
Proposing a speech to gesture translation architecture for 
Spanish deaf people 

R. San-Segundo , J.M. Montero, J. Macias-Guarasa, 
R. Cordoba, J. Ferreiros, J.M. Pardo 

Grupo de Tecnologia del Habla, Dpto. Ingenieria Electronica, E.T.S.I. Telecomunicacidn, UPM, 

Abstract 

This article describes an architecture for translating speech into Spanish Sign Language (SSL). The architecture 
proposed is made up of four modules: speech recognizer, semantic analysis, gesture sequence generation and gesture 
playing. For the speech recognizer and the semantic analysis modules, we use software developed by IBM and CSLR 
(Center for Spoken Language Research at University of Colorado), respectively. Gesture sequence generation and gesture 
animation are the modules on which we have focused our main effort. Gesture sequence generation uses semantic concepts 
(obtained from the semantic analysis) associating them with several SSL gestures. This association is carried out based on a 
number of generation rules. For gesture animation, we have developed an animated agent (virtual representation of a 
human person) and a strategy for reducing the effort in gesture animation. This strategy consists of making the system 
automatically generate all agent positions necessary for the gesture animation. In this process, the system uses a few main 
agent positions (two or three per second) and some interpolation strategies, both issues previously generated by the service 
developer (the person who adapts the architecture proposed in this paper to a specific domain). Related to this module, we 
propose a distance between agent positions and a measure of gesture complexity. This measure can be used to analyze the 
gesture perception versus its complexity. With the architecture proposed, we are not trying to build a domain independent 
translator but a system able to translate speech utterances into gesture sequences in a restricted domain: railway, flights or 
weather information. 

1. Introduction 

Speech and language technologies have always 
had an important relationship with their corre­
sponding animated agents (virtual representations 
of a human person). These technologies provide 
them with new capabilities that improve the inter­
face between animated agents and the end users 
(people who interact with the system to obtain some 



service). The users can interact with animated 
agents using the common language. A community 
of scientists worldwide is developing and evaluating 
virtual humans embedded in spoken language 
systems. These systems provide a great variety of 
services in very different scenarios. Some research­
ers have embedded animated agents in information 
kiosks in public places [1]. At HTK in Stockholm, 
Joakim Gustafson [2], Bjorn Granstrom [3] and 
their colleagues have developed several multimodal 
dialogue systems where animated agents were 
incorporated to improve the interface. These include 
Waxholm [4] (a travel planning system for ferry­
boats in the Stockholm archipelago), August [5] (an 
information system at the Culture Center in Stock­
holm), and AdApt [6] (a mixed-initiative spoken 
dialogue system, in which users converse with a 
virtual real estate agent to locate apartments in 
Stockholm). 

Education is another domain in which language 
and animated agent technologies can be combined. 
At this point, it is necessary to remark that there is a 
CSLU Toolkit which integrates an animated agent 
named Baldi. This toolkit has been developed at 
CSLU (Center of Spoken Language and Under­
standing, Oregon Graduate Institute, OGI) [7,8] 
which is now being expanded at CSLR (Center for 
Spoken Language Research at University of Color­
ado) [9]. This toolkit facilitates the speedy develop­
ment of interactive books with multimedia resources 
and natural interaction. Nowadays, researchers 
have generated systems and architectures for 
representing and managing behaviors of animated 
agents. In [10,11], the authors present a good 
overview of computational models for developing 
believable virtual humans. 

Not only research centers but also companies like 
Microsoft and IBM are interested in animated 
agents. Microsoft has developed a software plat­
form [12] where users can use several animated 
agents or create new ones (http://www.microsoft. 
com/msagent/). This platform began with the 
Persona Project [13]. IBM is also interested in 
technology which will be the future for human-
computer interfaces. In both the aforementioned 
systems, the synergy between language and virtual 
agent technologies is due to the fact that virtual 
humans offer a friendlier computer-user interface. 
This synergy becomes stronger in our case where we 
want to develop a system to translate speech into 
gestures for Deaf people. In the recent years several 
groups have shown interest in machine translation 

for Sign Languages, developing several prototypes 
based on different language translation techniques: 
example-based [14], rule-based [15], full sentence 
[16] or statistical [17] approaches. In a speech to sign 
language translation system, the virtual agent 
appears as an essential part of the system. It 
represents the gestures obtained from the semantic 
analysis of the recognized words. All of the 
aforementioned agent platforms suffer the incon­
venience of the great effort needed to develop the 
agent animations. This is one of the problems we 
focus on in this paper: the development of a 
platform where minimal effort is required to create 
a new agent animation. This is an important aspect 
because the amount of gestures required by our 
system is higher than those of the aforementioned 
systems. 

Sign Languages vary greatly depending on the 
country and even between different regions within 
the country. In 1960, Professor William Stokoe [18] 
presented the first conclusions from several studies 
on ASL (American Sign Language). After these 
studies, new works appeared not only in the USA 
[19,20] but also in Europe [21-23], Africa [24] and 
Japan [25]. In Spain, during the last twenty years, 
there have been several proposals for normalizing 
Spanish Sign Language (SSL), but none of them has 
been very well received by the Deaf community. 
These proposals tend to constrain the sign language, 
limiting its flexibility. In 1991, MA. Rodriguez [26] 
carried out a detailed analysis of SSL illustrating the 
main characteristics. She detailed the differences 
between the sign language used by Deaf people and 
the standardization proposals. This work has been 
one of the main studies on SSL and it has been the 
main reference for our work. Because of variations 
in SSL (even between different regions in Spain), we 
have proposed a flexible architecture which is easy 
to modify. The system's behavior is denned in 
auxiliary text files also easily modified by system 
developer (the person who adapts the architecture 
proposed in this paper to a specific domain): a 
context-free grammar, generation rules and gesture 
animations (Fig. 1). 

In Section 2, we present an overview of the 
architecture describing the principal modules. Sec­
tion 3 describes the speech recognizer. Section 4 
presents the Phoenix parser. In Section 5, the 
gesture sequence generation module is described. 
Section 6 shows the gesture-playing module and the 
tools needed to generate the agent animations. 
Finally, Section 7 summarizes the main conclusions 

http://www.microsoft


SPEECH TEXT CONCEPTS GESTURES 

SEMANTIC 
ANALYSIS 

GESTURE 
SEQUENCE 

GENERATION 

Context Free 
Grammar 

Generation 
Rules 

POSITION 
GENERATION 

© POSITIONS 

Fig. 1. Speech to gesture translation architecture. 

of the work and Section 8 presents several avenues 
of further research. 

2. System overview 

In Fig. 1, we show the architecture proposed for 
translating speech into gestures for Deaf people. In 
this diagram, we have remarked on the four main 
modules, which carry out the four steps needed in 
the translation process: speech recognition, seman­
tic analysis, gesture sequence generation and gesture 
playing. The position generation and gesture 
animation modules permit the animations needed 
by the gesture-playing module to be generated. 

The first module (speech recognition) converts 
speech utterances into text words. For this module, 
we have used the latest version of the IBM ViaVoice 
software for Spanish. It is a voice recognition 
product that includes essential dictation, and 
command/control features. This module uses lan­
guage and acoustic models adapted to Spanish 
pronunciation. 

The semantic analysis module carries out a 
semantic evaluation of the text sentence (output 
from the speech recognizer) extracting the main 
concepts related to the application domain. For this 
module, we have used the Phoenix v3.0 parser 
developed at CSLR. This parser uses a context-free 
grammar to extract the semantic concepts from the 
word sequence. 

The gesture sequence generation module pro­
cesses the semantic analysis output and assigns a 
sequence of gestures to the semantic concepts. In 
this process, we consider four situations: one 
concept is mapped onto a unique gesture, one 
concept generates several gestures, some concepts 
are mapped onto a unique gesture, and finally, 
several concepts generate several gestures. We have 
studied different analyses of SSL [26,27] and we 
propose solutions for the four aforementioned 
situations. To resolve these situations, we consider 
both the Context-Free Grammar (semantic 
analysis module) and the Generation rules (gesture 
sequence generation module). The semantic analysis 
and the gesture sequence generation modules are 
designed for restricted domain services, i.e. the 
Context-Free Grammar and the Generation rules 
used in these modules do not contain all the 
possibilities for any interacting context. When the 
number of interacting contexts grow, the system 
complexity increases causing a drop in perfor­
mance. Because of this, these modules must be 
adapted to a specific domain like railway, 
flight or weather information in order to guarantee 
a good performance. In the same way, although the 
IBM speech recognizer can be used for a wide 
variety of contexts, the performance increases 
greatly when we adapt its language and acoustic 
models to the application domain and to the 
speaker. 



In the fourth module, an animated agent signs the 
gesture sequence. This agent is a very simple 
representation of a human being but it permits the 
gestures of the sign language to be represented 
properly. For each gesture, the system plays a 
different agent animation (all gesture animations 
must be created previously). Some companies and 
research centers have developed animated agents for 
human-computer interfaces. The main problem 
with these agents is the great effort needed to create 
an animation. Each animation needs at least 20 
agent positions per second to guarantee a contin­
uous movement. In this paper, we propose a 
strategy for generating animations with minimal 
effort. In our proposal, the system automatically 
creates a significant percentage of agent positions 
needed to generate the animation. The system 
developer only defines a few positions manually 
(main positions) and several interpolation strategies 
(trajectories and timings). The system uses these 
main positions (two or three per second) and the 
interpolation strategies to create all agent positions 
needed in the continuous movement. 

3. Speech recognizer 

For this module we have used the latest version of 
the IBM [28] ViaVoice software for Spanish: the 
release 8 Standard Edition [29]. IBM ViaVoice 
Standard Edition is a voice recognition product that 
includes essential dictation, and command/control 
features. This software permits users to dictate, edit, 
correct, and format text in a speech-enabled word 
processor, SpeakPad or directly into Microsoft 
Word 2002, Word 2000, and Word 97 to create 
letters, reports, and other documents easily. With 
this software, it is also possible to control applica­
tions using the voice. In our case, we use IBM 
ViaVoice for controlling our program (command 
features) and for dictating the sentences that will be 
translated into gestures (dictation features). The 
main features of the IBM ViaVoice 8 Standard 
Edition are: 

• It comes with a 100,000 word basic vocabulary 
that can be customized to add new words, 
addresses, acronyms, and other personal phrases 
and expressions. The developer can increase this 
vocabulary. IBM ViaVoice can manage up to 
164,000 active words working in real time. 

• It knows the orthography and pronunciation of 
475,000 words. 

• The recognition engine incorporates a language 
model capable of distinguishing homophones. 

• This speech recognition software permits user 
adaptation of both the acoustic and language 
models. Several user profiles are possible on the 
same PC. 

• IBM ViaVoice permits dictation voice shortcuts 
to be created to insert blocks of text (e.g. 
greetings, addresses, salutations and quotes) 
directly into your dictation documents. 

• It incorporates noise models and background 
noise adaptation to deal with noise produced by 
the user (breath, lip smack, tongue click, etc.) and 
the environment. 

As previously stated, the translation architecture 
proposed in this paper is oriented towards develop­
ing restricted domain applications such as travel or 
cinema ticket reservation. In these cases, the 
vocabulary used by the IBM recognizer must be 
adapted to these specific domains (eliminating 
useless words). Additionally, the acoustic and 
language models can be adapted to the speaker. 
These two facts allow us to obtain high word 
accuracy. 

4. Semantic analysis 

This step tries to extract the main semantic 
concepts from the text sentence (output from the 
speech recognizer). For this module, we have used 
the Phoenix v3.0 parser developed at CSLR by 
Wayne Ward [30-33]. The Phoenix parser is 
designed for the development of simple, robust 
Natural Language interfaces to spoken language 
applications. Often, spontaneous speech utterances 
are ill formed causing the recognizer to make 
recognition errors. Because of this, the parser needs 
to be robust in order to deal with errors in 
recognition. 

Phoenix parses each input utterance into a 
sequence of one or more semantic frames. The 
system developer (the person who adapts the 
architecture proposed in this paper to a specific 
domain) must define a set of frames and provide 
grammar rules that specify the word strings that can 
fill each slot in a frame. This information is used by 
the parser engine to map input word strings onto a 
sequence of semantic frames. A Phoenix frame is a 
named set of slots where the slots represent related 
pieces of information. A frame represents some 
basic type of action or object for the final speech to 



Frame: Short meeting 
Nets: 

[Greetings] -
[Leave-takings] 
[Time questions] 
[Time answers] 

Network of Greetings 

Hello. 
Hi [Greetings] " \ ~ — * Hi — ""* 

^ G o o d [period_of_day] ^ 
• <end> 

Fig. 2. Example frame for short meetings. 

Input: Good afternoon sir, could you tell me the time?, please 

Parse: Frame: Short meetings 
[Greetings](good [period_of_day](afternoon)) 
[Time questions](tell me [time](the time)) 

Fig. 3. Example-parsed output. 

sign language application. Fig. 2 shows an example 
frame for short meetings. Slots in a frame represent 
information that is relevant to the action or object. 
Each slot has an associated Context-Free Grammar 
that specifies word string patterns that match the 
slot (grammar rules or nets). The grammar rules are 
compiled into Recursive Transition Networks 
(RTNs) and the slot name will be the root of the 
corresponding semantic parse tree. In this parser, it 
is possible to define new slots within other slots 
implementing a hierarchical structure. An example-
parsed frame is shown in Fig. 3. 

The parsing process is a dynamic programming 
algorithm where grammars for slots are matched 
against a word string to produce a slot graph. The 
set of active frames defines a set of active slots. Each 
slot points to the root of an associated RTN. These 
networks are matched against the input word 
sequence by a top-down RTN chart-parsing algo­
rithm. The parser proceeds from left to right in an 
attempt to match each slot network starting with 
each word of the input, as in 

For (each word of input) 
For (each active slot) 
match_net (slot, word) 

The function match_net is a recursive function 
that matches an RTN against a word string 
beginning at the specified word position. The 
function produces all matches for the network 
starting at the word position and may have several 
different endpoints. The networks are not designed 
to parse full sentences, just sequences of words. 
Because of this, the parser is very robust for use 

with automatic speech recognizers. The RTNs for 
the slots call other nets in the matching process. 
Each time a net match is attempted (all nets, not just 
slots), this is noted in the chart. All matched 
networks are added to the chart as they are found. 
Any time a net match is attempted, the chart is first 
checked to see if the match has been attempted 
before. When a slot match is found, it is added to 
the slot graph. Each sequence of slots in the slot 
graph is a path. The score or metric for the path is 
the number of words accounted for by the sequence. 
Words are not skipped in matching a slot, but 
words can be skipped between the matched slots. 
The graph growing process prunes poor scoring 
paths. The pruning criteria are firstly the number of 
words accounted for and second, the degree of 
fragmentation of the sequence. If two paths cover 
the same portion of the input and one accounts for 
more words than the other, the less complete is 
pruned. If the two paths account for the same 
number of words, and one uses fewer slots than the 
other, the one with more slots is pruned. The 
resulting graph represents all of the sequences found 
that have a score equal to the best. The sequences of 
slots represented by the graph are then grouped into 
frames. This is done simply by assigning frame 
labels to the slots. Again in this grouping, the least 
fragmented parse is preferred. For example, if two 
parses each have five slots, and one uses two frames 
and the other uses three, then the parse using two 
frames is preferred. The result is a graph of slots, 
each labeled with one or more frame labels. Each 
path through the graph, scoring equally, is a parse. 
This mechanism naturally produces partial or 
fragmented parses. The dynamic programming 



Good afternoon sir 

\^^**!<r~-
could you 

*\H£° 
tell 

H 
me 

~̂ -

the time 

^ M M s l 

? . Pi 

?sl#i 

ease 

« « . 

[Timt 

[Greetings] 

questions] 

^ G o o c 

-c 

_^ Hello ^ ^ 

* Hi 
[period_of_day] 

What time is it ^ 

tell me [time] •— 

•*• <end> 

/ 

"*• <end> 

Fig. 4. The matching process. 

[Greetings](good [period_of_day](afternoon)) {G_GREETINGS} 

Independent of the word string which generated the [Greetings] concept, the system 
always produces the same gesture: {G_GREETINGS} 

[Greetings](good [period_of_day](morning)) -

[Greetings](good [period_of_day](afternoon)) 

[Greetings](hello) 

— • {G_GREETINGS_MORNING} 

• {G_GREETINGS_AFTERNOON} 

•> {G_GREETINGS_HELLO} 

In this case, the gesture is different depending on the slot content. 

Fig. 5. Assigning a unique gesture to a semantic concept. 

search produces the most complete, least fragmen­
ted parse possible, given the grammar and the input 
Fig. 4. 

The parser segments the input at natural break­
points and carries out garbage collection at its data 
structures. This allows it to parse entire reports as 
single utterances if necessary. The processing speed 
is generally linear with the length of the input. More 
details on the parser can be consulted in [32]. 

5. Gesture sequence generation from semantic 
analysis 

The semantic analysis output is a sequence of 
parsed slots: each parsed slot is considered a 
semantic concept. In this step, the gesture sequence 
generation processes the semantic analysis output to 
obtain the final gestures that the animated agent will 
sign. In this process, we describe four situations: 

5.1. One semantic concept corresponds to a specific 
gesture 

In this case, a semantic concept (parsed slot) is 
directly mapped onto a specific gesture. The 

translation is simple and it consists of assigning 
one gesture to each semantic concept. This gesture 
can be a default translation, independent of 
the word string, or can be different depending 
on the word string from which it is generated 
(Fig. 5). 

5.2. Several semantic concepts are mapped onto a 
unique gesture 

The second situation appears when several con­
cepts generate a unique gesture. This situation 
should be solved in the previous step (semantic 
analysis). The solution is to unify the concepts 
(slots) in the parser grammar (resulting in just one 
concept or slot) and to proceed as in the previous 
situation (Fig. 6). 

The Phoenix parser (semantic analysis) provides 
the possibility of organizing the concepts (slots) 
into a hierarchical structure. This fact allows 
us to establish more complicated relationships 
between them in order to generate a unique gesture. 
As in the previous situation, the gesture being 
generated may or may not differ according to the 
slot content. 



[Asking](tell me) [Time] (the time) {G_ASK-TIME} 

Two concepts ([Asking] and [Time]) together generate a unique gesture. To solve the 
problem, we unify both slots in the parser grammar and we proceed as in the previous 

situation. 

[AskingTime](tell me the time) {G_ASK-TIME} 

Fig. 6. Assigning a unique gesture to several semantic concepts. 

ACTION TENSE 

/ played football yesterday 
[Subject](l) 
[Play](played) 
[Football](football) 
[Date](yesterday) 

{G_PAST} {G_l} {G_PLAY} {G_FOOTBALL} {G_DATE_YESTERDAY} 
• {GJ} 
• {G_PAST} {G_PLAY} 
• {G_FOOTBALL} 
• {G_DATE_YESTERDAY} 

In this example, the verb generates 2 gestures: action and tense. The tense gesture must be 
introduced at the beginning of the gesture sequence. The sign language distinguishes 3 verb tense: 
past, present and future. The default tense is present and it does not need to be assigned. In the 
other cases, it is necessary to introduce a tense gesture at the beginning of the sentence. 

SUBJECT 

In Spanish (as opposed to English), it is quite common to omit the subject of the verb. This fact does 
not cause any ambiguity because the verb conjugation is different depending on the action subject. In 
these cases, the verb concept must generate 3 gestures: term, subject and action. In the previous 
example, we could omit the subject in Spanish: 

Jugue al futbol ayer. (I played football yesterday) 

Jugue al futbol ayer 
[Play](jugue) 
[Football](futbol) 
[Date](ayer) 

GERUND 

{G_PAST} {G_l} {G_PLAY} {G_FOOTBALL} {G_DATE_YESTERDAY} 
• {G_PAST} {G_l} {G_PLAY} 
• {G_FOOTBALL} 
^ {G_DATE_YESTERDAY} 

For indicating that the action is (or was) in process, the gesture associated with the verb action is 
repeated twice. 

/ was playing football when you arrived 

{G_PAST} {G_l} {G_PLAY} {G_PLAY} {G_FOOTBALL} {G_PAST} {G_YOU} {G_ARRIVE} 
[Subject](l) 
[Play](played) 
[Football](football) 
[Subject](you) 
[Arrive](arrived) 

{GJ} 
{G_PAST} {G_PLAY} {G_PLAY} 

{G_FOOTBALL} 
{G_YOU} 

{G_PAST} {G_ARRIVE} 

Fig. 7. Type of gesture sequences generated by verb concepts. 

5.3. One semantic concept generates several gestures 

The third situation occurs when it is necessary to 
generate several gestures from a unique concept. 
This problem strongly justifies the need for the 
gesture sequence generation module. Similar to 
previous sections, the gesture sequence and its order 
can depend on the concept and its content, or just 

on the concept. This situation appears in many 
translation issues: 

• Verbs. A verb concept generates a gesture related 
to the action proposed by the verb and some 
gestures provide information about the action 
tense (past, present or future), the action subject 
and gerund action (Fig. 7). 



I need furniture for my house {G_l} {G_NEED} {G_TABLE} {G_CHAIR} {G_MY} {G_HOUSE} 

[Subject](l) 
[Need](need) 
[Furniture](furniture) 
[Possessive](my) 
[House](house) 

{G_l} 
{G_NEED} 

{G_TABLE} {G_CHAIR} 
{G_MY} 

{G_HOUSE} 

In this example, the furniture concept has no associated gesture so it must be represented by several 
gestures related to specific nouns (table and chair) included in this general noun. 

Fig. 8. Gestures for general nouns not presented in the sign language. 

[Clay] {G_LAND} {G_WITH} {G_WATER} 

[Quarry] {G_STONE} {G_EXCAVATE} {G_MOUNTAIN} 

[Burrow] {G_HOLE} {G_EXACTLY} {G_RABBIT} {G_HOME} 

[Fence] {G_GREEN} {G_DEFENSE} 

Fig. 9. Examples of Lexical-Visual Paraphrases. 

General and Specific Nouns. In sign language 
there is a tendency to refer to objects with high 
precision or concretion. As a result of this, there 
are numerous domains where several specific 
nouns exist, but there is no general noun to refer 
to them collectively. For example, this happens 
with metals: there are different gestures to refer 
to gold, silver, copper, etc. but there is no general 
gesture to refer to the concept of metal. The same 
thing happens when considering furniture: there 
are several gestures for table, chair, bed, etc. but 
there is no general gesture to refer to the concept 
of furniture. This problem is solved in sign 
language by introducing several specific gestures 
(Fig. 8). 

Lexical-Visual Paraphrases. Frequently, new 
concepts (in Spanish) appear and they do not 
correspond to any gesture in sign language. In 
order to solve this problem, Deaf people use 
paraphrases to represent a new concept with a 
sequence of known gestures. This solution is the 
first step for representing a new concept. If this 
concept begins to appear frequently, the gesture 
sequence will be replaced by a new gesture for 
reducing the representation time. Some examples 
of Lexical-Visual Paraphrases are shown in 
Fig. 9. 

Complex Signs. Similar to the paraphrases, 
complex signs are made up of several gestures. 
Each of theses gestures can be used indepen­
dently but they are represented together in order 

[Week-end] 

[Hospital] 

[Democracy] 

{G_SATURDAY} {G_SUNDAY} 

{G_PATIENT} {G_HOUSE} 

{G_VOTE} {G_LIBERTY} 

Fig. 10. Examples of Complex Signs. 

to show another concept. Some examples are 
shown in Fig. 10. 
The gestures are language representations which 
are more difficult to memorize and distinguish 
than words. Because of this, the gesture dic­
tionary is smaller than the Spanish word 
dictionary. This fact makes it necessary to 
combine gestures (complex signs) in order to 
represent other concepts. 
Date and Time. As it is shown in Fig. 11, a date 
representation can be made with one or several 
gestures. The time generally requires several 
gestures for a full representation. 
Emphasis. When you want to emphasize some 
aspect of a sentence, the way of doing so is by 
repeating the associated gesture. For example, if 
we want to emphasize the possessive "my" in the 
sentence "this is my house", we should repeat the 
associated gesture. Nowadays, the commercial 
speech recognizers do not detect emphasis or 
emotion in the speech, so this aspect cannot be 
translated into sign language. We expect that this 



[Date](tomorrow) 

[Date](May 3rd, 2001) 

[Time](4:35) 

[Time](6:45) 

{G_TOMORROW} 

{G_MAY} {G_THIRD} {G_TWO} {G_THOUSAND} {G_ONE} 

{G_HOUR} {G_FOUR} {G_AND} {G_THIRTY} {G_FIVE} 

{G_HOUR} {G_SEVEN} {G_QUARTER_TO} 

Fig. 11. Dates and Times examples. 

[House](houses) 

[Apple](apples) 

[Car](cars) 

{G_HOUSE} {G_HOUSE} 

{G_SEVERAL} {G_APPLE} 

{G_CAR_2HANDS} 

Fig. 12. Plural noun examples. 

characteristic can be available in the near future. 
• Plural Nouns. There are several ways of specify­

ing an object in plural (all of them with the same 
meaning): repeating the gesture, introducing an 
adverbial gesture or representing the gesture 
with both hands. In Fig. 12, we show several 
examples. 

• Gender. A new gesture can be introduced into 
the sequence to indicate the gender of some 
object. Generally the gender can be deduced by 
context and it is not necessary to specify it. This 
gesture appears when the gender is necessary for 
the meaning or we want to remark on this fact. 

5.4. Several semantic concepts generate several 
gestures 

Finally the most complicated situation appears 
when it is necessary to generate several gestures 
from several concepts with certain relationships 
between them. Some examples are the followings: 

• Verb/action gesture depending on the subject of 
the action. For example, the verb "fly" is 
represented with different gestures depending 
on the subject of the action: bird, plane, butterfly, 
etc. 

• A similar situation crops up when the gesture 
associated when an adjective changes depending 
on the qualified object. For example, the gesture 
for the adjective "good" is different when 
referring to a person or a material thing. 

These cases, presented in this section, are less 
frequent than those presented in Sections 5.1-5.3. 

In our system, the cases presented in this section are 
solved by mixing the strategies carried out in 
Sections 5.2 and 5.3. First, we group the different 
concepts under a unique concept structure, and then 
we apply similar strategies as in Section 5.3, to 
generate a gesture sequence from a unique semantic 
concept structure. The characteristics of the sign 
language used by Spanish people have been 
extracted from [26] where we obtained an extended 
and detailed description. 

6. Gesture animation 

In order to represent the gesture sequence 
(generated in the previous module), we have 
developed an animated agent. This agent is a simple 
representation of a human person but it is detailed 
enough to represent the gestures used in sign 
language. In this section, we focus on the descrip­
tion of this agent and gesture design. Around the 
world, several companies and research centers have 
developed animated agents for human-computer 
interfaces. The main problem with these agents is 
the great effort needed to build an animation: it is 
necessary to generate several agent positions per 
second in order to obtain a continuous movement. 
One of the main issues dealt with in this section is 
the way to generate gesture animations from a very 
small number of agent positions. The main target 
for us has been to reduce drastically the effort in 
gesture design. 

6.1. The animated agent: AGR (agent for gesture 
representation) 

For representing the gestures, we have developed 
a very simple animated agent. This agent is made up 
by combining rectangles, circles and different sized 
lines (Fig. 13). 

The AGR is made up of five fixed points (the 
center of the circular head and the four points of the 
rectangular torso) and 60 mobile points: 18 for the 
right arm, hand and fingers, 18 for the left arm, 



Fig. 13. AGR: agent for gesture representation. 

NORMAL SAD SURPRISED RIGHT TURN 

WINK ANGRY HAPPY 

Fig. 14. Facial expressions. 

LEFT TURN 

hand and fingers, and 24 for the face representation 
(eyes, mouth, eyebrows and two hairs). 

6.2. AGR's head and face 

The AGR's head is represented by several lines 
compiled from 24 points and three circumferences: 
two for the pupils and another for the outline of the 

head. Each eye is made up of four points connected 
by four lines, and each eyebrow is a single line. The 
mouth is drawn using five points and five lines 
(two for the upper lip and three for the lower lip). 
The two hairs are represented by three points and 
two lines each (with the same point of origin). 
Although, they are not necessary, they help to 
reinforce the facial expression. The architecture has 



the possibility to hide the hair. This possibility is 
configurable by the system developer. In Fig. 14, we 
show different facial expressions. 

In order to simulate a head turn, it is necessary to 
change the position (inside the head) and the size of 
eyes, eyebrows and mouth (Fig. 14). 

6.3. AGR's arm and hand 

For the arm and hand representation, we use 18 
points and 15 lines. Two points represent the arm: 
shoulder and elbow. For the hand, we use 16 points: 
one for the wrist, two additional points for the palm 
of the hand and 15 for the fingers (knuckle, phalanx 
and tip). The forefinger and little finger knuckles 
coincide at the corners of the palms (Fig. 15). In 
order to distinguish the front (palm) and the back of 
the hand, we have incorporated the possibility of 
changing the color of the hand: white to refer to the 
front of the hand (palm) and gray to refer to the 
back (Fig. 15). 

The finger lines are drawn in a lighter shade of 
gray in order to identify their movements easily. 
Although the color of the back of the hand is the 
same as the color of the fingers, it is not a problem. 
In a normal movement, fingers are never bent over 
the back of the hand. 

Three articulating points per finger (knuckle, 
phalanx and tip) are enough to represent clearly 
the gestures in sign language. In Fig. 16, we show 
the hand letter positions (dactylography). 

In order to specify an agent position, we have 
developed a new tool where the system developer 
can modify and set up the AGR position: face, arm 
and hand positions. This tool has the following 
characteristics: 

• For each agent point or agent region, the system 
developer can define different representation 
planes (from zero to six). These planes represent 
the distance from the view point: six is the closest 
plane and zero the furthest away plane. This 

utility permits the developer to specify which 
lines are drawn first and which should be drawn 
subsequently. The tool begins drawing the lines 
and points associated with the lower representa­
tion plane. By default, when all the points are in 
the same representation plane, the program 
draws the agent parts in the following order: 
head, torso, right arm, right hand, left arm and 
finally, the left hand (wrist, palm and fingers). 

• The head, torso and palms are opaque regions. If 
another body part is in the same position as any 
of these regions, and it has a lower representation 
plane, it will not appear in the drawing. That 
region will hide this part of the body. 

• The position tool permits the developer to store/ 
recover any definition of agent position in/from a 
file. This is an important feature for the genera­
tion of the agent animation (see the next section). 

• In order to generate agent positions faster, the 
tool offers the possibility to store/recover several 
parts of the agent independently: head and right 
or left hands. It is possible to combine different 
face expressions with several hand gestures. 

• Furthermore, the tool provides a zoom utility to 
facilitate the design of details. 

When specifying the agent position, the program 
establishes limitations concerning the length of 
some parts: arm, fingers, eyebrow, etc. The target 
is to avoid generating extremely deformed gestures. 
It also checks some conditions, e.g. that eyes, 
eyebrow and mouth are within the head limits, or 
that the pupil is situated within the eye limits. 

6.4. Obtaining gesture animations from agent 
positions 

An animation is generated automatically from a 
very small set of agent positions. These are denned 
in advance using the tool described in the previous 
section. The main target of this module is to 
generate an animation using as few positions as 

Fig. 15. Arm and hand detail. 



A B C D E 

F G H I J 

^ ^ nr^ tf^ 
K L M N O 

4 «f-\ ^ r̂ 

Fig. 16. Signs for the letters. 

possible in order to reduce drastically the effort of 
generating gesture animations. A typical gesture 
takes approximately 2 s. This means that, consider­
ing 20 frames per second (for a continuous move­
ment), we should create 40 frames/agent positions 
for a typical gesture. In sign language, there are 
more than 5000 different gestures. Animation 
creation is no trivial task. In this paper, we propose 
a strategy that reduces this effort. The main idea is 
to define a small number of frames/positions 
(around four or five per gesture), and to generate 
the intermediate positions automatically. The pro­
gram creates these frames by interpolation. For any 
subsequence (positions created automatically be­
tween two positions defined by the developer), the 
system developer can specify different interpola­
tions. In order to design an interpolation, it is 
necessary to define two aspects: the trajectory and 
timing. 

<' FINAL 

INITIAL 

Fig. 17. Trajectory specification. 

6.5. Trajectory specification 

The developer can define the trajectory that any 
point of the agent body will follow when moving 
from the initial to the final position (see Fig. 17). 



The trajectory is specified by the developer in a 
visual interface (with an adequate zoom) by moving 
the mouse cursor. 

When the developer defines a trajectory, this 
trajectory can be assigned to a unique mobile point, 
a set of mobile points, or to all mobile points. No 
trajectory is assigned to a static point of the agent. 
For the mobile points for which the developer does 
not define any trajectory, the program generates a 
rectilinear one by default. This allows a complete 
specification. The default trajectory is not fixed and 
can also be modified by the developer. 

6.6. Interpolation timing 

The second aspect to define is the timing: how fast 
the point passes through the different parts of the 
trajectory. The trajectory is a continuous line 
(infinite points) but the number of intermediate 
positions is small: around 10. Because of this, the 
developer needs to specify where, in the trajectory, 
the mobile point will be situated for each of the 
interpolated positions. In the same visual interface 
(Fig. 18), several intermediate circles appear, as 
many as there are intermediate positions. The 
developer can position each circle at any trajectory 
point (as it is not possible to change the circle 
order). 

When the developer defines timing, it is asso­
ciated with a unique mobile point, a set of mobile 
points or to all mobile points. Two points with the 
same trajectory can have different timings. By 
default, if no timing is specified, the program 
positions the intermediate points equidistantly. 
The interpolated positions/frames are created by 
the program combining the trajectory and timing 

FINAL 

INITIAL 

Fig. 18. Timing specification with five intermediate positions. 

associated to each point. In this process, as in the 
position module, the program checks for limitations 
concerning the length of some parts of the body. 
The goal is to avoid generating extremely deformed 
gestures. It also checks certain conditions, e.g. that 
eyes, eyebrow and mouth must be within the head 
limits, or the pupil should be situated within the eye 
limits. 

The gesture animation can be stored in a file; 
completely or partly (a sub sequence of frames). The 
subsequences are very useful for new gesture design. 

6.7. Playing a sequence of gestures 

As previously mentioned, a gesture animation is 
treated (and stored) as a set of agent positions (20 
positions per second). When we want to play a 
sequence of gestures, we need to carry out two 
actions: first we concatenate the gesture animations 
in order to produce a continuous movement, and 
second, we define the speed of play. These two 
actions are described in the following sections. 

6.8. Gesture concatenation 

When concatenating two gestures, it is necessary 
to introduce new agent positions between the last 
position of a gesture and the first position of the 
next gesture. This action is very important in order 
to produce a continuous movement. One issue is to 
decide how many positions should be included 
between the two gestures. In this paper, we propose 
a variable number depending on the difference 
between the first and last positions of the con­
secutive gestures. The measuring of agent position 
difference, proposed in this paper, is the average 
Euclidean distance for all mobile points from one 
agent position to another: Eq. (1), where TV is the 
number of mobile points and Pn positlon x is the 
mobile point n in agent position X: 

Position Difference = 
Z)n_i Euclidean Dist (P„ position 2 Pn position 1 

N 

(1) 

The greater the difference, the higher the number 
of positions should be and vice versa. The relation­
ship between the Position Difference and the 
number of agent positions is given by Eq. (2), 
where PD is the Position Difference (see its 
representation in Fig. 19). 

Number of Positions = 20—17e' aPD (2) 



Position Difference 

• 

Fig. 19. Number of positions vs. position difference. 

The a parameter can be modified. The target of 
this relationship is twofold: to guarantee a mini­
mum number of positions for small differences and 
to define a limit of 20 intermediate positions, in 
order to avoid a long transition. The intermediate 
positions between two gestures are generated auto­
matically by interpolation. The trajectory and the 
timing are the default strategies defined in the 
previous section: rectilinear trajectory and equidi­
stant timing. 

Expanding the ideas shown in this section, we 
propose a measure for the complexity of a gesture. 
This measure is the average Position Difference 
between consecutive agent positions throughout the 
gesture, Eq. (3), where M is the number of position 
in the gesture. 

Gesture Complexity •• 
Ylm=i position Difference (m,m + 1) 

M - 1 ' 

(3) 

The idea of proposing a gesture complexity 
measure is to define empirical measurements to 
compare them to how users perceive the gestures. 
This comparison permits the gesture to be modified 
according to these measurements. Greater gesture 
complexity could be associated with a more difficult 
gesture and it should be played more slowly. 
In further research, we plan to study the relation­
ship between these measurements and gesture 
perception. 

6.9. Synchronization 

The final aspect we must keep in mind is the speed 
of the gesture sequence. This aspect is defined by the 
time between two consecutive agent position repre­
sentations. If we want to slow the gesture, we 
increase this time and vice versa. Typically, there is 
a relationship between the duration of the utterance 

and the duration of the gesture sequence. The 
gesture sequence is around one and half and two 
times longer than the utterance duration. In some 
situations, the speaking rate (in phones per second) 
can vary significantly from one utterance to 
another. This variation can be also applied to the 
gesture sequence in two steps: first, we compute the 
percentage of increase or decrease in respect 
to the average speaking rate and then, this 
percentage is applied to the standard gesture 
sequence duration: 

• If it is necessary to increase the gesture speed, the 
program automatically reduces the time between 
positions. 

• On the other hand, if the program needs to reduce 
the speed, the time between positions is increased. 
In this case, there is a risk of loss of gesture 
continuity. When the number of positions per 
second is less than 15, the program interpolates 
new frames/positions using a rectilinear trajectory 
and an equidistant timing for the mobile points. 

6.10. Gesture animation quality 

In order to evaluate the quality of the gesture 
animation, we have performed a preliminary study 
about how Deaf people perceive gestures played by 
AGR. In this study 10 people (all of them knew SSL 
very well) have been asked to recognize several 
gestures played by the system. The system presents a 
gesture and the user has to recognize it. In order to 
evaluate the gesture animation, we have decided to 
consider the gestures corresponding to the letters 
(dactylography). This decision has been made based 
on two reasons: 

• Using isolated gestures avoids the user recogniz­
ing the gesture using context information. This 



kind of information can be very useful when 
recognizing gestures in a logical sequence. 

• Secondly, letter gestures are very similar and they 
are a very good benchmark for evaluating the 
gesture animation quality. 

The evaluation process was carried out in two 
steps: 

• In the first step, 50 gestures were randomly 
selected and presented to every user. For every 
gesture, the user had to recognize the letter. At 
this point, more than 70% of the letters were 
correctly recognized. After this evaluation, the 
users were informed about which letters were 
recognized incorrectly. 

• In a second step, another 50 gestures were 
presented to every user. In this case, almost 
100% of the letters were recognized correctly. As 
the gesture is always played in the same way, the 
user learns easily how the system represents the 
gesture and recognizes it easily. 

7. Conclusions 

In this paper, we have proposed an architecture 
for a speech-to-gesture translator made up of four 
modules: speech recognizer, semantic analysis, 
gesture sequence generation and gesture sequence 
animation (gesture playing). The main effort in this 
work has focused on the gesture sequence genera­
tion and gesture animation. The gesture sequence 
generation is applied over the semantic analysis 
provided by the Phoenix parser. The most complex 
case is when a semantic concept generates several 
gestures. For this case, the detailed description of 
the SSL carried out by Rodriguez [26], has been 
very useful. 

For the gesture animations, we have developed an 
animated agent and a strategy for reducing the 
gesture design time. This strategy consists of 
combining agent positions created by the developer 
and positions generated automatically by the 
system. The position generation is carried out by 
interpolation considering the previously designed 
point trajectories and timings. 

In this work, we have also proposed a position 
distance metric and a measurement of gesture 
complexity. This measurement can be used to 
analyze the gesture perception versus its complexity. 
Although we have not carried out a complete 
evaluation as to how Deaf people perceive our 

agent gestures, preliminary evaluations with the 
letters of the alphabet reveal that Deaf people find 
less than 30% of the gestures difficult to under­
stand. These situations occur only the first time the 
gesture is played. The subsequent times, as the 
gesture is always played in the same way, the Deaf 
person recognizes it easily. 

With the architecture proposed, we do not want 
to build a domain independent translator but a 
system able to translate speech utterances into 
gesture sequences in a restricted domain: railway 
information, weather information, etc. 

8. Future work 

Three main ideas seem worthwhile for future 
research: 

• The first is to evaluate in depth how Deaf people 
perceive the gestures played using our AGR 
agent. We will also try to establish a possible 
relationship between this perception and gesture 
complexity. 

• The second is to carry out a more sophisticated 
method for gesture design. The idea is to develop 
a program able to generate all the positions of a 
gesture using several gesture characteristics: hand 
orientation, finger movement, articulation point, 
etc. For each characteristic, the developer will 
choose a value from a finite set. 

• The last one is the possibility of collaborating 
with another research group working in gesture 
recognition in order to build a bi-directional 
system. 

Acknowledgments 

This work has been supported by the following 
projects TINA (UPM y DGUI-CAM. ref: R05/ 
10922), ROBINT (MEC ref: DPI2004-07908-C02) 
and EDECAN (MEC ref: TIN2005-08660-C04). 
Authors also want to thank Mark Hallett for the 
English revision and the anonymous reviewers who 
helped with their comments to improve the quality 
and clarity of the presentation. 

References 

J. Cassell, T. Stocky, T. Bickmore, Y. Gao, Y. Nakano, K. 
Ryokai, D. Tversky, C. Vaucelle Vilhjalmsson, MACK: Media 
lab Autonomous Conversational Kiosk, in: Proceedings of 



Imagina: Intelligent Autonomous Agents, Monte Carlo, 
Monaco, 2002. 
J. Gustafson, Developing multimodal spoken dialogue 
systems- Empirical studies of spoken human-computer inter­
actions, PhD. Dissertation, Department of Speech, Music 
and Hearing, Royal Institute of Technology, Stockholm, 
Sweden, 2002. 
B. Granstrom, D. House, J. Beskow, Speech and Gestures 
for Talking Faces in Conversational Dialogue Systems, 
Multimodality in Language and Speech Systems, Kluwer 
Academic Publishers, Donrecht, 2002 pp 209-241. 
J. Bertenstam, et al., The Waxholm system-A progress 
report, in: Proceedings on Spoken Dialogue Systems, Vigso, 
Denmark, 1995. 
M. Lundeberg, J. Beskow, Developing a 3D-agent for the 
August dialogue system, in: Proceedings on Audio-Visual 
Speech Processing, Santa Cruz, CA, 1999. 
J. Gustafson, L. Bell, Speech technology on trial: experiences 
from the August system, Journal of Natural Language 
Engineering: Special Issue on Best Practice in Spoken 
Dialogue Systems (2003) 273-286. 
S. Sutton, R. Cole, Universal speech tools: the CSLU toolkit, 
in: Proceedings of the International Conference on Spoken 
Language Processing, Sydney, Australia, 1998, pp. 3221-3224. 
R. Cole, et al., New tools for interactive speech and language 
training: using animated conversational agents in the class­
rooms of profoundly deaf children, in: Proceedings ESCA/ 
SOCRATES Workshop on Method and Tool Innovations 
for Speech Science Education, London, 1999, pp. 45-52. 
R. Cole, S. Van Vuuren, B. Pellom, K. Hacioglu, J. Ma, J. 
Movellan, S. Schwartz, D. Wade-Stein, W. Ward, J. Yan, 
Perceptive animated interfaces: first steps toward a new 
paradigm for human computer interaction, IEEE Transac­
tions on Multimedia: Special Issue on Human Computer 
Interaction 91 (9) (2003) 1391-1405. 

W.L. Johnson, J.W. Rickel, J.C. Lester, Animated pedago­
gical agents: face-to-face interaction in interactive learning 
environments, International Journal of artificial Intelligence 
in Education 11 (2000) 47-78. 
J. Gratch, J. Rickel, E. Andre, N. Badler, J. Cassell, E. 
Petajan, Creating interactive virtual humans: some assembly 
required, IEEE Intelligent Systems 17 (4) (2002) 54-63. 
Microsoft Agent web. < http://www.microsoft.com/msagent/ 
index.html >. 
G Ball, D. Ling, D. Kurlander, J. Miller, D. Pugh, T. 
Skelly, A. Stankosky, D. Thiel, M. Van Dantzich, T. Wax, 
Lifelike Computer Characters: the Persona Project at 
Microsoft Research, 1999, <www.microsoft.com>. 
S. Morrissey, A. Way, An example-based approach to 
translating sign language, in: Workshop Example-Based 
Machine Translation (MT X-05), Phuket, Thailand, 
September, 2005 pp. 109-116. 
M. Huenerfauth, A multi-path Architecture for Machine 
Translation of English Text into American Sign language 
animation, HLT-NAACL, Boston, MA, USA, 2004. 

S.J. Cox, M. Lincoln, J. Tryggvason, M. Nakisa, M. Wells, 
M. Tutt, S. Abbott, TESSA, A System to Aid Communica­
tion with Deaf People, ASSETS, Edinburgh, Scotland, 2002, 
p. 205-212. 
J. Bungeroth, H. Ney, Statistical sign language translation, 
in: Workshop on Representation and Processing of Sign 
Languages, LREC, 2004, pp. 105-108. 
W. Stokoe, Sign Language structure: an outline of the visual 
communication systems of the American deaf, Studies in 
Linguistics, Buffalo University Paper 8, 1960. 
L.B. Anderson, Aspect in Sign Language Morphology: The 
Role of Universal Semantics and Pragmatics in Determining 
Grammatical categories, Linguistics Research Laboratory, 
Gallaudet College (for the Symposium on Tense/Aspect: 
between semantics and pragmatics, UCLA, 4-6 May), 
1979. 

C. Christopoulos, J. Bonvillian, Sign Language, Journal of 
Communication Disorders 18 (1985) 1-20. 
B. Hansen, Varieties in Danish Sign Language, Sign 
Language Studies 8 (1975) 249-256. 
J. Kyle, British Sign Language, Special Education 8 (1981) 
19-23. 
B. Frokjaer-Jensen, The sciences of deaf signing, Copenhagen 
University 1980. 
C. Penn, R. Lewis, A. Greenstein, Sign Language in South 
Africa, South African Disorder of Communication 31 (1984) 
6-11. 
M. Notoya, S. Suzuki, M. Furukawa, R. Umeda, Method 
and acquisition of sign language in profoundly deaf infants, 
Japan Journal of Logopedics and Phoniatrics 27 (1986) 
235-243. 
M A . Rodriguez, Lenguaje de signos, PhD. Dissertation, 
Confederation Nacional de Sordos Espanoles (CNSE) and 
Fundacion ONCE, Madrid. Spain, 1991. 
O. Juncos, A. Caamaiio, MJ. Justo, E. Lopez, RM. Rivas, 
MT. Lopez, F. Sola, Primeras palabras en la lengua de 
signos espanola (LSE). Estructura formal, semantica y con­
textual, Dpto. Psicologia Evolutiva, Facultad de Psicologia, 
Universidad de Santiago de Compostela, Federation de 
Asociaciones de Sordos del Pais Gallego, 1996. 
IBM, web: <http://www.ibm.com/>. 
Outsource-sl, web: <http://www.outsource-sl.com/fabricantes/ 
IBM/ViaVoiceStd.htm>. 
W. Ward, Extracting information from spontaneous speech, 
International Conference on Spoken Language Processing, 
September, 1994. 
W. Ward, B. Pellom, The CU Communicator System, in: 
Proceedings of the IEEE Workshop on Automatic 
Speech Recognition and Understanding (ASRU), Keystone, 
Colorado, 1999. 
W. Ward, B. Pellom, 2002. The Phoenix Parser User 
Manual, downloadable from <http://cslr.colorado.edu/ 
beginweb/cumove/cucommunicator.html >. 
Phoenix Parser Software, <http://cslr.colorado.edu/beginweb/ 
cumove/cucommunicator.html >. 

http://www.microsoft.com/msagent/
http://www.microsoft.com
http://www.ibm.com/
http://www.outsource-sl.com/fabricantes/IBM/ViaVoiceStd.htm
http://www.outsource-sl.com/fabricantes/IBM/ViaVoiceStd.htm
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html

