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Abstract

Image denoising algorithms are evaluated using images corrupted by artificial noise,

which may lead to incorrect conclusions about their performances on real noise. In this

paper we introduce a dataset of color images corrupted by natural noise due to low-

light conditions, together with spatially and intensity-aligned low noise images of the

same scenes. We also introduce a method for estimating the true noise level in our im-

ages, since even the low noise images contain small amounts of noise. We evaluate the

accuracy of our noise estimation method on real and artificial noise, and investigate the

Poisson-Gaussian noise model. Finally, we use our dataset to evaluate six denoising

algorithms: Active Random Field, BM3D, Bilevel-MRF, Multi-Layer Perceptron, and

two versions of NL-means. We show that while the Multi-Layer Perceptron, Bilevel-

MRF, and NL-means with soft threshold outperform BM3D on gray images with syn-

thetic noise, they lag behind on our dataset.

Keywords: image denoising, denoising dataset, low light noise, Poisson-Gaussian

noise model

1. Introduction and Motivation

In the field of computer vision and computational photography, noise reduction is

the application in which granular discrepancies found in images are removed. The

task of performing noise reduction is synonymous with improvement in image quality.
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Many consumer cameras and mobile phones deal with the issues of low-light noise due

to small sensor size and insufficient exposure time. The issue of noise for a particular

digital camera is so important that it is used as a valuable metric of the camera sensor

and for comparing camera performance[1].

Besides the noise in digital camera images, another example of images that deal

with noise due to limited acquisition time are Magnetic Resonance Images (MRI).

Other important types of image modalities such as X-ray and CT (Computed Tomog-

raphy) also suffer from noise artifacts due to insufficient exposure because of low ra-

diation dose limits. While the image acquisition process is different in all of these

examples, the reason for the noise is in most part the same. This is why the problem

of low-light image noise reduction is studied and has led to a variety of different noise

reduction methods [2, 3, 4, 5, 6, 7, 8, 9, 10].

In general most of the performance evaluations for these various noise reduction

methods are done on small images contaminated with noise of a known type (Gaus-

sian, Poisson, salt and pepper, etc), which is artificially added to a clean image to

obtain a noisy version. Measuring the performance of a noise reduction algorithm on

small images corrupted by artificial noise might not give an accurate enough picture of

the denoising performance of the algorithm on real digital camera images in low-light

conditions. The nature of the noise in low-light camera images is more complex than

just i.i.d., for example its variance depends on the image intensity [11] and has small-

range correlations [12], so it would be desirable to obtain images naturally corrupted

by low-light noise and their noise-free counterparts. For this purpose, we bring the

following contributions:

• A dataset of color images naturally corrupted by low-light noise, taken with two

digital cameras (Canon PowerShot S90, Canon EOS Rebel T3i) and a mobile

phone camera (Xiaomi Mi3).

• A process for the collection of noisy and low-noise pixel-aligned images of the

same scene.

• A method for aligning the intensity values of all the images of the same scene.

2



• A technique for computing the noise level and PSNR (Peak Signal-to-Noise Ra-

tio) [13] of the images in our dataset and an evaluation of its accuracy.

• An evaluation of the Poisson-Gaussian mixture model [11, 14] and its parameter

estimation method.

• An evaluation of the denoising performance of six algorithms on our dataset,

with some surprising results.

Different cameras produce different kinds of noise due to their sensor size, sensor

type, and other factors on the imaging pipeline. A learning-based denoising method

(e.g. [5, 8] or [10]) could be trained for a specific type of camera on noisy-clean

image pairs for that specific camera, but it is not clear how well it would generalize to

images from another camera. Trying to construct a dataset of various image pairs from

different cameras may help determine which denoising method generalizes well over

many different cameras, however it does not evaluate the full potential of a method

on any one specific camera at various noise levels. We therefore selected to obtain an

equal number of images from three cameras with different sensor sizes: one with a

small sensor (Xiaomi Mi3), one with a slightly larger sensor (Canon S90) and one with

a mid-size sensor (Canon T3i) and obtain many images with different noise levels for

each camera.

1.1. Related Works

The Tampere Image Database (TID 2013) [15] is a dataset intended for evaluating

image quality assessment metrics such as the SSIM [16]. It contains 25 reference im-

ages and 3000 images obtained by corrupting the reference images by 24 types of noise

and distortions such additive or multiplicative Gaussian noise, high frequency noise,

image encoding artifacts, image denoising artifacts, etc. However, these corrupted im-

ages are all obtained by artificially transforming the reference images in different ways.

In contrast, our dataset provides images where the noise is obtained naturally by short

time exposure to low-light scenes and clean images obtained by long time exposure

to the same scene. Besides evaluating quality assessment metrics, our dataset could
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be used for other applications such as studying noise formation and noise statistics in

digital camera images, and for training or evaluating image denoising algorithms.

The only database for benchmarking image denoising that we are aware of is [17]

(discussed in [6]). It evaluates various denoising methods on color images corrupted

by artificial Gaussian noise. The problem with artificial Gaussian noise is that it is a

very simple noise model that is not present in real world images where many times

the noise level changes with the image intensity. In this respect it has been shown

that the distribution of low-light camera noise is not Gaussian, but follows a more

complex Poisson-Gaussian mixture distribution with intensity dependent variance [11,

18]. Our dataset contains images corrupted by real low-light noise, which besides

offering a more realistic setting for image denoising, it allows to see how well the

Poisson-Gaussian model fits real noisy images obtained in low-light conditions. We

will show such a study in Section 4.3.

A small number of real low-light noise images with corresponding clean image

pairs have been used in [12] to study the noise and intensity relationship. However, we

are not aware of any public database or collection of images that have been corrupted

by real low-light noise like the ones presented in our paper, and which took all the nec-

essary steps for carefully acquiring the images, intensity aligning them and diagnosing

the quality of the obtained pairs.

A dataset with real low-light noisy images and their clean counterparts such as the

one introduced in this paper would bring many benefits to just using images artificially

corrupted by noise from a Poisson-Gaussian mixture model:

• It would contribute to the further study of the noise structure in digital cameras,

such as how much it differs from the Poisson-Gaussian mixture model, spatial

correlation structure, how noise parameters relate to camera acquisition parame-

ters, etc.

• It would present a more realistic range of levels of noise, similar to what happens

“in the wild”. In contrast, the Poisson-Gaussian noise model is usually studied

with fixed (and known) noise parameters, such as in [14].

• It would allow for an end-to-end evaluation of denoising algorithms. Evaluating
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using artificial noise models, even if they are accurate, might not entirely reflect

the reality of noise in digital cameras.

2. Acquisition of Natural Image Pairs

The dataset 1 acquired in this paper consists low-light uncompressed natural images

of 120 scenes. About four images per scene were acquired, where two images contain

noise and the other two images contain very little noise. The presence of noise in the

images is mainly due to the number of photons that are received by the camera’s sensor

and the amplification process, as discussed in [19].

2.1. Acquisition procedure

All the images in our dataset are of static scenes and are acquired under low-light

conditions using the following ”sandwich” procedure:

• A low-noise image is obtained with low light sensitivity (ISO 100) and long

exposure time. This will be the reference image.

• One or two noisy images are then obtained with increased light sensitivity and

reduced exposure time.

• Finally, another low noise image is taken with the same parameters as the refer-

ence image. This will be the clean image.

The two low-noise (reference and clean) images are acquired at the beginning and

at the end of the sequence, while the one or two noisy images are shot in between.

This is done to evaluate the quality of the whole acquisition process for that particular

scene. This process is somehow similar to the process discussed in [12] which used

pair images that were taken with flash. The problem with taking the images with flash

is that the flash can change the scene illumination. Moreover, in [12] no brightness

alignment has been performed on their images. The two low-noise images are used as

1Available at: http://adrianbarburesearch.blogspot.com/p/renoir-dataset.

html
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a first level of quality control. Any motion or lighting change during acquisition could

make the two low-noise images be sufficiently different, as measured by the PSNR. In

fact, we discarded the scenes with PSNR of the clean images less than 34.

The actual acquisition parameters for each camera are presented in Table 1.

Table 1: ISO (and Exposure time) per camera

Reference/Clean Images Noisy Images

Camera ISO Time(s) ISO Time(s)

Mi3 100 auto 1600 or 3200 auto

S90 100 3.2 640 or 1000 auto

T3i 100 auto 3200 or 6400 auto

Using the Canon Developer Tool Kit for the Canon S90 and the EOS Utility for the

Canon Rebel T3i we were able to program the automatic collection of the four images

while trying to preserve the static scene in the images by not moving or refocusing the

camera. The sandwich approach that we used to obtain our images also helped insure

that the only visual difference between the images of a scene was simply due to noise.

All of the images were collected and saved in RAW format (CR2 for Canon). The

Mi2Raw Camera app was used to capture the RAW images for the Xiaomi Mi3 (in

DNG format).

An example of one of the images in the dataset can be seen in Figure 1. In the end

we collected 40 scenes for the S90, 40 for the T3i, and another 40 for the Mi3.

The image denoising database in [17] contains 300 noisy images at 5 noise levels

(σ = 5, 10, 15, 25, 35) for a total of 1500 images. The dimensionality of these images

is 481 by 321 . The dimensionality of the images for just the S90 images is 3684 by

2760 while the images from the other cameras are even larger, as shown in Table 2.

Although our image database contains fewer noisy images, our images contain about

60 times more pixels and therefore more patch variability for studying noise models

from just one of the three cameras.

Many various denoising methods [5, 8, 10] train models from noisy-clean image

pairs that are supposed to generalize well to future noisy images. For this reason and

for evaluation in general it is very important to maintain a careful construction of these

noisy-clean image pairs and to have many examples for a representative dataset. The
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Figure 1: An example of a clean and noisy image pair as well as their corresponding blue channel. The noise

present is the result of the low-light environment. The images were taken using a Canon PowerShot S90.

difficulty in constructing such pairs is why artificial noise is used in practice.

2.2. Mobile camera difficulties

In trying to collect images for our dataset we decided on also collecting mobile

phone camera images. In doing so we ran into many of difficulties, some of which are

described below and are illustrated in Figure 2.

The first difficulty that arose was collecting the RAW images on phone cameras.

Only a few mobile phones collect true RAW images (data dump directly from the

sensor). For example, the Iphone can have an application installed that will allow it to

take RAW images, however these RAW images are not in fact truly RAW because the

sensor data has gone through some unknown post processing. Therefore, only some

of the most recent phones that have been allowed by the device manufacturer can truly

collect RAW images.

The second difficulty that we found when trying to collect mobile phone images
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Figure 2: Intensity alignment issues observed on scatter plots of the intensity difference between the ref-

erence image and aligned noisy image vs reference image intensity. Left: image movement during the

’sandwich’ procedure. Middle: light saturation. Right: non-linearity at high ISO levels.

came in the control over certain image acquisition parameters such as the exposure time

and ISO values. These mobile phone cameras already have a very small sensor, so when

we tried to use a Google Nexus 5 with the FV-5 camera application to capture RAW

images, the limits of control over settings like the exposure time and ISO, and its tiny

sensor size led to many scenes failing our ’sandwich’ procedure selection benchmark

( did not have sufficient amount of light needed for the PSNR to be around 35 for the

reference and clean image.) We also noted for a phone like the Google Nexus 5 a non-

linearity relationship issue in the brightness alignment procedure (this could also be

due to an insufficient amount of light.)

Table 2: Description of the dataset and size
Noisy Images Clean Images

RAW Sensor # of σ PSNR PSNR PSNR σ PSNR PSNR PSNR

Camera Image Size Size(mm) Scenes Avg. Min. Avg. Max. Avg. Min. Avg. Max.

S90 3684×2760 7.4×5.6 40 18.25 17.43 26.19 33.39 3.07 35.03 38.70 43.43

T3i 5202×3465 22.3×14.9 40 11.71 18.94 27.44 35.26 2.57 34.98 40.43 48.13

Mi3 4208×3120 4.69×3.52 40 19.23 12.75 23.49 36.68 3.71 33.50 37.09 45.25

The final difficulty we experienced came in the form of tools to help maintain a

static scene. With the other cameras we used a tripod and were able to program the

automatic acquisition of the scene. With the mobile phone camera we had to use a

small phone tripod and a bluetooth mouse to preserve the static scene when taking the

images manually.

Settling on the Xiaomi Mi3 phone we collected 6 images per scene. The first two
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images were both low-noise images and these images were averaged and set as the

reference image in the alignment process. Similarly, the last two images were also

both low-noise images and the last two images as well were averaged and used in the

overall PSNR computation of the ’sandwich’ procedure. If any movement or saturation

was detected the images were cropped appropriately post alignment. In the end many

of the scenes for the Mi3 were cropped, but all are static with PSNR around 35 or more.

2.3. Main Assumptions and Notations

In this section we present the main assumptions that form the basis of the acquisi-

tion procedure, intensity alignment, and noise level estimation.

The following notations will be used in this paper:

• R, Ir – the reference image

• C, Ic – the clean image

• N, In – the noisy image

• GT, IGT – the unknown ground truth image

• ε, εr, εc – random variables for noise in the low-noise images

• εn – random variable for noise the noisy images

• σ2(X) = var(X) the variance of a random variable X

We assume that the two low-noise images Ir (reference) and Ic (clean) as well as the

noisy image(s) In (acquired with the ”sandwich” procedure from Section 2) are all

noisy versions of a common (unknown) ground truth image IGT , corrupted by zero-

mean noise. Thus:

In(x) = IGT (x) + εn(x)

Ir(x) = IGT (x) + εr(x)

Ic(x) = IGT (x) + εc(x)

(1)

where εn(x), εr(x), and εc(x) are zero-mean and independent of each other.
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Figure 3: Scatter plots of the pixel intensity correspondence between a reference image and its noisy coun-

terpart. Left: the correspondence between the red channel of the 8-bit reference image and the red channel

for the 16-bit noisy image. The line shows the estimated linear mapping to align the noisy image to the

reference image. Middle: the difference between corresponding pixel intensities of the reference 8-bit and

aligned noisy 8-bit image vs reference image intensities for all three color channels. Right: the difference

between corresponding pixel intensities between the reference 8-bit and the aligned clean 8-bit image vs

reference image intensities.

We also assume that the reference and clean images have the same noise distribution

since the two images are of the same static scene with the same ISO level and exposure

time. Note that the reference and clean images have low amounts of noise because

many photons have been accumulated on the sensor during the long exposure time.

In summary our assumptions are:

1. The images are formed as described in eq. (1) with

E[εn(x)] = E[εr(x)] = E[εc(x)] = 0.

2. For any x, the random variables εn(x), εr(x), εc(x) are independent.

3. For any x, εr(x) and εc(x) are identically distributed.

It is shown in [12] that the noise in the digital camera images has short range cor-

relations. We don’t need to make any assumptions about the spatial correlations inside

one image, just between the three images at the same location.

We will see in experiments that our estimation method based on these assumptions

works very well in estimating the noise level in images.

2.4. Intensity Alignment

The dataset construction went beyond just the acquisition of the images. For the

purpose of properly aligning the pixel intensities of the image pairs, we developed a
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Figure 4: An example of the pixel intensity histogram for the Clean and Noisy Green Channels before and

after our brightness alignment.

new form of brightness adjustment that mapped our RAW images to an 8-bit uncom-

pressed format.

The reference image was first mapped from 16-bit to 8-bit as follows. We com-

puted the cumulative distribution of the 16-bit pixel intensities of the RAW reference

image and constructed a linear scaling of the RAW reference image that sets the 99th

percentile value to the intensity value 230 in the 8-bit image. Thus 1% of the pixels

are mapped to intensities above 230, and even fewer will be saturated to value 255. We

chose the value 230 so that most of the noisy images will not have much saturation

after alignment with the reference image.

Each of the other images of the same scene is at the same time reduced to 8-bit and

aligned to the 8-bit reference image by finding a linear mapping specified by parameter

α such that if I is the 16-bit image, the 8-bit aligned image is obtained from αI after

its values larger than 255 or less than 0 are truncated. For better accuracy, instead of

working with the two images I and R, we use blurred versions Ĩ and R̃ obtained by

convolution with a Gaussian kernel with σ = 5 to estimate the intensity alignment

parameter α. This way the level of noise is reduced. To avoid biases obtained near in-

tensity discontinuities, the alignment parameter is computed based on the low gradient

pixels M = {i, |∇R̃(i)| < 1}.

The parameter α is found to minimize

E(α) =
∑
i∈M

(R̃(i)−max[min(αĨ(i), 255), 0])2
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This is done by coordinate optimization using the Golden section search in one

dimension [20] optimizing on α until convergence. The parameter α obtained for the

mapping is robust to outliers.

In Figure 3, left is shown an example of the correspondence between the pixels of

the 8-bit reference image R and the RAW noisy image I of the same scene, with the

alignment line parameterized by α superimposed. The alignment of the obtained 8-bit

image I with the 8-bit reference can be diagnosed by plotting the intensity difference

Ĩ − R̃ (blurred versions) vs the reference intensity R̃. This is shown in Figure 3,

middle for the noisy image and Figure 3, right for the clean image. We obtained plots

like Figure 3 for all the images in the dataset as a way of diagnosing any misalignment

or nonlinear correspondence between the reference image and the corresponding noisy

or clean images. The dark dashed horizontal line in the middle and right plots are 95%

noise bounds for clean images with at least PSNR = 35. Figure 4 shows an example

of the green channel for a particular image in the dataset before and after alignment is

performed.

2.5. Noise Estimation

As stated previously the amount of noise present in the dataset is due to the sensor

and the amplification process. The fact that not all of the images were taken in the

same environment under the same camera settings means that we have a wide variety

of noise in our images. The fact that we are not dealing with artificial noise also means

that we do not know beforehand what will be the noise variance σ2. Thankfully our

”sandwich” procedure for image acquisition, as influenced by [21, 12], allows us to

estimate the noise level for any of our images. The noise level can be estimated locally

for an image patch or globally for the entire image.

We will use the fact that if two random variablesA,B are independent, then var(A−

B) = var(A) + var(B), or in other words σ2(A − B) = σ2(A) + σ2(B) where

var(A), σ(A) are the variance and standard deviation of A respectively. Then from

equation (1) we get

σ2(Ir(x)− Ic(x)) = var(εr(x)− εc(x)) = var(εr(x)) + var(εc(x)) = 2σ2(ε(x))
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Figure 5: Frequency distributions of various noise levels for the noisy and clean images obtained from the

Mi3, S90, and T3i cameras respectively.

from the independence of εr(x) and εc(x) and the fact that εr(x) and εc(x) are iden-

tically distributed (so we can represent them as ε(x)). We obtain the estimation of the

noise level in the clean and reference images:

σ2(Ir(x)−IGT (x)) = σ2(Ic(x)−IGT (x)) = σ2(ε(x)) =
1

2
σ2(Ir(x)−Ic(x)) (2)

For the noisy images we use

σ2(In(x)− Ir(x)) = var(εn(x)− εr(x)) = σ2(εn(x)) + σ2(εr(x))

to obtain the estimation of the noise level as

σ2(εn(x)) = σ2(In(x)− IGT (x)) = σ2(In(x)− Ir(x))− 1

2
σ2(Ir(x)− Ic(x)) (3)

If we want to use the best estimate of the GT, which is Ia(x) = (Ir(x)+ Ic(x))/2,

then we have an alternative formula for the noise level in the noisy images

σ2(εn(x)) = var(In(x)−IGT (x)) = var(In(x)−Ia(x))− 1

4
var(Ir(x)−Ic(x)) (4)

We can use equations (2) and (3) to estimate the true noise level for any image in

our dataset. Again, these noise levels can be computed globally for the whole image or

locally on a patch basis.

3. Dataset Information

Aside from estimating the noise level in every image, we also quantified the image

fidelity across the image batches using various metrics such as PSNR [13], SSIM [16],
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Figure 6: Variation of PSNR and σ values for noisy and clean images for each camera.

and VSNR [22]. In particular we modified the PSNR measurement by incorporating

our estimate of the noise from (3) as opposed to using the standard noise estimate

from the difference image between a clean and noisy image pair. Although there exist

specialized metrics for low-light conditions such as [23] we decided to use measures

that are the most prevalent and common in practice.

Table 2 lists some specific characteristics about the various cameras and their im-

ages in the dataset. Note that the σ in Table 2 comes from the estimates from equations

(2) and (3). Figure 5 shows the distribution of noise levels for the noisy and clean

images for each camera. Figure 6 shows box-plots of the variation in PSNR and noise

levels for each camera.

One interesting observation that we draw from our dataset is that the low noise

images still have a noise level σ of about 3 and as high as 5, which is invisible to

the eye. It tells us something about the local nature of the manifold of natural image

patches, that the manifold is “thick” in the sense that perturbing a patch with (probably

even Gaussian) noise of σ ≤ 5 obtains another natural image patch. Such information

could be useful in the study of natural image statistics or for learning generative models

from natural images (e.g. autoencoders).

4. Experiments

In this section we will evaluate the accuracy of our noise estimation procedure and

compare it to the standard noise estimate (standard deviation of the difference image)

for both synthetic and real noise data. We will also compare our noise estimation

framework to the Poisson-Gaussian noise model and estimation procedure presented

14



in [11]. Afterwards we will examine the denoising performances of four algorithms on

our dataset using three image fidelity metrics.

4.1. Evaluation of Alignment and Noise Estimation Using Artificial Noise

To evaluate our intensity alignment and noise estimation method we constructed

scenes with added artificial noise, as illustrated in Figure 7. For this we chose ten

16-bit RAW reference images from each of the three digital cameras and used them

as ground truth images IGT for constructing artificial sequences from them. We then

used our alignment method as described in Section 2.4 to construct an 8-bit version

of IGT . We then generated Ir,In, and Ic by adding artificial Gaussian noise to the

16-bit IGT . For 16-bit Ir and Ic we added σ = 3
γ amount of noise where γ is the

multiplication factor to map the 16-bit IGT to an 8-bit IGT . A 16-bit In was generated

using σ = 10
γ . This way the standard deviation of the difference from the 8-bit IGT

to the 8-bit Ir (or Ic) will be 3 and to the 8-bit In it will be 10. We then performed

our standard alignment on Ir,In, and Ic to map them over to 8-bit images obtaining

parameters γ′, αi, α2, as illustrated in Figure 7.

Figure 7: The process for constructing the proper reference, clean, noisy, and ground truth images necessary

for the noise estimation evaluation. The values of γ’, α1, and α2 represent the usual alignment of those

respective images from 16-bit to 8-bit as described in Section 2.4.

Observe that multiplying the alignment parameters γ′, αi, α2 by the same factor

produces another alignment of the same quality, thus the alignment is only identifiable

up to a multiplicative constant. For this reason, the alignment is evaluated indirectly,

through the quality of the noise level estimation.
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Figure 8: The relative error in estimating noisy and clean images.

The true values of the noise levels for the Ir,In, and Ic images can be computed

as the standard deviation of the difference between each of them and IGT (all in 8-bit

versions). Our noise level estimation method for Ic and In described in Section 2.5

is compared with the true noise level to obtain the relative error (defined as estimation

error divided by the true noise level value). The same type of relative error is also

computed for the standard estimate of the noise, which is σ(In − Ir) and σ(Ic − Ir).

Figure 8 shows the relative error (defined as error divided by the true value) of es-

timating the noise level for both In and Ic . When it came to estimating the noise level

In, our estimation method kept the relative error to below 0.5%, while the standard

method of estimating the noise level had a relative error around 5%. For the low noise

images Ir and Ic our method had an error below 1% while the standard method had an

error of around 40%.

For all but four of the 90 images evaluated, the relative estimation error for our

alignment and noise estimation method was below 1%. This gives us confidence

that our intensity alignment method together with the proposed noise level estimation

method provide an accurate estimation of the true noise level in images, at least on data

with artificial noise.

4.2. Evaluation of Noise Estimation Using Real Noise

To further investigate how well the assumptions we made in Section 2.3 about the

noise hold, we acquired a special scene with the S90 camera. The scene was of a

constant intensity surface in low-light settings. Using our intensity alignment method-
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ology, instead of mapping our clean image from the 99th quantile to intensity 230, we

mapped the median to intensity 128. Using this mapping we then aligned the other two

noisy and the clean image using the Golden section method, as described in Section

2.4. Figure 9 shows the alignments of the calibration dataset as well as a histogram of

pixel difference between the reference image and the other images in the calibration

dataset.

Figure 9: Analysis of the calibration images. Left: the intensity histograms of the green channels of the

calibration images. Right: the distribution of the intensity difference between the reference image and the

various other images in the calibration dataset.

Because we know that the IGT was constant since the scene contained a constant

intensity surface, we can immediately obtain a true value for σ2 for each image by di-

rectly computing the intensity variance in the image. However, to account for smoothly

changing illumination, we constructed a GT version for each image by Gaussian blur-

ring it with a large spatial kernel (σ = 20) and then calculated the noise level as the

variance of the difference image between the original image and its smoothed version.

We then looked to see if the standard estimate of using the difference image between the

reference image and the other calibration images provided similar results to those we

obtained using our methodology from equations (2) and (3). Analysis of the estimated

noise levels for the three image channels and the overall estimate are summarized with

boxplots in Figure 10.

As Figure 10 shows, our estimated σ values are less biased and have smaller vari-

ance than the standard estimation of σ from the difference images. The average relative

error for our method of estimation is 1.58% and for the standard method of estimation

is 36.22%. The results that we obtained for this evaluation are in line with the results
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Figure 10: Comparison between our method of estimating σ and the standard method based on the difference

image. Both methods were tasked with estimating the σ for the red, green, blue channels, and the overall

image for the calibration scene.

we obtained for noise estimation for images with artificial noise. Thus our investigation

gives us enough confidence in our estimation going forward. Consequently, the noise

estimation described in Section 2.5 will be used as our noise estimation method for all

of the images in our dataset and for estimating the PSNR of the denoised images.

4.3. Evaluation of the Poisson-Gaussian Noise model

As stated previously, the Poisson-Gaussian noise model [11, 14] depends on the im-

age intensity. With our notation introduced in Section 2.3, the observed image intensity

In(x) is represented under the Poisson-Gaussian noise model as

In(x) = αp(x) + n(x) (5)

where p(x) is an independent Poisson random variable with expected value y(x) =

IGT (x)/α and n(x) is an i.i.d. Gaussian n(x) ∼ N(0, τ2). This way we obtain the

noise model

εn(x) = In(x)− IGT (x) = αp(x) + n(x)− IGT (x) (6)

which is independent and has zero mean. Therefore the Poisson-Gaussian noise model

obeys the assumptions made in Section 2.3.

Under the Poisson-Gaussian noise model the noise level (standard deviation) has

an exact relationship with the noise-free image through σ(εn(x)) =
√
αIGT (x) + τ2.

In [11] is presented a maximum likelihood approach for estimating of the Poisson-

Gaussian model parameters (α, b), (where b = τ2) from a single image. The authors
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also observe that b could also be negative due to the pedestal level, a constant offset

from zero of the digital imaging sensor.

Using local noise estimation through equations (2), (3), and (4), we can calculate

the the intensity level sets IGTi of each image patch and the variance vi of the noise in

each level set, then we can find the Poisson-Gaussian model parameters (α, b) so that

vi = αIGTi + b by the maximum likelihood method from [11]. We can then see how

well the Poisson-Gaussian noise model fits our data and we can we can compare our

model parameters with the single-image parameter estimates from [11].

A special scene was acquired for this purpose using a uniform background with a

smoothly changing intensity and our ”sandwich” procedure. We converted the images

to gray-scale to be able to compute the model from [11] and divided the image into

400×400 blocks and the blocks into intensity level sets of a smoothed image, following

the method described in [11]. Based on the different ways to estimate the noise variance

σ in each level set we considered the following variants:

• In the Foi model, the noise level σ is estimated as the standard deviation of the

wavelet detail coefficients zwdet, as described in [11].

• In the three image model, the noise level σ is estimated using three images (ref-

erence, clean and noisy) and equations (2) and (4).

• In the blurred reference model, the IGT is obtained by blurring the reference

image with a large Gaussian kernel and the noise level σ is estimated as the

standard deviation of the difference between the noisy image and the blurred

reference image.

• The blurred noisy model takes as IGT the blurred noisy image, thus it is obtained

entirely from the noisy image.

The smooth image for obtaining the level sets was obtained as follows: for the Foi

method we used the blurred zwapp wavelet approximation image, for the three image

model we used the average (Ir + Ic)/2 between the reference and clean images, for

the blurred reference model we used the blurred reference image, and for the blurred

noisy model we used the blurred noisy image.
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Figure 11: Left: The noise curve of our pair image model and the Foi Poisson-Gaussian Mixture model.

Right: The noise curves for various noise estimation models using image pairs and the Foi Poisson-Gaussian

Mixture model.

On the obtained (ŷi, σ̂i) intensity-noise level pairs for each variant we fitted Poisson-

Gauss model parameters (α, b) by maximum likelihood as described in [11].

To validate our implementation of the Poisson-Gaussian model estimation proce-

dure, we also plotted the Foi original model, where the parameters were obtained from

the noisy image using code available online2.

The obtained curves are shown in Figure 11. In Figure 11, left are also shown the

data points (ŷi, σ̂i) from which the three image model and the Foi model were obtained.

In Figure 11, right are shown the the three estimation methods based on our data:

the three image mode, the blurred reference model and the blurred noisy model. Ob-

serve that these curves are very close to each other and that the blurred reference model

exactly coincides with the three image model. This shows that the blurred reference is

a very good approximation of IGT in this case and the blurred noisy image is also a

good approximation of IGT . Observe that out of these three methods only the three im-

age model directly generalizes to images with edges, while the other methods need to

carefully avoid pixels close to the edges where the blurred image does not approximate

the IGT correctly.

2Code obtained from http://www.cs.tut.fi/˜foi/sensornoise.html
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It can be immediately noted that the Foi estimation method is consistently below

our three curves. At high intensities (around 0.9 on the normalized scale), Foi’s esti-

mate and the corresponding data points are underestimating the noise level by about

40%. We suspect that this is due to the local correlations in the image noise, which

interfere with the noise estimation based on wavelets and a simple convolution. To in-

vestigate this further, we modified the Foi model by estimating the noise level σ as the

standard deviation of the image difference zdiff = In ↓ 2−zsmo, where In ↓ 2 means

the noisy image downsampled by a factor of 2. This curve can also be seen in Figure

11, right. Compared to Foi’s original model, this modified Foi model brings the curve

quite close to our estimates. It is still not exactly the same because the zsmo is not a

good approximation of the IGT since it was obtained by smoothing with a box kernel

which does not remove the noise as well as a Gaussian kernel. Indeed the blurred noisy

model, which does the smoothing of the noisy image with a large Gaussian kernel to

obtain the IGT and level sets, comes very close to our estimates.

Foi’s Poisson-Gaussian noise model is using just the noisy image to infer the noise

level in the image. With our data acquisition methodology we have both clean and

noisy images and are able to infer more accurately the noise level in the image. Also,

note that this evaluation was done on a special scene of a uniform background of con-

tinuously changing intensity and no edges. Foi’s estimation method would have more

difficulty in estimating the noise curve in images with a lot of edges or a lot of tex-

tures. At the same time, the three image approach only used the aligned images and no

blurring, so it should work as well when edges are present.

4.4. Evaluation of Denoising Algorithms

In this section we use our dataset to evaluate six popular image denoising algo-

rithms: the Active Random Field (ARF)[5], Block Matching and 3D Filtering (BM3D)

[4], Bilevel optimization (opt-MRF) [10], Multi Layer Perceptron (MLP) [8], Non-

local means using a James-Stein estimator(NLM-JS) [24], and Non-local means with

a soft threshold (NLM-ST) [25]. These algorithms were selected because they are effi-

cient enough to handle our large images and have code available online. Each of these
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methods depends on a noise level parameter σ. We tested the ARF filters 3 that were

trained using Gaussian noise (in particular the trained filters for σ = 10, 15, 20, 25

and 50) and using four iterations. A special version of the BM3D algorithm meant for

color image denoising 4 was used on the noisy images. For BM3D we evaluated the

algorithm’s performance at σ = 5, 10, 15, 20, 25, and 50. For opt-MRF we used the

Gaussian trained filters (σ = 15 and 25) and a maximum limit of 30 iterations for the

optimization 5. We also used MLPs trained on Gaussian filters 6 to denoise our im-

ages. In particular we used filters for σ =10, 25, 35, 50, and 75. These methods were

evaluated for the values of the noise level σ given above and then for each method the

parameter was fixed to the value that gave the best results. For the NLM-JS 7 algorithm

a patch size of 3× 3, with a search window of 15× 15, and block size of 15× 15 was

used for denoising. Finally, for the NLM-ST 8 algorithm a patch size of 5 × 5, with

a search window of 13 × 13, and block size of 21 × 21 was used for denoising. The

noise parameter value for the NLM-JS and NLM-ST algorithms were estimated for

each image using our previously discussed ”sandwich” procedure. For the ARF, opt-

MRF, MLP, NLM-JS, and NLM-ST algorithms the image channels were denoised in

the YUV color space for better performance. For BM3D there was no transformation

necessary because it could directly handle color images.

In Table 3 are shown the denoising results of the various methods on the three

cameras. We computed the PSNR, SSIM, and VSNR values between the denoised and

the best GT estimate which is the average of the two clean images.

Note the high values given by the SSIM prior to denoising and the lower values for

two cameras after denoising. It is not clear how to interpret the SSIM results since the

other two measures (PSNR and VSNR) are consistent with each other and with the fact

3from http://ani.stat.fsu.edu/˜abarbu/ARF/demo.zip
4from http://www.cs.tut.fi/˜foi/GCF-BM3D/BM3D.zip
5from http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
6from http://people.tuebingen.mpg.de/burger/neural_denoising/
7fromhttps://www.mathworks.com/matlabcentral/fileexchange/

40162-james-stein-type-center-pixel-weights-for-non-local-means?s_

tid=srchtitle
8fromhttp://ieeexplore.ieee.org/document/6957527/media
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Table 3: Performance of various denoising algorithms on our dataset.

Camera Before Denoising ARF BM3D opt-MRF MLP NLM-JS NLM-ST

PSNR

Mi3 23.492 30.918 32.347 31.641 31.230 31.348 30.866

S90 26.187 33.797 36.752 34.983 34.073 34.135 33.076

T3i 27.442 36.550 39.966 38.646 37.584 37.400 36.822

Average 25.707 33.755 36.355 35.090 34.296 34.294 33.589

SSIM

Mi3 0.989 0.972 0.982 0.964 0.929 0.965 0.970

S90 0.988 0.959 0.979 0.958 0.920 0.973 0.970

T3i 0.991 0.993 0.994 0.993 0.933 0.993 0.992

Average 0.989 0.981 0.985 0.972 0.927 0.977 0.977

VSNR

Mi3 17.746 22.387 24.820 22.521 24.132 24.201 23.398

S90 23.789 26.769 28.635 27.357 27.255 27.282 25.559

T3i 22.318 28.567 30.481 29.803 29.429 28.834 28.391

Average 21.284 25.908 27.979 26.560 26.605 26.828 25.864

that denoising was performed, while SSIM is not.

The best results obtained for the ARF, opt-MRF, and MLP methods occurred with

a σ = 25 filter while the BM3D provided its best results with a σ = 50 filter. The

results from Table 3 show that the BM3D outperformed the other methods on all the

cameras using all similarity measures. In particular when comparing the performance

of BM3D with MLP, opt-MRF, and NLM-ST for real noisy images these results do not

lead to the same conclusions as in [8], [10], [25] where these methods performed as

good or better than BM3D on small gray synthetic noisy images.

5. Conclusions

In this paper we introduced a dataset of images containing real noise due to low-

light settings and acquired from two digital cameras and a mobile phone. Additionally,

we developed a method for obtaining pixel-aligned RAW images of low and high noise,
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and intensity-aligned BMP images so that proper studying of the images and their noise

need not be done in RAW format. We also presented a technique to calculate the PSNR

of an image without a ground truth and we conducted extensive evaluations of our noise

estimation and our alignment procedure to make sure that the difference between the

noisy and clean images is just noise.

We used our data to evaluate the Poisson-Gaussian noise model [11] and its pa-

rameter estimation procedure. We observed that the noise has an overall trend that fits

the Poisson-Gaussian model but the wavelet-based estimation method has difficulty

estimating the correct model parameters due to short-range interactions in the noise

structure and to the use of a box filter instead of a Gaussian filter for smoothing the

image.

We tested our dataset on six denoising algorithms: ARF, BM3D, opt-MRF, MLP,

and two version of Non-local Means. For all methods we computed the noise levels

in the denoised images using a variety of methods such as PSNR, VSNR, and SSIM.

Note that these denoising algorithms were trained or tuned on images corrupted by

artificial Gaussian noise. Some of these methodologies (ARF opt-MRF, and MLP)

and many other recent state-of-the-art denoising methods such as: CSF [26], LSSC

[7], and RTF [27] learn the noise structure in a supervised way from the noisy-clean

image pairs. These methods could in fact perform even better for denoising low light

images if trained on our dataset. With so many different denoising methods having

been developed or currently in development, our dataset allows for proper analysis of

these tools, and for the quantitative evaluation of noise models for digital and mobile

phone cameras.

Our dataset poses one more training and testing challenge compared to using im-

ages corrupted by artificial noise. The images in our dataset have a large range of

noise levels in them, while usually denoising methods are trained and evaluated for

one known noise level only. Data with different noise levels poses many challenges in

training and testing, but at the same time it helps denoising algorithms advance to the

level where they could be used in practice for automatically denoising digital camera

images, without any user interaction.
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