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Abstract

Person re-identification aims at the maintenance of a
global identity as a person moves among non-overlapping
surveillance cameras. It is a hard task due to different illu-
mination conditions, viewpoints and the small number of
annotated individuals from each pair of cameras (small-
sample-size problem). Collaborative Representation based
Classification (CRC) has been employed successfully to ad-
dress the small-sample-size problem in computer vision.
However, the original CRC formulation is not well-suited
for person re-identification since it does not consider that
probe and gallery samples are from different cameras. Fur-
thermore, it is a linear model, while appearance changes
caused by different camera conditions indicate a strong
nonlinear transition between cameras. To overcome such
limitations, we propose the Kernel Cross-View Collabora-
tive Representation based Classification (Kernel X-CRC)
that represents probe and gallery images by balancing rep-
resentativeness and similarity nonlinearly. It assumes that a
probe and its corresponding gallery image are represented
with similar coding vectors using individuals from the train-
ing set. Experimental results demonstrate that our assump-
tion is true when using a high-dimensional feature vector
and becomes more compelling when dealing with a low-
dimensional and discriminative representation computed
using a common subspace learning method. We achieve
state-of-the-art for rank-1 matching rates in two person re-
identification datasets (PRID450S and GRID) and the sec-
ond best results on VIPeR and CUHK01 datasets.

1. Introduction

Person re-identification (Re-ID) plays a key role in secu-
rity management applications and has received increasing
attention in the past years [3]. Its goal is to identify a person
(probe sample), captured by one or more cameras, using a
gallery of already known candidates captured from a differ-

ent camera. Most of the works consider the single-shot and
two surveillance cameras scenario, where a single subject
image is available for each camera. The restricted number
of samples and cameras makes the problem more challeng-
ing due the small-sample-size problem [56]. Despite the ef-
forts from the computer vision community, Re-ID remains
an unsolved problem due to appearance changes caused by
pose, occlusion, illumination and camera transition.

Due to the lack of available samples or to the high cost
for collecting and annotating a large number of images for
each subject in the gallery, the small-sample-size problem
also appears on the face identification task. To handle this
problem, researchers have focused on Sparse Representa-
tion based Classification (SRC) [48] and Collaborative Rep-
resentation based Classification (CRC) [56] by representing
each probe image y using all the images in the gallery X
with a proper regularization term as

min
α
‖ y− Xααα ‖22 +λ ‖ ααα ‖p, (1)

where λ is a scalar and ααα is the sparse (p = 1) or the col-
laborative (p = 2) coding vector [56, 48]. These methods
assign the probe image to the class that results in the small-
est reconstruction error. With this approach, researchers
have achieved high performance in applications such as face
recognition [56, 52, 50, 54, 48], hyperspectral image classi-
fication [28] and multimodal biometrics [45].

Despite the accurate results in different computer vision
problems, experimental results demonstrate that SRC and
CRC classifiers achieve weak matching performance on the
person re-identification problem when compared to a base-
line obtained by the well-known KISSME [27] approach,
as shown in Figure 1 for two widely used Re-ID datasets.
While KISSME uses the available image pairs in the train-
ing set to learn a discriminative cross-view metric distance,
SRC and CRC compare the probe and gallery images di-
rectly based on the reconstruction error disregarding the
camera transition, which is one of the main challenges of
Re-ID. Therefore, the following questions should be ad-
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Figure 1: Comparison between Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC) and
KISSME [27] on two widely used person Re-ID datasets (VIPeR [15] and CUHK01 [29]). The values in parenthesis indicate the rank-1 matching rate.

dressed. How to include discriminative cross-view infor-
mation in a collaborative representation framework? How
to indirectly compare probe and gallery images?

An attempt to adapt the collaborative representation to
the person Re-ID problem would be to compute the collab-
orative representation coefficients (coding vectors) αααx and
αααy by solving the camera-specific optimization problems

min
αααy

‖ y− Dyαααy ‖22 +λ ‖ αααy ‖22 and

min
αααx

‖ x− Dxαααx ‖22 +λ ‖ αααx ‖22,
(2)

where each linear regularized model represents the probe
sample, y, or the gallery image, x, using the respective im-
ages in the training set (Dx or Dy). The feature descriptors
extracted from a subject in the training set captured by probe
and gallery cameras are assigned to each column of Dy
and Dx, respectively. Therefore, similar coding coefficients
would be expected when x and y correspond to a same in-
dividuals acquired from different cameras. The matching
between probe and gallery images occurs indirectly using
the coding vectors (αααx and αααy). Note that Dx and Dy can
be any representation of the training images able to balance
discriminative power and robustness to camera transition.

The limitation of Equation 2, however, is that it only
considers the representativeness in the camera-specific op-
timization problems and disregards that elements αααix and
αααiy contain information about the i-th subject from training
set, which we expect to be similar when x and y represents
the same individual captured from different camera-views.
Therefore, a better model should consider the balance be-
tween the representativeness and similarity when comput-
ing αααx and αααy in a unique multi-task framework. In addi-
tion, previous works demonstrated improved performance

when handling the nonlinear behavior of data using ker-
nel functions instead of the linear modeling used in Equa-
tion 2 [32, 42, 41].

In this work, we propose a novel method to address the
person Re-ID problem using a supervised CRC framework,
the Kernel Cross-View Collaborative Representation based
Classification (Kernel X-CRC), inspired on Collaborative
Representation based Classification (CRC) in the sense that
it has a analytical solution that represents each pair probe y
and gallery x images collaboratively using its camera-view
specific training samples Dy and Dx, respectively. Differ-
ently from Equation 2, the coding vectors αααx and αααy are
computed in a unique multi-task learning framework.

A multi-task learning framework provides evidences that
related tasks transfer knowledge when learned simultane-
ously, improving the generalization performance [52, 46, 4,
6]. Considering the computation of the collaborative rep-
resentation coefficients in each camera-view as a different
task, we estimate the coding vectors αααx and αααy simultane-
ously with a similarity term to balance the intra-camera rep-
resentativeness and the inter-camera discriminative power.
Furthermore, we learn αααx and αααy in a nonlinear feature
space to be able to handle the strong nonlinearity present
on the person re-identification data [32, 42, 41]. There-
fore, the Kernel X-CRC computes a multiple regularized
linear model with proper regularization of parameters for
each pair of probe and gallery images, as

min
αααx,αααy

‖ φ(y)−ΦΦΦyαααy ‖22 + ‖ φ(x)−ΦΦΦxαααx ‖22

+λ ‖ αααy ‖22 +λ ‖ αααx ‖22 + ‖ αααy −αααx ‖22,
(3)

where φ(.) is a nonlinear function and, ΦΦΦx and ΦΦΦy are re-
sulting nonlinear mapping of Dx and Dy , respectively.

Despite its simplicity, the Kernel X-CRC successfully
balances the representativeness and similarity to obtain non-



linear and discriminative coding vectors for each pair of
probe and gallery images. Then, by matching the computed
coding vectors using a simple cosine distance, we obtain
improved results when compared to state-of-the-art meth-
ods. According to experimental results, the proposed Ker-
nel X-CRC outperforms state-of-the-art single-shot based
methods in the smaller datasets evaluated (PRID450S and
GRID), where the small-sample-size problem is more criti-
cal, and is also successful in the larger datasets, holding the
second best performance in VIPeR and CUHK01 datasets.

Contributions. The main contributions of this work are
the following. We propose a novel approach to the Re-ID
problem using a Kernel Cross-View Collaborative Repre-
sentation based Classification (Kernel X-CRC) that embod-
ies cross-view discriminative information and models the
nonlinear behavior of person re-identification data. Further-
more, we present an efficient analytical solutions to Ker-
nel X-CRC with outperforming results when compared with
more complex state-of-the-art approaches at four challeng-
ing datasets (VIPeR, PRID450S, CUHK01 and GRID).

To the best of our knowledge, this is the first work ad-
dressing the person re-identification problem as a multi-task
collaborative representation problem. Furthermore, it is im-
portant to emphasize that, even though employed to Re-ID
problem, the proposed approach provides a general frame-
work that does not consider any extra information at test-
ing stage and could also be employed to other computer vi-
sion problems, such as face recognition, hyperspectral im-
age classification and multi-modal biometrics.

2. Related Work

Different feature descriptors have been proposed for the
Re-ID problem by exploiting feature representation and
body parts from where they are extracted and matched [37,
14, 11, 5, 58, 33, 36, 51, 30, 44, 49, 39, 7, 9]. Regarding the
body locations, Farenzena et al. [14] use human symme-
try to determine discriminative body locations, while body
parts are detected using Pictorial Structures in [11]. Simi-
larly, Cai and Pietikainen [5] extract descriptors from fixed
log-polar grids and Liao et al. [30] construct a stable rep-
resentation using local patches obtained in multiple scales.
A different approach constraints the inter-camera matching
computing patch saliency information [58] or capturing spa-
tial distribution of patches between cameras [7].

With respect to the feature representation, some works
capture information using Fisher Vectors [37], histograms
of semantic color names [51], represent local patches with
hierarchical Gaussian distribution [39] and design biologi-
cally inspired features and covariance descriptors [36]. To
handle the camera transition, Chen et al. [9] propose to align
feature distribution across disjoint using the Mirror Rep-
resentation [9], while the feature importance can be com-

puted learning a fixed statistical model [44] or adaptively
from subsets of similar individuals and random forests [34].
More recently, Wu et al. [49] combine hand-crafted and
deep learning-based feature descriptors to obtain a discrim-
inative deep feature representation. In this work, we as-
sume that it is not possible to properly handle the camera
transition by directly matching feature descriptors captured
by different cameras. Therefore, we use a supervised non-
linear framework to compute coding vectors that capture
cross-view discriminative information to perform an indi-
rect matching between probe and gallery images.

In supervised learning-based approaches, feature de-
scriptors are combined with discriminative models learned
using labeled images from camera pairs to obtain higher
matching performance. For instance, distance metric
learning-based approaches use the pairwise constraint to
learn a distance function that is smaller between pairs of the
same person and larger otherwise [27, 59, 43, 21, 20, 19,
18, 17]. As example, WARCA [21] learns a Mahalanobis
distance in a low-dimensional subspace computed using or-
thonormal regularizer, while NLML [20] learns multiple
sets of nonlinear transformations using feed-forward neural
network and large margin optimization. Differently, Cheng
et al. [10] use a triplet loss function that keeps closer in-
stances of the same person in features space learned using
multi-channel CNN. Zhang et al. [57] present a distinct ap-
proach that relates the model parameters and the feature
space using semi-coupled dictionary learning to obtain a
model specific for each individual representation. Similarly,
in this work we compute models specific for each pair of
probe and gallery images. However, we do not assume that
it is possible to learn an effective mapping function between
feature space and parameters space using a reduced number
of training samples.

Subspace learning methods have been widely employed
by supervised Re-ID approaches [2, 1, 32, 12, 30, 42, 41,
55]. An et al. [1] use Canonical Correlation Analysis (CCA)
to learn projections to a latent space where features from
different cameras are correlated. Similarly, in [2], the au-
thors address the small-sample-size problem using shrink-
age and smoothing techniques to better estimate the covari-
ance matrices and Zhang et al. [55] collapse images of the
same person in a single point in a discriminative null space.
Prates and Schwartz [12] adapt Partial Least Squares (PLS)
to a supervised Re-ID setting using prototypes to indirectly
deal with camera transition. To tackle the nonlinearity of
the data, Lisanti et al. [32] propose a kernel descriptor to
encode person appearance and project the data into com-
mon subspace using Kernel Canonical Correlation Analysis
(KCCA). Similarly, Kernel PLS [41] and Kernel HPCA [42]
have been used to nonlinearly map data into a common sub-
space. As in the nonlinear subspace learning approaches,
this work also represents probe and gallery images nonlin-



early by using a set of basis vectors. Differently, our ba-
sis vectors are composed of feature representation of each
training samples. In fact, this feature representation can be
obtained directly from feature descriptor or improved using
projections to low-dimensional common subspace.

Some works investigate the person re-identification
problem using sparse or collaborative representations [22,
31, 16, 24, 25, 26, 47, 53, 23]. Lisanti et al. [31] pro-
pose an Iterative Sparse Ranking (ISR) method that itera-
tively applies SRC with adaptive weighting strategies un-
til ranking all the gallery images. In [47, 53, 23], the au-
thors use CRC in the unsupervised multi-shot Re-ID sce-
nario to compute the distance between probe and gallery im-
ages efficiently using both coding residuals and coefficients.
Karanam et al. [22] explore the block structure in sparse
coefficients to rank gallery images based on the reconstruc-
tion error. In [16, 26], the authors exploit dictionary learn-
ing and sparse coding in a unique framework. Differently,
in [24, 25], the authors propose a local sparse representation
method that uses SRC to represent interest points. Kernel
X-CRC has some key advantages when compared to these
methods. For instance, Kernel X-CRC is a general method
that does not assume a block structure in the coefficients
representation as occurs in [22]. Differently from dictionary
learning-based approaches [16, 26], this work represents
probe and gallery images using training samples. More im-
portantly, different from previous works [31, 22, 16, 26], we
efficiently model the strong nonlinear transition of features
between cameras achieving an analytical solution.

Recently, some methods have employed multi-task
learning in person re-identification [46, 35, 38]. Ma
et al. [35] approach the person re-identification by trans-
ferring knowledge between the source domain with labeled
image pairs and the target domain with unlabeled data using
multi-task support vector ranking. In [38], the authors avoid
the over-fitting problem learning multiple Mahalanobis dis-
tance metrics in a multi-task framework. Su et al. [46]
exploit the correlation between low-level features and at-
tributes using a multi-task learning framework with low
ranking embedding. The proposed Kernel X-CRC is funda-
mentally different from previous works because we employ
multi-task to learn related collaborative coefficients from
multiple regularized linear problems.

The method proposed in this work is related to joint
sparse or collaborative representation methods. Such
methods have been applied in multi-view face recogni-
tion [54, 50], hyperspectral image classification [28] and
multi-modal biometrics recognition [45]. For instance, the
works [28, 52, 50] use sparsity information to combine
complementary features for classification. Differently, we
are dealing with a single feature modality and the tasks cor-
respond to the different camera-views. Shekhar et al. [45]
consider the correlation between multiple biometric infor-

mation using sparse representation, while Zhang et al. [54]
employ a joint dynamic sparse representation to exploit the
correlation between multiple views of same face image.
However, they consider that testing and training images are
available for different tasks (e.g., multiple views or modal-
ities). Differently, Re-ID problem aims at predicting the
subjects appearance at the target task (i.e., gallery camera)
using the image from the source task (i.e., probe camera).

3. Proposed Approach

In the proposed Kernel X-CRC, we use labeled training
images at cameras A and B as columns of matrices Dy and
Dx, respectively (i.e., features belonging to the same sub-
ject are in corresponding columns in both matrix representa-
tions). Thus, these matrices encode the cross-view discrim-
inative information that reflects in the learned collaborative
representation coefficients (αααx and αααy). For instance, when
we describe two images of the same person captured by
cameras A and B using Dy and Dx, it is expected the repre-
sentation coefficients to be more similar than when describ-
ing two different subjects. Therefore, we propose to use the
similarity between these coefficients to indirectly compute
the similarity between probe y and the gallery-set X.

We use the following notation in the description. Bold
lower-case letters denote column vectors and bold upper-
case letters denote matrices (e.g., a and A, respectively). In
this work, we deal with the single-shot scenario (i.e., there
exist only one image taken from camera view A and one
image taken from camera view B). We represent the ith
image from camera A and B, as yi and xi ∈ Rm, re-
spectively, where m denotes the dimension of the feature
space. Without loss of generality, we assume that l testing
images from camera A constitute the probe set Y ∈ Rm×l
and l testing images from camera B represent the gallery
set X ∈ Rm×l. Similarly, the set of all n training im-
ages from camera A and B compose the matrices Dy and
Dx ∈ Rm×n, respectively. The collaborative representa-
tion coefficients are denoted by αααy,αααx, where ααα ∈ Rn,
and λ ∈ R is a scalar. We use φ(.) to denote a nonlin-
ear mapping function of input variables to a feature space
F , i.e, φ : xi ∈ Rm → φ(xi) ∈ F and, ΦΦΦx and ΦΦΦy are the
resulting matrices after nonlinearly mapping Dx and Dy , re-
spectively. In the following equations, we use the notation I
to indicate the identity matrix.

Considering as related tasks the representation of probe
and gallery images using training images from their respec-
tive cameras, we propose to simultaneously estimateαααx and
αααy in a multi-task collaborative representation framework.
Thus, we aim at estimating the most similar coding vectors
αααx and αααy that simultaneously describe probe and gallery
subjects. To compute these coding vectors, we introduce
a similarity term ‖ αααx−αααy ‖22 in our multi-task formulation
that balances representativeness and similarity resulting in



the following optimization problem

min
αααx,αααy

‖ φ(y)−ΦΦΦyαααy ‖22 + ‖ φ(x)−ΦΦΦxαααx ‖22

+λ ‖ αααy ‖22 +λ ‖ αααx ‖22 + ‖ αααy −αααx ‖22,
(4)

that we analytically derived with respect to αααy and αααx ob-
taining

αααy = P−1y αααx + P−1y ΦΦΦ>y φ(y) (5)

and
αααx = P−1x αααy + P−1x ΦΦΦ>x φ(x), (6)

where projections matrices Py and Px are given by

Py = ΦΦΦ>y ΦΦΦy + λI and Px = ΦΦΦ>xΦΦΦx + λI. (7)

Note that Equations 5 and 6 are interdependent. Therefore,
replacingαααx for its corresponding equation (Eq. 6) and iso-
lating αααy , we obtain

αααy = Q−1P−1y P−1x ΦΦΦ>x φ(x) + Q−1P−1y ΦΦΦ>y φ(y) (8)

with projection matrix Q corresponding to

Q = I− P−1y P−1x . (9)

Similarly, we can compute the coding vector αααx as

αααx = W−1P−1x P−1y ΦΦΦ>y φ(y) + W−1P−1x ΦΦΦ>x φ(x) (10)

with W computed as

W = I− P−1x P−1y . (11)

To avoid explicitly mapping of data to a high-
dimensional space, we can use the “kernel trick” substi-
tuting cross-product by K = ΦΦΦΦΦΦ>, where K ∈ Rn×n is
the kernel Gram matrix. Particularly, we define the ker-
nel Gram matrices Kx and Ky ∈ Rn×n to represent the
cross-product ΦΦΦ>xΦΦΦx and ΦΦΦ>y ΦΦΦy , respectively. Furthermore,
we define ΦΦΦ>x φ(x) as the computation of kernel function
between x and all vectors x̂ ∈ ΦΦΦx. Identically, ΦΦΦ>y φ(y)
denotes the kernel function applied in y and all vectors
ŷ ∈ ΦΦΦy . Then, the similarity between a pair of probe y
and gallery x is computed by the similarity between αααx and
αααy , as described in Algorithm 1.

Due the multi-task learning framework, a pair of probe
(y) and gallery images (x) will computeαααy andαααx that bal-
ances the representativeness in each camera with the simi-
larity between coding vectors. This balance will only result
in a similar coding vector if x corresponds to the respective
gallery image of y. For instance, if x is dissimilar when
compared to y, similar coding vectors will not be obtained
since they should result in poor representativeness (i.e., high
reconstruction error) in both cameras.

Algorithm 1: Kernel Cross-View Collaborative Repre-
sentation based Classification (Kernel X-CRC).

input : Kernel matrices (Kx and Ky)
output: Ranking list of gallery images R

Compute Px and Py matrices using Equation 7
Compute Q and W using Equations 9 and 11
Pre-compute:
βββxx ←W−1P−1x
βββyx ←W−1P−1x P−1y
βββyy ← Q−1P−1y
βββxy ← Q−1P−1y P−1x
for yj ∈ Y do

for xi ∈ X do
αααx ← βββxxΦΦΦ

>
x φ(xi) + βββyxΦΦΦ

>
y φ(yj)

αααy ← βββxyΦΦΦ
>
x φ(xi) + βββyyΦΦΦ

>
y φ(yj)

sim(i)← ααα>
x αααy

‖αααx‖‖αααy‖
end
Rj ← sort(sim, descend)

end
return R

4. Experimental Results

In this section, we perform a comprehensive evaluation
of the proposed Kernel X-CRC assessing the effect of differ-
ent strategies in the experimental results (Section 4.1) and
providing a broad comparison with other approaches in the
state-of-the-art in four datasets (Section 4.2).

Datasets. To perform our experiments, we consider four
challenging datasets. The PRID 450S Dataset1 [43] consists
of 450 images pairs of pedestrians captured by two non-
overlapping cameras. The main challenges are related to
changes in viewpoint, pose as well as significant differences
in background and illumination. The VIPeR Dataset2 [15]
contains 632 labelled image pairs captured by two different
outdoor cameras located in an academic environment. Each
subject appears once in each camera and most of the image
pairs show viewpoint change larger than 90 degrees, making
it a very challenging dataset. The CUHK01 Dataset3 [29]
captures two disjoint camera-view images for each person
in a campus environment, containing 971 persons, each of
which has two images from each camera-view (all the im-
ages are normalized to 160×60 pixels for evaluations). The
GRID dataset4 [17] contains 250 image pairs (single-shot)
captured by eight disjoint surveillance cameras in a busy
underground station generating different poses and poor il-

1Available at: https://lrs.icg.tugraz.at/download.php
2Available at: https://vision.soe.ucsc.edu/projects
3Available at:http://www.ee.cuhk.edu.hk/rzhao/
4Available at: http://personal.ie.cuhk.edu.hk/ ˜ccloy



lumination conditions. In addition, different from the other
datasets evaluated, it introduces 775 individuals in gallery-
set without correct matching in the probe-set (distractors)
that drastically impacts in the results.

Experimental Setup. As in the majority of the works, we
randomly partition the datasets into training and testing sub-
sets with an equal number of individuals. However, due to
the odd number of subjects, in CUHK01, we split the 971
individuals into 485 persons for training and the remaining
486 for testing. Furthermore, we also adapt CUHK01 to the
single-shot scenario by randomly selecting one image of the
same person in each camera, similarly to [39].

To set λ, the only parameter of the proposed Kernel X-
CRC, we use a single partition for each dataset. It differs
from the multiple partitions commonly used in literature
and avoids overfitting the parameter to the data. We also
use this single partition to define exponential χ2 and RBF
as kernel functions employed when dealing with the low-
dimensional and original descriptors, respectively.

We report the average of results obtained from 10 trials,
a common procedure to achieve more stable results. The
results are reported using the rank-k matching rate, which
consists on the percentage of individuals correctly identi-
fied when considering the top-k ranking positions, a widely
employed metric to compare Re-ID approaches. We present
the evaluated approaches in tables using an ascending order
of reported rank-1 matching rate.

4.1. Kernel X-CRC Evaluation

In this section, we use the VIPeR dataset to evaluate the
performance of Kernel X-CRC according to different as-
pects: feature descriptors in the original space, performance
when operating in a common subspace, contribution of Ker-
nel X-CRC when computed in the common subspace, and
the impact of the different choices that resulted in the pro-
posed Kernel X-CRC.

Feature Descriptor Evaluation. This experiment assesses
the performance of Kernel X-CRC using feature descriptors
widely employed in the literature. We used the descriptors
proposed by Zheng et al. [59] and Koestinger et al. [27]
that are simple combination of color histograms and texture
information extracted from local patches. Due to their lim-
ited capability of dealing with the camera transition prob-
lem, we also considered descriptors that better handle this
problem, such as LOMO [30], WHOS [32], GoG [39] and
LOMO+CNN [49].

Table 1 shows that the Kernel X-CRC is able to ob-
tain more accurate results when using a better feature rep-
resentation. For instance, Kernel X-CRC reached 45.5%
of rank-1 using LOMO+CNN [49], which is compara-
ble with state-of-the-art approaches. Due to the superior
performance of LOMO [30], WHOS [32], GoG [39] and

LOMO+CNN [49], we will focus on these feature descrip-
tors in the following experiments.

Feature Descriptor Viper (p=316)
r = 1 r = 5 r = 10 r = 20 r = 30

Zheng et al. [59] 21.8 52.2 68.2 83.3 89.3
Koestinger et al. [27] 22.5 53.2 68.8 82.6 89.2

LOMO [30] 37.8 72.1 85.4 94.2 97.0
WHOS [32] 42.9 77.4 88.3 94.5 97.0

GoG [39] 45.0 78.1 88.7 96.1 98.3
LOMO+CNN [49] 45.5 78.9 88.9 95.9 98.1

Table 1: Feature descriptor evaluation on the VIPeR dataset.

Subspace Evaluation. Based on the results obtained using
different feature descriptors (see Table 1), one might hy-
pothesize that better results can be achieved by improving
the feature representation. A straightforward approach for
achieving a better feature representation consists in concate-
nating complementary feature descriptors. However, as we
solve regularized linear models for each pair of probe and
gallery images, it will result in a prohibitive computational
cost. An alternative is to compute a low-dimensional sub-
space that maintains the computational cost acceptable yet
improves the results. Therefore, we project the data onto a
common subspace that handles the camera transition prob-
lem before matching the probe with gallery images using
the proposed Kernel X-CRC.

Table 2 presents the experimental results using Kernel X-
CRC in a low-dimensional feature representation computed
using XQDA [30]. The results were improved for all feature
descriptors when compared to those shown in Table 1. It is
important to highlight that we employed XQDA due to out-
performing results reported in literature yet, other methods
to estimate common subspaces could be employed, instead.

Feature Descriptor Viper (p=316)
r = 1 r = 5 r = 10 r = 20 r = 30

LOMO [30] 41.7 72.2 84.0 93.6 96.3
WHOS [32] 43.3 73.6 84.8 92.7 96.3

LOMO+CNN [49] 47.1 77.3 88.6 95.9 98.2
GoG [39] 51.6 80.8 89.4 95.3 97.4

Table 2: Subspace evaluation on the VIPeR dataset.

Metric Function Evaluation. According to the previous
experiment, the employment of Kernel X-CRC in a low-
dimensional feature space learned using XQDA improved
the results. However, it is difficult to define whether the
improvement gain are due to Kernel X-CRC or to the bet-
ter representation learned using XQDA. Therefore, to high-
light the contribution of Kernel X-CRC, we compare the
proposed method with traditional metric functions to match
probe and gallery images in the learned common subspace.
Specifically, we compare Kernel X-CRC with cosine and
Mahalanobis distances and KISSME metric [27].

According to Table 3, even though reasonable results
were achieved in the learned subspace when using the tra-



Function Viper (p=316)
WHOS [32] LOMO [30] GoG [39] LOMO+CNN [49]

Cosine 33.7 33.5 47.1 40.4
Mahalanobis 34.1 38.3 46.5 43.2

KISSME 34.0 35.1 43.2 41.0
Kernel X-CRC 43.3 41.7 51.6 47.1

Table 3: Metric functions evaluation on the VIPeR dataset.

ditional metric functions (e.g., cosine and Mahalanobis dis-
tance), the Kernel X-CRC achieved greater improvements
(5.3 percentage points, on average), when compared to the
metric function with the second highest rank-1 matching
rate. We attribute this performance gain to the computation
of specific coding vectors for each pair of probe and gallery
images using a nonlinear model. On the other hand, cosine
and Mahalanobis are fixed distances, and the KISSME [27]
is a global distance learned using the entire training set.

Due the improved results, the remaining experiments
will consider the GoG [39] descriptor in the low-
dimensional representation computed using XQDA.

Baseline Approaches. This experiment analyzes the im-
pact of different choices that resulted in the Kernel X-CRC
model. We evaluate unsupervised methods (SRC [48] and
CRC [48]) and supervised methods with and without con-
sidering multi-task and kernel extensions. We also com-
pare Kernel X-CRC with the model presented in Equation 2,
which we named Cross-View Collaborative Representation
classification (C2RC), and with a straightforward nonlinear
extension of C2RC, referred to as Kernel C2RC.

According to Table 4, SRC [48] and CRC [48] achieved
the lowest results as they directly match probe and gallery
images based on the reconstruction error without consid-
ering the training samples. Differently, C2RC and Ker-
nel C2RC improved the results for all ranking positions by
using the training samples to relate features with coding
vectors that are employed to indirectly match probe and
gallery images. Furthermore, due to the nonlinear model-
ing, the Kernel C2RC reached results even better than its
linear counterpart, the C2RC.

Approach Viper (p=316)
r = 1 r = 5 r = 10 r = 20 r = 30

SRC 20.6 37.3 49.0 63.0 68.7
CRC 22.5 38.6 48.1 60.1 67.4

C2RC 49.9 78.6 87.7 94.4 96.5
X-CRC 50.5 79.3 88.7 94.5 97.0

Kernel C2RC 51.0 79.4 88.9 94.8 96.9
Kernel X-CRC 51.6 80.8 89.4 95.3 97.4

Table 4: Results of the baseline approaches on the VIPeR dataset.

The employment of the X-CRC and Kernel X-CRC mod-
els achieved improved results when compared to their coun-
terparts C2RC and Kernel C2RC, respectively. We attribute
this gain to the multi-task learning framework that forces
the coding vectors to be simultaneously representative in

each camera and similar between different cameras.

4.2. State-of-the-art Comparisons

In this section, we compare the proposed approach with
a large number of state-of-the-art methods on the VIPeR,
PRID450S, CUHK01 and GRID datasets.

VIPeR dataset. Table 5 presents the matching rates for
different methods, including approaches based on metric
learning [20, 21, 7], common subspace learning [41, 32, 42,
30, 55, 9, 39, 13] and deep learning [10, 8, 49]. Accord-
ing to the results, the proposed method greatly outperforms
most of the approaches. For instance, the Kernel X-CRC
reached 51.6% of rank-1, while Wu et al. [49] achieved
51.1% combining LOMO and feature descriptors based on
deep learning architectures. We believe that our simple ap-
proach can outperform more complex methods (e.g., deep
learning based approaches) because it learns a coding rep-
resentation specific for a pair of probe and gallery images,
while other methods attempt to learn a matching model con-
sidering a small training set, which is prone to overfitting.
Similarly to our work, Zhang et al. [57] also employs a spe-
cific model for each pair of probe and gallery images. How-
ever, their models are obtained using a mapping function to
relate feature descriptors to model parameters, which is very
challenging for small datasets such as VIPeR.

Method Viper (p=316)
r = 1 r = 5 r = 10 r = 20 r = 30

Prates and Schwartz [13] 32.9 62.3 78.7 87.8 91.6
KPLS ModeA [41] 35.8 69.1 80.8 89.9 93.8

KCCA [32] 37.0 - 85.0 93.0 -
X-KPLS [41] 38.4 73.0 85.2 93.4 94.5

Deep Ranking [8] 38.4 69.2 81.3 90.4 94.1
KISSME 39.2 71.8 81.3 92.4 94.9

Kernel HPCA [42] 39.4 73.0 85.1 93.5 96.1
LOMO + XQDA [30] 40.0 68.0 80.5 91.1 95.5

WARCA [21] 40.2 68.2 80.7 91.1 -
NLML [20] 42.3 71.0 85.2 94.2 -

Null Space [55] 42.3 71.5 82.9 92.1 -
Zhang et al. [57] 42.7 - 84.3 91.9 -

Mirror + KMFA [9] 43.0 75.8 87.3 94.8 -
Sakrapee et al. [40] 45.9 77.5 88.9 95.8 -

MultiCNN [10] 47.8 74.7 84.8 91.1 94.3
GoG + XQDA [39] 49.7 79.7 88.7 94.5 -

Wu et al. [49] 51.1 81.0 91.4 96.9 -
SCSP [7] 53.5 82.6 91.5 96.6 -

Kernel X-CRC 51.6 80.8 89.4 95.3 97.4

Table 5: Top ranked approaches on the VIPer dataset.

To the best of our knowledge, SCSP [7] is the unique
method with improved results when compared to the pro-
posed Kernel X-CRC. We credit the better results to the
combination of global and local matching models. How-
ever, learning how to constraint the matching of local re-
gions in images obtained from different camera-views is a
very challenge task, mainly in more realistic datasets.

PRID450S dataset. According to the results shown in Ta-
ble 6 and similarly to the results in VIPeR dataset (Ta-
ble 5), we achieved improved results when compared to dis-



tance metric learning [21], subspace learning [9, 30, 41, 42,
39, 13], deep learning [49] and other approaches. For in-
stance, using the Kernel X-CRC, we reached higher match-
ing rates for all ranking positions when compared to GoG +
XQDA [39]. That can be explained by the use of the same
low-dimensional representation in the common subspace to
nonlinearly compute coding vectors specific to each pair of
probe and gallery images, while they compute a simple co-
sine distance. To the best of our knowledge, we achieved
the best reported results in literature for PRID450S. We
attribute the improvement to the better representation ob-
tained using GoG descriptor with XQDA [39] and the non-
linear computation of coding vectors by the Kernel X-CRC.

Method PRID450S (p=225)
r = 1 r = 5 r = 10 r = 20 r = 30

WARCA [21] 24.6 55.5 70.3 85.0 92.0
Prates and Schwartz [13] 29.3 52.5 63.1 75.0 82.1

SCSP [7] 44.4 71.6 82.2 89.8 93.3
KPLS ModeA [41] 51.5 78.6 87.0 93.7 96.0
Kernel HPCA [42] 52.8 80.9 89.0 95.1 97.2

X-KPLS [41] 52.8 82.1 90.0 95.4 97.3
KISSME 56.8 82.7 89.4 94.6 97.1

Mirror + KMFA [9] 55.4 79.3 87.8 91.6 -
Zhang et al. [57] 60.5 - 88.6 93.6 -

LOMO + XQDA [30] 61.4 - 90.8 95.3 -
Wu et al. [49] 66.6 86.8 92.8 96.9 -

GoG + XQDA [39] 68.4 88.8 94.5 97.8 -
Kernel X-CRC 68.8 91.2 95.9 98.4 99.0

Table 6: Top ranked approaches on the PRID450S dataset.

CUHK01 dataset. Table 7 presents the matching rates
for different ranking positions of state-of-the-art methods
that addressed person ReID on the CUHK01 dataset us-
ing the single-shot setting. Notice that results from LOMO
+ XQDA [30] and Zhang et al. [57] are not included
since they focus on the multi-shot scenario. According to
the results, the proposed Kernel X-CRC reaches better re-
sults than most of the metric learning and subspace learn-
ing approaches. As matter of fact, we reached the sec-
ond best rank-1 matching rate reported in literature, only
surpassed by WARCA [21], which is a nonlinear met-
ric model. Regarding the higher ranking positions (e.g.,
r=10, 20 and 30), the best results are achieved using Multi-
CNN [10], which consists in multiple deep learning archi-
tectures to combine local and global features. It is important
to highlight that both methods WARCA and MultiCNN are
very sensitive to the number of training samples available,
which justifies the reduced matching rates reported in small
datasets. Differently, the Kernel X-CRC remains within the
top two best rank-1 approaches for all evaluated datasets.

GRID dataset. Since it is a very challenging dataset that
considers real-world problems (e.g., distractors), there are
few works with reported experimental results on GRID
dataset. Table 8 presents these approaches and their respec-
tive matching rates for different ranking positions. Based on
the results, we observe that GoG captures a better feature

Method CUHK01 (p=485)
r = 1 r = 5 r = 10 r = 20 r = 30

KPLS ModeA 38.3 66.8 77.7 86.8 90.5
Mirror + KMFA [9] 40.4 64.6 75.3 84.1 -

Kernel HPCA 44.3 73.2 82.7 90.1 93.4
X-KPLS 46.2 74.0 84.3 91.3 94.0
KISSME 49.6 74.7 83.8 91.2 94.3

Sakrapee et al. [40] 53.4 76.4 84.4 90.5 -
MultiCNN [10] 53.7 84.3 91.0 96.3 98.3

GoG + XQDA [39] 57.8 79.1 86.2 92.1 -
WARCA [21] 65.6 85.3 90.5 95.0 -

Kernel X-CRC 61.2 80.9 87.3 93.2 95.6

Table 7: Top ranked approaches on the CUHK01 dataset.

representation than the LOMO descriptors. For instance,
when comparing both in the subspace learned using XQDA,
GoG achieves an improvement of more than 8.0 percent-
age points for rank-1 matching rate. Furthermore, GoG +
XQDA [39] holds higher matching rates than different ap-
proaches in literature based on metric learning [20], local
and global matching [7] and the sample-specific matching
models [57]. More importantly, Kernel X-CRC presents
the highest rank-1 matching rate when compared to these
approaches, demonstrating the advantage of the nonlinear
matching and its robustness to distractors.

Method GRID (p=125)
r = 1 r = 5 r = 10 r = 20 r = 30

LOMO + XQDA [30] 16.6 33.8 41.8 52.4 -
Zhang et al. [57] 22.4 - 51.3 61.2 -

SCSP [7] 24.2 44.6 54.1 65.2 -
NLML [20] 24.5 35.9 43.5 55.2 -

GoG + XQDA [39] 24.7 47.0 58.4 69.0 -
Kernel X-CRC 26.6 45.4 57.2 69.7 76.1

Table 8: Top ranked approaches on the GRID dataset.

5. Conclusions
In this work, we tackled the person re-identification

problem using the proposed Kernel Cross-View Collabora-
tive Representation based Classification (Kernel X-CRC)
approach. Kernel X-CRC represents probe and gallery im-
ages using collaborative representation coefficients that are
robust to small-sample-size and balance the intra-camera
representativeness with the inter-camera similarity. We per-
formed an extensive experimental evaluation showing that
the Kernel X-CRC successfully combines nonlinear model-
ing and multi-task learning. We also observed that working
in a discriminative and low-dimensional subspace, the
proposed method reaches outperforming results, obtaining
the best rank-1 matching rates for the two smaller datasets
evaluated (PRID450S and GRID) and remaining within the
two best approaches on the VIPeR and CUHK01 datasets.
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