
Learned Greedy Method (LGM): A Novel Neural

Architecture for Sparse Coding and Beyond

Rajaei Khatib, Dror Simon and Michael Elad

The Computer Science Department - The Technion - Israel

Abstract

The fields of signal and image processing have been deeply influenced by the

introduction of deep neural networks. These are successfully deployed in a wide

range of real-world applications, obtaining state of the art results and surpassing well-

known and well-established classical methods. Despite their impressive success, the

architectures used in many of these neural networks come with no clear justification.

As such, these are usually treated as “black box” machines that lack any kind of

interpretability. A constructive remedy to this drawback is a systematic design of such

networks by unfolding well-understood iterative algorithms. A popular representative

of this approach is the Iterative Shrinkage-Thresholding Algorithm (ISTA) and its

learned version – LISTA, aiming for the sparse representations of the processed signals.

In this paper we revisit this sparse coding task and propose an unfolded version of

a greedy pursuit algorithm for the same goal. More specifically, we concentrate on

the well-known Orthogonal-Matching-Pursuit (OMP) algorithm, and introduce its

unfolded and learned version. Key features of our Learned Greedy Method (LGM)

are the ability to accommodate a dynamic number of unfolded layers, and a stopping

mechanism based on representation error, both adapted to the input. We develop

1

ar
X

iv
:2

01
0.

07
06

9v
2

 [
cs

.L
G

]
 2

0
O

ct
 2

02
0

several variants of the proposed LGM architecture and test some of them in various

experiments, demonstrating their flexibility and efficiency.

1 Introduction

In the past decade, Deep Neural Networks (DNN) have been deployed successfully to

numerous signal and image processing tasks. This approach has led to state-of-the-art

results in various inverse problems, such as image denoising, deblurring, super-resolution,

inpainting, and more [1, 2, 3, 4], outperforming the more classical model-based and prior-

based methods [5, 6, 7, 8, 9, 10, 11, 12, 13]. In-spite of their remarkable results, most of

these DNN architectures lack clear justification and are usually obtained by trial and error.

In various cases, this empirical process results in very complex networks with large number

(order of millions) of parameters. Consequently, training such a DNN becomes expensive

in run-time and memory usage, and a lot of data is required in order to properly learn its

parameters. Compared to traditional methods, DNNs are treated as “black box” machines,

limiting the deployment of these networks in many fields where interpretability is crucial,

such as in medical imaging.

An appealing way for alleviating this flaw is by systematically designing networks by

unfolding/unrolling iterative algorithms emerging from a prior-based analysis. This line of

reasoning stands behind a series of recent publications [14, 15, 16, 17, 18, 19], demonstrated

to be a viable and attractive alternative to the brute-force practice for designing network

architectures. This approach leads to highly interpretable DNN architectures whose structure

is well-motivated. An additional benefit to this approach is the fewer number of parameters

that it usually requires, easing its learning. The unfolding paradigm dictates various

specialized properties on the network, such as parameter sharing between different layers,

the non-linearity activation function to use, feedback loops, and more.

2

A successful instance of this technique is the LISTA method [20] and its variants [21, 16, 19],

in which a fixed number of iterations from the ISTA algorithm [22] is unfolded to a DNN and

trained end-to-end. LISTA provides a fast approximation to the ISTA algorithm, aiming

to perform sparse coding to the input signals. In this paper we shall focus on this mission

of sparse approximation, due to its wide relevance, and offer a DNN alternative to LISTA

based on greedy algorithms.

The field of sparse modeling has gained a lot of interest in the past two decades, both

due to its elegant mathematical foundations, and to the applicability of this model to

a wide range of data processing tasks [23]. Intensive work has demonstrated the great

relevance of this model as an effective regularizer for inverse problems (for denoising [5],

deblurring [24], inpainting [25], demosaicing [26], image-fusion [27], super-resolution [28],

compressed-sensing [29], tomographic reconstruction [30], MRI imaging [29], and deraining

[31]), as a compression mechanism [11, 32, 33], and as a feature extractor for recognition

tasks [34, 35, 36]. Let us recall the basics of this model, as we rely on these throughout this

paper.

Using an overcomplete dictionary matrix D = [d1,d2, · · · ,dm] ∈ Rn×m (m ≥ n) that

contains m atoms (dk ∈ Rn for k = 1, 2, . . . ,m) as its columns, the sparse-modeling

prior assumes that the signal of interest, x ∈ Rn, can be represented as a sparse linear

combination of these atoms. Equivalently, this linear combination can be expressed as Dα,

where α ∈ Rm is a sparse vector. This representation may be either exact (x = Dα) or

approximate (‖x−Dα‖2 ≤ ε). Recovering the sparse representation α given x, ε and D

requires solving the following NP-hard [37] problem:

(P0,ε) min
α
‖α‖0 s.t. ‖x−Dα‖2 ≤ ε, (1)

where ‖α‖0 is the `0 “norm” that counts the number of non-zero elements in α. This problem

can be approximated using a family of techniques known as pursuit algorithms, which can

be broadly divided into two categories. The first group of algorithms offers a relaxation of

the above optimization, turning it into a continuous problem. For example, ‖α‖0 can be

3

replaced by ‖α‖1, forming a convex task known as the Basis Pursuit (BP) objective. BP

can be numerically solved using ISTA [22], which explains the connection to our discussion

above. Indeed, running LISTA amounts to learning the appropriate dictionary for the family

of signals to be handled, while optimizing the sparse coding performance. More on this will

be given in Section 2.

The second category of pursuit algorithms is the greedy approach that preserves the

combinatorial nature of the original problem, recovering the coefficients of α sequentially.

The Orthogonal Matching Pursuit (OMP) is a popular member of this group [38], and in this

work we shall propose a learned unfolded version of it: the Learned Greedy method (LGM)

network. Similar to LISTA, the parameters of LGM are learned end-to-end through back-

propagation. The proposed architecture is characterized by several key and unique features:

• This architecture is able of controlling the cardinality of the resulting sparse represen-

tation by modifying the number of unfolded layers;

• Our scheme can dynamically change the number of layers for each input signal,

controlling this way the magnitude of the residual error, akin to the stopping criteria

used in OMP [5, 11]; and

• The resulting network does not utilize the usual element-wise ReLU or shrinkage

activation function, but rather imitates the greedy nature of OMP of using the maximal

projection thresholding.

Our work offers several variants of LGM architectures, all inspired by the same origin, while

serving different needs:

• A simpler greedy method based on the matching pursuit that avoids Least-Squares

fitting 4.1;

• A batch version of the pursuit that aims to speed-up the processing when serving a

large group of signals sharing the same dictionary and stopping criterion 4.4;

4

• An MMSE-based variant of the OMP (which is a MAP approach), in the spririt of

the Random-OMP [39]; and

• A greedy method serving the Convolutional Sparse Coding (CSC) model [40].

• A Subspace Pursuit (SP) 4.2 compatible algorithm that can operate on groups of

non-zeros and remove atoms from the support, empowering it further for handling

higher dimensional signals and yielding a more accurate pursuit.

This work demonstrates the proposed LGM schemes in several experiments. We start with

handling of synthetic data, for which our goal is to show its sparse recovery capabilities,

and contrast them with LISTA and other pursuit methods. We then move to applications

on natural images that operate on image patches, exposing the advantages of LGM over

more classical dictionary learning alternatives. We start with an unfolding of the complete

K-SVD denoising algorithm for natural images [11], which deploys OMP on the image

patches while aiming for global denoising performance. By training this scheme end-to-end,

we get competitive denoising performance with LGM as the core engine for the pursuit

task. We also demonstrate the LGM on the image deraining application, while relying on

a similar architecture to the patch-based denoising, and exploiting a natural division of

the dictionary atoms for the separation task. All these tests clearly expose the strength,

flexibility, learnability, and usability of the proposed LGM architecture and its variants.

This paper is organized as follows: Section 2 briefly recalls the ISTA method and its

learned version LISTA. In Section 3 we introduce the core construction of the LGM method.

LGM extensions and different variants are discussed in Section 4. In Section 5 we introduce

experimental results for synthetic signals, demonstrating the LGM versus its alternatives.

We discuss specific LGM networks for image denoising and deraining in Section 6. Section 7

presents experimental results of LGM denoising and deraining schemes. We conclude the

paper in Section 8 with a summary of the motivation behind this work and the door it

opens for future work.

5

2 Learned ISTA

Assume that an ideal signal x∗ = Dα∗ is given to us while being contaminated by bounded

energy noise x = x∗ + v, ‖v‖2 ≤ ε. Recovering x∗ from x amounts to solving (P0,ε), as

posed in Eq. (1). ISTA [22] is an iterative method that aims to solve this problem, by

considering the following convex relaxation alternative, in which the L0 is replaced by L1,

(P1,ε) min
α
‖α‖1 s.t. ‖x−Dα‖2 ≤ ε. (2)

This problem can be equivalently written in its unconstrained Lagrangian form,

(Q1,λ) min
α
λ‖α‖1 +

1

2
‖x−Dα‖2

2. (3)

ISTA solves this via the following iterative process:

α̂0 = 0

α̂t = Sλ/c

(
α̂t−1 +

1

c
DT (x−Dα̂t−1)

)
for t = 1, 2, . . . (4)

where1 c > λmax(DTD), and Sθ is an element-wise soft-thresholding function defined as

Sθ (v) = sign (v) max (|v| − θ, 0) . (5)

ISTA is guaranteed to find the global minimum of the penalty posed in (Q1,λ) in Eq. (3) [22].

This, however, does not imply that we have solved the problem (P1,ε) in Eq. (2), as the

migration from the choice of ε to λ is signal-dependent and non-trivial. This means that

solving (P1,ε) with ISTA should include a search for λ so as to satisfy the constraint

‖x − Dα‖2 ≤ ε. Moreover, being able to solve (Q1,λ) (or even (P1,ε)) does not imply

that we have necessarily managed to approximate the solution of (P0,ε) in Eq. (1) – the

original sparse approximation problem we have embarked from. Theoretical guarantees for

the proximity between the obtained and the desired solutions do exist (e.g., [41, 42, 43]),

depending on the sparsity of the sought solution and the properties of the dictionary D.
1λmax(A) denotes the largest eigenvalue of A.

6

We move now to the learned variation of ISTA, as originated in [20]. This starts with an

alternative and equivalent formation of the iterative relation in Eq. (4) as

α̂t = Sθ (Qα̂t−1 +Wx) , (6)

where Q = I − 1
c
DTD ∈ Rm×m, W = 1

c
DT ∈ Rm×n and θ = λ

c
. In [20], a LISTA encoder

network is introduced, suggesting a fast sparse coding approximation that comes to solve

(Q1,λ). This network, denoted by FT (x; Θ), consists of T unfoldings of the ISTA algorithm,

in which each layer follows Eq. (6) in a recurrent manner. Furthermore, the thresholding

parameter θ is extended to a vector of thresholds, allowing for a different treatment for

each element. Figure 1a describes the LISTA encoder architecture. The parameters of

this model, Θ = (Q,W ,θ), are to be learned in a supervised fashion. This is done while

relying on a sufficiently rich dataset of noisy signals and their true sparse representations,

{(xi,αi) |xi ∈ Rn,αi ∈ Rm}ri=1. The learning amounts to a minimization of the `2 loss

function

LLISTA =
1

r

r∑
i=1

‖FT (xi; Θ)−αi‖2
2, (7)

obtained through back-propagation and stochastic gradient descent. Note that gathering

the training set for this learning assumes that D is known and available. In addition,

we assume that we can solve (Q1,λ) for each of the input signals {xi}ri=1 so as to get the

appropriate reference representations, {αi}ri=1. Note that this requires choosing a specific λ

to work with. And indeed, under these assumptions, LISTA has been shown to perform

favourably, providing a much faster sparse approximation when compared to a direct use

of ISTA. Recent work provides a theoretical analysis of LISTA’s speed of convergence and

origins of success [44, 45].

An appealing alternative to the above is an autoencoder mode of learning, where the

sparse representation vectors {αi}ri=1 are no longer needed in the training set. Keeping the

encoding architecture of FT (x; Θ) and adding a decoding layer to its output, x̂ = Dα̂T ,

we can train this machine end-to-end with a dataset of the form {xi,x∗i }
r
i=1, of noisy signals

7

and their clean origins. In this case, the decoder’s matrix D joins the learned parameters.

Figure 1b describes the LISTA autoencoder architecture. This approach has led to exciting

results in various inverse problems, including super-resolution [46], compressed sensing [47],

image demoisaicking [19], and image denoising [16, 17]. In all these cases, LISTA yields

results that are on par with other DNN models, while having an interpretable architecture

that contains much fewer parameters.

(a) LISTA encoder

(b) LISTA autoencoder

Figure 1: LISTA general architectures

8

3 LGM Basic Architecture

3.1 The OMP Algorithm

The OMP algorithm [38] (see Algorithm 1) greedily solves the (P0,ε) by iteratively increasing

the support of the sought sparse solution by one non-zero at a time. Specifically, the

algorithm initializes a residual vector r = x and an empty support set S = {}. Then, in

each of its iterations, the algorithm finds the atom most correlated to the current residual

(assuming the atoms are normalized) and adds it to the set S. Denoting by DS the sub-

matrix containing the atoms in D that are listed in S, and by αS the non-zero portion in

α, we update the representation by the following Least-Squares:

α̂S = min
z
‖x−DSz‖2

2 = (DT
SDS)−1DT

Sx. (8)

The residual is updated by r = x−DSα̂S, and the algorithm stops either when this residual

is sufficiently small, or when the support reaches a certain cardinality. If the former criterion

is used, the number of iterations depends on the given input x and the error-threshold.

Interestingly, despite its greedy nature, if the original clean signal (x∗) has a sufficiently

sparse representation, OMP is guaranteed to recover a stable solution for the (P0,ε) problem

[23].

3.2 Unfolding OMP

We now turn to describe our approach of unfolding OMP into a neural network. Generally,

each iteration in OMP is transformed into a layer in the proposed architecture. In the original

algorithm, the set SK carries the information from one iteration to the next. Unfortunately,

using such a set of indices in a trained network is problematic in terms of differentiability.

We overcome this difficulty by transferring the aggregated dictionary DSk
instead. In what

follows, we depict the main building blocks of each layer.

9

Algorithm 1: Orthogonal Matching Pursuit (OMP)
Input :A noisy signal x ∈ Rn, a dictionary D ∈ Rn×m, a stopping residual

threshold ε and/or a maximum cardinality s

Output :A representation vector α̂ ∈ Rm, approximating the solution of (P0,ε)

Init α̂0 = 0, r0 = x, S0 = {}

for k = 1, 2, ..., s do
i0 = arg maxi

∣∣dTi rk−1

∣∣
Sk = Sk−1 ∪ {i0}

α̂Sk
=
(
DT

Sk
DSk

)−1
DT

Sk
x

α̂k =

α̂Sk
on support

0 off support
rk = x−Dα̂k
if ‖rk‖2 ≤ ε then

break

endif
endfor

α̂ = α̂k

3.2.1 Maximal-Projection-Thresholding (MPT) Unit

The MPT unit is responsible for deciding which atom will be added to the support in each

layer. It operates on the vector u = DTr, representing the correlation of each atom with

the current residual. Let i0 = arg maxi |ui|, then the MPT function is defined as:

y = MPT (u) =

ui i = i0,

0 otherwise.
(9)

In other words, when the input is the correlation vector, the output is a vector that contains

zeros everywhere except for the index corresponding to the most correlated atom. This

function resembles a modified global max-pooling that replaces the regular pooling by a

10

thresholding operator. The gradient of this unit is computed by taking the gradient of the

output which propagates back from the next unit, zeroing all its entries except for i0, which

remains intact.

3.2.2 Atom Selecting (AtoS) Unit

Following the previous computational step, this unit extracts the selected atom. Given the

output of the MPT function, y ∈ Rm, and the dictionary D, this unit yields the atom in D

corresponding to the index containing the non-zero value in y. Equivalently, the AtoS unit

is defined as follows:

AtoS (D,y) =
1

‖y‖∞
D · |y|. (10)

The absolute operation is done element-wise, and the L∞ over y simply produces the

maximal absolute entry in this vector. Note that the composition of the units AtoS and

MPT provides the functionality of selecting the most correlated atom with the residual r,

i.e., if di0 is indeed this atom, then AtoS
(
D,MPT

(
DTr

))
= di0 . A note worth mentioning,

in the description of this unit and the previous one (MPT), there is a hidden assumption

that the atoms of D are normalized. This is not the case usually, and later we explain how

this assumption is overridden.

3.2.3 Constructing the LGM Architecture

We turn to describe a single iteration of OMP as a computational graph, which is referred

to as an LGM layer (see Algorithm 2 and Figure 2). As mentioned earlier, in the LGM

architecture, the aggregated sub-dictionary DSk
is passed between the different layers

instead of the support Sk. The inputs of each layer are: a signal x ∈ Rn, a global dictionary

D ∈ Rn×m, the aggregated sub-dictionary from previous layer DSk−1
∈ Rn×(k−1), and

x̂k−1 ∈ Rn which is the restored signal using the atoms of DSk−1
. The LGM layer starts by

identifying and adding the most correlated atom with the current residual to the support,

by composing the MPT and AtoS units. Then, by using the updated support atoms DSk
,

11

the representation under these atoms α̂Sk
is computed by solving the corresponding LS

problem. Finally, the restored signal x̂k = DSk
α̂Sk

is calculated. Note that the LS solver

(α̂Sk
=
(
DT

Sk
DSk

)−1
DT

Sk
x) is a part of LGM layer’s computational graph, and throughout

back-propagation, the derivatives of the inverse matrix are computed as in [48].

Describing LGM layer as a computational graph is essential in order to build the LGM

network (which we are going to introduce next) as a computational graph, and thus it can be

trained through back-propagation. However, in the evaluation part, where we just want to

apply the model without calculating the derivatives, the model inference can be accelerated

by immediately selecting di0 as i0 column in D (as in the original OMP algorithm), thus

the matrix multiplication operation in AtoS is spared.

Algorithm 2: LGM Layer Inference

Function LGMLayer(x ∈ Rn, D ∈ Rn×m, DSk−1
∈ Rn×(k−1), x̂k−1 ∈ Rn):

rk−1 = x− x̂k−1

u = WDD
Trk−1

di0 = AtoS (D,MPT (u))

DSk
=
[
DSk−1

, di0

]
α̂Sk

=
(
DT

Sk
DSk

)−1
DT

Sk
x

x̂k = DSk
α̂Sk

return {DSk
, x̂k}

The LGM network is defined in an iterative manner in Algorithm 3. In our architecture,

the number of LGM layers used in the network changes w.r.t. each input, akin to the

OMP algorithm. Specifically, we incorporate a sparsity constraint in our network, i.e.

maximum number of non-zeros (and thus layers), denoted by s, and a residual threshold ε

constraint. The parameters of this network are Θ = (D, s, ε), where D is learned through

back-propagation, and (s, ε) are specified in advance, or manually tuned in case they are

not known. However, since D is learned, its atoms are not guaranteed to be normalized;

thus DTrk−1 is multiplied by WD = diag−1 (‖d1‖2 , ‖d2‖2 , ..., ‖dm‖2) (see Algorithm 2).

12

Figure 2: LGM layer

In many tasks, such as denoising, it is preferred to learn a different dictionary for

the operation x̂k = DSk
α̂Sk

in the last layer of LGM – this is the Synthesis Dictionary.

Achieving this requires to slightly change the proposed architecture, and instead of having

one dictionary, the network contains two, one as the regular D and one as the synthesis

dictionary D2. More precisely, two sub-dictionaries are passed between the different LGM

layers, one is a sub-dictionary of D and the other is a corresponding sub-dictionary of D2.

In each layer, and after selecting di0 , the atom with the same index (i0) is also selected

from D2 in a similar manner by AtoS (D2,MPT (u)). Then, this atom is added to D2

sub-dictionary. Finally, the restored signal is synthesised using the sub-dictionary of D2

in the last layer. D and D2 are initialized equally and learned through back-propagation.

From here after, when we reference LGM, it implies two dictionaries unless said otherwise.

4 LGM Variations

In this section we present several LGM variants by unfolding Matching Pursuit (MP) [49],

Subspace Pursuit (SP) [50] and Rand-OMP [39] greedy methods. We also revisit the

Batch-OMP [51] algorithm, which accelerates the inference run-time performance of LGM.

In addition, we consider the Convolutional Sparse Coding (CSC) model 4.5, and propose a

13

Algorithm 3: LGM Network Inference

Input: x ∈ Rn

Output: x̂ ∈ Rn

Init DS0 = [] ∈ Rn×0, x̂0 = x

for k = 1, 2, ..., s do
{DSk

, x̂k} = LGMLayer(x, D, DSk−1
, x̂k−1)

rk = x− x̂k
if ‖rk‖2 ≤ ε then

break

endif
endfor

x̂ = x̂k

LGM method suited for it, being an unfolded version of the Global Convolutional Matching

Pursuit (GCMP) [52]. We note, however, that we do not provide experimental results for

these algorithms, as our focus remains the plain LGM method.

4.1 Learned-MP: Matching Pursuit Based LGM

The MP algorithm [49] is a simplified greedy method that seeks to solve the (P0,ε) problem.

MP is very similar to the OMP, but replaced the Least-Squares update of the coefficients by

a simpler computation. After finding the most correlated atom with the current residual r,

MP adds its correlation’s coefficient to the corresponding entry in the representation vector.

Since we assume no normalized atoms, the coefficient update should take this into account

and use dTi r/ ‖di‖2. Unlike OMP, MP might choose the same atom more than one time,

thus the cardinality of α̂s is always less or equal to the number of iterations - which is s.

For further analysis and stability guarantees of the MP algorithm, the reader is referred

to [23]. MP is unfolded using the MPT unit defined earlier, which given the correlation

14

vector, its output is a vector that contains the coefficient of the most correlated atom in its

corresponding entry and zero elsewhere. The Least-Squares step in the OMP is omitted,

simplifying the overall network. L-MP inference is described in Algorithm 4. Similarly

to the process described earlier, this scheme can be extended to include two dictionaries,

regular and synthesis.

Algorithm 4: L-MP Network Inference

Input: x ∈ Rn

Output: x̂ ∈ Rn

Init r0 = x , α̂0 = 0 ∈ Rm

for k = 1, 2, ..., s do
α̂k = α̂k−1 +WDMPT

(
WD

(
DTrk−1

))
x̂k = Dα̂k

rk = x− x̂k
if ‖rk‖2 ≤ ε then

break

endif
endfor

x̂ = x̂k

4.2 Learned-SP: Subspace Pursuit Based LGM

The SP algorithm [50] is a more sophisticated method for solving the (P0,ε) problem.

The sought sparsity s must be provided in advance, and the cardinality of its recovered

representation is exactly s (unlike OMP/MP). SP starts by fining the smost correlated atoms

with the signal x and adds them to the initial support set S0. Then, the initial residual is

calculated by solving the corresponding LS problem, i.e. r0 = x−DS0

(
DT

S0
DS0

)−1
DT

0k
x =

x−DS0D
†
S0
x. Afterwards, in each iteration the smost correlated atoms with the residual are

15

added to a temporarily support set S̃k alongside the atoms from the previous support. Using

the 2s atoms of S̃k, a temporal representation α̃k is obtained by solving the corresponding

LS problem. The s atoms that make it to the next iteration (i.e. the Sk set) are those

with the s largest magnitudes in α̃k. Next, α̂k is updated by solving the corresponding

LS problem again. The algorithm stops when the residual energy stops decaying. The SP

algorithm is described in Algorithm 5. For further details about SP and its theoretical

stability guarantees, the reader is referred to [50].

SP is unfolded in a similar approach to what was done in order to unfold OMP. Generally,

each iteration in SP is transformed into a layer of the proposed architecture. Analogous

to the LGM architecture presented earlier, the aggregated sub-dictionary DSk
is passed

between the different layers of L-SP instead of the chosen atoms support Sk. In what follows,

we depict the main building blocks of each layer, then we combine them together in order

to obtain the L-SP architecture.

4.2.1 Maximal-S-Projection-Thresholding (MSPT) Unit

The MSPT unit is responsible for deciding which s atoms will be added to the support in

each layer. Given a vector u, let I = {i1, i2, · · · , is} denote the indices corresponding to the

largest entries of |u|. The MSPT function is defined as

Y = MSPT (u) = [y1,y2, · · · ,ys] ∈ Rm×s, (11)

where yj include zeros except for ij entry, which includes uij . In other words, when the

input is the correlation vector DTr, the output is a matrix that contains s columns, and

each column yj contains zeros everywhere except for index ij (which is the index of one of

the s most correlated atoms with the residual). The MSPT unit is a generalized version of

MPT, and in the case of s = 1, the two are the same.

16

Algorithm 5: Subspace Pursuit (SP) 4.2
Input :A noisy signal x ∈ Rn, a dictionary D ∈ Rn×m, cardinality s

Output :A representation vector α̂ ∈ Rm, approximating the solution of (P0,ε)

Init S0 =
{
s indices corresponding to the largest magnitude entries of DTx

}
,

α̂0 =


(
DT

S0
DS0

)−1
DT

S0
x on support

0 off support
,

r0 = x−Dα̂0

for k = 1, 2, ... do
S̃k =

Sk−1 ∪
{
s indices corresponding to the largest magnitude entries of DTrk−1

}
α̃k =


(
DT

S̃k
DS̃k

)−1

DT
S̃k
x on support

0 off support
Sk = {s indices corresponding to the largest magnitude entries of α̃k}

α̂k =


(
DT

Sk
DSk

)−1
DT

Sk
x on support

0 off support
rk = x−Dα̂k
if ‖rk‖2 > ‖rk−1‖2 then
α̂ = α̂k−1

break
endif

endfor

17

4.2.2 S Atom Selecting (SAtoS) Unit

Following the previous computational step, this unit extracts the s selected atoms. Given

the output of the MSPT function, Y ∈ Rm×s, and the dictionary D, this unit yields the s

atoms in D corresponding to the s indices that contain the non-zero values in the columns

of Y . Equivalently, the SAtoS unit is defined using AtoS mentioned earlier as follows:

SAtoS (D,Y) = [AtoS (D,y1) ,AtoS (D,y2) , · · · ,AtoS (D,ys)] . (12)

Note that the composition of the units SAtoS and MSPT provides the functionality of

selecting the s most correlated atoms with the residual r, i.e., if {d1,d2, · · · ,ds} are indeed

these atoms, then SAtoS
(
D,MSPT

(
DTr

))
= [d1,d2, · · · ,ds] or a permutation of them.

4.2.3 Constructing the L-SP Architecture

Similarly to the way the previous LGM architectures have been constructed, now we turn

to describe a single iteration of SP as a computation graph. As mentioned earlier, the

aggregated sub-dictionary DSk
is passed between the different layers instead of the support

Sk. L-SP single layer is described in Algorithm 6, starting by finding the s most correlated

atoms with the current residual, obtained by composing the MSPT and SAtoS units. These

atoms are added to the temporal sub-dictionary DS̃k
alongside atoms from the previous

layer. A representation under DS̃k
is calculated (α̂S̃k

). Next, DSk
is calculated by finding

the atoms with the s maximum magnitudes in α̂S̃k
, done by composing MSPT and SAtoS

again. Using the updated support atoms DSk
, the representation α̂Sk

is updated by solving

the corresponding LS problem. Finally, the restored signal x̂k = DSk
α̂Sk

is obtained.

Using the L-SP layer, the L-SP architecture is described in Algorithm 7. Like LGM, L-SP

is also characterized by the dynamic number of layers that changes w.r.t. each input. The

parameters of L-SP network are Θ = (D, s), where D is learned through back-propagation

and s is specified in advance, or somehow predicted in case it is not known. Similarly to the

process described earlier, this scheme can be extended to include two dictionaries, regular

and synthesis.

18

Algorithm 6: L-SP Layer Inference

Function LSPLayer(x ∈ Rn, D ∈ Rn×m, DSk−1
∈ Rn×s, x̂k−1 ∈ Rn):

rk−1 = x− x̂k−1

u = WDD
Trk−1

Dtmp = AStoS (D,MSPT (u))

DS̃k
=
[
DSk−1

, Dtmp

]
α̂S̃k

=
(
DT

S̃k
DS̃k

)−1

DT
S̃k
x

DSk
= AStoS

(
DS̃k

,MSPT
(
W−1

D
S̃k

α̂S̃k

))
α̂Sk

=
(
DT

Sk
DSk

)−1
DT

Sk
x

x̂k = DSk
α̂Sk

return {DSk
, x̂k}

Algorithm 7: L-SP Network Inference

Input: x ∈ Rn

Output: x̂ ∈ Rn

Init x̂0 = x, DS0 = AStoS
(
D,MSPT

(
WDD

Tx
))

for k = 1, 2, ... do
{DSk

, x̂k} = LSPLayer(x, D, DSk−1
, x̂k−1)

rk = x− x̂k
if ‖rk‖2 > ‖rk−1‖2 then
x̂ = x̂k−1

break
endif

endfor

19

4.3 LGM MMSE

The Random OMP [39] algorithm is a key component in turning a pursuit algorithm

into a Minimum Mean Square Error (MMSE) estimator. This algorithm operates in a

similar manner to OMP except for one critical difference, which is the way a new atom

is chosen in each iteration. As mentioned earlier, OMP chooses the atom most correlated

with the residual, whereas, Random OMP chooses the atom randomly, drawn from a

distribution A · ec|WDD
T r|, i.e. giving higher probability to larger projection values. The

MMSE estimation is obtained by an averaging on the representation vectors from T different

Random OMP instantiations:

α̂MMSE =
1

T

T∑
i=1

α̂i, (13)

in which {α̂1, α̂2, ..., α̂T} are the representation vectors that have been obtained by different

Random OMP runs.

We turn to describe how to unfold the Random OMP algorithm. To do so, we need first

to define the Random Maximal-Projection-Thresholding (RMPT) unit. This unit is very

similar to MPT defined earlier, except for one difference, which is the way the index of the

only surviving entry i0 is chosen. RMPT chooses i0 index randomly with the normalized

correlation vector (its input) the as its PDF, where entries with absolute values smaller than

τ = 0.8 ‖u‖∞ are nullified and are not taken into account. Consequently, the Random OMP

method is unfolded just like OMP except for the use of RMPT unit instead of MPT. LGM

MMSE method is achieved by unfolding T instantiations of Random OMP in parallel with

shared parameters and a common input. In addition, we also add the result of the regular

LGM network (i.e. MAP estimation). Finally the output of LGM MMSE is obtained by

averaging these results.

4.4 Batch-OMP Acceleration

The Batch-OMP algorithm [51] is a method to accelerate the run-time of OMP when applied

to a large batch of signals with the same dictionary D. The main concept behind this

20

method is to do as many computations as possible in advance, and since we are using the

same dictionary for all the signals, these computations are shared between all the signals in

the batch. More specifically, given a batch of signals to handle X = [x1,x2, · · · ,xr] ∈ Rn×r,

DTD andDTX are calculated in advance, and then the sparse representations are calculated

for all of these signals using these pre-calculated matrices. Batch-OMP uses also a variation

of Cholesky decomposition in order to solve the LS problem efficiently within the OMP.

The authors of [51] have shown that if the batch is large, then Batch-OMP is more efficient

in terms of run-time than the regular OMP. Thus, Batch-OMP can be used (with the

corresponding adjustments) in order to accelerate the run-time inference of the LGM

network in the evaluation part, where there is no need to calculate the derivatives. Moreover,

some techniques used in Batch-OMP such as Cholesky decomposition can be also used in

order to accelerate the inference of the LGM network in general (including training part).

4.5 Learned-GCMP: CSC Based LGM

4.5.1 CSC Model & GCMP Pursuit Algorithm

When dealing with high dimensional signals, applying the sparse prior becomes challenging.

More specifically, in such cases the dictionary dimensions become gigantic, making it hard

to store and almost impossible to multiply with in a pursuit algorithm. A popular method

to tackle this disadvantage is to apply the sparse prior on local patches as discussed later in

Section 6. Another method is to use the CSC model that presents a global signal model

without suffering from the disadvantages of the global sparse prior.

The CSC model is a special case of the sparse model where D is a concatenation of m

banded circulant matrices, where each such matrix has a band of width n� N , in which

N is the dimension of the signal. As such, by a simple permutation of its columns, such

a dictionary consists of all shifted versions of a local dictionary DL of size n × m and

contains mN global atoms, i.e. D ∈ RN×mN and the corresponding representation becomes

a vector of the form α ∈ RmN . Under this structure, each patch of size n in the signal is

21

affected only by the atoms whose support overlap it. The subvector in α that matches

these atoms, is referred to as the stripe of this patch. Since the dictionary D consists of all

shifted versions of DL, each such stripe consists of (2n− 1)m entries. Note that overlapping

patches are represented by overlapping stripes in the global sparse representation. For

further information and analysis of the CSC model, the reader is referred to [40, 52, 53].

GCMP [52] is a greedy pursuit algorithm that seeks to approximate the global representa-

tion vector under the assumption that the signal of interest can be modeled with the CSC

model prior. This algorithm is inspired by the observation that when dealing with the CSC

model, it is preferred to have a representation vector which is “locally sparse” rather than

globally sparse [53]. As such, GCMP operates by initializing a zero representation vector,

and then, at each iteration, the “local sparsity” in the above-mentioned stripes is increased

by one.

4.5.2 Unfolding GCMP

Similarly to the process which have been done earlier, we start by presenting the core units

of the construction, and then unfolding GCMP. Like the previous methods, DTr and Dα̂

are calculated several times throughout the deployment of GCMP or its learned version.

However, since we are dealing with high dimensional signals, calculating these expressions

directly using matrix multiplication is expensive in run-time, and storing D itself is also

challenging. However, since D consists of all shifted versions of DL, we can store DL

instead. Moreover, calculating DTr and Dα̂ can be done efficiently using convolutions

operation with the columns of DL (or their flipped version). Analogously to the MPT unit,

GMPT unit is defined in Algorithm 8, and is responsible for choosing which atoms are added

at each iteration alongside their coefficients. For atom number i0, Ωi0 is the group of indices

of atoms whose support overlap atom number i0. Using the GMPT unit, GCMP algorithm

is unfolded into the L-GCMP network, and its inference is described in Algorithm 9.

22

Algorithm 8: Group-Maximal-Projection-Thresholding

Function GMPT(u ∈ RmN):

y = 0 ∈ RmN

while maxi |ui| > 0 do
i0 = arg maxi |ui|

yi0 = ui0

uΩi0
= 0

endwhile

return y

Algorithm 9: L-GCMP Network Inference

Input: x ∈ RN

Output: x̂ ∈ RN

Init r0 = x , α̂0 = 0 ∈ RmN

for k = 1, 2, ..., s do
α̂k = α̂k−1 +WDGMPT

(
WDD

Trk−1

)
x̂k = Dα̂k

rk = x− x̂k
if ‖rk‖2 ≤ ε then

break

endif
endfor

x̂ = x̂k

23

5 Synthetical Experiments

In this section we describe the conducted synthetical experiments, in which, we compare the

denoising performance of the proposed LGM network and some of its variants with LISTA.

These experiments demonstrate the superiority of the LGM based networks over LISTA,

which is known to be the state-of-the-art sparse coding oriented deep neural network prior

to this work.

Data Generation: First we build the dictionary D to be the DCT matrix of size

100 × 400, by sampling the cosine wave in different frequencies. Next we generate the

representation vector α ∈ R400 for each signal, setting the cardinality to be s, and choosing

the location of these s non-zeros in α randomly. The absolute value of each non-zero

coefficient is distributed Uniformly in the interval (0, 1], and its sign is also chosen randomly.

After, each signal is created by multiplying its corresponding representation with the

dictionary D (i.e. Dα), and finally the signals are normalized by their L∞ norm.

Compared Methods: For each noise level we compare the denoising performance of

these different methods:

• LGM: We use the LGM version in which the synthesis dictionary is free from the

analysis one, and both dictionaries are of the same shape as the true dictionary. We

set ε = σnoise
√
n 2 (stopping criteria coefficient) and s = 15 (maximum number of

layers/cardinality).

• LGM Post-training MMSE: Applying LGM MMSE network with the parameters

learned by the regular LGM network as its parameters. We set t = 5 (number of

unfolded Rand-OMP instantiations) and ε, s get the same values as LGM.

• LGM MMSE: LGM MMSE network trained from scratch. We set t = 5 (number of

unfolded Rand-OMP instantiations) and ε, s get the same values as LGM.
2This is the square root of the expectation of L2 norm square of the noise vector

24

• LGM True Cardinality: LGM version in which the stopping criterion is the true

cardinality/sparsity of the input signal, i.e. the number of unfolded layers of LGM in

each signal equals its true sparsity.

• LISTA: We use LISTA model with T = 7 (number of unfolded layers). Instead of

using the LISTA version explained earlier we use the version in which the learned

parameters are: W = 1
c
DT , D1 = D, D2 = D (synthesis dictionary) and θ. The

reason behind this decision is to compare LISTA’s learned dictionaries with the true

one.

• OMP True Dict & Cardinality: Applying OMP algorithm given the true dictionary

and the true cardinality of each input signal.

• OMP True Dict: Applying OMP algorithm given the true dictionary, this method

uses the residual energy threshold stooping criteria (like LGM). We set ε, s as the

same values as LGM.

• OMP True Dict MMSE: Applying LGM MMSE given the true dictionary.

• Oracle: Recovering each signal given the true dictionary D and its true support S,

i.e. the Oracle restored version of a noisy signal x is x̂ = DS

(
DT

SDS

)−1
DT

Sx.

Experiments Process: We conduct two experiments, in the first one we generate 10000

training signals and 2000 test signals, both with cardinality 10. In the second experiment we

generate 10000 signals for each cardinality in the group {5, 6, 7, 8, 9, 10}, then we combine

them together forming the training set (60000 signals in total). The test set for experiment 2

is created in the same manner as in its training (12000 signals in total). For each experiment,

we sweep over the following noise levels (standard deviation) {0.04, 0.06, 0.08, 0.1, 0.12, 0.14},

then for each one of them we create the input-output training pairs by contaminating each

signal by an additive white Gaussian noise with the chosen standard deviation.

We initialize the learned models (LGM, LGM MMSE, LGM True Cardinality, LISTA)

from the same random dictionary, and trained using the input-output training pairs defined

25

earlier, seeking to minimize the L2 loss function. For the LGM based models, we add to the

loss expression a regularization term of the mutual coherence of the learned dictionaries3.

More specifically, the loss function of LGM based models is:

L =

 ∑
(x,x∗)∈training set

‖x∗ − x̂‖2
2

+ ξ

(∑
D∈learned dictionaries

µ (D)

)
, (14)

in which x is the noisy signal, x∗ is the clean signal, x̂ is its denoised version (the output of

the model), and ξ is set to be 5e−5. All these models are trained using ADAM optimizer

[54] with batch size equals 50, the learning rate for LGM and LGM True Cardinality is

0.002, 0.01 for LGM MMSE and 0.00001 for LISTA.

Results: In order to have a clearer comparison, we split the compared methods into

two (overlapping) comparison groups, the first one contains LGM, LGM True Cardinality,

LISTA, OMP True Dict & Cardinality, OMP True Dict and Oracle, the second one

contains LGM, LGM Post-training MMSE, LGM MMSE, LISTA, Oracle and OMP True

Dict MMSE. Figure 3 presents the results of experiment 1 (true cardinality 10), and Figure

4 presents the results of experiment 2 (true cardinality 5− 10). Referring to the first group,

Figures 3a and 4a describe the MSE performance on the testset as a function the noise

level, and it is clearly observed that LGM outperforms LISTA and has a relatively close

performance to OMP True Dict. Figures 3c, 3d and 4b, 4c describe the average cardinality

of the restored testset signals, and as can be observed, LGM restored signals are much

sparser than LISTA’s ones (which are dense) and their recovered cardinality is very close

to the true one. Referring to the second group, Figure 3b describes the MSE performance

on the testset as a function the noise level, and the main observation from it is that, as

expected, the MMSE approach gives a boost to the denoising performance. We did not test

3The mutual coherence of a dictionary D ∈ Rn×m is defined as: µ(D) = maxi6=j
|dT

i dj|
‖di‖2‖dj‖2

. Informally,

the mutual coherence indicates the maximum amount of “shared” information between two different atoms.

This figure also plays a crucial role in many of the pursuit algorithms stability guaranties, more specifically,

the smaller this figure can be, the larger the possibility of OMP to recover the true support. For more

information about the mutual coherence the reader is referred to [23].

26

the MMSE approach in the second experiment since it is not our main focus.

Figure 5 presents the learned dictionaries distance from the true one, and the average

cardinality of the restored signals in the test set during training, a specific noise level.

The dictionary distance metric that we use is defined in the Supplementary Materials

9.1, this metric values lie in the interval [0, 1], and the smaller it gets, the closer the

dictionaries are. As observed in this figure, LGM and LGM MMSE learned dictionaries

almost converge to the true one, while LISTA’s learned ones are far away from it. Moreover,

Figure 6 presents the distribution of the cardinality of the restored test set signals on a

specific noise level in experiment 2. The results of these experiments clearly demonstrate

the superiority of the LGM method compared to LISTA when dealing with true sparse

data. These experiments alongside the following experiments are implemented in https:

//github.com/RajaeeKh/LearnedGreedyMethod-LGM.

6 LGM in Image Processing Applications

6.1 LGM for Image Denoising

We move now to the image denoising problem, in which our task is to recover a clean image

x∗ ∈ RN given its noisy version x ∈ RN , i.e. x = x∗ + v, where v ∈ RN is an additive

white Gaussian noise vector with zero mean and standard deviation σ. Following [5], when

dealing with natural images, the sparse prior model can be imposed on the image patches

instead of the whole image. More specifically, for the image denoising task, the noisy image

x is divided into fully overlapping p× p patches, and then each patch undergoes a pursuit

operation in order to obtain an approximate representation α̂ under a given dictionary D.

Next, the restored patches are synthesized using their representation, and finally the restored

image is created by returning each restored patch to its original location and averaging

over the overlaps. More formally, returning the restored patches into their original location

27

https://github.com/RajaeeKh/LearnedGreedyMethod-LGM
https://github.com/RajaeeKh/LearnedGreedyMethod-LGM

(a) Group 1 MSE as a function of noise level. (b) Group 2 MSE as a function of noise level.

(c) Group 1 average cardinality of the restored

signals as a function of noise level.

(d) Group 1 average cardinality of the restored

signals zoom-in

Figure 3: Synthetic experiment 1 (true cardinality 10) testset results.

28

(a) Group 1 MSE as a function of noise level

(b) Group 1 average cardinality of the restored

signals as a function of noise level. The area

marked with light red around LISTA is the stan-

dard deviation of its restored cardinality.

(c) Group 1 average cardinality of the restored

signals zoom-in. The areas marked with light

blue and chocolate around LGM and OMP True

Dict respectively are the standard deviation of

there restored cardinality.

Figure 4: Synthetic experiment 2 (true cardinality 5− 10) testset results.

29

(a) Distance from true dictionary.

(b) Average cardinality of the testset restored

signals.

Figure 5: Distance from the true dictionary and average cardinality during training on a

specific noise level in synthetic experiment 1 (true cardinality 10)

requires solving the following problem:

x̂ = arg min
y

λ ‖x− y‖2
2 +

∑
i

‖Riy −Dα̂i‖2
2 , (15)

where Ri ∈ Rp2×N is a matrix that extracts the i − th patch from the image, and λ is a

scalar parameter that is related to the noise level. This problem is a quadratic problem and

its closed form solution is

x̂ =

(
λI +

∑
i

RT
i Ri

)−1(
λx+

∑
i

RT
i Dα̂i

)
. (16)

Now we present an LGM based denoising end-to-end architecture along the above lines.

6.1.1 Basic LGM Denoising Architecture

We start by describing the patch denoising part, and then we move on to describe the whole

end-to-end image denoising architecture.

Patch Denoising: This part is an LGM network that takes a noisy patch of size p × p

and returns its restored version. As mentioned earlier, we use an LGM network in which

30

Figure 6: The distribution of the restored cardinality as a function of the true cardinality

on a specific noise level in experiment 2 (true cardinality 5− 10)

31

the synthesis dictionary is freed from the analysis one, both dictionaries are initialized

with DCT dictionary of size p2 × 4p2. Following [55], an atom of ones (up to a scalar) is

added to each dictionary for better handling of the DC in each patch, and when calculating

the correlation vector u, the entry corresponding to it is not divided by its norm, i.e.

WD = diag−1
(
‖d1‖2 , ‖d2‖2 , ..., ‖d4p2‖2

, 1
)
. Each dictionary gets a different scalar, and

both are initialized equally with value 2.5, then they are learned during the learning process.

Instead of using a hard-coded residual threshold stopping criteria as in the original LGM

architecture, we use a small fully-connected DNN to perform this task. Recall that we use

LGM net with maximum cardinality s (i.e. LGM net includes s layers), and the output

of layer number i is x̂i which is the restored signal until that layer. Thus, given an input

signal x, we apply the LGM scheme mentioned earlier, getting the output of all layers

{x̂1, x̂2, ..., x̂s} along with their corresponding residuals ri = x− x̂i. These residuals are

organised as the columns of a matrix of size p2 × s, fed to the small FC-DNN mentioned

earlier, and its output p ∈ Rs is a weights vector that includes the weight of each x̂i, such

that the output signal is x̂ =
∑s

i=1 pix̂i. In other words, this small FC-DNN somehow

models the error threshold stopping criteria by giving a higher weight to to the best residual,

thus giving an attention to it. We call this an “Attention Network”, and it is composed

of 5 layers, the first 4 are fully connected layers defined by multiplying the input matrix

with W1 ∈ Rp2×p2 from the right and W2 ∈ Rs×s from the left, these layers are followed

by adding a bias then applying ReLU activation function. The last layer is defined by

multiplying the input matrix with W ∈ Rp2×1 from the right and applying a Softmax

function.

End-to-End Denoising: The noisy image x is broken into fully overlapping p× p patches.

Each patch xi undergoes the patch denoising scheme mentioned above, and the denoised

image is reconstructed by the following equation:

x̂ =

(∑
i

RT
i Ri

)−1(∑
i

RT
i x̂i

)
, (17)

32

in which x̂i is the denoised version of patch xi. The number of learned parameters of the

basic LGM denoising architecture are:

2︸︷︷︸
two dictionaries

×

 4p4︸︷︷︸
dictionary parameters

+ 1︸︷︷︸
DC atom coefficient

+ 4
(
p4 + s2 + s

)
+ p2︸ ︷︷ ︸

attention net

= (18)

12p4 + 4 (s2 + s) + p2 + 2 ≈ 12p4 + 4s2.

6.1.2 Advanced LGM Denoising Architecture

The advanced LGM denoising network is compound of 2 basic LGM denoising networks with

p = 8, 12 and s = 10, 20 respectively. This network operates in two phases, the first phase

consists of feeding the noisy images to each one of the basic LGM denoisers independently,

and in the second phase the 2 denoised images are combined together by using a smart

averaging deep neural network. More specifically, in order to get the value of pixel (i, j) at

the final image, patches with size 5× 5 at center (i, j) are extracted from the 2 denoised

images and organised in a 2× 5× 5 tensor, then it is flattened into 1d vector and fed to

a small fully-connected deep neural network, the output of which is a scalar value of the

output pixel. In addition, the denoised images (i.e. output of the first phase) are reflection

padded in order to get final denoised image with the same size. The averaging network

includes 3 fully connected layers with biases, each followed by a ReLU activation function.

The size of these layers is 50×50, and the size of the final layer is 50×1 (without bias). The

network also has two weighted skip connections, one from input to middle (size 50× 50),

and one from input to output (size 50 × 1). The number of learned parameters of this

network is: ∑
p∈{8,12}

(
12p4 + 4s2

)
︸ ︷︷ ︸

basic LGM denoisers

+ 4
(
502
)

+ 5 (50)︸ ︷︷ ︸
averaging DNN

= 310, 234. (19)

33

6.2 LGM For Image Deraining

Image deraining is the process of removing rain streaks from an image. The widely used

rain model [56, 31, 57] assumes that the captured rainy image x ∈ RN is expressed as

x = x∗+ s̃, in which x∗ ∈ RN is the clean image and s̃ ∈ RN is the rain streaks component.

The main observation in which the LGM deraining scheme built-on is that the rain streaks

component which we aim to remove is a structured noise, thus it can represented using

the sparse prior as well. Similarly to the LGM image denoising architecture mentioned

earlier, this scheme also operates locally on all overlapping p× p sized patches. Since this

scheme is applied on RGB images, we initialize both dictionaries with the same random

dictionary of size 3p2 × 9p2. As before, a ones atom is added to the dictionary, and since

we are dealing with RGB images, each channel is multiplied by a different scalar, and each

scalar is initialized to be 2.5.

As mentioned earlier, our goal is to express the rain streaks component using the sparse

prior, thus we aim to split the dictionary atoms into two groups, one responsible for the

image content and the other responsible for the rain streaks component. We operate in

a fully supervised mode of work in which we have clean images and rain steaks images.

Our algorithm is posed as a network that operates on a combination of an image and

rain, and the output is matched to the clean image and the rain streaks image. We

leverage almost the same architecture as used in the denoising, with one main difference - a

separator of the atoms to the two contents. In order to achieve this separation, a vector

θ ∈ R9p2 is added to the learned parameters, and f (θ) ∈ [0, 1]9p
2

is a coefficients vectors

that describes the image content percentage of each atom. f is an element-wise function

defined as f (θ) = min (max (0, θ) , 1), and all elements of θ are initialized randomly in the

interval [0, 1]. Consequently, the proposed LGM deraining scheme operates by unfolding the

LGM network for each patch independently until the residual energy is almost zero. Then,

given the representation at the final layer α̂Sk
for patch number i (k is the last layer), the

content part is obtained by x̂ci = DSk
(α̂Sk

· f (θSk
)) and the rain streaks part is obtained

by x̂si = DSk
(α̂Sk

· (1− f (θSk
))), in which · is element wise multiplication and θSk

is a sub

34

vector of θ at the corresponding indices. Next, the image content part x̂c is created by

averaging the content part of each patch like (17), and the same applies for the rain streaks

part x̂s. Hopefully, during the training procedure, most of the element in f (θ) converge to

either 0 or 1, thus getting the desired separation between content and rain atoms.

The above process leads to two versions of the derained image x̂c and x− x̂s. We obtain

the final derained image by combining these two using a smart averaging deep neural

network like before. More specifically, in order to get the value of pixel (i, j) at the final

image, patches with size 5× 5 at center (i, j) are extracted from these three images and

organised in a 9× 5× 5 tensor, this tensor is flattened into 1d vector and fed to a small

fully-connected deep neural network, the output of which is a 3 dimensional vector which

represents the RGB components of the output pixel. In addition, the images (x̂c, x− x̂s

and x) are padded in order to get final denoised image with the same size. The averaging

network includes 4 fully connected layers with biases, each followed by a ReLU activation

function. The size of these layers are (from left to right): 225× 50, 50× 50, 50× 25 and

25× 25. The output of these layers is added to a weighted skip connection layer from the

input, and its size is 225 × 25. Then, this temporally result is followed by a 25 × 3 final

layer, obtaining the final derained image x̂.

7 Image Processing Applications - Results

7.1 Denoising

Earlier, we proposed two versions of LGM image denoisers (basic and advanced), and for the

basic LGM we set p = 8 and s = 10. In order to train each one of these models we prepare

a training set of clean and noisy image pairs. The training set for basic LGM is the BSD432

dataset [58], whereas the Waterloo Exploration dataset [59] is combined with BSD432 for

the advanced scheme. The inputs are created by adding an additive white Gaussian noise

with standard deviation σ to the clean images (sampled at each epoch), then we randomly

35

crop the clean and noisy images at the same location, and finally we subtract the mean

of the noisy crop from both of them, this way creating the input-output pairs. Crop size

for basic LGM is 100× 100 and 56× 56 for the advanced one. For each noise level, LGM

models are initialized as explained earlier, and then trained using ADAM optimizer with

batch size of 8 and learning rate of 0.002. The learning rate is multiplied by a factor of 0.5

every 20 epochs when training the advanced LGM. Moreover, the loss function we seek to

minimize during the training process is the log l2 loss function, augmented by the mutual

coherence µ of the learned dictionaries as a regularization term to the training loss. Thus,

the final training loss is defined as follows:

L = log

 ∑
(x,x∗)∈training set

‖x∗ − x̂‖2
2

+ ξ

(∑
D∈learned dictionaries

µ (D)

)
, (20)

in which x∗ is the clean image crop and x̂ is its denoised version (the output of the model).

ξ is a parameter which we set it to be 1e−5.

Table 1a presents basic and advanced LGM denoising results on Set12 dataset alongside

other known methods, Table 1b presents denoising results on BSD68 dataset. Deep-

KSVD1, Deep-KSVD2 and DeepKSVD3 are LKSVD1,8,256, LKSVD3,8,256 and LKSVD2,16,1024

respectively, as denoted in [17]. Note that the better results in [17] assume a repetition

of the denoising in several steps, imitating the EPLL, while our scheme does not use this

option.

As can be seen from these two tables, our advanced scheme is much better than the original

KSVD method, and comparable in performance with the better Deep-KSVD results [17].

Recall that the main difference between these two schemes is the pursuit applied - LISTA

(relaxation) versus LGM (greedy). We believe that the similarity in performance is due

to the MMSE flavor of our training approach, which weakens the natural benefits of the

greedy alternative in the denoising application.

Figure 7 presents the learned dictionaries of the basic LGM and the universal KSVD (the

version with global dictionary) referring to the same noise level. As can be noticed, LGM

analysis and synthesis dictionaries are very similar, and they are more edge-friendly than

36

the KSVD’s one. A similar figure in [17] exposes the fact that our learned dictionaries are

very different form the ones LISTA leads to.

Figure 8 presents the histograms of LGM and KSVD restored patches cardinality on the

same image. The true cardinality of the restored patches of Basic LGM is always s, but

since the attention net learns the stopping criterion, the effective cardinality of each patch

can be calculated by a weighted averaging of the attention weights,
∑s

i=1 ipi, and these are

the values presented in Figure 8a. In the same spirit, Figure 9 presents the representation’s

cardinality for each patch in the original KSVD versus the cardinality obtained by our Basic

LGM representation. As can be seen, there is a rough match between the two, but it is

not a perfect alignment. It appears that the LGM scheme tends to a deeper sparsity when

compared to the original KSVD, something that could be explained by the better tuned

diciotnary we have. Again, we refer the reader to similar graphs in [17], where the behavior

is totally different, with representations that are not sparse at all.

(a) Set12

σ 15 25 50

KSVD 31.95 29.41 25.78

BM3D 32.37 29.97 26.72

WNNM 32.70 30.26 27.05

TNRD 32.50 30.06 26.81

Deep-KSVD1 - 29.76 -

Deep-KSVD2 32.53 30.12 26.91

Deep-KSVD3 32.61 30.22 27.04

DnCNN 33.16 30.80 27.18

Basic LGM (ours) 32.33 29.83 26.37

Advanced LGM (ours) 32.57 30.14 26.78

(b) BSD68

σ 15 25 50

KSVD 30.91 28.32 25.03

BM3D 31.07 28.57 25.62

WNNM 31.37 28.83 25.87

TNRD 31.42 28.92 25.97

Deep-KSVD1 - 28.76 -

Deep-KSVD2 31.48 28.96 25.97

Deep-KSVD3 31.54 29.07 26.13

DnCNN 31.73 29.23 26.23

Basic LGM (ours) 31.30 28.76 25.67

Advanced LGM (ours) 31.47 28.96 25.94

Table 1: Denoising results (PSNR)

37

(a) LGM analysis dictionary (b) LGM synthesis dictionary (c) KSVD dictionary

Figure 7: Comparison of the learned dictionaries for noise level σ = 25.

(a) Basic LGM (b) KSVD

Figure 8: Restored patches cardinality histogram on a specific image

38

Figure 9: KSVD restored cardinality as a function of LGM effective cardinality of the same

patch on a specific image

39

7.2 Deraining

We move on to the image deraining task. We set p = 8 and s = 20 for the LGM deraining

scheme presented earlier. The training set is composed of 200 clean and rainy image pairs.

For each clean image, its rainy version is created by adding synthesized rain streaks to it.

For further details about the training set, the reader is referred to [60]. During the training

procedure, the model’s inputs are created by randomly cropping both the clean and the

rainy images at the same location, and since we are working with RGB images, the crop

size is set to be 52× 52. The model is trained using ADAM optimizer with batch size of 8

and learning rate of 0.002, and the learning rate is multiplied by a factor of 0.5 every 400

epochs. Moreover, the loss function which we seek to minimize is:

L = log

 ∑
(x,x∗)∈training set

‖x∗ − x̂‖2
2 + 0.01 ‖x∗ − x̂c‖2

2 + ‖x∗ − (x− x̂s)‖2
2

 (21)

+ξ

(∑
D∈learned dictionaries

µ (D)

)
,

in which x∗ is the clean image crop, x̂c, x̂s and x̂ are the restored content image, restored

rain streaks and derained version respectively. The reason behind the small coefficient for

the context term in the loss function is because this yields better results than an equally

weighted loss function. ξ is a parameter which we set it to be 1e−2.

We use two test sets – Rain12 [57] and Rain100L [60] in order to evaluate the proposed

model and compare it with other methods. The results are given in Tables 2a and 2b. We

report two result versions of our proposed LGM model, the first calculates the error in the

RGB domain, while in the second the metric is calculated after transforming the image

into the luma component in the YCbCr domain. The second metric (luma component) is

the metric used by [60, 61], and we calculated it on our model’s output using the software

provided by [61]. As can be noticed, our approach outperforms the classical methods and

some of the deep learning approaches. Figure 10 includes a visual example of the LGM

deraining scheme applied on an image from Rain100, where the difference between x̂c,

40

x− x̂s and x can be noticed. Moreover, the histogram of f (θ) (which describes the image

content percentage of each atom) is attached in Figure 11. As can be seen, most of the

coefficient’s values are larger than 0.8 or less than 0.2, indicating that the desired separation

is achieved. Figure 12 presents the learned dictionaries by LGM and the corresponding

content-rain atoms separation. We also test the model on real images and the results are

presented in Figure 13. As can be noticed in this figure, LGM performance on real rainy

images is very similar to Jorder [60] and somewhat better.

(a) Rain12

LP [57] - results reported in [60] 32.02/0.91

DDN [62] - results reported in [61] 31.78/0.90

DSC [31] - results reported in [60] 30.02/0.87

JORDER [60] 36.02/0.96

JORDER - results reported in [61] 33.92/0.95

PEeNet [61] 36.69/0.96

LGM (ours) 34.11/0.94

LGM (ours) - using metric in [61] 35.46/0.95

(b) Rain100L

LP [57] - results reported in [60] 29.11/0.88

DDN [62] - results reported in [61] 32.16/0.94

DSC [31] - results reported in [60] 24.16/0.87

JORDER [60] 36.112/0.97

JORDER - results reported in [61] 36.61/0.97

PEeNet [61] 37.10/0.98

LGM (ours) 32.65/0.95

LGM (ours) - using metric in [61] 34.07/0.96

Table 2: Deraining results (PSNR/SSIM)

8 Conclusions

In this work we introduced a technique of unfolding greedy sparse pursuit algorithms into

a deep neural network. Our main goal is to tackle the problem of interpretability which

deep learning field still suffers from until now. Continuously to the series of works in

which classical algorithms are unfolded to deep neural networks, this work introduces an

architecture with well justified features, such as dynamic number of layers and an activation

function with greedy nature. To our knowledge, this is the first kind of work that gives a clear

justification to such features. Also, this opens the door for further works in which classical

methods with combinatorial nature turns into a Neural Network, especially in fields such as

Computer Vision, Classification, NLP and more. Moreover, we hope to see future works in

41

(a) Original clean image (b) Rainy image (PSNR:25.30)

(c) Derained image - x̂ (PSNR:33.84) (d) Content part - x̂c (PSNR:29.38)

(e) Restored rain streaks subtracted from rainy

image - x̂− x̂s (PSNR:33.03)

Figure 10: Visual example of LGM different stages

42

Figure 11: LGM deraining f (θ) histogram

43

(a) Regular dictionary (b) Synthesis dictionary

Figure 12: LGM learned dictionaries, the color around each atom represents the value of its

f (θ), in which black and white corresponds to 0 (rain) and 1 (content) respectively. Each

value between 0 and 1 gets its corresponding gray-scale intensity

44

(a) Rainy images (b) DNN [62] (c) Jorder [60] (d) LGM (ours)

Figure 13: Visual comparison of real rainy images deraining

45

which LGM is deployed in order to solve problems such as deblurring, super-resolution and

compression. However, the obtained LGM performance in both denoising and deraining

does not compete with the state-of-the-art methods, which gives the rise to the question,

whether it is time to wonder that sparse model for natural images is outdated?.

9 Supplementary Materials

9.1 Dictionary Distance Metric

The dictionary distance metric that is used throughout this paper is described in algorithm 10.

Given the true dictionary Dtrue and a learned dictionary Dapprox (both in their normalized

versions), the distance is calculated by sweeping over all the atoms in Dtrue and for each

we find the “closest” atom from Dapprox and evaluate its corresponding distance from it.

Finally, the metric value is obtained by averaging these distances.

Algorithm 10: Dictionary Distance Metric
Function DictionaryDist(Dtrue =

[
dtrue1 ,dtrue2 , . . . ,dtruem1

]
∈ Rn×m1,

Dapprox =
[
dapprox1 ,dapprox2 , . . . ,dapproxm2

]
∈ Rn×m2):

dist = 0

for i = 1, 2, ...,m1 do
dist+ = min

(
1−

∣∣DT
approxd

true
i

∣∣)
end

dist/ = m1

return dist

References

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser:

Residual learning of deep CNN for image denoising. IEEE Transactions on Image

46

Processing, 26(7):3142–3155, 2017.

[2] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible solution for

cnn-based image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622,

2018.

[3] S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional neural network for

dynamic scene deblurring. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 257–265, July 2017.

[4] C. Dong, C.C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional

networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):295–

307, 2016.

[5] M. Elad and M. Aharon. Image denoising via sparse and redundant representations

over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745,

2006.

[6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising with block-

matching and 3d filtering. In Image Processing: Algorithms and Systems, Neural

Networks, and Machine Learning, volume 6064, page 606414, 2006.

[7] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with

application to image denoising. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 2862–2869, June 2014.

[8] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image

restoration. In 2011 International Conference on Computer Vision, pages 479–486,

Nov 2011.

[9] Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by

denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

47

[10] W. Dong, G. Shi, and X. Li. Nonlocal image restoration with bilateral variance

estimation: A low-rank approach. IEEE Transactions on Image Processing, 22(2):700–

711, Feb 2013.

[11] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcom-

plete dictionaries for sparse representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, Nov 2006.

[12] J. Zhang, D. Zhao, andW. Gao. Group-based sparse representation for image restoration.

IEEE Transactions on Image Processing, 23(8):3336–3351, Aug 2014.

[13] M. Niknejad, H. Rabbani, and M. Babaie-Zadeh. Image restoration using gaussian

mixture models with spatially constrained patch clustering. IEEE Transactions on

Image Processing, 24(11):3624–3636, Nov 2015.

[14] V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep

learning for signal and image processing. arXiv preprint arXiv:1912.10557, 2019.

[15] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C. Eldar. Efficient and interpretable deep

blind image deblurring via algorithm unrolling. IEEE Transactions on Computational

Imaging, 6:666–681, 2020.

[16] D. Simon and M. Elad. Rethinking the csc model for natural images. In Advances in

Neural Information Processing Systems, pages 2274–2284, 2019.

[17] M. Scetbon, M. Elad, and P. Milanfar. Deep k-svd denoising. arXiv preprint

arXiv:1909.13164, 2019.

[18] G. Vaksman, M. Elad, and P. Milanfar. Lidia: Lightweight learned image denoising

with instance adaptation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, pages 524–525, 2020.

48

[19] B. Lecouat, J. Ponce, and J. Mairal. Revisiting non local sparse models for image

restoration. arXiv preprint arXiv:1912.02456, 2019.

[20] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In Proceedings

of the 27th international conference on international conference on machine learning,

pages 399–406, 2010.

[21] H. Sreter and R. Giryes. Learned convolutional sparse coding. In 2018 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

2191–2195, April 2018.

[22] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear

inverse problems with a sparsity constraint. Communications on Pure and Applied

Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,

57(11):1413–1457, 2004.

[23] M. Elad. Sparse and Redundant Representations: From Theory to Applications in

Signal and Image Processing. Springer Publishing Company, Incorporated, 1st edition,

2010.

[24] W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-resolution by

adaptive sparse domain selection and adaptive regularization. IEEE Transactions on

Image Processing, 20(7):1838–1857, July 2011.

[25] R. Giryes and M. Elad. Sparsity based poisson inpainting. In 2014 IEEE International

Conference on Image Processing (ICIP), pages 2839–2843, Oct 2014.

[26] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration.

IEEE Transactions on Image Processing, 17(1):53–69, Jan 2008.

[27] B. Huang, H. Song, H. Cui, J. Peng, and Z. Xu. Spatial and spectral image fusion using

sparse matrix factorization. IEEE Transactions on Geoscience and Remote Sensing,

52(3):1693–1704, March 2014.

49

[28] J. Yang, J. Wright, T.S. Huang, and Y. Ma. Image super-resolution via sparse

representation. IEEE Transactions on Image Processing, 19(11):2861–2873, Nov 2010.

[29] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing mri.

IEEE Signal Processing Magazine, 25(2):72–82, March 2008.

[30] L. Pfister and Y. Bresler. Tomographic reconstruction with adaptive sparsifying

transforms. In 2014 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6914–6918, May 2014.

[31] Y. Luo, Y. Xu, and H. Ji. Removing rain from a single image via discriminative sparse

coding. In 2015 IEEE International Conference on Computer Vision (ICCV), pages

3397–3405, 2015.

[32] I. Horev, O. Bryt, and R. Rubinstein. Adaptive image compression using sparse

dictionaries. 2012 19th International Conference on Systems, Signals and Image

Processing (IWSSIP), pages 592–595, 2012.

[33] N. Zhou, H. Jiang, L. Gong, and X. Xie. Double-image compression and encryption

algorithm based on co-sparse representation and random pixel exchanging. Optics and

Lasers in Engineering, 110:72–79, 2018.

[34] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse

coding for image classification. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1794–1801, 2009.

[35] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via

sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(2):210–227, 2009.

[36] J. Yang, D. Chu, L. Zhang, Y. Xu, and J. Yang. Sparse representation classifier steered

discriminative projection with applications to face recognition. IEEE Transactions on

Neural Networks and Learning Systems, 24(7):1023–1035, 2013.

50

[37] B. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on

Computing, 24(2):227–234, 1995.

[38] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit:

recursive function approximation with applications to wavelet decomposition. In

Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pages

40–44 vol.1, Nov 1993.

[39] I. Yavneh and M. Elad. Mmse approximation for denoising using several sparse

representations. In 4th World Conf of the IASC, 2008.

[40] R. Grosse, R. Raina, H. Kwong, and A. Ng. Shift-invariant sparse coding for audio

classification. Cortex, 9, 06 2012.

[41] D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete

representations in the presence of noise. IEEE Transactions on Information Theory,

52(1):6–18, 2006.

[42] J. A. Tropp. Just relax: convex programming methods for identifying sparse signals in

noise. IEEE Transactions on Information Theory, 52(3):1030–1051, 2006.

[43] Z. Ben-Haim, Y. C. Eldar, and M. Elad. Coherence-based performance guarantees

for estimating a sparse vector under random noise. IEEE Transactions on Signal

Processing, 58(10):5030–5043, 2010.

[44] X. Chen, J. Liu, Z. Wang, and W. Yin. Theoretical linear convergence of unfolded ista

and its practical weights and thresholds. In Advances in Neural Information Processing

Systems, pages 9061–9071, 2018.

[45] J. Liu and X. Chen. Alista: Analytic weights are as good as learned weights in lista.

In International Conference on Learning Representations (ICLR), 2019.

51

[46] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-

resolution with sparse prior. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 370–378, 2015.

[47] J. Zhang and B. Ghanem. Ista-net: Interpretable optimization-inspired deep network

for image compressive sensing. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 1828–1837, June 2018.

[48] K. B. Petersen and M. S. Pedersen. The matrix cookbook, October 2008. Version

20081110.

[49] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE

Transactions on signal processing, 41(12):3397–3415, 1993.

[50] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruc-

tion. IEEE Transactions on Information Theory, 55(5):2230–2249, 2009.

[51] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of the k-svd

algorithm using batch orthogonal matching pursuit. Technical report, Computer Science

Department, Technion, 2008.

[52] E. Plaut and R. Giryes. Matching pursuit based convolutional sparse coding. In 2018

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 6847–6851, 2018.

[53] V. Papyan, J. Sulam, and M. Elad. Working locally thinking globally: Theoretical

guarantees for convolutional sparse coding. IEEE Transactions on Signal Processing,

65(21):5687–5701, Nov 2017.

[54] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Yoshua Bengio

and Yann LeCun, editors, 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

52

[55] J. Mairal, G. Sapiro, and M. Elad. Multiscale sparse image representationwith learned

dictionaries. In 2007 IEEE International Conference on Image Processing, volume 3,

pages III – 105–III – 108, 2007.

[56] D. Huang, L. Kang, M. Yang, C. Lin, and Y. F. Wang. Context-aware single image

rain removal. In 2012 IEEE International Conference on Multimedia and Expo, pages

164–169, 2012.

[57] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown. Rain streak removal using layer

priors. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2736–2744, 2016.

[58] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(5):898–916, 2011.

[59] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang. Waterloo

exploration database: New challenges for image quality assessment models. IEEE

Transactions on Image Processing, 26(2):1004–1016, 2017.

[60] W. Yang, R. T. Tan, J. Feng, Z. Guo, S. Yan, and J. Liu. Joint rain detection and

removal from a single image with contextualized deep networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 42(6):1377–1393, 2020.

[61] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng. Progressive image deraining networks:

A better and simpler baseline. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3937–3946, 2019.

[62] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley. Removing rain from

single images via a deep detail network. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1715–1723, 2017.

53

	1 Introduction
	2 Learned ISTA
	3 LGM Basic Architecture
	3.1 The OMP Algorithm
	3.2 Unfolding OMP
	3.2.1 Maximal-Projection-Thresholding (MPT) Unit
	3.2.2 Atom Selecting (AtoS) Unit
	3.2.3 Constructing the LGM Architecture

	4 LGM Variations
	4.1 Learned-MP: Matching Pursuit Based LGM
	4.2 Learned-SP: Subspace Pursuit Based LGM
	4.2.1 Maximal-S-Projection-Thresholding (MSPT) Unit
	4.2.2 S Atom Selecting (SAtoS) Unit
	4.2.3 Constructing the L-SP Architecture

	4.3 LGM MMSE
	4.4 Batch-OMP Acceleration
	4.5 Learned-GCMP: CSC Based LGM
	4.5.1 CSC Model "3026 GCMP Pursuit Algorithm
	4.5.2 Unfolding GCMP

	5 Synthetical Experiments
	6 LGM in Image Processing Applications
	6.1 LGM for Image Denoising
	6.1.1 Basic LGM Denoising Architecture
	6.1.2 Advanced LGM Denoising Architecture

	6.2 LGM For Image Deraining

	7 Image Processing Applications - Results
	7.1 Denoising
	7.2 Deraining

	8 Conclusions
	9 Supplementary Materials
	9.1 Dictionary Distance Metric

