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Abstract

Due to the wide diffusion of JPEG coding standard, the image forensic com-
munity has devoted significant attention to the development of double JPEG
(DJPEG) compression detectors through the years. The ability of detecting
whether an image has been compressed twice provides paramount information
toward image authenticity assessment. Given the trend recently gained by con-
volutional neural networks (CNN) in many computer vision tasks, in this paper
we propose to use CNNs for aligned and non-aligned double JPEG compression
detection. In particular, we explore the capability of CNNs to capture DJPEG
artifacts directly from images. Results show that the proposed CNN-based
detectors achieve good performance even with small size images (i.e., 64x64),
outperforming state-of-the-art solutions, especially in the non-aligned case. Be-
sides, good results are also achieved in the commonly-recognized challenging
case in which the first quality factor is larger than the second one.

Keywords: Image forensics, double JPEG detection, double JPEG
localization, convolutional neural networks.

1. Introduction

In the last decades, due to the wide availability of easy-to-use imaging soft-
ware, diffusion of tampered content has become a widespread phenomenon.
Among the techniques developed by the image forensic community to fight this
trend [1, 2], great attention has been devoted to methods analyzing JPEG traces
[3, 4]. Indeed, every time an image is stored (e.g., at shooting time directly on
the acquisition device, or after editing with processing tools), it is usually saved
in JPEG format. Therefore, manipulated content often undergoes JPEG re-
compression. Because of this fact, detection of double JPEG compression has
received great attention in image forensics, and presence of tampering is often
revealed by looking for the artifacts left by JPEG re-compression. However,
depending on whether second JPEG compression grid is aligned or not with
the one adopted by the first compression, different artifacts are introduced. For



this reason, these two scenarios are often analyzed separately and are commonly
referred to as aligned double JPEG (A-DJPEG) compression detection and non
aligned double JPEG (NA-DJPEG) compression detection, respectively.

In many cases, manipulation takes place on limited parts of the image only.
Therefore DJPEG traces are only left on a limited number of pixels. For this
reason, being able to detect DJPEG on small image patches proves paramount
for localization of manipulated regions in image forgery detection problems.
However, most of the techniques performing double JPEG detection in literature
focus on estimating compression history of an image as a whole, whereas the
localization of double compressed regions of relatively small size (i.e., possibly
tampered regions) has been often overlooked and only addressed in some works.
In this paper we investigate the use of convolutional neural networks (CNNs)
for the detection of A-DJPEG and NA-DJPEG even when working on small
image patches (i.e., 64× 64 pixel), which may be useful for forgery localization
purpose.

1.1. Prior Work on Double JPEG Detection and Localization

It is well known that double JPEG compression leaves peculiar artifacts
in the DCT domain, in particular, on histograms of block-DCT coefficients
[3]. Accordingly, many proposed detection algorithms focus on the analysis
of first order statistics of DCT coefficients. This is the case with the data-
driven approach in [5], based on analysis of low-frequency block-DCT coefficients
histograms, and many model-based approaches, e.g., the ones in [6, 7, 8] that rely
on distribution of first (and sometimes second) significant digits (FSDs) in block-
DCT coefficients and methods based on Benford-Fourier analysis [9, 10]. Data-
driven detectors based on features derived from second-order statistics have also
been proposed, e.g., [4]. A major drawback of many of these approaches is that
they are designed to work on the whole image, i.e., to detect if an image has
entirely undergone single or double JPEG compression and they fail to correctly
classify small blocks or image patches, due to the difficulty of estimating the
statistics in these cases. Therefore, they are not applicable in a tampering
detection scenario, when only part of the image has been manipulated.

Among the algorithms performing localization, Lin et al. [11] exploit double
quantization (DQ) effect on DCT coefficients’ histograms to produce a likeli-
hood map reporting tampering probabilities for each 8 × 8 block of the image.
This method has been refined in [12] through use of an improved probability
model. However, spatial resolution considered by the authors for good detection
accuracy with these methods is 256 × 256, and performance drop significantly
when smaller regions are considered. Besides, this method performs poorly
when quality factor used for the first compression (i.e., QF1) is significantly
larger than the second one (i.e., QF2). In [13], localization of spliced regions
is achieved by using FSD features of block-DCT coefficients and employing a
support vector machine (SVM) classifier. Recently, in [14], authors proposed a
novel method that relies on a one-dimensional CNN, designed to automatically
learn discriminant features from DCT coefficients histograms. This approach
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outperforms both methods in [12] and [13], achieving good detection perfor-
mance with small sized images up to 64 × 64 pixel. However, all the above
approaches exploit the peculiar traces left by aligned DJPEG compression and
then fail to detect double compression in the non-aligned case.

In the NA-DJPEG scenario, several other methods for detecting double com-
pression have been proposed, relying on ad-hoc features extracted from both
pixel domain [15, 16] and DCT domain [17, 18]. Specifically, in [16] authors
proposed a method able to detect both aligned and non-aligned re-compression.
The scheme works by combining periodic artifacts in spatial and frequency do-
mains. Specifically, a set of features is computed to measure periodicity of
blocking artifacts, which is altered when a NA-DJPEG compression occurs,
and another set of features is used to measure periodicity of DCT coefficients,
which is perturbed in presence of A-DJPEG. This approach for non-aligned re-
compression detection is outperformed by [18]. Furthermore, in [19], Bianchi
and Piva propose a forensic algorithm for tampering localization when DJPEG
compression occurs, either aligned or not. The proposed scheme is as an ex-
tension of their analysis carried out in [12], where a unified statistical model
characterizing JPEG artifacts in the DCT domain is considered. However, sim-
ilarly to [12] (and [18]), this scheme works well as long as QF2 > QF1; moreover,
in order to achieve accurate detection, spatial resolutions lower than 256× 256
pixel are not considered.

1.2. Contribution

Deep learning using convolutional neural networks (CNNs) [20, 21] has proved
to be very powerful in many image classification problems, thus achieving con-
siderable success in recent years also in steganalysis [22, 23, 24] and image
forensics [25, 26, 27]. By using CNNs, the classical machine learning paradigm
of manually extracting characteristic features from the data is replaced by the
possibility of learning discriminant information directly from data.

Motivated by this recent trend, the goal of this paper is to design CNN-
based approaches able to classify single and double JPEG compressed images.
Specifically, we are interested in working with small size images.

To the best of our knowledge, CNNs to perform double JPEG detection
have been applied only in [14]. In this paper, a one-dimensional CNN is de-
signed to take as input a feature vector built by concatenating DCT histograms.
Since the network is fed with hand-crafted features (i.e., one-dimensional DCT
histograms), the CNNs’ capability of automatically learning from data is not
addressed in that work.

In this paper, we consider the case in which the image is directly given as
input to the network, thus fully exploiting self-learning capability of CNNs.
Besides, our analysis is not limited to the case of aligned DJPEG compression,
but we also consider the case of non-aligned double JPEG compression, in which
the method proposed in [14] is not meant to work. Specifically, the contributions
of this paper are detailed in the following. Concerning A-DJPEG detection:
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• We refine the approach in [14] by showing that DCT histograms can be
computed using common and readily available CNN layers, and that cor-
relation among DCT histograms can be exploited to increase classification
accuracy on small 64× 64 images.

• We propose two alternative ways to perform detection based on CNNs with
self-learned features directly from image pixels or noise residuals, showing
the robustness of these algorithms in classifying images compressed with
QFs different from those used for training.

Then, concerning NA-DJPEG compression:

• We compare the proposed CNN-based detectors against state-of-the-art
solutions [18, 8, 7], showing that the CNN working on noise residuals
significantly improves the performance especially on small 64×64 images.

• We confirm the robustness with respect to variations of QFs, showing that
CNNs working on noise residuals are also able to correctly classify images
compressed twice with the same QF.

Finally, when both A-DJPEG and NA-DJPEG are jointly considered we show
that it is possible to use the same CNN-based methods to build a detector which
works in the general case.

A strength of the proposed solutions, with respect to the most powerful
state-of-the-art techniques (e.g., [14, 18]), is that they are designed to work
directly on the pixel values. Therefore, our algorithms can detect a double JPEG
compression even when images are made available in bitmap or PNG format.
This indeed can be seen a simple yet effective antiforensic attack against the
aforementioned methods which need to access to the information in the JPEG
bitstream (e.g., to read quantization tables or quantized coefficients).

The paper is organized as it follows: in Section 2 we give some basics on
CNNs and discuss their usage in multimedia forensic applications. Then, in
Section 3 we introduce the problem of DJPEG compression detection addressed
in the paper and present the CNN-based methods proposed. The experimental
methodology followed to evaluate the proposed techniques is then discussed in
Section 4. Finally, Section 5 is devoted to the experimental results and the
comparison with the state-of-the-art. Section 6 concludes the paper.

2. Use of CNN architectures in Multimedia Forensics

In this section we provide a fast overview on convolutional neural networks
(CNNs) to highlight some of the founding concepts needed to understand the
rest of the work. Particular attention is devoted to their application to Multi-
media Forensics.
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Figure 1: Example of simple CNN architecture composed by some of the principally used
layers. A convolution layer (Conv) processes the input image with a series of linear filters. A
pooling layer (Pool) downsamples each filtered image. Inner product (IP) linearly combines all
its input data before applying a non-linear transformation. After a few other layers, SoftMax
normalizes its input to sum to 1.

2.1. Background on CNNs

Convolutional neural networks are complex computational models that con-
sist of a very high number of interconnected nodes. Each connection is associ-
ated to a numeric parameter that can be tuned in order to learn complex and
non-linear functions [20, 21]. Network nodes are stacked into multiple layers,
each one performing a simple operation on its input. With reference to the
scheme depicted in Figure 1, some of the most common layers are the following:

• Convolution: each convolution layer is a bank of filters h. Given an input
signal x, the output of each filter is the valid part of the linear convolution
computed with stride S (i.e., y = convS(x, h)) and it is known as feature
map. The output of the layer is obtained stacking all the feature maps
obtained through different filters h.

• Max-pooling: this layer downsamples the input x by sliding a small win-
dow over it and keeping the maximum value for each window position.
Following the same idea, also min-pooling and average-pooling layers can
be constructed.

• ReLU: Rectified Linear Unit (ReLU) applies the rectification function
max(0, x) to the input x, thus truncating negative values to zero [28].
This is one of the possible way to add non-linear behavior to the network
in addition to sigmoids and hyperbolic tangents among others.

• Inner Product: this is a fully-connected layer that performs a set of linear
combinations of all samples of the input x. Typically inner product layers
also apply some non-linearity at the end (e.g., ReLU).

• SoftMax: this normalizes the input values in the range [0, 1] and guaran-
tees that they sum up to one. This is particularly useful at the end of the
network in order to interpret its outputs as probability values.

By feeding the CNN with a set of labeled data (e.g., images belonging to different
known categories) and minimizing a cost function at the output of the last layer,
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CNN weights (e.g., the values of the filters in the convolutional layers, weights
for linear combinations in inner product layers, etc.) are tuned so that the CNN
learns how to automatically extract distinctive features from data (e.g., image
categories). This can be a great advantage with respect to the use of hand-
crafted features manually defined to extract some data characteristics. Indeed,
features extracted manually by following some model equations are limited by
the model itself (e.g., possible linearizations, simplifications, etc.). Instead,
CNNs are free to search for a better data characterization by learning it directly
from the observed data, of paramount importance when defining a proper data
model is an unfeasible solution.

To train a CNN model for a specific image classification task we need: (i) to
define metaparameters of the CNN, i.e., sequence of operations to be performed,
number of layers, number and shape of the filters in convolutional layers, etc;
(ii) to define a proper cost function to be minimized during the training process;
(iii) to prepare a (possibly large) dataset of training and test images, annotated
with labels according to the specific tasks (i.e., single and double compressed
JPEG images in our work).

2.2. CNNs in Multimedia Forensics

CNNs have been successfully used in recent years for many image recognition
and classification tasks [21] and there are also many works which use CNN for
applications of staganalysis, e.g. [22, 23, 24, 29]. However, only recently, some
works have started to explore CNNs for multimedia forensic applications.

One of the first works using CNNs for multimedia forensics is [27]. In this
paper, the authors developed a detector for median-filtered images, whose ca-
pability of working on small 64× 64 patches enabled its use also for tampering
localization. In developing this algorithm, authors showed the importance of ap-
plying a pre-processing filtering step to images, in order to better expose forgery
traces in a residual domain. The importance of working with high-pass versions
of the image under analysis for forensic works was also remarked in [25]. In this
paper, a CNN for forgery detection is developed, and its first convolutional layer
is learn to compute high-pass-like filters. The used architecture is again very
small (i.e., two convolutional and inner-product layers) as no additional depth
was necessary.

A forensic task that has been better investigated with CNNs is camera model
identification. To this purpose, authors of [30] made use of a three convolutional
layers network to detect the camera model used to shot a picture. In [26], the
same goal was achieved using four convolutional layers, also showing the capa-
bility of CNNs to generalize to camera models never used for training. Finally,
in [31], the authors investigated the possibility of using up to ten convolutional
layers, concluding that no additional benefit was provided by going that deep.

To the best of our knowledge, the only work based on CNNs for DJPEG
detection is [14]. However, in this work, the authors feed the CNN with hand-
crafted features (i.e., DCT coefficients histograms) rather than letting the net-
work learn directly from data.
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3. Double JPEG Compression Detection based on CNNs

In this section we first introduce double JPEG detection problem, then we
detail the CNN-based solutions analyzed in this work.

3.1. Problem Formulation

JPEG is a lossy image transform coding technique based on block-wise Dis-
crete Cosine Transform (DCT). In a nutshell, an image is split into 8× 8 non-
overlapping blocks, each block is DCT transformed and quantized, then entropy
coded and packed into the bitstream. Quantization is the operation causing in-
formation loss. Specifically, quantization is driven by pre-defined quantization
tables scaled by a quality factor (QF). A lower QF indicates a stronger quanti-
zation, thus lower quality of the final decompressed image. Double compression
occurs when an image compressed with a quality factor QF1 is first decom-
pressed and then compressed again with quality factor QF2. If no operations
are applied between the two compression steps, 8 × 8 JPEG blocks of the first
and second compressions are perfectly aligned, thus we speak of A-DJPEG com-
pression. Conversely, when the second compression 8 × 8 grid is shifted with
respect the previous one (e.g., due to cropping between first and second com-
pression or to a cut and paste operation), we have a NA-DJPEG compression.
Depending on the particular scenario, both A-DJPEG and NA-DJPEG may
occur.

Our goal is to build a detector which is able to classify between single com-
pressed and double compressed images. In other words, let H0 correspond to
the hypothesis of single compressed image, and H1 to the hypothesis of image
compressed twice. Given a B × B pixel image I, we want to detect whether
H0 or H1 is verified, considering: i) only A-DJPEG case; ii) only NA-DJPEG;
iii) both A-DJPEG and NA-DJPEG cases. To solve this classification prob-
lem, we propose to use data-driven techniques based on CNNs. Specifically,
starting from a standard supervised-learning pipeline, we propose three differ-
ent architectures. As it will be further explained in Section 5, the investigation
of different approaches is motivated by the fact that aligned and non-aligned
DJPEG compressions leave different footprints and then in principle cannot be
detected in the same way

3.2. Proposed Solutions

The proposed methodologies follow a common pipeline depicted in Figure 2
composed by two steps: training and test. During training, a database of la-
beled images is used to learn CNN parameters for the selected architecture.
Accordingly, the CNN is fed with N pairs {In, ln}, n ∈ [1, N ], where ln = 0 if
image In verifies H0 (single compressed), ln = 1 if it verifies H1 (double com-
pressed). After training, the CNN outputs the learned model M containing all
CNN parameters (e.g., filters, fully connected weights, etc.). Optionally, a pre-
processing step (e.g., denoising) can be applied to the images, in order to turn
images In into Ĩn. When an image I is under analysis, it is fed to the trained
CNN. The network outputs the probability of the image to verify whether H0
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Pre-processing CNN

Pre-processing CNN

Training
Set

{In, ln}

I Ĩ

{Ĩn, ln}

l̂

M

Figure 2: Pipeline common to the proposed solutions. CNN training (top) is performed using
images In labeled with ln. The CNN modelM is then used for testing (bottom) a new image

I and obtain the candidate label l̂. Optional pre-processing might be applied to the images.

is true or not. This probability (soft output) is converted to the estimated label

l̂ by thresholding (hard output). Clearly, if pre-processing is applied during
training, it must be applied also during testing.

In the following we report the three investigated solutions, based on the
above pipeline.

3.2.1. CNN in the Pixel Domain

The first investigated approach is based on the idea that properly designed
CNNs should be able to automatically learn to distinguish between single and
double compression by working directly on the image in the pixel domain. En-
couraging results in this direction have been recently obtained in steganalysis
field for classification of stego and cover images [22, 23].

In this case, In corresponds to the JPEG images in the pixel domain (de-
compressed image) and1:

Ĩn = In −
1

N

N∑
n=1

In. (1)

The image mean subtraction is customary done before CNN training to let the
network work with almost-zero-average signals.

Regarding the CNN architecture, we resort to a slightly deeper variation of
the well-known LeNet [32] developed for digits recognition, which has already
been successfully exploited for forensic analysis [27, 25, 26]. This network archi-
tecture is depicted in Figure 3 (bottom part) and input-output size of each layer
are reported in Table 1. B×B is the size of input grayscale image. Then, three
convolutional layers (i.e., Conv-1, Conv-2 and Conv-3) apply stride 1 valid con-
volution with 30 filters 5×5 shaped. All of them are followed by a max-pooling
layers (i.e., Pool-1, Pool-2 and Pool-3) with kernel 2×2. The first inner product
layer (i.e., IP-1) reduces its input to 500 neurons and it is followed by a ReLU
non-linearity. Finally, the last fully connected layer (i.e., IP-2) reduces its input

1The operation is performed pixel-wise.
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Table 1: Reference CNN architecture parameters. Input-output relations for each layer are
reported as function of the input image size B ×B × 1.

Layer Kernel size Stride Num. filters Input Size Output Size
Conv-1 5×5 1 30 B ×B × 1 B-4 ×B-4 × 30
Pool-1 2×2 2 - B-4 ×B-4 × 30 B/2-2 ×B/2-2 × 30
Conv-2 5×5 1 30 B/2-2 ×B/2-2 × 30 B/2-6 ×B/2-6 × 30
Pool-2 2×2 2 - B/2-6 ×B/2-6 × 30 B/4-3 ×B/4-3 × 30
Conv-3 5×5 1 30 B/4-3 ×B/4-3 × 30 B/4-7 ×B/4-7 × 30
Pool-3 2×2 2 - B/4-7 ×B/4-7 × 30 B/8-3 ×B/8-3 × 30
IP-1 - - 500 B/8-3 ×B/8-3 × 30 500
ReLU-1 - - - 500 500
IP-2 - - 2 500 2
SoftMax - - - 2 2

to 2 elements, i.e., one per class. SoftMax is used at the end to normalize IP-2
output to probability values.

3.2.2. CNN in Noise Domain

The second solution is based on the idea that additional pre-processing,
aimed at removing irrelevant information (e.g., image content), may help the
CNN in its training process.

In order to expose double JPEG compression traces, we decided to rely on a
denoising pre-processing operator. Then, the CNN input image Ĩn corresponds
to the noise residual

Ĩn = In −F(In) , (2)

where F(·) is the denoising operator described in [33], which relies on a spatially
adaptive statistical model for the Discrete Wavelet Transform. The denoised
image is predicted in the Wavelet domain by means of the minimum mean
squared error (MMSE) estimation. This algorithm is widely used in forensics
for its good capability of separating image content from noise [34]. With regard
to the CNN architecture, we rely again on the one described in Table 1.

3.2.3. CNN Embedding DCT Histograms

The above solutions implicitly assume that DJPEG artifacts are exposed in
the pixel domain. This is the case with non-aligned re-compressed images, which
are characterized by a different behavior of blocking artifacts with respect to
single JPEG compressed one [15, 16]. Conversely, when aligned re-compression
is concerned, it is well known in the literature that peculiar traces are left
in the DCT domain (specifically in the histogram DCT coefficient statistics),
whereas traces left in the pixel domain are generally weaker. Therefore, our
third proposed detection method relies on a CNN which automatically extract
first order features from the DCT coefficients2.

2We do not consider the case in which the image in the DCT domain is directly fed to
the CNN, because, based on some preliminary experiments, we did not obtain very good
performances on small images (B = 64).
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Figure 3: Pipeline of the CNN layers used by the third proposed method. On the top, the
part devoted to DCT histogram computation. On the bottom, the CNN described in Table 1.

Despite this approach is similar to the one proposed in [14], we would like
to stress that: i) we do not make use of DCT coefficients extracted from JPEG
bitstream, rather we compute DCT with a CNN layer enabling us to work with
decompressed images (i.e., our method still works if double JPEG images are
stored in bitmap or PNG format); ii) we exploit a 2D-convolutional CNN, rather
than a 1D one as done in [14], thus capturing possible correlation among DCT
coefficient histograms; iii) our solution embeds histogram computation as part
of the CNN, thus enabling fast and adaptive histogram computation using one
of the many available GPU frameworks for CNN; iv) by embedding histogram
computation in the CNN, we are able to also optimize the choice of quantization
bins, rather than fixing it manually as in any hand-crafted approach.

Since this method does not make use of any pre-processing operation, Ĩn =
In. Then, the used CNN can be thought as split into two parts as show in
Figure 3: i) the former computes DCT coefficients histograms; ii) the latter,
fed with these histogram, is the CNN described in Table 1, whose filters in
convolutional layers are 3× 3 rather than 5× 5.

For the first part, the first step consists in obtaining the 2D DCT represen-
tation of each 8 × 8 image block. To this purpose, let us define Dc1,c2 as the
B
8 × B

8 matrix containing the DCT coefficients at frequency (c1, c2) for each 8×8
image block. This can be easily computed with a convolutional layer as

Dc1,c2 = conv8(I,Hc1,c2), (3)

where conv8(·, ·) computes the valid part of the 2D linear convolution using
stride 8, and Hc1,c2 is the DCT base at (c1, c2) frequency. An example of Dc1,c2

is reported in Figure 4.
At this point, for each frequency (c1, c2), we want to compute the histogram.

To do so using common CNN layers, we first compute the cumulative histogram
and then differentiate it. Specifically, to count the average number Bc1,c2(b) of
values in Hc1,c2 that are grater than a constant b, we resort to a series of bias,
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(a) Dc1,c2

(b) D0,1 − b

(c) sigmoid(γ · (D0,1(i, j)− b))

Figure 4: Outputs of CNN layers devoted to histogram computation: (a) output of the
DCT layer Dc1,c2 for nine different pairs (c1, c2); (b) output of the bias layer Dc1,c2 − b for
(c1, c2) = (0, 1) and different b values; (c) output of sigmoid layer sigmoid(γ ·(Dc1,c2 (i, j)−b))
for (c1, c2) = (0, 1) and different b values.

sigmoid and average-pooling layers obtaining

Bc1,c2(b) =
B2

64

∑
i,j∈[0,7]

sigmoid [γ · (Dc1,c2(i, j)− b)] , (4)

where the bias b is a constant value identifying a histogram bin boundary, γ is a
gain (i.e., 106 in our experiments) used to expand the dynamic of Dc1,c2(i, j)−b
(i.e., to obtain very high values for Dc1,c2(i, j) > b and very low values for
Dc1,c2(i, j) < b), sigmoid(·) turns very high and very low input values into 0 or

1, and the average-pooling layer performs the sum and normalization for B2

64 . In
other words, Bc1,c2(b) is the b-th cumulative histogram bin for DCT coefficient
(c1, c2). Examples of these signals are depicted in Figure 4.

The histogram for each (c1, c2) coefficient can be obtained using a convolu-
tional layer that computes

Zc1,c2(b) = conv1(Bc1,c2 , [1,−1]), (5)

where conv computes 1D convolution, and the filter [1,−1] acts as differentiator
in the b-th direction. Differently from [14], we do not assume to already have
access to quantized DCT coefficients. Therefore, the set of b values use to
construct histograms is not known and must be sought.

Once all histograms Zc1,c2 for all considered DCT frequency pairs (c1, c2)
have been computed in parallel by the CNN, they are concatenated into a 2D
matrix, where each row represents a histogram bin b, and each column represents
a frequency pair (c1, c2). This matrix (i.e., the output of ConvDiff layer of
Figure 3) can be considered as an image, fed as input to the CNN pipeline
defined in Table 1.
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4. Experimental Setup

In this section we report all the details about experimental setup used to
evaluate the proposed techniques.

4.1. Dataset Construction

In order to thoroughly validate the proposed solutions, we generated a set of
training and test datasets of single and double compressed images at different
resolutions and with different quality factors, for a total amount of more than
3M images. All datasets are built starting from images of RAISE database [35].
This is a collection of more than 8 000 uncompressed real-world images of high
resolution taken from different cameras. Images have been first converted to
grayscale, then randomly cropped in order to obtain smaller resolution images
used in our tests. Attention is paid to split into only one set (training or
validation) all cropped portions coming from the same original image. All sets
are balanced, i.e., they contain the same number of single and double JPEG
images.

Training sets have been created in the following cases: i) B = 64, 256; ii)
aligned and non-aligned DJPEG. Each set contains between 280k and 300k
image patches. For each scenario, the image set is built as it follows: for the
first class (H0), images of size B ×B are single compressed with quality factor
QF; for the second class (H1), double compressed images are built by coding
B × B images first with various QF1 and then with QF2. For a meaningful
analysis, we take QF = QF2 as done in [14].

To build double compressed images for the non-aligned case, we start from
images of size B′ ×B′ with B′ ≥ B + 7. Then, after the first compression with
QF1, images are shifted by a random quantity (r, c), 0 < r, c < 7, and cropped
to the size B × B, before being compressed again with QF2, thus simulating
grid misalignement. In all our experiments, we consider three possible values
for QF2, that is 75, 85 and 95, whereas QF1 ∈ {50, 60, 70, 80, 90} for the first
two QF2 values and QF1 ∈ {60, 70, 80, 90, 98} for the last one. Table 2 reports
the breakdown of all these training datasets. We denote with D̄ datasets for
the aligned DJPEG case and with D̂ datasets for non-aligned JPEG scenario.
Superscripts indicate the adopted QF2 (i.e., 75, 85 or 95), whereas subscripts
indicate image size (i.e., B = 64 or 256).

Validation datasets have been created to evaluate: i) detection accuracy
under normal working conditions, i.e., the ability of classifying test images built
under the same conditions of training, and also; ii) generalization capability, that
is, the ability of classifying images even when they are not perfectly compliant
with the used training set. To this purpose, we generated different sets of double
JPEG images with many different (QF1,QF2) pairs and single JPEG images
with the corresponding QF2. Specifically, in addition to the same pairs used
for training, we consider some new pairs where QF1 or QF2 deviates from the
values used for training. Each set contains 3 000 single compressed images and
3 000 double compressed ones. As for training, validation sets are built for the
case B = 64 and 256, with either aligned or non-aligned DJPEG.
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Table 2: Datasets used for training. All datasets are balanced in both classes and QF pairs.

Datasets I Size QF1 QF2 Alignement # Train # Val.

D̄(75)
256 /D̄(85)

256 256x256 50,60,70,80,90 75/85 A 280k 30k

D̂(75)
256 /D̂(85)

256 - - - NA - -

D̄(95)
256 - 60,70,80,90,98 95 A - -

D̂(95)
256 - - - NA - -

D̄(75)
64 /D̄(85)

64 64x64 50,60,70,80,90 75/85 A 300k 30k

D̂(75)
64 /D̂(85)

64 - - - NA - -

D̄(95)
64 - 60,70,80,90,98 95 A - -

D̂(95)
64 - - - NA - -

Tot Images 3 480k 360k

As commonly done to evaluate the performance with data-driven approaches,
detection accuracy is measured over the same (QF1,QF2) pairs used for training.
Then, to test their generalization capability, we also measure the performance
of the detectors with respect to (QF1,QF2) pairs never used for training.

4.2. Evaluation Methodology

In order to fairly evaluate all CNN-based considered approaches, we de-
vised a common training-validation strategy. All CNNs have been trained using
stochastic gradient descent (SGD) algorithm with batch size (i.e., number of
images used for each SGD iteration) set to 128. Momentum was set to 0.9.
Learning rate was set to 0.01 for 64×64 images and 0.001 for 256×256 images,
and was progressively decreased with exponential decay at each iteration. The
maximum amount of epochs (i.e., number of times the CNN sees all training
data) was set to 30 to ensure network convergence. As best CNN trained model,
we always selected the one at the epoch with minimum validation loss in order
to avoid overfitting.

The results are provided in terms of accuracy, namely the percentage of
correctly classified single and double JPEG images in the validation dataset.
We use notation Cpix to refer to the CNN-based detector in the pixel domain,
Cnoise for the one in the noise domain, and Chist for the case of CNN embedding
DCT histogram computation. Concerning parameters of the latter, we made
use of all the AC DCT frequencies. Histograms have been computed using 101
integer bins initialized with b ∈ [−50, 50].

5. Results and Discussion

In this section we evaluate the performance of the proposed detectors relying
on Cpix, Cnoise and Chist, and we compare them with the state-of-the-art methods.
We first focus on the classification in the aligned double JPEG compression
scenario, then we move to the case of non-aligned double JPEG compression.
Finally, we provide some results in the mixed scenario of aligned and non-aligned
double compression.
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(a) Impact of training set size on A-
DJPEG detection accuracy using Cpix.

(b) Impact of CNN depth on A-DJPEG
detection accuracy using Cpix and Cnoise.

Figure 5: Impact of training set size and number of CNN layers.

5.1. Aligned Double JPEG

It is well known that the performance of supervised machine learning tech-
niques strongly depends on the amount of data used for training. In order to
assess the dependency between number of images used for training and detec-
tion accuracy in our case, Figure 5(a) shows the results achieved with Cpix in the
most difficult scenario with small patches (B = 64) and strong second quantiza-
tion (QF = 75). To get the plot, the network is trained on different percentages

of training images from D̄(75)
64 . We see that, when 10% of the dataset is used

for training, accuracy is below 0.75. However, when more than 70% of training
data is used, accuracy saturates around 0.82. Therefore, using the whole train-
ing dataset, we are sure that we are not experiencing losses due to insufficient
amount of training data.3

In order to assess the effect of CNN architecture deepness, we trained five
CNNs with increasing number of Conv-Pool layer pairs on a subset of the whole
dataset. Results reported in Figure 5(b) show how the selected architecture
almost saturates the achievable performance in terms of accuracy.

To assess the performance of the proposed approaches for aligned double
JPEG detection, we compare them to the state-of-the-art techniques in [14],[7]
and [8], denoted respectively as WZ, KH and TR in plot legends. We select [14]
as one of the baseline for two reasons: i) it is shown to outperform previously
existing state-of-the-art detectors, e.g., [12, 13, 6, 5]; ii) to the best of our
knowledge, it is the only method based on CNNs, thus being a natural yardstick
for our methods.

Figure 6 reports results obtained training all proposed CNNs in the various

cases, i.e., on the datasets D̄(75)
256 , D̄(85)

256 , D̄(95)
256 , D̄(75)

64 , D̄(85)
64 and D̄(95)

64 . Results
for B = 256 show that the proposed Chist architecture achieves equal or better
performance with respect to all baseline methods. This is due to the fact that
hand-crafted features exploited in [14] are very distinctive, especially when large
images are concerned.

With small patches (B = 64) all algorithms suffer when QF2 ∼= QF1 (this

3It is worth pointing that the other proposed solutions, i.e., Cnoise and Chist, usually need
less training images to converge.
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(a) Train on D̄(75)
256 (b) Train on D̄(85)

256 (c) Train on D̄(95)
256

(d) Train on D̄(75)
64 (e) Train on D̄(85)

64 (f) Train on D̄(95)
64

Figure 6: Aligned DJPEG compression detection accuracy against baselines WZ [14], KH [7],
and TR[8]. Dashed black line indicates the considered QF2.

case is addressed in the literature by specific methods tailored for the purpose,
e.g., [36]) and QF2 < QF1, as a stronger second compression tends to mask
artifacts left by the first one. However, on 64 × 64 patches, Chist is the one
with the best performance and always outperforms state-of-the-art methods on
average. Concerning the proposed methods, Chist always outperforms Cpix and
Cnoise. This is also expected, as aligned DJPEG traces are better exposed in
the DCT domain, rather than the pixel domain. Nonetheless, a part when QF1
and QF2 are very close, also Cpix and Cnoise allow to achieve accuracy greater
than 0.70 on small images.

Regarding generalization capability, Figure 7 shows the accuracy achieved by
all CNNs trained on the most difficult scenario with QF = 75 and small images
(B = 64). The methods based on DCT histograms or Benford law (i.e., Chist

and baselines WZ, KH, TR) suffer to recognize aligned DJPEG for values of
QF1 different from those used during training when they are close to QF2, and
completely fail when these QF1s are larger than QF2. Contrarily, the methods
relying on pixel analysis (i.e., Cpix and Cnoise) show greater robustness to changes
in (QF1,QF2). To further explore this fact, Table 3(a) shows the behavior of

Cnoise trained on D̄(75)
64 and D̄(75)

256 and tested on images with several different
(QF1,QF2) pairs. (similar results hold for Cpix). Similarly, Table 3(b) reports

the accuracy results with Cnoise trained on D̄(85)
64 and D̄(85)

256 . We notice that,
by varying QF1, results are perfectly in line with those achieved with matched
QF pairs. Good results are also obtained with different QF2s, a part for the
case of much higher QF2. This behavior is not surprising, since compression
with high QF2 leaves few traces on images compressed at lower quality, hence
detecting a DJPEG compression in these cases is hard when such examples are
not included in the training set.
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Figure 7: Sensitivity analysis for aligned DJPEG compression detection when QF2 = 75.
Image size is 64× 64.

Table 3: Sensitivity of Cnoise to variations of QF1 and QF2 for aligned DJPEG detection.
For any pair, only one between QF1 and QF2 is common to images used in the training set
(reported in bold).

Testing (QF1,QF2) B = 64 B = 256
(55, 75) 0.925 0.982
(65, 75) 0.880 0.981
(85, 75) 0.820 0.952
(60, 78) 0.900 0.917
(70, 78) 0.810 0.907
(60, 80) 0.860 0.810
(70, 80) 0.790 0.800

(a) Train on D̄(75)
B , B ∈ {64, 256}.

Testing (QF1,QF2) B = 64 B = 256
(55, 85) 0.963 0.994
(65, 85) 0.960 0.993
(75, 85) 0.923 0.978
(70, 88) 0.860 0.914
(80, 88) 0.640 0.656
(70, 90) 0.718 0.687
(80, 90) 0.500 0.510

(b) Train on D̄(85)
B , B ∈ {64, 256}.

To conclude the analysis of this section, although on one side CNNs based
on a strong hand-crafted modeling assumption (as baseline [14] and Chist) allow
to achieve the best accuracies, the ones based on the analysis of the pixel image
(i.e., Cpix and Cnoise) prove to be more robust to perturbations of QF1 and QF2
with respect to the values used for training, which is paramount every time the
algorithm works in the wild.

5.2. Non-aligned Double JPEG

When DJPEG compression occurs with misalignment between the grids, de-
tectors in the previous section trained on aligned data do not work anymore,
getting an accuracy which is around 0.5. To evaluate the performance of our
method for NA-DJPEG detection, we re-train the detectors in the misaligned
case. In this case, not surprisingly, the algorithm in [14] (WZ) does not work.
Indeed, the features extracted by this method, i.e., the DCT histograms, are
particularly distinctive only when the second compression is aligned with the
first one (the typical peak and gap artifacts shows up in the DCT histograms).
Therefore, we select the well-known algorithm for NA-DJPEG detection pro-
posed in [18], denoted as BP, as additional baseline in this case.
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(a) Train on D̂(75)
256 (b) Train on D̂(85)

256 (c) Train on D̂(95)
256

(d) Train on D̂(75)
64 (e) Train on D̂(85)

64 (f) Train on D̂(95)
64

Figure 8: Non-aligned DJPEG compression detection accuracy against baselines BP [18], KH
[7], and TR [8]. Dashed black line indicates the considered QF2.

Figure 8 shows the performance of all proposed techniques and baselines for
QF2 = 75, 85 and 95 with image size 64 × 64 and 256 × 256. It is known that
BP does not work when QF1 > QF2. Besides, the accuracy significantly drops
for small images, especially in the case QF1 ' QF2. Concerning our methods,
not surprisingly, our solution Chist shows poor performance with respect to Cpix

and Cnoise. Indeed, similarly to [14], the traces in the DCT domain that Chist

looks at are weak in the non-aligned case.
On the other hand, CNNs designed to work in the pixel domain show good

detection performance even for small images (i.e., 64× 64). From these results,
we see that the detector based on Cnoise always outperforms state-of-the-art.

Concerning network sensitivity to QF pairs different from those in the train-
ing set, Table 4 shows the results obtained with our best method Cnoise for both
QF1 = 75 and 85, and image sizes. As for the aligned scenario, Cnoise enables
good detection accuracy, the only critical cases being those with much higher
QF2. It is interesting to notice that Cnoise is able to detect non-aligned DJPEG
compression with good accuracy also in the very challenging scenario in which
QF1 = QF2.

When double compression occurs with QF2 = 95 and QF1 > 95, the detector
fails and the images are misclassified half of the time. Experiments show that
even if we train our methods to detect this specific case, the accuracy does not go
above 66%, thus confirming that the misalignment between the 8×8 compression
grid tends to remove completely the traces, which in this case were already very
weak in the aligned case, and then makes the detection very challenging.

5.3. Aligned and Misaligned Double JPEG

Since it is usually not known a-priori whether double compression is aligned
or not, it is relevant to be able to detect both A-DJPEG and NA-DJPEG.
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Table 4: Sensitivity of Cnoise to variations of QF1 and QF2 for non-aligned DJPEG detection.
Test and training images have only QF1 or QF2 in common (reported in bold).

Testing (QF1,QF2) B = 64 B = 256
(55, 75) 0.816 0.876
(65, 75) 0.805 0.866
(75, 75) 0.764 0.842
(85, 75) 0.674 0.776
(60, 78) 0.777 0.845
(70, 78) 0.765 0.830
(60, 80) 0.723 0.794
(70, 80) 0.720 0.790

(a) Train on D̂(75)
B , B ∈ {64, 256}.

Testing (QF1,QF2) B = 64 B = 256
(55, 85) 0.897 0.972
(65, 85) 0.878 0.972
(75, 85) 0.865 0.961
(85, 85) 0.793 0.954
(70, 88) 0.751 0.786
(80, 88) 0.738 0.785
(70, 90) 0.650 0.610
(80, 90) 0.634 0.600

(b) Train on D̂(85)
B , B ∈ {64, 256}.

(a) Train on (D̄(75)
64 ∪ D̂(75)

64 ) (b) Train on (D̄(85)
64 ∪ D̂(85)

64 ) (c) Train on (D̄(95)
64 ∪ D̂(95)

64 )

Figure 9: DJPEG compression detection accuracy tested separately on aligned and misaligned
cases, when training is performed on a mixed dataset. Image size is 64 and QF2 = 75, 85.

To this purpose, we trained the proposed architectures on a dataset obtained
by the union of the one used for A-DJPEG, namely D̄, and the one used for
NA-DJPEG, namely D̂. For the experiments of these section, we considered
the most challenging scenario with small images (B = 64). Figure 9 shows the
performance of the CNN-based detectors in terms of average accuracy computed
separately on A-DJPEG and NA-DJPEG images. The average is taken over all
the QF pairs used for training. As expected from the previous analysis, Chist

tends to learn better characteristics of aligned DJPEG and performs poorly in
non-aligned case. Conversely, Cpix and Cnoise are more stable solutions being
able to detect with almost the same accuracy both A-DJPEG and NA-DJPEG
images.

Driven by the accurate performance of Chist on A-DJPEG compression, we
also investigated an alternative solution according to which the detection for the
mixed case is obtained by fusing the outputs of our best CNN-based detectors
for the aligned and non-aligned case, through the use of a binary classifier.
Specifically, we considered the output provided by Chist trained on A-DJPEG
images, and the output of Cnoise trained in the NA-DJPEG case, as feature
vector. By feeding this feature vector to a binary classifier (i.e., a random forest
in our case), it is possible to further increase the final accuracy in the mixed
case by up to 2%. However, other solutions and fusing strategies might be
investigated. We leave a thorough investigation of this case to future studies.
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(a) (b)

double

single

Figure 10: A-DJPEG (a) and NA-DJPEG (b) localization example of a compressed central
region with QF2 = 95 and QF1 = 80. Chist is used for the aligned case while Cnoise for the
non aligned case. Actual forged region lies inside the yellow rectangle.

5.4. Localization

Given the good performance achieved on small patches, our method can be
applied on sliding windows to localize possible tampering regions in images.
This can be done, e.g., by dividing the image into overlapping blocks of size
64×64 with stride 16×16. Each block is fed to the CNN (after a pre-processing
step for the case of Cnoise) and the softmax output is used as an estimation of
the probability that the block is double compressed. Figure 10 shows the results
of double compression localization of a central region, bounded in yellow, in A-
DJPEG and NA-DJPEG scenarios with QF2 = 95 and QF1 = 80, when Chist

is used for the former case and Cnoise for the latter case. Both examples show
that red-shaded blocks, i.e. those for which the probability of being double
compressed is higher, are mainly inside the expected central region.

6. Concluding remarks

In this paper we explored the use of CNNs for double JPEG compression
detection problem in the case of aligned and non-aligned recompression. Specifi-
cally, three different solutions are investigated: in one of them, the CNN is based
on hand-crafted features extracted from the images; in the other two, the CNN
is trained directly with the images and the denoised versions, then features are
self-learned by the CNN itself. Results show that CNN based on hand-crafted
features allow to achieve better accuracies in the case of A-DJPEG. For the
NA-DJPEG instead, the CNN based on self-learned features applied to the im-
age noise residuals is shown to outperform the state-of-the-art in every tested
scenario. Good performance are achieved even in the difficult cases in which
the second quality factor is larger than the first and over small images, thus
paving the way to the application of the techniques to tampering localization.
Besides, CNN based on self-learned features prove very robust to deviations
between training and test conditions. Additionally, some preliminary experi-
ments show the proposed CNN-based methods can also be successfully applied
to simultaneously detect an aligned or non-aligned DJPEG compression.
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We designed our methods by assuming that no processing operation oc-
curred in the middle of the two compression stages. Thought this is a common
assumption to D-JPEG detection approaches in the literature, in real applica-
tions, some intermediate processing might be applied. In view of this, we made
some preliminary tests to check if and at which extent the D-JPEG detector
is robust to basic processing operations4. The tests show that good resilience
is achieved on the average with respect to histogram enhancement operations
(accuracy around 85%) and cropping (80%), which just introduces a 8× 8 grid
desynchronization as a main effect. On the other side, the performance with
respect to filtering operation are poor (62% of accuracy in the case of a light blur-
ring, performed with a 3× 3 Gaussian smoothing kernel with variance σ2 = 1).
The classification fails in the case of geometric transformation, e.g., resizing
(around 30%). Future works will be devoted to study fusion techniques to make
the most out of each network in a mixed aligned and non-aligned DJPEG case.
Moreover, it would be interesting to extend the approach derived in [37] for
SVM classifiers, exploiting the idea that robustness to heterogeneous process-
ing and anti-forensics attacks can be recovered by training an adversary-aware
version of the classifier.
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