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Abstract

Quality of experience (QoE) assessment for adaptive video streaming plays a

significant role in advanced network management systems. It is especially chal-

lenging in case of dynamic adaptive streaming schemes over HTTP (DASH)

which has increasingly complex characteristics including additional playback is-

sues. In this paper, we provide a brief overview of adaptive video streaming

quality assessment. Upon our review of related works, we analyze and com-

pare different variations of objective QoE assessment models with or without

using machine learning techniques for adaptive video streaming. Through the

performance analysis, we observe that hybrid models perform better than both

quality-of-service (QoS) driven QoE approaches and signal fidelity measure-

ment. Moreover, the machine learning-based model slightly outperforms the

model without using machine learning for the same setting. In addition, we

find that existing video streaming QoE assessment models still have limited

performance, which makes it difficult to be applied in practical communication

systems. Therefore, based on the success of deep learned feature representa-

tions for traditional video quality prediction, we also apply the off-the-shelf

deep convolutional neural network (DCNN) to evaluate the perceptual quality

of streaming videos, where the spatio-temporal properties of streaming videos
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are taken into consideration. Experiments demonstrate its superiority, which

sheds light on the future development of specifically designed deep learning

frameworks for adaptive video streaming quality assessment. We believe this

survey can serve as a guideline for QoE assessment of adaptive video streaming.

Keywords: Quality of experience, video quality assessment, adaptive

streaming, performance analysis, deep convolutional neural network,

spatio-temporal characteristics.

1. Introduction

With the rapid development of network services and mobile devices, stream-

ing related multimedia applications have obtained tremendous growth. The

arrival of dynamic adaptive streaming schemes over HTTP (DASH) standard

[1] provides the transition from traditional connection-based video streaming

protocols to hypertext transfer protocol (HTTP) adaptive streaming (HAS)

protocols which enable flexible deployment, reduced workload, and reliable de-

livery. In addition, data analysis and artificial intelligence have emerged in a

service-driven next-generation wireless communication network [2]. Therefore,

quality of experience (QoE) for HAS streaming videos has attracted increasing

attention in both academia and industry [3].

As defined by the Telecommunication Standardization Sector of Interna-

tional Telecommunication Union (ITU-T), QoE is the overall acceptability of

an application or service as perceived subjectively by the end user [4]. Address-

ing the QoE expectations of end-users is crucial for satisfying the requirements

of video streaming services. Since users are the ultimate viewers of stream-

ing videos in most practical applications, subjective QoE assessment [5, 6, 7]

is straightforward and reliable for the evaluation of perceptual video streaming

quality. Specifically, user studies are conducted, in which a number of subjects

are asked to rate the visual quality of different streaming videos. The average

of these subjective judgments, i.e. mean opinion score (MOS), is computed for

the final quality measurement, which is usually known as the ground truth.
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Despite the fact that subjective QoE assessment can deliver the most precise

and reliable evaluation, these subjective tests are time-consuming, expensive,

and inconvenient. More importantly, they cannot be applied to the real-time

multimedia distribution and playback scheduling frameworks. Hence, it is also

increasingly desirable to develop highly effective and accurate objective QoE as-

sessment models [8, 9, 10, 11] with low computational complexity for streaming

videos, which aims to maintain efficient resource allocation and quality man-

agement for existing video services in multimedia delivery systems.

Building an effective QoE assessor for adaptive video streaming faces sev-

eral foreseeable challenges. First, in addition to compression artifacts, how to

evaluate the perceived quality of streaming video is more complicated due to

additional network impairments (e.g. initial buffering, playback stalling, etc.)

compared to traditional VQA. Second, due to the time-consuming subjective

experiments, the established databases for video streaming QoE are relatively

small-scale, thus it is difficult to train a deep learning-based model with specific

network parameters [12]. Third, the quality degradation of video streaming is

influenced not only by video spatial characteristics, but also by its temporal

attributes.

Figure 1 shows the important role of QoE assessment in multimedia commu-

nication systems. It illustrates that application servers transmit adaptive video

streaming data to users through the core network, access network, and terminal

devices. Then, the designed QoE assessor is deployed to take relevant informa-

tion, e.g. the decoded streaming video data as input, and predicts perceptual

video streaming quality. Finally, the virtually located QoE management re-

ceives the information from the QoE assessor and aims to optimize the network

delivery of streaming video data.

Although various surveys have been proposed for the perceptual quality as-

sessment of images/videos [13, 14, 15], such reviews for adaptive video stream-

ing quality assessment are relatively scarce. Towards this end, we present an

overview of QoE assessment for adaptive video streaming. The main contribu-

tions of this paper are summarized in three-fold as follows:
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Figure 1: The important role of QoE assessment in multimedia communication systems. The

designed QoE assessor is deployed to take the decoded streaming video data as input, and

then predicts perceptual video streaming quality for the service optimization.

• We review subjective QoE assessment studies for adaptive video stream-

ing, where the details of various subjective quality databases are described.

Different from traditional video subjective QoE assessment, we discuss

particular quality factors in these constructed databases.

• We review existing objective QoE assessment models for adaptive video

streaming, including quality-of-service (QoS) driven user QoE assessment,

signal fidelity measurement, and hybrid models.

• We analyze and compare objective QoE assessment models with or without

using machine learning for adaptive video streaming. Besides, we exploit

the deep feature representations from off-the-shelf DCNN models, which

is consistent with spatio-temporal human visual perception. Experiments

demonstrate its superior performance, leading to the promising future

direction to develop streaming-aware quality prediction frameworks based

on DCNN.

The structure of this article is as follows. In Section 2 and Section 3, we

review the relevant subjective quality databases and existing objective QoE
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models for streaming video quality evaluation, respectively. In Section 4, we

analyze and compare different variations of QoE assessment models with or

without using machine learning for adaptive video streaming. Additionally, the

deep feature representations from off-the-shelf DCNN models show promising

results against state-of-the-art methods, which sheds light on the future develop-

ment of specific deep learning-based quality evaluation frameworks for adaptive

video streaming. We conclude the results and discuss some future directions in

Section 5.

2. Subjective Studies

The perceptual quality of HAS streaming videos not only suffers from com-

pression distortions, but also degrades due to some streaming-specific issues,

such as initial buffering, playback stalling, etc. Up to now, some subjective

quality databases have been built for severing as the benchmarks for objective

QoE assessment models. Here, we give an introduction to the mainstream pub-

licly available subjective databases for adaptive video streaming during the past

decade. The details of publicly available subjective databases for adaptive video

streaming can be found in Table 1.

Table 1: Details of Publicly Available Subjective Databases for Adaptive Video Streaming.

Databases # of Source Videos # of Distorted Videos # of Codecs Viewing Displays

LIVEMVQA [16] 10 300 1 Phone & Tablet

LIVEQHVS [17] 3 15 1 HDTV

LIVEMSV [18] 24 180 0 Phone

WaterlooSQoE-I [19] 20 180 1 HDTV

LIVE-NFLX-I [20] 14 112 1 Phone

WaterlooSQoE-II [21] 12 588 1 HDTV

WaterlooSQoE-III [22] 20 450 1 HDTV

LIVE-NFLX-II [23] 15 420 1 HDTV

WaterlooSQoE-IV [24] 5 1,350 2 Phone & HDTV & UHDTV

The earliest adaptive video streaming subjective database dates back to

2012 when Moorthy et al. proposed the LIVE mobile video quality assessment

(LIVEMVQA) database [16]. This database consists of 10 source videos and 300
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test videos. The distortion types include H.264 compression, wireless channel

packet loss, frame freezes, rate adaptation, and temporal dynamics. In the

subjective test, 200 distorted videos evaluated by over 30 subjects on a small

phone, as well as 100 distorted videos rated by 17 subjects on a larger tablet

device.

The LIVEQHVS [17] contains 3 original reference videos. The length of

each video is relatively long, which is 300 seconds duration. The long videos are

constructed by concatenating 8 high-quality short video clips. For each source

video, 6 quality-varying videos are generated by applying various encoding bi-

trates of H.264 encoder. Among these 18 distorted videos, 3 of them are used

for the training of subjective studies, the remaining 15 quality-varying videos

are exploited for testing. These video sequences are displayed to the subjects

on a 58-inch high definition television (HDTV) monitor.

The LIVEMSV [18] includes 24 pristine videos with either 1280× 720 pixels

or 640× 360 pixels. Since this database focuses on network impairments, other

factors such as spatial distortions are minimized. There exist 180 distorted

videos produced by all the reference videos with 26 unique hand-crafted stalling

events. The subjective quality labels are obtained from 54 subjects, leading to

4,830 human opinions. The viewing display is Apple iPhone 5.

The WaterlooSQoE-I [19] considers both the compression and playback ar-

tifacts. With H.264 encoder, the original source videos are encoded into three

bitrate levels which include 500 Kbps, 1,500 Kbps, and 3,000 Kbps. Note that

these three bitrate levels are based on commonly available parameters of video

transmission over wireless communication networks. In addition, playback is-

sues are also taken into account in this database. To be specific, apart from

the introduced compression distortions, a five-second stalling event is then sim-

ulated at either the beginning or the middle time point of the encoded video

sequences. Therefore, the initial buffering and middle playback stalling stream-

ing videos can be produced by this kind of simulation. In total, this database is

made up of 200 videos containing 20 source videos, 60 encoded videos, 60 initial

buffering videos, and 60 middle playback stalling videos. A subjective study is
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conducted to collect ratings of test videos on the HDTV display.

The LIVE-NFLX-I [20] is presented to investigate the influence of mixtures

from adaptive streaming video artifacts. The database is composed of 14 source

video contents and 112 distorted videos obtained by encoding the original videos

using H.264 encoder. There are 8 different playout patterns including dynami-

cally changing H.264 compression rates, rebuffering events, and the mixtures of

both. The subjective experiment is conducted by 55 subjects on a mobile de-

vice. It should be noted that only three reference videos and their corresponding

distorted videos are made publicly available in this database.

The WaterlooSQoE-II [21] involves 12 source videos, where each video has

8 seconds duration and is further partitioned into 4-second short segments.

The short segments are encoded into seven representations with H.264 codec.

To simulate quality adaptation events, two consecutive 4-second segments with

different representations are concatenated from the same video content, resulting

in 588 videos with variations in compression level, spatial resolution, and frame

rate. The videos are displayed at their pixel resolution on the HDTV display

for subjective quality collections.

The above-mentioned subjective quality databases for adaptive video stream-

ing have a common issue that they are hand-crafted. That is, these databases

are far away from real-world streaming video distributions. Therefore, the

following recently established databases aim to tackle this problem, including

WaterlooSQoE-III [22], LIVE-NFLX-II [23], and WaterlooSQoE-IV [24].

Specifically, the WaterlooSQoE-III [22] and the LIVE-NFLX-II [23] have 450

and 420 realistic adaptive streaming videos, respectively. Both databases inte-

grate actual network traces to capture realistic network variations. Different

realistic adaptive bitrate (ABR) streaming algorithms [25, 26, 27] are employed

for video delivery. The subjective experiments conducted on the HDTV are

used to obtain subjective QoE ratings. The WaterlooSQoE-IV [24] provides so

far the most comprehensive QoE assessment database which consists of 1,350

subjective-rated streaming videos that are derived from a variety of source video

contents, video codecs, network conditions, ABR algorithms, and viewing dis-
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plays. For example, except for mobile phone and HDTV, the Ultra HDTV

(UHDTV) is also applied in subjective studies.

With these subjective quality databases for adaptive video streaming, effec-

tive quality labels are provided for designing objective quality assessment al-

gorithms, which facilitates researchers to propose objective quality assessment

models that are closer to human visual perception. Besides, we can measure and

compare the performance of different adaptive video streaming quality evalua-

tion models on these databases.

3. Objective Models

In general, according to the existence of original reference videos, tradi-

tional objective Video QoE Assessment (VQA) methods can be classified into

full-reference (FR) VQA, reduced-reference (RR) VQA, and no-reference (NR)

VQA. Specifically, FR VQA methods [28, 29, 30] require the corresponding

original reference video. The RR VQA methods assume that a portion of the

reference video is available, which can be some parameters extracted from the

original content or additional side information added to the test video. The NR

VQA algorithms [31, 32, 33] evaluate visual quality without any information

from the corresponding original reference video, which are more practical in

application scenarios.

In the literature, there have emerged several objective quality assessment

models for adaptive video streaming. Apart from the classification method of

conventional VQA methods that is based on the information of original refer-

ence videos, existing video streaming QoE assessment models can be generally

classified into three categories which include QoS driven user QoE assessment

[34, 35], signal fidelity measurement [28, 29, 30], and hybrid models [19, 36].

Specifically, the QoS driven user QoE assessment exploits the causal relation-

ship between QoS and QoE problems, while the signal fidelity measurement

takes the QoE assessment problem from the aspect of signal fidelity. The hy-

brid models comprehensively consider the QoS driven user QoE assessment and
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the signal fidelity measurement at the same time. Moreover, solid related work

has been done on automatic video streaming QoE assessment models with or

without using machine learning techniques. Table 2 lists the summary of objec-

tive QoE assessment models for adaptive video streaming. It should be noted

that we only focus on the mentioned QoE assessment models for adaptive video

streaming in this paper, other algorithms could be found in [37].

Table 2: Summary of objective QoE Assessment Models for Adaptive Video Streaming.

Methods Learning Types

FTW [34] No QoS driven QoE assessment

VsQM [35] No QoS driven QoE assessment

PSNR No Signal fidelity measurement

SSIM [28] No Signal fidelity measurement

MS-SSIM [29] No Signal fidelity measurement

SSIMplus [30] No Signal fidelity measurement

SQI [19] No Hybrid model

Video ATLAS [36] Yes Hybrid model

As for QoS driven user QoE assessment, the mapping functions between QoS

and QoE problems are usually employed. For example, several QoS models such

as FTW [34] and VsQM [35] have been proposed by utilizing global rebuffering

statistics and the pattern of temporal local content importance. However, the

video quality impairment caused by video compression has not been taken into

consideration.

For signal fidelity measurement, conventional objective VQA metrics con-

sider human visual perception rather than the simplest peak signal-to-noise ra-

tio (PSNR), such as the structural similarity index (SSIM) [28], the multi-scale

structure similarity index (MS-SSIM) [29], the SSIMplus [30], and so on. How-

ever, all of these algorithms are under the assumption that the playback can be

exactly controlled. But in the applications of QoE assessment for HAS stream-

ing videos, due to network transmission impairments, these services may suffer
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from some playback issues which could bring significant quality degradation.

Additionally, hybrid models integrate the scheme of QoS driven user QoE

assessment with the scheme of signal fidelity measurement. In [19], a unified

video streaming QoE assessor without using machine learning named stream-

ing quality index (SQI) has been proposed, which combines FR quality metrics

such as SSIM and MS-SSIM with stalling related information. In other words,

the impact of compression and stalling are modeled simultaneously. Moreover,

in [36], the machine learning-based model called video assessment of tempo-

ral artifacts and stalls (Video ATLAS) has been presented, where a number of

QoE-related features, including objective quality features, rebuffering-aware fea-

tures and memory-driven features, are utilized to predict the perceptual video

streaming quality.

4. Performance Analysis

4.1. Performance Evaluation Criteria

According to the recommendation from the Video Quality Experts Group

[38], we adopt two widely used criteria including the Spearman rank-order cor-

relation coefficient (SROCC) and Pearson linear correlation coefficient (PLCC)

to analyze and compare different objective algorithms for video streaming QoE

assessment. The SROCC performance is utilized to measure QoE prediction

monotonicity, while the PLCC performance is applied to evaluate QoE predic-

tion accuracy.

Moreover, before computing the PLCC performance of objective QoE as-

sessment algorithms, a nonlinear logistic fitting is generally used to map the

predicted quality scores to the same scales of subjective quality ratings. Here,

higher SROCC and PLCC correlation coefficients indicate better performance

and agreement with subjective human quality perception.

4.2. Results of Video Streaming QoE Models

Considering that existing adaptive video streaming QoE assessment models

consist of QoS driven QoE methods, signal fidelity measurement, and hybrid ap-
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Figure 2: Video contents in WaterlooSQoE-I database [19].

proaches which combine FR quality metrics with rebuffering related features, we

conduct experiments on the representative WaterlooSQoE-I database [36]. The

reason for choosing the WaterlooSQoE-I database is that it is the first database

containing the most abundant video contents and codecs. Figure 2 shows that

there exist 20 original reference videos consisting of diverse video contents in the

WaterlooSQoE-I database [19]. With these pristine sources, streaming videos

impaired from both compression distortions and playback issues can be gener-

ated.

We first analyze different variations of objective quality assessment models

with or without using machine learning for adaptive video streaming. Figure 3

shows the performance comparison of existing video streaming QoE assessment
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Figure 3: Performance comparison of existing video streaming QoE assessment models on

WaterlooSQoE-I database [19].

models on WaterlooSQoE-I database [19]. In this figure, the Video ATLAS is

the only machine learning-based method. And the regression model with the

best SROCC performance is reported.

In general, as we can see from Figure 3, hybrid models outperform QoS

driven QoE models (i.e. FTW and VsQM) as well as the signal fidelity mea-

surement when using the same FR quality metrics. Additionally, the machine

learning-based QoE assessment model, namely Video ATLAS, is slightly supe-

rior to the SQI model without using machine learning for the same FR quality

metrics combination. One possible explanation is that the machine learning-

based method learns distortion-related features better directly from streaming

videos.

Based on these observations, we can conclude that existing video streaming

QoE assessment algorithms still have limited performance, making it difficult to

be employed in practical applications. At the same time, deep learning models

have been studied to understand the development of human sensory cortical

processing [39]. Besides, deep convolutional neural network (DCNN) has been
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applied to perceptual quality assessment, which demonstrates the remarkable

ability of DCNN to learn discriminative features for addressing this challenging

task [40, 41, 42]. However, to the best of our knowledge, there is no similar

research work about deep learning solutions to hybrid NR video streaming QoE

assessment based on spatio-temporal visual content features in streaming videos.

Thus, we apply a simplified framework to tackle the adaptive video streaming

quality assessment, where we only exploit distorted streaming videos without

referring to the corresponding source videos. That is, this method belongs to the

category of no-reference video streaming QoE models, which is more practical

in real applications.

Specifically, considering that a streaming video sequence is composed of

many video frames, we first extract multiple distorted video frames from stream-

ing video sequences. Apart from the spatial characteristics of different distorted

video frames, note that a video sequence is a set of consecutive video frames

which contain a variety of motion attributes. In other words, the temporal vari-

ation of video contents could affect the visual perception of the HVS to a certain

degree. Thus, compared to image quality prediction, video streaming QoE as-

sessment is more complex due to the additional temporal quality variation. We

then utilize frame difference maps to take the temporal factor into account,

which are simply defined as the difference between adjacent video frames.

The two pre-trained DCNN models take distorted video frames and frame

difference maps as inputs to extract the 2,048-dim features from the pool5 layer.

Note that the two employed ResNet50 architectures have the same configura-

tion and share weights with each other. Then, the concatenation of the ex-

tracted 2,048-dim features constitute a 4,096-dim feature vector. Finally, the

well-known regression model (i.e. SVR) is applied to map the 4,096-dim feature

vector into the ultimate perceptual quality score for each streaming video. In

addition, it should be noted that the used database is randomly divided into

80% for training and the remaining 20% for testing. We perform 1,000 iterations

of cross correlation, and then give the median SROCC and PLCC values as the

final measurement.
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Figure 4: Performance comparison of the extended video streaming QoE assessment model

and state-of-the-arts on WaterlooSQoE-I database [19].

Figure 4 shows the performance comparison with state-of-the-art video stream-

ing QoE models. Note that we choose the top two algorithms shown in Figure

3 to be compared, which include no machine learning (i.e. SSIM+SQI and

SSIMplus+SQI) and machine learning-based (i.e. SSIM+ATLAS and SSIM-

plus+ATLAS) video streaming QoE assessment models. We denote the deep

learning models as “Distorted Video Frame”, “Frame Difference Map”, and

“Proposed Combination”, in which we separately apply the deep learned fea-

tures from distorted video frames, frame difference maps, and the combination

of distorted video frames and frame difference maps. As shown in this figure,

the deep learning models perform better than the other methods. Moreover,

only using frame difference maps outperforms that of only using distorted video

frames. One possible explanation may be that the temporal motion attributes

have more impact on the perceptual quality of streaming videos compared with

that of the spatial texture characteristics. Additionally, the combination of spa-

tial and temporal features outperforms either the spatial feature or the temporal

feature alone, which further verifies the significance of spatio-temporal human
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Figure 5: Visualization of learned kernels in the first convolutional layer for the pre-trained

ResNet50 network. The learned kernels capture various intrinsic image texture patterns.

visual perception in adaptive video streaming.

To reveal the discriminative information from deep learned features, Figure

5 presents the visualization of learned kernels in the first convolutional layer

for the pre-trained ResNet50 network. It should be noted that the ResNet50

model is pre-trained on a large-scale dataset with diverse image contents, namely

ImageNet [43]. Therefore, we can see that the learned kernels can capture

intrinsic image texture patterns. In other words, the pre-trained ResNet50

model has a promising ability to represent discriminative features for quality

assessment, which sheds light on the future development of specifically designed

deep learning models for adaptive video streaming quality evaluation.

5. Conclusion and Future Directions

In this paper, we present a brief survey of QoE assessment for adaptive video

streaming. First, the QoE assessor plays a vital role in multimedia communi-

cation systems. Considering complex characteristics of streaming videos, many

challenges are involved in the perceptual quality prediction task. We then re-

view both subjective studies and objective models for adaptive video streaming

quality assessment. Finally, we conduct comparisons of existing state-of-the-art
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QoE assessment models for streaming videos, with or without using machine

learning techniques. The performance analysis shows that hybrid models out-

perform QoS driven QoE models and the signal fidelity measurement when using

the same FR quality metrics. Furthermore, the machine learning-based QoE as-

sessment model is demonstrated slightly superior to the model without using

machine learning. However, these approaches still have limited performance for

video streaming QoE assessment.

Additionally, we apply the deep feature representations from off-the-shelf

DCNN models based on spatio-temporal human visual perception, which can

deliver promising results. This demonstrates that specific deep learning frame-

works for QoE assessment of adaptive video streaming should be addressed

in the future. Furthermore, more comprehensive investigation about adaptive

video streaming quality assessment could be considered, where the design of

immersive 3D/stereoscopic video streaming QoE assessment methods based on

deep neural networks is another research direction. For 3D video streaming QoE

assessment, except for video quality, more quality dimensions should be taken

into consideration, e.g. depth perception and visual comfort.
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