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Abstract—Recently, there has been a panoptic segmentation
task combining semantic and instance segmentation, in which
the goal is to classify each pixel with the corresponding instance
ID. In this work, we propose a solution to tackle the panoptic
segmentation task. The overall structure combines the bottom-
up method and the top-down method. Therefore, not only can
there be better performance, but also the execution speed can be
maintained. The network mainly pays attention to the quality of
the mask. In the previous work, we can see that the uneven
contour of the object is more likely to appear, resulting in
low-quality prediction. Accordingly, we propose enhancement
features and corresponding loss functions for the silhouette of
objects and backgrounds to improve the mask. Meanwhile, we
use the new proposed confidence score to solve the occlusion
problem and make the network tend to use higher quality masks
as prediction results. To verify our research, we used the COCO
dataset and CityScapes dataset to do experiments and obtained
competitive results with fast inference time.

Index Terms—Deep learning, Panoptic segmentation, Instance
segmentation, Silhouette, Confidence score

I. INTRODUCTION

Panoptic segmentation is a task combining semantic and
instance segmentation. It can help the computer perceives daily
life more correctly. For instance, in the field of autonomous
driving, computers should recognize sidewalks as well as
pedestrians. Several methods for panoptic segmentation have
been proposed in the literature. Whether it is a proposed-based
or proposed-free method, most of them will separate the task
into semantic segmentation and instance segmentation. Then,
do post-processing to combine both and generate the panoptic
segmentation prediction. Observing the results of previous
experiments, we found that the quality of the mask in instance
segmentation will significantly affect the panoptic prediction.
Although past research can achieve great performance on
panoptic segmentation, the distinct silhouette segmentation
was not what they consider. As a result, it will make the
mask become lousy quality. Another issue is that when we sort
the prediction results only according to the class confidence
score, this will cause the performance to drop down when
the occlusion happens. Small things usually have lower class
confidence scores. However, according to the definition of
panoptic segmentation, each pixel can only belong to one
object. Accordingly, the small object cannot be capture.

To overcome the above issues, we propose a novel panoptic
segmentation framework called Silhouette-based Enhancement
Feature for Panoptic Segmentation Network (SE-PSNet). It
adapted two branches, namely, semantic segmentation branch
and instance segmentation branch. The semantic segmentation
branch will produce the mask prediction in a fully convolution
fashion with silhouette-based enhancement features. The pro-
posed instance branch aims to generate bases and the attention
map for each instance. Bases can be viewed as roughly mask
predictions for the entire image, and combining with the
individual attention map can generate the refined instance
mask prediction. Silhouette-based enhancement features will
help to improve the mask quality in both processes of the
instance branch. Furthermore, we do not use class confidence
score but using mask quality score to achieve a better result.

II. RELATED WORK
A. Panoptic Segmentation with Proposed-based

The proposed-based methods are also known as top-down
methods. That is because they will first detect the place of
the object and do the segmentation later. Many works adapted
Mask-RCNN [|1]] as their instance segmentation branch parallel
with a lightweight semantic segmentation branch using the
shared backbone. Some of the methods will be introduced fol-
lowing. TASCNet [2]] proposed a consistency loss to do cross-
task constraint, aiming to ensure alignment between thing
prediction and stuff prediction. AUNet [3] adds two attention
sources to the stuff branch: from the RPN layer and foreground
segmentation mask, which can provide object-level and pixel-
level attention, respectively. Panoptic FPN [4]] endows Mask
R-CNN [1] with a lightweight semantic segmentation branch
using a shared Feature Pyramid Network [5] backbone, which
profoundly affected the latter method. UPSNet [6] introduced a
parameter-free panoptic head that solves the panoptic segmen-
tation via pixel-wise classification. OANet [7] uses a spatial
ranking module to solve the multiple assignments for one
pixel, also known as the occlusion problem. OCFusion [S§]
is another method that aims to solve the occlusion problem
with an additional head predicting the occlusion relationship
between two instances. AdaptIS [9]] uses an image and point
proposal as input and outputs a mask of an object correspond-
ing to that point. Different from other methods, it will generate



class-agnostic instance segmentation and can be combined
with a standard semantic segmentation pipeline. SOGNet [10]
performs relational embedding, which can explicitly encode
overlap relations without direct supervision on them. EPSNet
[11] proposed a cross-layer attention fusion module to capture
the long-range dependencies between different scales feature
maps. Unifying [12]] uses a novel pairwise instance affinity
operation with the panoptic matching loss, which enables end-
to-end training and heuristics-free inference. CondInst [|13|]
uses dynamic generates kernel’s weight of the mask head to get
the mask predictions. EfficientPS [14] proposed a new strong
panoptic backbone and a panoptic fusion module to yield the
final panoptic segmentation output.

Although the top-down methods often can get better per-
formance, they usually need longer computation time since
it needs to detect the rough object first. In addition, most of
the situation, inconsistency will happen between stuff head
and instance head. Adding the silhouette-based enhancement
features can help to reduce this situation since it belongs to
their shared features.

B. Panoptic Segmentation with Proposed-free

Unlike the previous group, the proposed-free method does
not need to detect the rough object first. DeeperLab [15]]
is the first bottom-up approach. They adopted an encoder-
decoder topology, which follows the design of DeepLab [16],
to predict instance keypoints multi-range offset heatmaps,
then gather them into class-agnostic instance segmentation.
Panoptic-DeepLab [[17]] was also built on DeepLab [16] and
proposed the dual-ASPP and dual-decoder structures for the
semantic branch and instance branch. SSAP [18] proposed
grouping pixels based on a pixel-pair affinity pyramid and
incorporating a novel cascaded graph partition module to
generate instances efficiently. Panoptic FCN [19] proposed
kernel generator and kernel fusion to generate the kernel
weight for each object instance and semantic category.

Even though proposed-free method have faster inference
speed, most of there performance still exist a large gap
between proposed-based method. In our work, we adopt a
proposed-based method with an one-stage anchor-free instance
segmentation framework, which can get a balance between the
performance and computation time.

C. Boundary Learning in Deep Learning

The boundary is a critical feature that can be used in the real
world. Since the edge and mask are complementary, a great
boundary prediction can help us improve segmentation perfor-
mance. In the literature, some of them use boundaries to guide
the prediction of segmentation. Others directly predict the
contour as the segmentation result. Deng et al. [20] proposed a
simple convolutional encoder-decoder network to predict crisp
boundaries. Edgenet [21] uses a class-aware edge loss, which
can improve the classification result of those pixels near the se-
mantic segmentation boundaries. Zimmermann et al. [22] uses
classical edge detection filters applied on each instance mask,
encouraging a better prediction near the instance boundaries.

Fig. 1: The architecture of SE-PSNet

BMask R-CNN [23] first predicts instance-level boundaries
separately from the instance mask, then uses them to guide
the mask learning with fusion fashion. PolarMask represents
a mask by its contour. Thus, it only needs to predict one center
and rays emitted from the center on the polar coordinate to
generate the instance mask. DeepSnake [24]] performs instance
segmentation by deforming an initial contour to match object
boundary with proposed circular convolution. Boundary IoU
[25] was a new segmentation evaluation measure focused on
boundary quality.

In our work, we use the boundary feature as the en-
hancement feature. This can help the network get the finer
segmentation, especially when different instance occlusion.
Furthermore, it can help the backbone network learn gener-
alized features for the stuff branch and instance branch.

III. NETWORK ARCHITECTURE DESIGN

Our method consists of six major components including (1)
shared backbone, (2) stuff head, (3) box head, (4) basis head,
(5) mask head, and (6) confidence head.

A. Backbone Network

We used Resnet-101 as our backbone network and pre-
trained it on ImageNet [26]. As shown in Fig. FPN is
a top-down architecture with lateral connections, which will
generate pyramid features P to Py in different scales. We send
Ps to P; separately into the box head. On the other hand, Ps
to Ps is used in the basis head, and P, to P is used in the
stuff head. Detail will be mentioned in the following section.

B. Silhouette Features

Inspired by PolarMask [27] and Deep snake [24] which
formulate the instance segmentation problem as predicting
contour, the silhouette can be viewed as a critical feature in the
segmentation task. To enrich the prediction result, we proposed
a silhouette-based enhancement feature. The example is shown
in Fig.

During inference time, getting the silhouette feature be-
comes difficult since we do not have the ground truth of the
image. Therefore, it is necessary to refer to silhouette features
and learn silhouette-based enhancement features during the
training process, which can be viewed as binary classification
on every pixel. We use the Laplacian filter as edge detection



to generate the silhouette of things and stuff from the ground
truth of panoptic segmentation. As discussed in [20], the Dice
coefficient is a better choice for predicting sharp contours. The
silhouette loss is defined as follow:

2fowpigi+6
Eflxwpf-i-ZHXW 2+6

(D

Score =

»Csilhouette =1— Score (2)

In the equation above, Score stands for silhouette score, and
the higher value means the higher similarity between the two
silhouettes. p € H x W is the silhouette-based enhancement
features predicted from the model, and g € H x W denotes
the silhouette feature generated from the ground truth with
the Laplacian filter. € is a Laplace smooth that can be utilized
to prevent division by zero and also can be used to avoid
overfitting.

(b) Ground truth

(c) Silhouette feature of things (d) Silhouette feature of stuff

Fig. 2: The example of silhouette feature
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Fig. 3: Stuff head

C. Stuff Head

We use P, ~ Ps; with element-wise addition to make
stuff segmentation prediction. In this branch, the objects that
belong to thing classes are viewed as a particular “other”
class. Hence, the output of stuff segmentation prediction is
S € REXWx(Nsturs+1) where Ny gy stands for the class
number of stuff. As shown in the bottom part of Fig. [3]
apart from the stuff segmentation prediction, we have an
auxiliary silhouette feature prediction. The output of it is
E € REXWX1 This auxiliary branch can help the stuff head
feature map contain the silhouette enhancement feature. We
do not need this auxiliary branch during inference, so it does
not make extra time latency. We use the cross-entropy loss
for our segmentation task and silhouette loss for our auxiliary
branch.

D. Box Head

Inspired by the efficient instance segmentation framework
BlendMask [28]], our instance segmentation branch predicts the
mask attention maps parallel with the box detection and com-
bines them with the bases of the image. Following BlendMask,
we use FCOS [29] as our box detection head. Here, we use
Ps ~ P; from the feature pyramid network as the input. Each
layer uses the same box head architecture separately to make
predictions. As shown in Fig. @} there include four predictions
in this head: classification confidence score, center-ness score,
box position regression, and corresponding attention map for
each bounding box. The details of them are omitted here and
can be seen in BlendMask [_28]].

E. Basis Head

Instead of generating an instance mask for each foreground
object separately, we first predict a roughly mask for the entire
image. Those masks are the most critical feature in the entire
image. Following the design of the stuff head, we use P3 ~ P;
as our input and element-wise addition is used to combine
different feature maps.

In this branch, we also want to make sure the bases
can include silhouette-based enhancement features. Hence, an
additional silhouette basis has been proposed here to predict
the contour of the entire image. On the other hand, to make
sure the pyramid feature includes the instance-related feature.
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Fig. 4: Box head
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We add an auxiliary convolution layer with the input of feature
P35 and predict the semantic information for the thing classes.

F. Mask Head

Mask head aims to produce a mask for each instance
detected by the box head in the image. There are two input
sources for the head, including the attention map predicted by
the box head and the image bases. We first do post-processing
with non-maximum suppression(NMS) on the box head ac-
cording to the FCOS score. After pruning, only N,
boxes and their corresponding attention maps will remain.

Recall that our box head predicts a bounding box and
attention maps for each pixel. They both use a 1-D vector
to represent each pixel’s prediction. First, we reshape each
attention map along the channel into Npqses 2-D image, fol-
lowing an up-sample operation. Then using a softmax function
to normalize each attention map and get the attention score
maps S € R?6%56 Those operations are shown in the upper
part of Fig.[f] Next, we use ROIAlign [[]] to crop bases feature
with bounding box. Hence, we get the bases feature within the
instance F' € R5*56 which is shown in the bottom part of
Fig. [

After getting attention score maps S and instance-related
bases feature F, the instance’s mask logits M € R56%56 can
be produced by element-wise products between basis feature
and corresponding attention maps, then do the element-wise
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Fig. 6: Schematic diagram of mask head
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addition. Finally, we can use the sigmoid function and reshape
to the size same as bounding box prediction to get the instance
mask prediction. The entire process is shown in Fig. [f]

Npgses

M; = Z Sf@Fik, where i = 1... N5 3)
k=1

To ensure our mask prediction in the instance segmentation
task can contain silhouette features, we add an auxiliary
task here. It uses the mask logits M following two more
convolution layers to predict the silhouette feature.

G. Confidence Head

MS R-CNN has shown the effectiveness of using
the predicted IoU score. Furthermore, since the ground truth
mask of instance segmentation is contained the entire object,
including the occlusion region. Hence, the IoU between the
predicted mask for panoptic segmentation and the ground truth
of instance segmentation will become lower when the object is
occluded. Therefore, it can become a good solution in panoptic
segmentation. We further extend it to the silhouette score,
which we already mentioned in Eq. [I]

As shown in Fig. [7]] we use three resources to produce
our confidence score, namely, P3 from the feature pyramid
network, bases features with silhouette features, and mask
prediction. First and second, we use RolAlign with the
instance’s corresponding bounding box to crop the Rol fea-
ture from Ps; and bases features. Third, the mask logits M
from the mask head. After channel-wise connection, we use
four convolution layers following two fully-connect layers to
predict the IoU score and silhouette score. MSE loss is adopted
as our loss function in the confidence head.

The IoU score affects globally, while the silhouette score
only represents the quality of the mask. Hence, we formulate
our confidence score during inference time as follows, where
« is a hyper-parameter that balances class and IoU scores.
Moreover, the silhouette score will be considered only when-
ever two masks possibly belong to the same instance.

Mask Score = o x FCOS score + (1 — «) x IoU score (4)



IV. EXPERIENMENTS
A. Experimental Setup

1) Implementation Details: We implement our method
based on Pytorch with batch size 6 on a single GPU RTX 3090.
We freeze the batch normalization layers in the backbone and
use group normalization layers [31]] within the different heads.
The entire model is being trained in an end-to-end fashion
for 600k steps. The optimizer adopted SGD, and the initial
learning rate is set to 0.01 with a constant warm-up of 1k
iterations. Weight decay and momentum are set as 0.0001 and
0.9, respectively. The learning rate is reduced by a factor of
10 at iteration 120k, 420k, and 500k. The image is randomly
flip and rescale the shorter edge from 640 to 800 pixels.

2) Metrics.: We adopt the evaluation metric called panoptic
quality (PQ), which is introduced by [32]. Panoptic quality is
defined as:

P
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SQ RQ
B. Ablation Study

To verify the performance of our proposed, we conduct
the experiments with different settings in Table [l on the
CityScapes val set with single GPU GTX 1080ti. We adopted
BlendMask with stuff branch as our baseline model.

1) Mask Loss: In other instance segmentation works, they
often use cross-entropy as the sole loss function. Different
from them, we implemented IoU loss and silhouette loss
additionally to guide the instance mask prediction to have a
higher quality in area and shape. Since the instance branch
and the stuff branch have a shared backbone, we can find out
that the higher instance mask quality not only can improve
PQ™ but also increase PQS.

2) Mask Score: With the mask score module, we are using
the confidence score produced by the confidence head. In other
words, apart from the class confidence score, we also pay
attention to the IoU score and silhouette score. The « is set to
0.1 in the experiments. In our experiments, we can see that RQ
can increase with a small margin in most situations. Hence,
it can be explained as using the confidence head to get more
precise detection since the score is more representative of the
things.

3) Silhouette Feature: We add an extra silhouette-based
enhancement feature in the basis head. It can help the model
learn the silhouette feature for the entire image in the earlier
step. As shown in the table [[ after adding the module can
markedly improve PQ™. This represents that the silhouette-
based enhancement feature has a large impact on the instance
mask prediction quality.

4) Mask Auxiliary: We use an auxiliary task in our mask
head to guarantee the mask prediction contains a silhouette-
based feature. Since it does not need computation during the
inference time, it will not be a burden. Moreover, we can
find that adding this module into our model can improve
significantly, especially in semantic quality(SQ).

Class Score Confidence Score

Fig. 8: Visualization results of IoU score prediction on COCO
panoptic val set. The best view zoomed in on a color screen.

Image Stuff

Thing

Fig. 9: Visualization results of silhouette feature on COCO
panoptic val set

5) Silhouette Stuff: We also guide the stuff branch to get
a better mask prediction by silhouette feature. Compare with
the upper part and the lower part of the table, we can find
out that an extra auxiliary silhouette feature prediction can
significantly improve PQS'.

C. Analysis of Confidence Head

As shown in Fig. [8] we give the prediction result of the
confidence score from the confidence head to verify the effect.
In the example, we can see that surfboards have higher
confidence scores than the person. This means that surfboards
have a higher chance of getting the entire mask prediction
without any occlusion. In contrast, the person standing and
back to the picture has a lower confidence score since people
in front obscure his legs. Hence, the proposed confidence score
can be more representative of instance reality.

On the other hand, as shown in Table we do the
experiments on the confidence head hyperparameters «, which
balances class and IoU scores, with our ablation study setting.
It shows that just a tiny weight of IoU score can help to
improve the performance. We set the o equal to 0.8 in all
other experiments if not specify.

D. Analysis of Silhouette Feature

We further make a visualization of what does the model
has learned. As shown in Fig. [0 we separate the silhouette
feature of stuff and thing. The silhouette for the things can
pay more attention to the foreground object but omits the



TABLE I: Ablation study on CityScapes panoptic val set.

Mask Mask  Silhouette Mask  Silhouette Th St

Loss Score Feature Aux Stuff PQ PQ PQ SQ RQ
- - - - - 57.88 55.18 59.84 79.99 70.74
v 5825 5545 60.29 80.04 71.12
v v 5844 5590 60.30 80.06 71.35
v v 5891 5576 61.20 80.27 71.85
v v v 59.10 5577 61.53 80.01 72.36
v v v 59.00 5550 61.54 80.43 71.87
v v v v 59.15 5573 61.63 80.63 71.86
v v 59.03 5527 61.76  80.51 7195
v v v 59.07 5533 61.78 80.64 71.90
v v v 59.51 5548 6244 80.52 72.56
v v v v 59.60 55770 6244 80.48 72.70
v v v v 59.83 55.65 62.87 80.47 7295
v v v v v 59.95 5587 6291 80.50 73.06

TABLE II: Results with different « on CityScapes panoptic
val set

a | PQ  PQ™ PQY  SQ RQ
0.1 | 5629 47.18 6291 7985 69.01
02 | 5711 49.14 6291 7992 70.03
03 | 5778 5071 6293 80.02 7081
04 | 5798 5122 6291  80.08 71.02
05 | 5907 5379 6290 8026 72.20
06 | 59.61 5510 6289 8044 72.72
07 | 5971 5535 6288 8045 72.83
08 | 5995 5587 6291 80.50 73.06
09 | 5977 5548 6289 8055 72.81
1.0 | 5955 5494 6290 80.62 72.49

background information. However, the stuff-related silhouette
features cannot distinguish different instances well. In contrast,
they have a higher reaction on every junction, regardless of
foreground or background.

E. Qualitative Results

We give some qualitative results of SE-PSNet, as presented
in Fig. |10} These results show that our model can have a better
quality mask, especially on the silhouette of the instance. For
instance, the woman’s hands can be segmented well in the first
row, and the sheep in front of the second row have the same
situation. Moreover, the first row shows the importance of the
proposed confidence score when the big object overlaps with
a small instance, i.e., man and tie.

F. Quantitative Results

We compare our network on COCO panoptic dataset with
panoptic quality and inference speed. Specifically, we test
with a single-scale 800 x 1333 image. As shown in Table
compared with recent approaches, SE-PSNet has a fast
inference time since our proposed module does not need extra
effort during inference time. In addition, we get the compet-
itive result on the overall performance. Without performing
horizontal flipping and multi-scale input images for testing,
we outperform the others on the semantic quality, which is
the main issue we want to improve.

We further do additional experiments on instance segmen-
tation to show its efficiency of mask quality. As shown in

Ours

Baseline

Fig. 10: Qualitative results compare to the baseline model

Table [[V] apart from AP, we get a good performance in AP7s.
It represents that when the standard becomes stricter, we can
still have a high-quality performance since we pay attention
to the mask quality and silhouette feature during training.

V. CONCLUSION

In this work, we propose a Silhouette-based Enhancement
Feature for Panoptic Segmentation Network, which tackles the
irregular mask prediction near the boundary. The proposed
silhouette feature aims to focus on the contour of masks,
and the new mask score can be more representative of mask
quality. Furthermore, the auxiliary task used to guide the
prediction brings improvement without causing overhead dur-



TABLE III: Panoptic segmentation results on COCO panoptic dataset

Val Test-dev
Method Backbone [ PQ  PQ™ PQ™ [ time (ms) [| Backbone [ PQ  PQ™ PQS SQ RQ
Proposed-free
DeeperLab [[15] Xcep-71 338 - - 94 Xcep-71 343 375 296 771 431
Panoptic-DeepLab [17] Xcep-71 39.7 439 332 132 Xcep-71 414 451 359 - -
SSAP (18] R-101 36.5 - - - R-101 369  40.1 320 80.7 448
Axial-DeepLab [33] Axial-R-L | 434 485 356 - Axial-R-L | 43.6 489  35.6 - -
Panoptic FCN [19] R-50 436 50.0 35.6 80 R-101 455 514 364 - -
Proposed-based
JSIS [34] R-50 269 293 233 - R-50 272 296 234 719 359
TASCNet (2] - - - - - R-101 407 470 310 785 50.1
AUNet [3] R-50 39.6  49.1 25.2 - R-101 452 544 325 81.0 56.1
Panoptic-FPN [4] R-101 403 475 295 - R-101 409 483 297 - -
UPSNet [6] R-50 425 48,6 334 167 R-101* 466 532 367 805 569
OANet [[7] R-101 407 599  26.6 - R-101 413 504 277 - -
OCFusion [8] R-101 43.0 511 30.7 156 X-101* 46.7 540 357 - -
AdaptIS [9] X-101 423 492 318 - X-101 428  50.1 31.8 - -
SOGNet [10] R-50 437 506 332 179% R-101* 47.8 - - 80.7 57.6
EPSNet [11] R-101 386 435 313 51 R-101 389 441 31.0 - -
Unifying [12] R-50 434 48,6 355 - R-101 472 535 377 811 572
CondInst [13]] - - - - - R-101 46.1 547 332 - -
Ours R-101 444 51.8 332 75 X-101 464 538 353 817 554

* Using deformable convolution in the backbone. # We use the code published by the author to calculate with RTX 2080ti.

TABLE IV: Instance segmentation results on COCO ftest-dev

Method [ Backbone [ AP APsg APrs
Two-stage
Mask R-CNN [1] R-101-FPN 35.7 58.0 37.8
MS R-CNN [30] R-101-FPN 38.3 58.8 41.5
HTC [35] R-101-FPN 39.7 61.8 43.1
BMask R-CNN [23] R-101-FPN 37.7 59.3 40.6
BCNet [36] R-101-FPN 39.8 61.5 43.1
One-stage
YOLACT [37] R-101-FPN 31.2 50.6 32.8
TensorMask [38] R-101-FPN 37.1 59.3 394
PolarMask [27] R-101-FPN 32.1 53.7 33.1
CenterMask (Wang) [39] | Hourglass-104 | 34.5 56.1 36.3
CenterMask (Lee) [40] R-101-FPN 38.3 - -
SOLO [41] R-101-FPN 37.8 59.5 40.4
BlendMask [28]] R-101-FPN 38.4 60.7 413
SOLOV2 [42] R-101-FPN 39.7 60.7 429
CondlInst [13]] R-101-FPN 39.1 60.8 419
Ours R-101-FPN 39.3 60.6 423
Ours X-101-FPN 414  63.1 44.7

ing

inference. We do experiments on the COCO dataset and

CityScapes dataset. Those, including panoptic segmentation
and instance segmentation, show that we achieve competitive
performance with a much faster inference time. Also, SE-
PSNet is able to predict a high-quality mask on the boundary
of instance which help us distinguish different instance easier.
In the future, we will further extend this work to autonomous
driving, helping the computer detect the boundary of different
instances better.
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