (b) computed dense disparity image mh at measurement rate 0.2; (c)
in white. The percentage of white pixels is 41%. (d) Computed dense disparity image mh a
is 10.7%.
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out to be 41% when measured as the percentage of pixels where
the absolute error is greater than one [31] as shown in Fig. 3(c).
At higher rate, the disparity map is more accurate and the disparity
error drops below 11%.

We then show the quality of the reconstruction of the second
image that is predicted from the first image using the correlation
estimate. When a coarse disparity map mh (i.e., estimated at low
measurement rate) is used for image prediction the resulting pre-
dicted image bI2 is closer to I2 than I1 (see Fig. 4(a) and Fig. 4(b)
respectively). We observe that the mean square error (MSE) be-
tween the predicted image bI2 and I2 is smaller than the error be-
tween bI2 and I1, which confirms the benefit of the disparity
estimate in the prediction. When the measurement rate increases
the quality of the disparity map improves and the quality of the
predicted image bI2 also improves substantially as it can be ob-
served in Fig. 4(c) and Fig. 4(d) where the measurement rate is
set to 0.7.

The next experiments illustrate the benefit of regularization in
the disparity estimation problem. Fig. 5 plots the quality of the
predicted image bI2 with and without smoothness cost (i.e., k – 0
and k = 0 respectively in Eq. (25) respectively) for the Tsukuba
dataset. It is clear that the quality of bI2 is improved by enabling
the regularization term in our optimization framework. Similar
experimental finding is observed for the Venus dataset. From
Fig. 5 we further observe that the quality of the predicted imagebI2 at a measurement rate 0.05 is 22.2 dB (the corresponding
disparity error is 39%), which is approximately 3.5 dB away from
the saturation point or from global minima solution due to influ-
ence of the penalty terms Cl and Cu discussed in Section 4.2. As
the measurement rate increases, the influence of the terms Cl

and Cu decreases. As a result, the quality of predicted image bI2

increases with the measurement rate and saturates with measure-
ment rates above 0.5. In other words, our scheme gives optimal
disparity solution at high measurement rate. We also carry out
experiments using the same measurement matrix for both images,
age prediction quality for the Venus dataset. The disparity images in Fig. 3(b) and
) Inverse prediction 1� jbI2 � I2j at a measurement rate of 0.2; (b) inverse prediction
ent rate of 0.7; (d) inverse prediction 1� jbI2 � I1j at a measurement rate of 0.7. The

rmation at measurement rates 0.2 and 0.7 in the Venus dataset. (a) Groundtruth
disparity error at rate 0.2. The pixels with absolute error greater than one is marked

t measurement rate 0.7; (e) disparity error at rate 0.7. The percentage of white pixels
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i.e., U1 = U2. Fig. 6(a) and Fig. 6(b) compare the PSNR quality of the
predicted image bI2 and the disparity error (DE), respectively with
the results obtained with different measurement matrices. It is
clear that the prediction image quality and the disparity accuracy
improve when different measurement matrices are used, since this
brings more information from both images to solve the correspon-
dence problem.

We finally compare our disparity estimation results to a scheme
that first reconstructs the images before estimating the disparity
map. The images are reconstructed independently from the corre-
sponding measurements by solving a convex optimization problem.
We denote this methodology as disparity from reconstructed images
(DFR). We have tried out two different reconstruction methodolo-
gies: (1) DFR-sparsity that minimizes the l1 norm of the sparse
coefficients assuming that the image is sparse in a particular ortho-
normal basis (e.g., a wavelet basis); this problem is solved using
GPSR [33]; (2) DFR–TV that minimizes the TV norm of the recon-
structed image; this problem is solved using BPDQ toolbox [34].
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Fig. 6. Comparison of the proposed scheme with the DFR schemes in the Tsukuba datas
disparity error. The performance of the proposed scheme is evaluated using both the sa
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The disparity map is then estimated using a-expansion mode in
Graph Cuts applied on the reconstructed images. Fig. 6 shows the
comparison of the proposed scheme with the DFR-sparsity and
DFR–TV schemes for the Tsukuba dataset. From Fig. 6(a) and
Fig. 6(b) we observe that the performance of our low complexity
correlation solution competes with DFR-sparsity scheme. Espe-
cially at rates smaller than 0.1, our scheme performs better than
the DFR-sparsity scheme as the poor image reconstruction quality
in the DFR-sparsity scheme leads to a bad estimation of disparity
map. On the other hand, DFR–TV scheme significantly outperforms
our scheme at lower rates due to the good quality of reconstructed
images. However, our scheme estimates the optimal correlation for
rates above 0.5 and thus performs similar to the DFR–TV scheme at
high measurement rate but with a complexity that is dramatically
smaller as it avoids image reconstruction. In particular, in our
experiments we have observed that the running time of Graph Cuts
algorithms that estimate the correlation information from linear
measurements is approximately same as the one that estimates
the correlation information from reconstructed images. The com-
plexity of our correlation estimation scheme stays reasonable due
to the efficiency of Graph Cuts algorithms whose complexity is
bounded by a low order polynomial [26]. Comparing to the DFR-
sparsity and DFR–TV schemes, we save on the complexity corre-
sponding to solving the l2–l1 and l2–TV optimization problems
respectively. It is however hard to precisely give the order of com-
plexity of solving the l2–l1 and l2–TV optimization problems, as it is
highly depend on the type of solvers. For some of the popular
solvers like GPSR [33] and NESTA [35], the order of complexity is gi-
ven as TOðNlogNÞ, where T is the number of iterations and N is the
resolution of the image [36]. Therefore, comparing to the DFR
schemes we save a complexity of 2TOðNlogNÞ.

The complexity of the proposed scheme can be further reduced
when a disparity value is estimated per block instead of per pixel.
Fig. 7 compares the performance of our scheme with respect to the
DFR schemes when disparity is estimated using per block with
block size 4 � 4. Comparing Fig. 7 and Fig. 6(a) we see that the rel-
ative performances between the schemes remains approximately
the same when the disparity image is estimated per block or per
pixel. This confirms that the proposed scheme can easily adapt
the granularity of disparity estimation without big penalty in order
to meet the complexity requirements at the decoder.
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5.3. Motion estimation performance

We now illustrate the performance of our correlation estima-
tion algorithm in video sequences. We first estimate motion
vectors per blocks of 4 � 4 pixels with different sensing matrices
U1 – U2 for each image. These vectors are then used to predict
the second image from the first image. Fig. 8 compares the pre-
dicted image bI2 with the original images I2 and I1 for the Yosemite
and Grove datasets respectively. It is clear that for a given mea-
surement rate the predicted image bI2 is closer to I2 than I1 which
indicates that the motion between images is efficiently captured
by our correlation estimation algorithm. Similar experimental re-
sults are observed in the Mequon dataset.

We then highlight the benefit of sampling the images with dif-
ferent sets of measurement matrices in Fig. 9. From Fig. 9 we see
that the quality of the predicted imagebI2 is better when the images
are sampled with different measurement matrices, compared to
the case where the same sampling matrix is used for all images.
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Fig. 9. Comparison of the quality of the predicted image bI2 between the proposed, DFR
prediction is carried out using the motion field that is estimated using block of pixels 4
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This confirms the results shown for the disparity estimation per-
formance. We finally compare our results to the DFR-sparsity and
DFR–TV schemes that build the correlation model from (indepen-
dently) reconstructed images based on minimizing the sparsity
and TV priori respectively. Fig. 9(a) and Fig. 9(b) show the compar-
ison for the Yosemite and Grove datasets respectively. From Fig. 9
we see that for both datasets the proposed scheme performs better
than the DFR-sparsity scheme at low rates and competes with the
DFR-sparsity scheme at high rates, as observed in the disparity
estimation study. Similar experimental findings are observed in
the Mequon dataset. Furthermore, we see that the proposed
scheme is competitive with the performance of DFR–TV scheme
at low rate for the Grove dataset (see Fig. 9(b)); as the Grove scene
is textured with limited low frequency components, the TV prior in
the reconstruction scheme results in poor reconstruction quality in
the textured areas. Overall, the proposed scheme provides effective
motion estimation results, while avoiding an order of computa-
tional complexity 2TOðNlogNÞ involved in the image reconstruc-
tion steps with the DFR–TV and DFR-sparsity schemes.
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Fig. 10. Effect of quantization on the quality of the predicted image bI2 in the Venus
dataset. When the measurements are quantized we used BPDNp [37] to reconstruct
the images in DFR–TV based scheme. The image prediction is carried out using the
dense disparity image estimated by solving Eq. (25).
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5.4. Measurements quantization

We briefly study here the performance of the correlation esti-
mation algorithm when the measurements are affected by noise
and in particular quantization noise. For the sake of simplicity
we quantize the measurements using a uniform quantizer and
we denote the quantized measurements as bY 1 and bY 2. We then
estimate the correlation model by minimizing the energy in Eq.
(25) using the quantized measurements bY 1 and bY 2.

Fig. 10 shows the effect of quantization on the disparity estima-
tion performance when measurements are uniformly quantized
using 2-, 3- and 4-bits. We use the disparity map to predict the sec-
ond image in the Venus dataset. Interestingly we see that the 4-bit
quantizer does not significantly affect the quality of the disparity
image, as the degradation hardly reaches 0.5 dB in the quality ofbI2 at low to medium rates. As expected however the quality of
the predicted image bI2 decreases with increasing quantizer coarse-
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ness level for a fixed measurement rate. We then compare our re-
sults with the DFR–TV scheme that reconstructs the images by
solving an optimization problem based on BPDNp in order to effi-
ciently handle the quantization noise [37] and then use the recon-
structed images for disparity estimation. From Fig. 10 we see that
the performance gap between the DFR–TV and compressed domain
estimation is approximately the same in both the unquantized and
quantized (i.e., 2-bit) scenarios. However, it should be noted that
the DFR–TV scheme considers the nonlinearities due to quantiza-
tion while reconstructing the images. Such effects are not consid-
ered in the proposed scheme. The solution of our scheme could
also be improved by considering the quantization non-linearities
but this problem is beyond the scope of this paper.

We also study the effect of measurement quantization on the
quality of the motion field. Fig. 11(a) and Fig. 11(b) shows the qual-
ity of the predicted image where the prediction is performed with
motion vectors estimated from quantized measurements. The
quality of the predicted image or equivalently the accuracy of mo-
tion estimation is reduced when the measurements are quantized
as expected. Similarly to the case of disparity estimation, the influ-
ence of quantization is negligible when the measurements are
quantized with a 4-bit quantizer. We also compare our results to
the DFR–TV scheme that reconstructs the images by solving an
optimization problem based on BPDNp and estimate motion from
the reconstructed images. The performance of the DFR–TV scheme
for the 2-bit quantization scenario is shown in Fig. 11. Interest-
ingly, when the measurements are quantized we see that the pro-
posed scheme competes with the DFR–TV scheme; this is because
of the poor image reconstruction performance in the DFR–TV
scheme when the measurements are coarsely quantized (i.e., 2-
bit quantizer).

5.5. Importance of correlation in joint reconstruction

We finally propose to study the importance of accurate correla-
tion estimation in a novel joint reconstruction algorithm (see
Fig. 1). We propose to reconstruct a pair of images Í1 and Í2 by
enforcing consistency with the compressed information and also
with the estimated correlation model. A pair of image Í1 and Í2 is
reconstructed as a solution of the following constrained optimiza-
tion problem:
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Fig. 12. Influence of disparity accuracy on the joint reconstruction performance for (a) Tsukuba and (b) Venus datasets. The joint reconstruction is carried out using the dense
disparity image in the proposed and DFR-based schemes. The joint reconstruction performance is also compared to the independent reconstruction scheme.
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ð�I1;�I2Þ ¼ arg min
I1 ;I2

ðkw�I1k1 þ kw
�I2k1Þ s:t: kY1 �U1I1k2 ¼ 0;

kY2 �U2I2k2 ¼ 0; kI2 � AI1k2
2 6 �; ð39Þ
where w is a redundant dictionary or an orthonormal basis in which
the image is assumed to be sparse and w⁄ is the conjugate transpose
of w. From Eq. (39) it is clear that the images can be reconstructed
independently if we solve the optimization without the last
constraint kI2 � AI1k2

2 6 �. This corresponds to the independent
reconstruction of sparse images in w which agrees with the mea-
surement information. By adding the last constraint, we impose
that the pair of images also fit with the correlation model, in addi-
tion to the sparsity and data fidelity constraints. As a result the
reconstruction quality for a given measurement rate is better when
the images are reconstructed jointly than independently. The opti-
mization problem for joint reconstruction can be re-written with
proximity operators and solved efficiently using the parallel proxi-
mal algorithm (PPXA) proposed by Combettes et al. [38] (see [39]
for a similar solution in an asymmetric joint decoding scheme).

We analyze the performance of our joint reconstruction scheme
with a constraint imposed by the correlation estimated from linear
measurements. In particular, we perform joint reconstruction
experiments using the correlation model that is estimated using
a different measurement matrix for each image, i.e., U1 – U2. We
assume that the image is sparse in an orthonormal basis con-
structed using a wavelet transform. In our experiments, the param-
eter � in the optimization problem is selected based on a trial and
error procedure that maximizes the reconstruction image quality �I1

and �I2, and we set � = 14. We first compare our results to an inde-
pendent reconstruction scheme that does not exploit the correla-
tion between the images (i.e., the constraint kI2 � AI1k2

2 6 � is
removed in Eq. (39)). Fig. 12 compares the average reconstruction
quality between the joint (denoted as Joint:Proposed) and indepen-
dent reconstruction schemes for the Tsukuba and Venus datasets.
The joint reconstruction improves the reconstruction quality by
2 dB at low measurement rates and about 1 dB at high rates. We
also observe in our experiments that the PSNR quality of the recon-
structed images �I1 and �I2 is similar at a given measurement rate.
The disparity estimate thus proves to be useful in improving the
quality in the image reconstruction process.
Please cite this article in press as: V. Thirumalai, P. Frossard, Correlation est
j.jvcir.2011.12.004
We then jointly reconstruct the images using a disparity esti-
mated with DFR-sparsity and DFR–TV schemes. Fig. 12 compares
the quality of reconstructed images between the proposed and
DFR schemes. We see that the disparity estimated from com-
pressed measurements leads to a competitive performance with
the disparity estimated by the DFR-sparsity scheme in terms of
joint reconstruction quality. This is particularly obvious at low rate
0.05 where the DFR-sparsity scheme fails to accurately estimate
the disparity. However, the quality of the reconstructed images is
marginally penalized (i.e., 0.2 dB and 0.4 dB for the Tsukuba and
Venus datasets respectively) compared to the reconstruction
achieved when the disparity estimated by the DFR–TV scheme. Fi-
nally, we carry out the same experiments in a scenario where the
images are jointly reconstructed using a correlation model that is
estimated from the original images. This scheme serves as a bench-
mark for the joint reconstruction since the correlation is accurately
known at the decoder. The corresponding results are denoted as
Joint reco:original in Fig. 12. We see that the reconstruction quality
achieved with the correlation estimated from compressed mea-
surements converges to the performance benchmark when the
measurement rate increases which further confirms the quality
of the disparity estimation. Finally, it should be noted that similar
tendencies have been observed in joint reconstruction of video
frames, but the corresponding results are omitted here due to
space constraints.
6. Conclusion

In this paper we have presented a framework for estimating the
correlation between images given in the form of linear measure-
ments without implementing explicit image reconstruction steps.
We have proposed a linear representation of disparity and motion
models and show that the correlation can be estimated in the com-
pressed domain, thanks to the distance preserving property of the
sensing matrix. The correlation is estimated by solving a regular-
ized energy model that enforces consistency with the measure-
ments and smoothness of the correlation information. Extensive
experimental results demonstrate that the proposed methodology
provides a good estimation of disparity or motion fields in different
natural and synthetic image datasets, especially when images are
imation from compressed images, J. Vis. Commun. (2012), doi:10.1016/
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sampled with different measurement matrices. We also show that
our correlation estimation solution competes with the correlation
estimation solutions that reconstructs images a priori, but becomes
clearly advantageous due to its lower computational complexity.
The correlation estimation from compressed measurements thus
provides an effective solution for distributed scene analysis or cod-
ing applications in low complexity sensor networks.
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