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A B S T R A C T

Video retrieval methods have been developed for a single query. Multi-query video retrieval problem has not
been investigated yet. In this study, an efficient and fast multi-query video retrieval framework is developed.
Query videos are assumed to be related to more than one semantic. The framework supports an arbitrary
number of video queries. The method is built upon using binary video hash codes. As a result, it is fast and
requires a lower storage space. Database and query hash codes are generated by a deep hashing method
that not only generates hash codes but also predicts query labels when they are chosen outside the database.
The retrieval is based on the Pareto front multi-objective optimization method. Re-ranking performed on the
retrieved videos by using non-binary deep features increases the retrieval accuracy considerably. Simulations
carried out on two multi-label video databases show that the proposed method is efficient and fast in terms
of retrieval accuracy and time.
1. Introduction

Fast and efficient search from a large-scale video database has
become an important issue. Video search by text queries in search
engines is quite common, but it cannot be as effective as content-based
video retrieval methods since video signals contain more information
compared to text. In the video retrieval studies conducted so far, single
videos have always been used as queries. However, by nature, a video
signal is usually related to more than one semantic. Consequently,
annotated videos usually have a multi-label character. In other words,
videos are usually comprised of multi-video clips.

The purpose of this study is to develop a multi-query video retrieval
framework that retrieves videos containing spatio-temporal features
in all multiple input queries. This requires that the search database
be multi-label. The study is totally different from other studies. The
queries can be a single clip video or videos consisting of multi clips.
That is, the queries can be single or multi label videos. In fact, this
purpose can be achieved with a single video query. However, using
multi queries allows the user to express his or her intention better.
In addition, a query video consisting of multiple clips can be difficult
to obtain and it may not be enough to express the intention of the
user. Multi-query video retrieval (MQVR) remains a problem to be
solved when searching for multiple semantics from an underlined video
database. No retrieval study has been conducted by multiple video
queries each containing different concepts.
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Hash-based multimedia retrieval methods were shown to be very
successful in terms of efficiency and speed. Although many hash-based
image retrieval studies exist, a limited number of hash-based single-
query video retrieval algorithms have been developed [1–8]. On the
other hand, MQVR has not been studied yet. In this study, we develop
a novel MQVR framework for the case in which query videos are
related to more than one semantic. In the proposed framework, video
hash codes are generated by a deep multi-label video hashing (DMVH)
method that does not require the category (or equivalently class) infor-
mation for queries. If the category of a query is not known, the deep
learning structure obtains a category by performing prediction. Thus,
query videos can be arbitrary videos as well as they can be chosen from
a search database formed by using known category information for its
items. The retrieval is based on the Pareto front method. Since the
proposed retrieval method uses the trained DMVH for the prediction of
the query labels and for the generation of the query features, it is called
deep multi-query video retrieval framework whose block diagram is
illustrated in Fig. 1.

In the framework, one frame is extracted from queries and database
items per second. The convolution blocks of the pre-trained VGG-16
network are used for feature extraction [9]. Extracted features are
then used as input for trainable layers. Bidirectional long short term
memory (BLSTM) layers capture temporal dependencies across frames
and contain information about whole frame sequences. Hash codes are
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Fig. 1. Overview of the proposed DMQVR framework.
extracted at the hash encoding layer (HEL), which is a dense layer,
with a sigmoid output. Two loss functions are used. The first one is
the classification loss, which is a binary-cross entropy loss. The second
one is defined over the HEL layer. It minimizes the squared difference
between the HEL output and learned binary codes during training.
In the retrieval block, Pareto points, Pareto fronts are generated and
multiple-query unique relevance (MQUR) is calculated. Additionally,
if query labels are not known, they are predicted at the classification
layer. A video on a Pareto front with an MQUR score of one is a
candidate for the retrieval. This step is followed by a reranking step
in which retrieved videos are sorted in another Pareto space based on
non-binary features extracted at the HEL layer.

We also prepared a graphical user interface (GUI) that combines
the trained DMVH algorithm and the Pareto front method. To our best
knowledge, MQVR has been investigated for the first time in this study.
Simulations show that DMQVR is efficient and fast when the queries are
related to different semantics.

Contributions of the study can be listed as follows:

• If labels of queries are known, DMQVR accurately retrieves videos
that meet the retrieval conditions on the Pareto fronts. If the
labels are not known, DMQVR predicts them.

• DMQVR supports an arbitrary number of queries.
• The proposed video hashing method is a new video hashing

method.
• A deep learning-based hash codes and the Hamming distance are

used instead of non-binary features and the Euclidean distance in
DMQVR. Consequently, it is fast and requires lower storage space.

• Re-ranking performed on the retrieved videos by using non-binary
deep features increases the retrieval accuracy considerably.

The rest of the study is organized as follows. Details of content-
based MQVR, hashing, and Pareto optimality are given in Section 2.
In Section 3, performance metrics used in simulations are defined.
2

Section 4 introduces the DMQVR method. Section 5 is devoted to simu-
lation results. This section also summarizes the GUI developed. Finally,
Section 6 concludes the study highlighting the main observations.

2. Background information

Two basic tools lie at the heart of the proposed DMQVR frame-
work: video hashing and Pareto optimality. Consequently, these basic
concepts will be introduced first before presenting the DMQVR method.

2.1. Video hashing

Hashing is a transformation that maps non-binary features extracted
from a signal into binary features called hash codes. The transformed
space consisting of hash codes is referred to as the hash space. Hashing
approximates the nearest neighbor (NN) search problem in a low
dimensional space. As a result, retrieval time and memory requirements
are significantly reduced.

Let the video database containing N items be denoted by 𝐗 =
[𝐱1, 𝐱2,… , 𝐱𝑁 ] ∈ R𝑀×𝑁 , where 𝐱𝑛 ∈ R𝑀 is the 𝑛th item in the database.
Hashing maps each item 𝐱𝑛 into a K -bit binary vector by hash functions.
It actually converts high-dimensional R𝑀 feature space to a lower-
dimensional B𝐾 hash space, where B ∈ {0, 1}. The database after
transformation is given by 𝐘 = 𝐻(𝐗) = [ℎ1(𝐗), ℎ2(𝐗),… , ℎ𝑁 (𝐗)], where
𝐘 ∈ B𝐾×𝑁 is the hash space. Similarity distance in the initial real-
valued R𝑀 space should be preserved as much as possible after the
mapping so that similar hash codes are assigned to semantically similar
items. Similarity measure in the hash space is the Hamming distance
calculated by using bitwise XOR operation between the two codes. One
can use several alternatives such as cosine or Euclidean distance for the
distance metric in the original feature space. Since hash codes are low
dimensional and XOR operation is very fast, video retrieval in the hash
space is efficient in terms of retrieval time and memory requirement.
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The discriminative power of hash codes depends on the features
extracted from the video signal. If a feature represents a video well,
the corresponding hash code is likely to be efficient. Some methods use
hand-crafted features such as Speeded-Up Robust Features (SURF) [10].
Generating appropriate hand-crafted features is a challenging task. On
the contrary, deep convolutional neural networks (CNN) can gener-
ate features automatically by using frames directly as inputs. CNN
based features were shown to be more efficient than hand-crafted
features [11,12].

Unlike linear hashing methods that aim to learn a single projec-
tion matrix, deep hashing methods try to learn multiple non-linear
projection matrices. As a result, the non-linear structure of a given
data leads to efficient hash codes. The proposed hashing approach
in this study generates hash codes over a classification architecture
whose details are given in Section 4. Transfer learning is another
powerful tool heavily used in deep learning structures. Thanks to the
transfer learning, efficient hash codes can be produced with a small
size training data. A complete discussion on hashing can be found in
recently published surveys [13–15].

Deep networks have recently been used to generate video hash
codes. Hash codes for videos were extracted by using a set of successive
frames with a specific stride in [1]. Hash codes for each successive
frame are then averaged to get one hash code for each video. A
CNN based Siamese network was used to maximize interclass distances
and minimize intraclass distances. To reveal temporal dependencies,
different spatial–temporal feature pooling models such as early fusion,
slow fusion and late fusion between fully connected layers by using
average pooling were investigated. To exploit the structural relation
between frames in a video and non-linear information among videos,
a multilayer network was developed in [3]. The so-called subspace
clustering was used to cluster frames according to frame semantics.
Each subspace stands for a scene in a video. Thus, a binary matrix
is obtained for each video. The binary matrices were then clustered
into subspaces based on scenes. To measure the distance between two
videos, average Hamming distances among subspaces were obtained. A
self-supervised hierarchical binary encoder was proposed to generate
video hash codes in [2]. The method takes both temporal and spatial
information into account. Video hash codes were extracted in the
binary encoder block. To improve retrieval accuracy, binary codes are
forced to rebuild frames and videos in a decoder model. A two-stream
CNN for video feature modeling (one for spatial information and one for
temporal information) was developed in [4]. Then, these features were
fused averagely in a dense layer and hash codes were produced. As the
distribution of video features is more dispersed than image features, the
variances between the dimensions of the video features are balanced
by the balanced rotation method to enhance binary code extraction.
Thus, balanced data have the same effect on Hamming distances. A
supervised two-stream CNN by weights sharing was proposed in [6].
Intra-pairs that are a pair of frame sets extracted from the same video
were used for training. Classification and intra-pair losses were used
in optimization. Video features were extracted at the latent dense
layer. To filter out hash bits that degrade classification performance,
a category mask filter was added to the hash code generation module.
An unsupervised one-dimensional (1-D) CNN-LSTM based encoder–
decoder model was developed in [8]. A variational 1-D CNN was used
as an encoder and a 1-D CNN-LSTM was used as a decoder. The encoder
model takes frame-level features, and a posterior distribution is learnt
for each video. Thus, the binary codes are encoded in a probabilistic
way. The decoder module reconstructs the frame-level features from
the hash codes.

2.2. Pareto optimization

In the single query video retrieval case, there is only objective that
is to find the minimum distance between hash codes of all items in
3

the search database and query. In the multiple-query case, on the other e
hand, there exist multiple objectives. Hence, MQVR can be transformed
into a multi-objective optimization problem. In a multi-objective opti-
mization problem, a single solution that simultaneously optimizes each
objective usually does not exist because optimizing one objective may
have an adverse effect on the other one. Consequently, a solution is
based on the resolutions between the objectives. Instead of a single
solution, one can talk about a set of solutions. The set of solutions that
satisfy multiple objectives is called Pareto optimal solutions [16].

Suppose that we have T objectives that we want to minimize.
Optimizing them simultaneously in a database containing 𝑁 items is
formulated as

min
𝐱

𝐝(𝐱) = min
𝐱

[𝑑1(𝐱), 𝑑2(𝐱),… , 𝑑𝑇 (𝐱)] (1)

where 𝐱 = [𝑥1, 𝑥2,… 𝑥𝑁 ] ∈ 𝛺 is the decision vector in the parameter
pace 𝛺 and 𝐝 is the objective vector. Components of the decision

vector are obtained by calculating the dissimilarities between queries
and 𝐱 (an item in the database) by means of a suitable distance
measure. Objective vectors form the objective space. Its subspace that
satisfies the constraints is called a feasible space and is denoted by
S. Points forming the feasible space are called Pareto points. Fig. 2(a)
illustrates Pareto points in the case of two objectives for N = 120. Each
Pareto point is created based on the dissimilarities between two queries
and a sample in the search database.

The following definitions facilitate comprehension of the Pareto
optimal solution. Complete details are available in [16].

Definition 1. If a point in S is not dominated by any other points for
all objectives, it is called a Pareto optimal solution.

Definition 2. x dominates y if it is equal to or better in every objective,
that is 𝑑𝑖(𝐱) ≤ 𝑑𝑖(𝐲) for all i and better in at least one objective, that is
𝑗 (𝐱) < 𝑑𝑗 (𝐲) for some j.

efinition 3. Pareto optimal solutions denoted by 𝐹1 is the first Pareto
ront. Similarly, the second Pareto front, 𝐹2, is formed by removing 𝐹1
rom 𝑆 and obtaining Pareto optimal solutions of the remaining set.
ontinuing in this manner, 𝑘th Pareto front is constructed from

𝑘 = 𝑆 − (𝑈𝑘−1
𝑗=1 𝐹𝑗 ) (2)

The first three Pareto fronts illustrated in Fig. 2(b) are obtained
rom the set of Pareto points shown in Fig. 2(a). The points on the
irst front are not dominated by any other points for each objective.
fter 𝐹1 is removed, 𝐹2 is created among the remaining Pareto points.
onsequently, points on the second front are not dominated by any
ther remaining points for each objective. Continuing in this manner,
he other fronts can be determined.

In this study, a deep video hashing algorithm is developed for
enerating hash codes. Thus, Pareto optimal solutions are obtained by
inding the best trade-off between multiple Hamming distance vectors
hat are related to each query.

. Performance metrics

Metrics used to evaluate retrieval results are multiple-query unique
elevance (MQUR) [17] and normalized discounted cumulative gain
nDCG) scores [18]. MQUR gives the ratio of the labels of a retrieved
tem to the labels contained in the queries. For example, MQUR is zero
f the retrieved item’s label is not related to the query’s labels. Let 𝐶
enote the total number of classes in the database. Additionally, assume
hat 𝒍 and 𝒚𝑖 denote the label vectors of a retrieved item and a query 𝑞𝑖,
here 𝒍, 𝒚𝑖 ∈ [0, 1]𝐶 . MQUR of a retrieved item is obtained from Eq. (3)
hose calculation is provided below.

For two binary label vectors 𝒍1 and 𝒍2, their logical conjunction
nd disjunction are denoted by the notations 𝒍1 ∪ 𝒍2 and 𝒍1 ∩ 𝒍2. 𝑗th

1 2
ntry of the resulting binary label vector is determined from max(𝒍𝑗 , 𝒍𝑗 )
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Fig. 2. Illustration of Pareto points and fronts for two objectives for N = 120. (a) Pareto points, (b) Pareto fronts. The axes are normalized Hamming distances.
for conjunction and min(𝒍𝑖𝑗 , 𝒍
2
𝑗 ) for disjunction. Then, MQUR score of a

retrieved item x for a given a set of queries [𝑞1,… , 𝑞𝑇 ] is defined as

MQUR(𝐱) = |𝒍 ∩ 𝒃|
|𝒃|

(3)

where 𝒃 = 𝒚1 ∪ 𝒚2 ∪⋯ ∪ 𝒚𝑇 and |𝒍| is the number of non-zero elements
in 𝒍. Note that MQUR score can be calculated if the labels of both the
queries and items in the search database are known. The database is
constructed with items having labels. Label for an item outside of the
database must be generated if that information is not available. One
solution is to assign labels manually to such items before the retrieval
process. Alternatively, the whole retrieval process can be automatized
by predicting the required label with DMVH approach described in
Section 4.

The quality of the search results is measured by nDCG score. It
emphasizes the fact that relevant items appearing earlier in search
results are more useful than non relevant items. In our case, nDCG
score should be computed in a different way since more relevant results
appear in the middle of the fronts in the Pareto front method [17].
Thus, we calculate nDCG scores beginning from the middle of the fronts
and moving towards the right and left tails. For 𝐾 retrieved items in a
front, DCG score is calculated from

DCG = MQUR(1) +
𝐾
∑

𝑖=2

MQUR(𝑖)
log2(𝑖)

(4)

where MQUR(𝑖) denotes the MQUR score of the 𝑖th retrieved item in the
front. When all the MQUR scores are equal to one, the corresponding
DCG is referred to as the ideal DCG (iDCG). That is, iDCG is the best
possible score. iDCG is determined by substituting 1 for all MQUR(𝑖) in
Eq. (4). Then, it is given by

iDCG = 1 +
𝐾
∑

𝑖=2

1
log2(𝑖)

. (5)

Finally, normalized DCG (nDCG) is the ratio of the DCG to the best
possible score and it is computed from

nDCG = DCG
iDCG . (6)

4. Proposed approach

The main components of the DMQVR framework are discussed
in this section. The first component is DMVH that is a CNN-BLSTM
network with multiple loss functions. It generates hash codes for all
database items and label vectors for queries outside the database. Its
training and its hash code generation are different tasks but on the
same architecture. The second component is the Pareto optimization
block responsible for forming Pareto points and generating Pareto
fronts. The third component provides a report for search results by
calculating MQUR and nDCG scores. Please refer to Fig. 1 for the
following discussion.
4

4.1. DMVH component

The first part of the DMVH component comprises five convolutional
blocks with a corresponding architecture and a set of parameters taken
from the VGG-16 pre-trained network. This part is not trained and
spatial features from video frames are extracted from it. Its output is
the input for the second part that is trainable, which is composed of
a two-layer stacked BLSTMs, and the HEL layer that is a dense layer
with sigmoid activation having K outputs. The trainable part generates
hash codes. K represents the size of the hash code for each video.
BLSTM layers capture temporal dependencies across frames and contain
information about whole frame sequences. Each BLSTM layer creates
two LSTM instances, each having 1024 outputs. The first LSTM instance
processes the frame sequence in the forward order and the second one
processes them in the backward order in order to capture a richer
representation of the frames. While the first BLSTM layer outputs a
vector for each frame, the second layer outputs a single vector for
each video. The reason is to train the network in a supervised way
based on video labels. The purpose of using two BLSTM layers is to
make the network deeper. The outputs of the two LSTM instances are
then concatenated in the HEL. A classification layer exists at the end of
the network. The classification layer has a sigmoid output with binary
cross-entropy loss since the search database is multi-label.

In Fig. 1, let 𝐚𝐅 ∈ R2048 denote the output of the second BLSTM
layer, and 𝐖𝐇 ∈ R2048×𝐾 denote the weight matrix between the HEL
and the second BLSTM layer. Since HEL has sigmoid activation, its
output will be 𝐚𝐇 = 𝜎(𝐚𝐅𝐖𝐇 + 𝐛𝐇), where 𝐛𝐇 ∈ R𝐾 is the bias term.
The learned binary code extracted from the HEL is given by

𝐁 = sgn(𝐚𝐇) > 0.5. (7)

In the training stage, two loss functions are used. The first one
is defined over the HEL and minimizes the mean-square difference
between the output of the HEL and the learned binary codes. It forces
the output of the HEL to be closer to 0 or 1 so that the HEL output
is closer to the learned binary codes during network training. This
corresponding loss function is defined as

𝐿1 =
1
𝐾

𝐾
∑

𝑛=1
(𝐁 − 𝐚𝐇)2. (8)

The second loss function defined in Eq. (9) is the binary cross-entropy
loss at the classification layer:

𝐿2(𝒚, 𝒚̂) = − 1
𝐶

𝐶
∑

𝑐=1
[𝒚𝑒 ln(𝒚̂𝑐 ) + (1 − 𝒚𝑐 ) ln(1 − 𝒚̂𝑐 )] (9)

where 𝑦 and 𝑦̂ denote the true and predicted labels, respectively and C
is the number of classes (in this study, C = 4 since database videos are
related to four different semantics). The second loss forces semantically
similar videos to have the same class labels. The overall loss function
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denoted by L is equal to the sum of the respective two losses and is
iven by

= 𝐿1 + 𝐿2. (10)

The deep network was retrained by assigning different weights to 𝐿1
nd 𝐿2 losses and hash codes were re-generated. However, using dif-
erent weights did not improve retrieval performance. For this reason,
qual weights (specifically 1) for 𝐿1 and 𝐿2 were used.

Note that hash code generation is implemented over a classification
rchitecture. As a result, similar hash codes are expected to be gen-
rated for semantically similar videos. All codes related to hash code
eneration exist on the web.1

.2. Pareto optimization component

.2.1. Pareto points
The distance between the two hash codes is measured by the Ham-

ing distance. The deep structure was designed such that Hamming
istance between hash codes is low for semantically similar videos.
ence, Hamming distance was used as a measure of dissimilarity
etween two videos in this study.

Pareto points are formed by calculating the Hamming distances
etween each item in the search database and each query. Let 𝐪𝟏×𝐾

and 𝐋𝑁×𝐾 denote the hash code of a query and hash codes of all items
in the database, where N is the number of database items and K is the
hash code length. N Hamming distances between q and each row of L
must be computed to obtain the Pareto points. This poses a bottleneck
from a computational point of view for large scale video databases.
One solution to speed up the distance calculations is as follows. A
N × K matrix whose each row is identical to q is constructed. Let
us denote the matrix by Q. If the ⊕ operator stands for the row-wise
Hamming distance vector between two matrices of the same size, the
Hamming distances between the whole search database and a query
can be represented as

𝐝 = 𝐐𝑁×𝐾 ⊕ 𝐋𝑁×𝐾 (11)

where 𝐝 is a 𝑁 × 1 vector. The process explained for one query can be
repeated for the other queries. Let the distance vector for the 𝑖th query
be denoted by 𝐝𝑖. Then, the set of all Pareto points denoted by 𝐗𝑁×𝑇
is obtained as

𝐗𝑁×𝑇 = [𝐝1,𝐝2,… ,𝐝𝑇 ] (12)

where T is the number of queries. Each row of 𝐗 represents a Pareto
point.

4.2.2. Forming Pareto fronts
By definition of Pareto front, a chosen Pareto point is included in the

first Pareto front if it ranks better than the other ones for all objectives.
Otherwise, it is left as a candidate for the remaining fronts. To construct
the second front, points on the first Pareto front are deleted from the
set of Pareto points and the process for the first Pareto front is repeated.
The process is repeatedly applied to construct the remaining fronts
until all Pareto points are processed. The corresponding Pareto front
forming codes are available on the web.2 After forming Pareto fronts, a
predefined number of fronts, points in each front and the related video
indexes in the search database are obtained.

4.3. Multi-query video retrieval component

The retrieval process can be summarized as follows. Hamming dis-
tances between each query and the dataset are calculated with Eq. (11)

1 https://github.com/akbacak/DMLVH2
2 https://github.com/akbacak/DMQVR/blob/master/pareto_fronts.m
5

and the Pareto space is formed from the distances by using Eq. (12).
Depending on the Hash code size, a Point in the Pareto space may
represent a single video or multiple videos. When the hash code size
is low, different videos might have the same hash code. In this case,
the number of Pareto points is limited and a Pareto point usually
corresponds to more than one video. When the hash code size increases,
only visually similar videos will have similar hash codes. For this case,
the number of Pareto points increases and a Pareto point is related to
only one video. Then, Pareto fronts that are Pareto optimal solutions
are formed in the Pareto space. Videos represented by Pareto points
comprising the Pareto fronts are the candidate videos for the retrieval.
Retrieved videos in the first several fronts are likely to be the items
semantically related to all queries. However, all videos in a front are
not semantically related to all queries. In a 2-query case, for example,
some videos in the middle of a front may have semantic similarity to
all queries and their MQUR scores are one while videos on the tails of
the front may have similarity to only one query and their MQUR scores
are 1/2. The DMQVR method retrieves a video from a front when it has
an MQUR score of one.

One question still needs to be answered. How are the retrieved items
having a MQUR of 1 sorted? A re-ranking on the retrieved items is
performed for sorting them based on the non-binary features. There are
two main motivations for applying re-ranking. First, recall that informa-
tion loss occurs during the hash code generation. Sorting the retrieved
items based on a proper distance measure computed from their original
real-valued features avoids the information loss resulting from the hash
code generation. Second, a given Pareto point may correspond to more
than one database item especially when the hash code length is small.
However, the probability that two or more database items have the
same real-valued feature vector is lower even if a small size feature
vector is used. Hence, multiple database items are not likely to share a
single real-valued feature vector.

Implementation of re-ranking is as follows. A new set of Pareto
points are formed for only the retrieved items based on the non-binary
features extracted from the HEL and using the Euclidean distance as
the distance measure. The items are then re-ranked by their Euclidean
distances to the origin in the real-valued feature space.

5. Simulation results

We have found out that a publicly available database for MQVR
research is not available. Consequently, we have created two multi-
label video datasets to test the retrieval performance of the proposed
MQVR framework. They are Pareto available on the web.3

The first dataset contains 120 sport videos that are related to four
semantics including “football”, “tennis”, “running” and “ski”. 16 videos
belong to the “football” class, the “tennis” category contains 16 videos,
20 videos exist in the“running” class and the “ski” group consists of 12
videos. Multi-label video clips were obtained by concatenating single
concept video clips. 51 videos have labels consisting of two classes
and 5 videos are related to three classes. Each video duration is about
15 s. For videos related two concepts, the duration of each concept is
around 8 s and for those containing three concepts, the duration of each
concept is 5 s. The second dataset contains 90 scene-based videos which
are “traffic of Istanbul”, “satellite tour around the world”, “driving in
the suburban area” and “walk in the beach”. 15 videos exist for each
group. Multi-label videos were obtained in the same way as in the first
dataset. 20 videos have labels consisting of two classes and 10 videos
are related to three classes. The duration of the videos and the concepts
in the videos are the same as the first dataset.

The trainable part was trained by the back-propagation algorithm
using the stochastic gradient descent algorithm with momentum op-
timization by 120 epochs. The related training parameters are: batch

3 https://github.com/akbacak/DMQVR

https://github.com/akbacak/DMLVH2
https://github.com/akbacak/DMQVR/blob/master/pareto_fronts.m
https://github.com/akbacak/DMQVR
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size is 32, the validation/train ratio is 0.2, the learning rate is 0.001.
The deep learning architecture was implemented in the Keras deep
learning library by TensorFlow backend. 32, 64 and 128-bit hash codes
were extracted after the network was trained. One frame per second is
extracted from videos for the training stage.

In order to show that the DMQVR method is efficient and fast
for query pairs and triplets in terms of nDCG scores, 250 query pairs
were chosen randomly from the first dataset. Among them, 50 query
pairs belong to “football-tennis”, 80 pairs are from “football-running”,
80 pairs contain “running-tennis” and 40 pairs are related to “ski-
running” classes. Similarly, 150 random triple queries were chosen
from the second dataset. In this case, 75 query triples are from “traffic
of Istanbul - satellite tour around the world - walk in the beach” and
75 triples are related to “satellite tour around the world - driving in
the suburban area - walk in the beach” classes. Performance metrics
results for query pairs and triplets given below were obtained without
applying re-ranking. Hence, performance results obtained before the re-
ranking process show the video retrieval accuracy. Since the re-ranking
just ranks the true candidates, results satisfy the conditions of retrieval.

nDCG scores were obtained beginning from the middle of the Pareto
fronts and moving towards both tails. The reason is that the most
relevant videos semantically similar to queries are in the middle of the
fronts. Since the front sizes may not be equal, their middle points do
not align. Front sizes are made equal by zero padding. Then, the center
points of the fronts are aligned. Across different Pareto fronts, average
nDCG scores of the videos in the same position are obtained.

Simulations were divided into three groups and the following issues
were investigated.

• How does retrieval accuracy depend on the hash code length?
• How is retrieval accuracy affected by the number of queries?
• How is retrieval time related to the hash code length and the

number of queries?

lso, the designed GUI will be briefly explained.

.1. Retrieval accuracy versus the hash code length

The dependency of retrieval accuracy on the hash code length is
rovided in Fig. 3. Even though the cumulative retrieval result from
he first 5 Pareto fronts is satisfying for low-length hash codes, more
elective and efficient results are obtained for high-length hash codes.
he total number of Pareto points is around 60–80 for 32-bit hash
odes. As a result, a Pareto point corresponds to 2 database videos.
hus, the number of videos on the fronts is high but the nDCG scores
re low. The number of Pareto points increases up to 115 and a Pareto
oint almost represents one video in the database if 128-bit hash codes
re used. Consequently, the number of videos on the fronts decreases
ut nDCG scores increase. This is why high-length hash codes are more
elective and efficient. In conclusion, for the cumulative video retrieval,
ow-length hash codes are ideal. One should prefer high-length hash
odes if more selective and efficient results are required. Fig. 3(a)
learly illustrates this observation.

As can be seen in Fig. 3(b), a similar behavior exists in the 3-query
ase. However, dependency of retrieval accuracy on the hash code
ength for the 3-query case is not strongly reflected because only 10
ideos are related to three labels.

.2. Retrieval accuracy versus the number of queries

Retrieved items on the Pareto fronts have MQUR scores of zero, 0.5
r 1 for query pairs while MQUR scores may be zero, 1/3, 2/3 or 1
hen there are three queries. In other words, using more queries tends

o increase the number of videos in a front. As a result, average nDCG
urves in Fig. 3(b) are wider than those in Fig. 3(a). On the other hand,
ince the number of videos related to three concepts is less than those
elated to one and two concepts, the retrieval accuracies in Fig. 3(b)
re lower compared to those in Fig. 3(a).
6

Table 1
Effect of hash code length on pareto points creation time.

Pareto points creation time (s)

Hash code length (bit) 2-query case 3-query case

32 0.00011 0.00043
64 0.00015 0.00050

128 0.00022 0.00058
256 0.00037 0.00076
512 0.00053 0.0011

1024 0.0011 0.0018

5.3. Retrieval time versus the hash code length and the number of queries

The dependency is investigated by using randomly chosen 150
query pairs and 150 query triples from the second dataset for different
hash code lengths. Simulations were carried out with a personal com-
puter having an Intel i7-4700HQ 2.4 GHz processor and 16 GB RAM.
Results are summarized in Table 1. When the number of queries is kept
constant, the time it takes to create the Pareto points increases as the
hash code length increases. However, the increase is not dramatic. On
the contrary, if the hash code length is fixed, the Pareto points forming
time increases around three or four times when an additional query is
used. In conclusion, retrieval time significantly increases by the number
of queries while it rises slowly when the hash code length is doubled.

5.4. Designed GUI

A GUI that is publicly available was designed.4 MATLAB 2015a/
2018a on the Ubuntu 18 operating system was the development envi-
ronment. Fig. 4 provides a screenshot of the designed GUI. The GUI
supports only 2-query and 3-query cases even though the DMQVR
framework is valid for an arbitrary number of queries. The reason is
that we do not have tools to visualize Pareto points in a four or higher-
dimensional space. In Fig. 4, three videos from the first dataset were
used as queries. The hash code length was set to 512 bits. Although
the labels of the queries are actually known, they are predicted by the
DMVH algorithm and the predicted labels were used in the retrieval
process. The total number of Pareto points, which are 3-dimensional,
is 120. On the middle-right portion of the figure, retrieved videos on
the first Pareto front are shown. nDCG scores of the first Pareto front
can be seen on the upper right side. Even though there are 35 items in
the first front, only two of them are related to all queries. The button
at the bottom left implements re-ranking by means of which videos in
the first 5 fronts that are relevant to all queries were obtained. Then,
Pareto points were recreated with their non-binary features by using
Euclidean distances. Retrieved Videos were sorted according to their
Euclidean distances to the origin. The final retrieved videos are shown
at the bottom left. There are exactly two videos related to all query
videos in the first dataset. Hence, the proposed method did a perfect job
of finding the database videos that are semantically related to queries.
Only one screenshot was provided because of the page limit.

6. Conclusion

MQVR problem for which each query is related to different video
semantics was investigated for the first time in this study. The pro-
posed MQVR framework supports an arbitrary number of queries. It is
based on video hash codes generated by a deep CNN-BLSTM network.
Retrieval is carried out in the hash space with the Pareto front opti-
mization method. Deep CNN-BLSTM was used for not only generating
hash codes of the dataset items but also for calculating query hash
codes and predicting their labels when they are chosen outside the

4 https://github.com/akbacak/DMQVR

https://github.com/akbacak/DMQVR
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Fig. 3. Across top 5 Pareto fronts, average nDCG scores of the videos retrieved by the DMQVR method for (a) 2-query case, (b) 3-query case.
Fig. 4. A screenshot from GUI performing MQVR by a 3-query.
database. Retrieval time and retrieval accuracy provided by the MQVR
framework were shown to be satisfactory for real-time applications.
Also, the functionality of the DMQVR method was investigated by using
the designed GUI that is publicly available on the web.
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