
Micallef, Luana and Rodgers, Peter (2014) eulerForce: Force-directed Layout
for Euler Diagrams. Journal of Visual Languages and Computing, 25 (6).
pp. 924-934. ISSN 1045-926X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/41437/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.jvlc.2014.09.002

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Presented at Distributed Multimedia Systems (DMS) 2014

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/41437/
https://doi.org/10.1016/j.jvlc.2014.09.002
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

eulerForce: Force-directed Layout for Euler Diagrams

Luana Micallef
School of Computing, University of Kent, Canterbury, UK

L.Micallef@kent.ac.uk

Peter Rodgers
School of Computing, University of Kent, UK

P.J.Rodgers@kent.ac.uk

Abstract—Euler diagrams use closed curves to represent sets
and their relationships. They facilitate set analysis, as humans
tend to perceive distinct regions when closed curves are drawn on
a plane. However, current automatic methods often produce
diagrams with irregular, non-smooth curves that are not easily
distinguishable. Other methods restrict the shape of the curve to
for instance a circle, but such methods cannot draw an Euler
diagram with exactly the required curve intersections for any set
relations. In this paper, we present eulerForce, as the first
method to adopt a force-directed approach to improve the layout
and the curves of Euler diagrams generated by current methods.
The layouts are improved in quick time. Our evaluation of
eulerForce indicates the benefits of a force-directed approach to
generate comprehensible Euler diagrams for any set relations in
relatively fast time.

Index Terms—Euler diagram, Venn diagram, force-directed.

I. INTRODUCTION
Euler diagrams can represent containment, exclusion and

intersection among data sets using closed curves [10]. They
are widely used in various areas (e.g., genetics [20];
ontologies [15]), and automatic diagram drawing techniques
have been devised (e.g., [27; 30]). A number of visual
languages use Euler diagrams as a basis (e.g., Euler/Venn
diagrams [32]; Venn-II diagrams [28]; constraint diagrams
[18]; see survey [29]).

The closed curves facilitate reasoning about sets as they
have a strong perceptual organizational effect on humans in
dividing the space into regions and communicating
memberships [23]. However, the curves have to be smooth
and not too close to one another [2], highly symmetrical, and
when possible, circles [3]. An Euler diagram should be well-
matched [4], such that the regions in the diagram correspond
exactly to the required set relations. If possible, an Euler
diagram should also be well-formed [26], such that: each set is
depicted by exactly one curve; each set relation is depicted by
exactly one region; the curves are simple, non-concurrent and
cross when they meet; and no point is on more than two curves.
Nonetheless, generating an Euler diagram that satisfies all of
these criteria is not always possible [24].

The well-matched diagrams produced by current methods
(e.g., [27]) often have non-smooth, non-symmetric curves that
are not easily distinguishable, as in Fig. 1. Other methods use
circles to ensure curve smoothness and symmetry (e.g., [30]),
but the generated diagrams are not well-matched and some of
the regions might not correspond to any of the required set
relations. Alternatively, some methods draw only well-formed
Euler diagrams (e.g., [11]), but the curves are often non-

smooth and a diagram cannot be drawn for all data. Also, the
importance of different aesthetic criteria varies by context and
data.

Fig. 1. Well-matched Euler diagrams generated by a drawing method [27].

Fig. 2. The improved layouts generated by our force-directed method,
eulerForce, for the Euler diagrams in Fig. 1.

Using a layout method, the diagram is transformed into

another that depicts the same set relations, but optimizes
specific aesthetic criteria. Two such methods, one by Rodgers
et al. [25] and another by Flower et al. [14], have been
proposed, but both are computationally expensive.

Rodgers et al. defined (but did not implement) a method
that uses graph transformations to generate a layout that
satisfies a particular well-formedness property [25]. However,
this method does not take into account important curve
aesthetics such as regularity, smoothness and symmetry and so,
it cannot improve the layout of diagrams like those in Fig. 1,
which are already well-formed. Graph transformations could
also be computationally expensive [9].

Flower et al. implemented a method that uses a multi-
criteria optimization technique to improve curve aesthetics
[14]. They defined metrics to handle curve roundness,
smoothness, closeness and size uniformity, and combined them
in a fitness function. Thus, this method could improve the

layout of diagrams like Fig. 1A, but not Fig. 1B as their
method handles diagrams with up to four curves. The
effectiveness and correctness of these aesthetic metrics were
not evaluated, and it is still unclear how the different metrics
interact. The method uses a hill-climbing heuristic and thus, it
is likely to encounter local minima and provide a local rather
than a global best-optimized solution. The method is slow, as
multi-criteria optimizations are more computationally expensive
than single-criteria ones [21]. Assigning appropriate weights to
the various criteria is difficult [21] and expecting users to
assign these weights makes the method unusable.

In graph drawing, force-directed methods have been widely
used and evaluated to produce layouts with desired aesthetic
features with relatively good performance [5; 19]. The physical
analogy used by such methods is that of a system of physical
structures (the vertices of the graph) that exert a force over
others in the system, such that these structures move according
to the force applied to them. The system is brought to a halt
when the algorithm positions the structures appropriately so
that the forces are in equilibrium. One of the simplest force-
directed methods is the spring embedder [6]. In such methods,
the forces result from electrically charged particles (the
vertices) that repel one another, so that the vertices are not too
close to each other, and springs (the edges between vertices)
that attract connected particles, so that the length of the edges
is approximately uniform.

A closed curve represented as a polygon is like a graph
with a set of vertices and edges, so the repulsive and attractive
forces used in a spring embedder for graph drawing would
transform a closed curve into a smooth regular circle. Thus, if
such forces are applied to all the curves in a diagram and other
new forces are applied to ensure that the required curve
intersections are maintained, the diagrams in Fig. 1 would be
converted to those in Fig. 2, so the curves are smooth, more
regular and evenly distributed. The diagram layouts in Fig. 2
were generated by our method eulerForce, which is the first to
use a force-directed approach to improve the curve aesthetics
and layout of Euler diagrams.

In this paper, we describe eulerForce, the force model and
algorithm it uses to improve the diagram layouts, and our
evaluation of the method. The implementation of eulerForce is
available at http://www.eulerdiagrams.org/eulerForce.

II. THE FORCE MODEL AND ALGORITHM
The main challenge was to devise an appropriate force

model that acts on the vertices, edges and curves in the
diagram to improve the layout of Euler diagrams while still
depicting the same set relations. This is the first force model
for Euler diagrams, so we opted for a simple algorithm to
equilibrate the forces. This facilitates understanding of the
different forces and how they interact with one another to
allow for further refinement of the force model.

A. Force Model
Our physical system is similar to that of the simple spring

embedder (Section I), in that the vertices act like electrically
charged particles and the edges like springs. The force model
consists of repulsive and attractive forces between different

structures in the layout, including (i) vertices, (ii) edges and
(iii) entire polygons. Thus, the forces in our system differ from
those used in simple graph drawing methods by systematically
moving any of these structures rather than just the vertices.

Similar to the typical spring embedder in graph drawing,
our repulsive forces follow the inverse square law and our
attractive forces follow the Hooke's law [5]. Thus, given d is
the Euclidean distance between two structures s1 and s2 in the
diagram, these forces are defined as follows: repulsive forces –
inversely proportional to the squared distance between
structures s1 and s2, so the repulsive force between s1 and s2,
that is the repulsive force exerted on s2 by s1 and on s1 by s2, is
fr = cr⧸d2 where cr is a constant that determines the strength of
the force; attractive forces – directly proportional to the distance
between structures s1 and s2 so the attractive force exerted
between s1 and s2, that is the attractive force exerted on s1 and
s2 by the spring between s1 and s2, is fa = cad where ca is the
stiffness of the spring that determines the strength of the force
and the natural length of the spring is zero. The constants cr
and ca vary depending on the objective and the required
strength of the force. In specific cases, the definition of the
repulsive or attractive force could defer from those above, yet
the direction remains unchanged.

Our repulsive forces are the same as those used in Eades'
spring embedder [6]. Our attractive forces are different from
those of Eades, as Eades uses logarithmic rather than linear
(Hooke's law) springs stating that the latter could be too strong.
However, Di Battista et al. argue that, "it is difficult to justify
the extra computational effort by the quality of the resulting
drawings" [5]. Since our attractive forces assume linear,
Hooke's law springs with natural length zero, they are the same
as those used in Tutte's force-directed barycentre method [33].
We opted for such attractive forces as these forces are namely
used to smooth the curves and to regain regions that are lost
during the layout improvement process. Thus, while in the
former the edges should be as short as possible to produce
smooth curves, in the latter the force of the spring should be
strong enough to attract structures and regain the lost regions.

We now discuss how such repulsive and attractive forces
between vertices, edges and polygons are used in our force
model to generate layouts that meet our objectives (in bold).

Obtaining regular, smooth, similarly shaped convex curves
We use typical forces for a simple spring embedder [5].
(F1) Repulsion for vertices not to be too close to one another:
for every polygon p in the current layout and for every pair of
distinct vertices v1 and v2 of p, a repulsive force is exerted
between v1 and v2, so v1 and v2 move away from one another.
(F2) Attraction for approximately uniform edge lengths: for
every polygon p in the current layout and for every pair of
distinct vertices v1 and v2 of p that are connected by an edge, an
attractive force is exerted between v1 and v2, so v1 and v2 move
closer to one another.

Maintaining the same set of regions as that in the initial
diagram layout We devised a set of forces for each different
type of curve relation to ensure that: (a) the current improved
layout maintains the regions in the initial layout; (b) if the
current layout has new regions or is missing any of the regions

in the initial layout, forces correct the layout accordingly. We
opted to use forces to correct layouts that depict the incorrect
set of regions rather than to disallow such layouts altogether, to
avoid local minima. So for every pair of distinct polygons in
the initial layout, the following forces are applied.
(F3) If the two polygons in the initial layout do not intersect,
and in the current layout they still do not intersect, if p1 and p2
are these two polygons in the current layout, for every vertex v1
of p1 and for every vertex v2 of p2, a repulsive force is exerted
between v1 and v2, so these vertices move accordingly and the
required disjointness of p1 and p2 is reinforced.
(F4) If the two polygons in the initial layout do not intersect,
but in the current layout they do intersect, if p1 and p2 are these
two polygons in the current layout, for every vertex v1 of p1 and
vertex v2 of p2: if v1 is inside or on an edge of p2 and v2 is inside
or on an edge of p1, an attractive force is exerted between v1
and v2; if v2 is not inside or on an edge of p1, a repulsive force
is exerted on v1 by v2; if v1 is not inside or on an edge of p2, a
repulsive force is exerted on v2 by v1. As these vertices move
accordingly, the required disjointness of p1 and p2 is regained.
(F5) If the two polygons in the initial layout intersect, and in
the current layout they still intersect, if p1 and p2 are these two
polygons in the current layout, for every vertex v1 of p1 and for
every vertex v2 of p2: if both v1 and v2 are on the boundary of
the overlapping region, that is v1 is inside p2 and v2 is inside p1,
a repulsive force is exerted between v2 and v1, so these vertices
move accordingly and the required intersection of p1 and p2 is
reinforced; if v1 is not inside p2 and v2 is inside or on an edge of
p1, a repulsive force is exerted on v1 by v2, so these vertices
move accordingly and p1 and p2 are not too close to one
another; if v2 is not inside p1 and v1 is inside or on an edge of
p2, a repulsive force is exerted on v2 by v1, so these vertices
move and p1 and p2 are not too close to one another.
(F6) If the two polygons in the initial layout intersect, but in
the current layout they do not intersect, if p1 and p2 are these
two polygons in the current layout, for every vertex v1 of p1
and vertex v2 of p2, a special attractive force defined as f = c/d2
where c is a constant determining the strength of the force and
d is the Euclidean distance between v1 and v2 is exerted
between v1 and v2, so these vertices move accordingly and the
required intersection of p1 and p2 is regained.
(F7) If in the initial layout one of the polygons contains the
other and in the current layout the polygons still depict the
required containment: if p1 and p2 are these two polygons in the
current layout and p2 is contained in p1, for every vertex v1 of
p1 and for every vertex v2 of p2, a repulsive force is exerted
between v1 and v2, so these vertices move accordingly and the
required containment of p2 in p1 is reinforced.
(F8) If, in the initial layout, one of the polygons contains the
other, but in the current layout, the polygons do not depict the
required containment, if p1 and p2 are these two polygons in the
current layout and according to the initial layout, p2 should be
contained in p1, for every vertex v1 of p1 and vertex v2 of p2: if
v1 is inside or on an edge of p2 and v2 is not inside or on an
edge of p1, an attractive force is exerted between v2 and v1; if v2
is inside or on an edge of p1, a repulsive force is exerted on v1
by v2; if v1 is not inside or on an edge of p2, an attractive force

is exerted on v2 from v1. As these vertices move accordingly,
the required containment of p2 in p1 is regained.

F3-F8 are applied between vertices of polygons to (a)
maintain the regions of the initial layout and (b) correct layouts
that are not depicting the same set of regions as that of the
initial layout. However, to ensure (a) and reduce the need for
(b), if a vertex v1 of polygon p1 is closer to a point x on an edge
e = (v2, v2b) of a polygon p2 than vertex v2 of p2, F3-F8 are also
applied between v1 and e, such that e is moved based on the
forces exerted on it about x.

Depicting each set relation by exactly one region As the
vertices are moved during the layout improvement process, a
region depicting a set relation could be split up into more than
one component, making the diagram difficult to comprehend as
one of the most important well-formedness properties is not
met [26]. Thus, for every pair of distinct polygons, p1 and p2, in
the current layout and for every region r in any or both of p1
and p2: (F9) while r is made up of more than one component, if
k is the smallest component of r, for every vertex v1 of p1 and
vertex v2 of p2, if v1 is inside or on an edge of k and v2 is not
inside or on an edge of k, an attractive force is exerted between
v1 and v2, so these vertices move accordingly and a component
of r is discarded.

Ensuring the curves are not close to one another Layouts
with curves close to one another are difficult to comprehend
[2] and could break the important wellformedness property of
non-concurrent curves [26]. The repulsive forces in our model
keep the vertices apart and thus aid to achieve this objective.

Centring contained curves in their containing curve or
region Sometimes a curve is contained in another curve or a
region. The repulsive forces in the model would ensure that
this contained polygon remains inside the containing polygon
or region. However, centring this contained polygon in its
containing polygon or region, so that its boundary is
equidistant from that of the containing structure, could improve
the layout and its symmetry. Thus, (F10) when a polygon is
contained in another polygon or region, if c1 is the centroid of
the contained polygon and c2 is the centroid of the containing
polygon or region, an attractive force is exerted on c1 from
c2, so that the entire contained polygon is moved closer to c2
and centred in its containing polygon or region.

Attaining adequately sized curves and regions If the size of
the regions is inadequate, the layout could be difficult to
understand, particularly when regions are not easily visible and
their area is disproportional to that of other regions [2]. Thus, a
set of forces is required to adjust the size of the polygons and
to move these polygons closer or further away from one
another, so the required adequate region areas are obtained.

An adequate region area could be one that is similar to the
area of other regions in the layout, so that the total area of the
diagram is evenly distributed among its regions [2]. However,
to facilitate the identification of the number of curves in which
a region is located, an adequate region area could be one that
is inversely proportional to the number of curves in which it
resides, in that the greater the number of curves it is located in,
the smaller the region area. So, if a k-curve region is a region

located in k curves in a diagram with n curves, the area of the
region is assigned a weight w=n⧸k. Thus, if for instance a
diagram has three curves (n=3), a 1-curve region (k=1, w=3)
will be twice as large as a 2-curve region (k=2, w=3/2) and
three times as large as a 3-curve region (k=3, w=1).

The size of the polygons are adjusted accordingly by
progressively increasing or decreasing the strength of the
repulsive force F1 that ensures that the vertices of polygons
are not too close to one another. The greater the repulsive
force, the further away neighbouring vertices of a polygon are
from one another, thus enlarging the size of the polygon. The
polygons are then moved using the following forces to adjust
the region areas. (F11) To increase a region area: if r is the
region whose area should be increased and c1 is the centroid of
r, for every polygon p that contains r, if c2 is the centroid of p,
an attractive force is exerted on c2 from c1, so that the entire
polygon p is moved closer to c1, thus increasing its size. (F12)
To decrease a region area: if r is the region whose area should
be decreased and c1 is the centroid of r, for every polygon p
that contains r, if c2 is the centroid of p, a repulsive force is
exerted on c2 from c1, so that the entire polygon p is moved
further away from c1, thus decreasing the size of r.

Similar to F3-F8, other forces have been included to
correct any generated layouts whose regions differs from those
in the initial layout, either because new regions are displayed
or required regions are missing. We could have disallowed
these incorrect layouts from the layout improvement process
altogether, but we opted to accept them and correct them using
the following forces, to reduce the chances of reaching a local
minimum. Thus, if while increasing or decreasing region area,
(F13) the current layout has a region that is not depicted in the
initial layout: if r is the region that is in the current but not the
initial layout and c1 is the centroid of r, for every polygon p
that contains r in the current but not in the initial layout, if c2
is the centroid of p, a repulsive force is exerted on c2 from c1,
so the entire polygon p is moved further away from c1, thus
reducing the size of r and its appearance in the layout until it
is no longer visible. If alternatively (F14) the current layout
does not have a region that is depicted in the initial layout: if r
is the region that is in the initial but not the current layout, for
every pair of distinct polygons p1 and p2 that should contain
r, if c1 is the centroid of p1 and c2 is the centroid of p2, an
attractive force is exerted between c1 and c2, so the polygons
that should contain r get closer and the missing region is
regained.

B. Algorithm
Our algorithm is similar to that used by Eades [6] to

balance out the forces in the system. Given some set relations,
an Euler diagram is generated by a current automatic drawing
method and used as the initial layout. The algorithm then goes
through the system in discrete time steps, so that at every step,
the resultant force exerted on each of the vertices, edges and
entire polygons in the layout is calculated and the vertices,
edges and entire polygons are moved accordingly based on the
magnitude and the direction of the resultant force. This new
layout is then used as the starting layout for the next discrete

time step. After a number of steps, the magnitude of the
resultant force exerted on each of the vertices, edges and entire
polygons is reduced to zero and the algorithm stops as the
forces in the system equilibrate and no further changes in the
layout are carried out.

Since most of the forces in the system are exerted on and
relocate the vertices of the polygons in the layout, polygons
with fewer vertices are subject to fewer changes than those
with more vertices. Thus, before the algorithm goes through
the system in discrete time steps, the number of vertices on
each of the polygons in the layout is equalized. For instance, if
a layout has two polygons p1 and p2, and p1 has 10 vertices and
and p2 has 12 vertices, two vertices are added to p1. This is
done by first adding a vertex x between two vertices v1 and v2
of the polygon that are connected by an edge (v1, v2) and then,
removing (v1, v2) and adding two new edges (v1, x) and (x, v2)
between v1 and x and x and v2 respectively. Since the forces in
the system can enlarge the size of the polygons, at the end of
every discrete time step, the length of the edges of each
polygon is checked and vertices are added to make the edges
smaller and the polygons smoother.

Due to the various forces in the system, a limit is set on the
magnitude of the resultant force exerted on a structure. This
limit is inversely proportional to the number of discrete time
steps the algorithm has already gone through in the system, so
major changes are only carried out at the initial steps when a
more extensive search for an appropriate layout is required.
During the final steps, minor changes are carried out to refine
the layout and ensure the algorithm converges to a solution.

The transition from the initial to the final layout is
animated, thus facilitating understanding of how the forces in
the system aid in improving the layout and how they interact
with one another [5]. This method was thus helpful to
understand and appropriately define the required forces to lay
out Euler diagrams and to devise the first force model to
improve the layout of such diagrams. Moreover, such a simple
algorithm could possibly aid in preserving the mental map of
the layout [7] from the initial to the final improved layout.

Eades's simple spring embedder [6] was aimed for non-
dense graphs with few vertices. Poor layouts by this embedder
are reported for graphs with hundreds of vertices [19], as in
such cases a local minimum is more likely to be reached. As
discussed earlier, we mitigate this issue by using specific forces
that correct generated layouts that depict different regions than
those in the initial layout. Even so, Euler diagram layouts
typically have fewer than hundreds of vertices as often these
diagrams have few curves. Later on, further sophisticated
techniques can be adopted to handle more specific aesthetic
criteria and to improve the efficiency and performance of our
force-directed algorithm.

III. EVALUATION
To evaluate our method eulerForce, we used its software

implementation to improve the layouts of Euler diagrams
generated by a current drawing method [27], and we compared
eulerForce’s layouts with those generated by the only other
implemented layout method for Euler diagrams [14]. All the

experiments were run on an Intel Core 2 Duo CPU E7200
@2.53GHz with 3.23GB RAM, 32-bit Microsoft Windows XP
Professional SP1, SP2 and SP3 and Java Platform 1.6.0.14.

A. Accuracy, Time and Aesthetics
We tested eulerForce on diagrams automatically generated

by Rodgers et al.'s method [27], to evaluate its effectiveness in
generating improved layouts that satisfy our objectives.
Rodgers et al.'s method was chosen, as it is the only method
that draws a diagram for set relations for which a well-
matched, well-formed Euler diagram can be drawn. Thus, if an
improved layout generated by eulerForce did not satisfy our
objective of depicting each set relation by exactly one region or
our objective of ensuring the curves are not close to one
another, the diagram layout was not well-formed and a
limitation in our method was evident, as a well-formed
diagram for those set relations is known to exist (i.e., the initial
diagram generated by Rodgers et al.'s method).

A library of Euler diagrams generated by Rodgers et al.'s
method for all the set relations for which a well-formed Euler
diagram with three, four and five curves can be drawn was
assembled. This library included: nine Euler diagrams with
three curves, 114 Euler diagrams with four curves, and 342
Euler diagrams with five curves.

Our method eulerForce was then used to improve the layout
of the diagrams in this library. Fig. 3–Fig. 5 illustrate a few of:
(i) the diagrams in the library (also Fig. 1), and (ii) the
corresponding layout generated by eulerForce (also Fig. 2). The
layouts (ii) in Fig. 3 and Fig. 4 depict precisely the same set of
regions as those in the initial library layout (i) (also Fig. 1 and
Fig. 2), but those in Fig. 5 do not and are thus examples of
cases where eulerForce fails to produce an appropriate layout.
We now discuss these layouts and the results obtained.

Accuracy The improved layouts for all the nine and 114
diagrams with respectively three and four curves had the same
regions as those of the initial incomprehensible layouts, and
thus satisfied our objective of maintaining the same set of
regions as that in the initial diagram layout. For the 342
diagrams with five curves, only 209 of the improved layouts
(61%) satisfied our objective of maintaining the same set of
regions as that in the initial diagram layout. The latter result
could be due to the increased number of vertices that are
unmanageable with a simple spring embedder [6; 19],
particularly when the diagram has various regions.

Fig. 5A(ii) generated by eulerForce for the diagram and
initial layout Fig. 5A(i) has two new unwanted regions, abcd
and abcde, that are not depicted in the initial layout. Thus,
curves a and b should be disjoint. Curve a in the final layout
generated by eulerForce in Fig. 5A(ii) is not completed smooth
as the forces that were specifically devised to correct layouts
depicting regions that are different from the initial are striving
to regain the disjointness between curves a and b. However,
these forces seem to be weaker than other interacting forces in
the system and thus, an inappropriate layout is generated. This
also indicates the limitations of a simple spring embedder in
managing various interacting forces in the system.

Fig. 5B(ii) generated by eulerForce for the diagram and
initial layout Fig. 5B(i) has two missing required regions, ad
and be, that are depicted in the initial layout and one new
unwanted regions, abcde, that is not depicted in the initial
layout. All the curves in the final layout generated by
eulerForce in Fig. 5B(ii) are smooth and regular. However, the
layout is not well-formed as there is a point on the three curves
a, b and e. This example indicates the limitations of a simple
spring embedder when a diagram has various regions. For
various curve overlaps to be displayed, the curve will likely
have to attain a less regular shape and thus, the strength of the
forces, particularly those that aim at generating regular, smooth
and similarly shaped convex curves, might have to be
dynamically tuned using more sophisticated techniques. In fact,
for region abcde not to be depicted in the diagram and for the
diagram to be well-formed in that no point is on more than two
curves, curves b, c and e should attain a more elongated shape
rather than a circular shape, as in Fig. 5B(ii).

Thus, more sophisticated force-directed techniques such as
those used for laying out large graphs (e.g., [16]) should be
adopted for the algorithm to overcome local minima and to
handle Euler diagrams with thousands of vertices and with
various curves and regions.

Fig. 3. Examples of (i) diagrams with four curves by Rodger et al.’s method

[27] in our library and (ii) the correct layouts by eulerForce.

Fig. 4. Examples of (i) diagrams with five curves by Rodger et al.’s method

[27] in our library and (ii) the correct layouts by eulerForce.

Fig. 5. Examples of (i) diagrams with five curves by Rodger et al.’s method

[27] in our library and (ii) the incorrect layouts by eulerForce.

Time On average, the final improved layout for diagrams with
three curves was generated by eulerForce in 7 seconds, those
with four curves in 26 seconds, and others with five curves in
77 seconds. Thus, though our current method uses a simple
algorithm, which is not as efficient as other more sophisticated
alternatives, improved layouts are still generated in relatively
fast time. This is comparable to force-directed approaches for
graphs, which typically produce layouts in around a minute
[19]. Also, a response time of 10 seconds or less ensures the
users' attention is maintained [22]. However, better-optimized
algorithms should be considered in future force-directed
approaches for Euler diagram layouts.

Aesthetics As illustrated in the examples in Fig. 2–Fig. 4, the
curves of all the generated layouts depicting the correct set of
the regions were smooth. Also, whenever possible, the curves
were regular, similarly shaped and convex, all of which
facilitate understanding [2]. So eulerForce satisfies our
objective of obtaining regular, smooth, similarly shaped
convex curve. Similarly, the curves of all the generated layouts
depicting the correct set of the regions were well-formed and
satisfied the most important well-formedness properties of
regions made up of at most one component and non-concurrent
curves, as in Fig. 2–Fig. 4. Even in diagrams with various
curves contained in other curves or regions, as in Fig. 2, Fig.
3A-C and Fig. 4A-B, none of the curves are too close to one
another. This could have been further facilitated by the forces
that centre contained curves in their containing curve or region.

Layouts generated by a spring embedder are likely to be
symmetric [8], as shown by most layouts in Fig. 2-Fig.4.
However, besides the basic forces that are typical for a spring
embedder in graph drawing, other forces that we devised for
Euler diagrams are likely to aid in generating symmetric
layouts. In particular, the forces that centre contained curves in
their containing curve or region aid in generating highly
symmetric layouts, as Fig. 2, Fig. 3A-C and Fig. 4A-B.

Having adequately sized regions and curves also aid
diagram comprehend [2]. The area of the diagram could be
evenly distributed among its regions, but in our case we opted
for an adequate region area that is inversely proportional to the
number of curves in which it resides. The generated layouts
including Fig. 2-Fig. 4 indicate that this approach is effective
as it ensures that: curves contained in other curves or regions
are not too large for them to fit appropriately in the containing
curve or region with possibly other regions, as in Fig. 2, Fig.
3A-C and Fig. 4A-B, and without breaking well-formedness;
the number of curves in which a region is located is easier to
identify.

For the layouts to be effectively evaluated, formalized
aesthetic metrics and cognitive measures are required. Very
few studies have investigated the aesthetics of such diagrams
(Section I), but no criteria have been formalized.

B. eulerForce versus Previous Methods
The only previous layout method that has been

implemented is Flower et al.’s multi-criteria optimization
method [14]. We compared the diagram layouts generated by
Flower et al.’s method with those generated by eulerForce.

As initial layouts, Flower et al. used diagrams generated by
techniques [12; 13] available at the time. Fig. 6A(i) and Fig.
6B(i) illustrate diagrams generated by these techniques. The
technique we used to generate the initial layouts for eulerForce
[27] is more recent, but yet a variant of those used by Flower et
al. for their method.

Given sets a, b, c, d and the set relations {ø, a, c, ac, cd,
acd, bcd, abcd}, Flower et al.'s initial layout is Fig. 6A(i) and
the generated improved layout is Fig. 6A(ii), while eulerForce’s
initial layout is Fig. 1A and the generated improved layout is
Fig. 2A. Flower et al.'s initial and final layout look similar as
the position and the orientation of the curves is barely changed,
indicating that the method is limited to a minimal local search
leading to a layout whose aesthetics could be improved further.
For instance, the layout generated by eulerForce has regular,
similarly shaped, circular curves. The containing and contained
curves c, d and b are centre aligned and the distance between
curve c and d is the same as the distance between curve d and
b. All of these features further aid in indicating subsets in the
data depicted by the diagram, thus facilitating data analysis. So,
in contrast to Flower et al.'s layout, eulerForce’s layout is
symmetric, compact, easy to understand and remember.

Fig. 6. The improved layouts (ii) generated by Flower et al.'s method [14] for

the diagrams and initial layouts (i).

Similar observations are evident for the layouts depicting

set relations {ø, a, c, d, ac, ad, bc, abc} where Flower et al.'s
initial layout is Fig. 6B(i) and the generated improved layout is
Fig. 6B(ii), while eulerForce’s initial layout is Fig. 3B(i) and
the generated improved layout is Fig. 3B(ii). Flower et al.'s
final layout, Fig. 6B(ii), was generated after 80 iterations and
after the line segments in the diagram were converted to Bézier
curves. The final layout of eulerForce, Fig. 6B(ii), was
generated in 17 seconds. So a layout improvement method
using a force-directed approach as eulerForce could be faster
than ones using multi-criteria optimization like Flower et al.'s
method. After all, multi-criteria optimization is known to be
computationally expensive [21]. In contrast to eulerForce,
Flower et al.'s method is limited to diagrams with up to four

curves and thus, no layouts with more than four curves could
be included in our comparative analysis.

Though the initial layouts used by eulerForce in our
evaluation are less comprehensible than those used by Flower
et al.'s method, the final improved layouts generated by
eulerForce are more aesthetically desirable and easier to use
than those generated by Flower et al.'s method. The
effectiveness of the layouts should be evaluated using
formalized aesthetic metrics and cognitive measures. However,
none are available for Euler diagrams and so, our comparative
analysis and evaluation of the layouts was limited to a visual
comparison of the layouts and based on the findings of the very
few studies on Euler diagram aesthetics [2; 3; 26]. Even though
Flower et al. defined a few aesthetic metrics to devise their
layout method [14], these metrics were not evaluated.

IV. CONCLUSION
In this paper, we have described our layout method,

eulerForce, the first method that uses a force-directed approach
to improve the layout of Euler diagrams. Our evaluation
indicates great potential for using force-directed techniques to
improve Euler diagram layouts in quick time and to generate
comprehensible diagrams given the required set relations.

It would be interesting to evaluate the layouts generated by
eulerForce for initial layouts that are not well-formed and for
set relations for which a well-formed Euler diagram cannot be
drawn. Until now, eulerForce has been evaluated for initial
layouts that are well-formed and for set relations for which a
well-formed diagram can be drawn. This was intentional to
evaluate the effectiveness of the forces that we specifically
devised to ensure that there is only one region for each set
relation and that the curves are not too close to one another.
However, the effectiveness of these forces in handling not
well-formed diagrams should be evaluated, so that if necessary,
the force model is adapted to handle such diagrams.

We adopted a simple spring embedder algorithm to
facilitate understanding and evaluation of our force model,
which is the first for Euler diagrams. However, this algorithm
is not as efficient as other force-directed algorithms and is
unable to handle hundreds of vertices [19]. Such limitations are
evident in our eulerForce evaluation for Euler diagram layout
with five curves, as discussed in Section III. Until now, our
focus was on the force model rather than the algorithm. In the
future, sophisticated force-directed algorithms such as those
used for laying out large graphs [17] can be adopted and
investigated in the context of Euler diagrams.

For instance, a multilevel approach such as that used in
graph drawing [34] can be adopted to overcome local minima
and to efficiently handle layouts with thousands of vertices and
thus, with various curves and regions like those in Fig. 5. As an
example, Hu's method [16] uses this approach to lay out graphs
with over 10,000 vertices in less than a minute.

The Barnes-Hut algorithm [1] can be used to efficiently and
dynamically compute the appropriate forces at every step of the
layout improvement process. This method has already been
successfully used in graph drawing (e.g., [16]) and could aid in
cases such as those in Fig. 5. Force-directed techniques in

graph drawing have also demonstrated that adding magnetic
fields to the system and its springs could aid in satisfying
various aesthetic criteria [31] and should thus be considered for
Euler diagram layouts.

Other future work includes gathering more empirical
evidence to assess Euler diagram aesthetics and to formalize
metrics that evaluate the effectiveness of Euler diagram
layouts.

REFERENCES
[1] J. Barnes, and P. Hut, “A hierarchical O (N log N) force-

calculation algorithm,” Nature, 324, 1986, Nature Publishing
Group, pp. 446-449.

[2] F. Benoy, and P. Rodgers, “Evaluating the comprehension of
Euler diagrams,” Proceedings of the 11th International
Conference on Information Visualization (IV), 2007, IEEE
Computer Society, pp. 771-780.

[3] A. Blake et al., “The Impact of Shape on the Perception of Euler
Diagrams,” Proceedings of the 8th International Conference on
the Diagrammatic Representation and Inference (Diagrams), in
press, 2014, Springer.

[4] P. Chapman et al., “Visualizing Sets: An Empirical Comparison
of Diagram Types,” Proceedings of the 8th International
Conference on the Diagrammatic Representation and Inference
(Diagrams), Lecture Notes in Computer Science (Lecture Notes
in Artificial Intelligence), in press, 2014, Springer,

[5] G. Di Battista et al., “Force-Directed Methods,” in Graph
drawing: algorithms for the visualization of graphs, Prentice-
Hall, Upper Saddle River, NJ, USA, 1999, pp.303-325.

[6] P. Eades, “A Heuristic for Graph Drawing,” Congressus
Numerantium, 42, 1984, pp. 149-160.

[7] P. Eades et al., Preserving the Mental Map of a Diagram,
International Institute for Advanced Study of Social Information
Science, Fujitsu Limited, Numazu-shi, Shizuoka, Japan, 1991.

[8] P. Eades, and X. Lin, “Spring Algorithms and Symmetry,”
Theoretical Computer Science, 240, 2000, Elsevier, pp. 379-
405.

[9] H. Ehrig et al., Handbook of Graph Grammars and Computing
by Graph Transformation: Applications, Languages and Tools,
2, World Scientific Publishing Co, River Edge, NJ, USA, 1999.

[10] L. Euler, Lettres à une Princesse d’Allemagne sur divers sujets
de physique et de philosophie, vol. 2, Lettres 102-108,
L’Académie Impériale des Sciences de Saint-Pétersbourg, St
Petersburg, Russia, 1768.

[11] J. Flower, A. Fish, and J. Howse, “Euler Diagram Generation,”
Journal of Visual Languages & Computing, 19, 2008, Elsevier,
pp. 675-694.

[12] J. Flower, and J. Howse, “Generating Euler Diagrams,”
Proceedings of the 2nd International Conference on the
Diagrammatic Representation and Inference (Diagrams),
Lecture Notes in Computer Science (Lecture Notes in Artificial
Intelligence) 2317, 2317, 2002, Springer, pp. 285-285.

[13] J. Flower, J. Howse, and J. Taylor, “Nesting in Euler diagrams,”
Proceedings of the 1st International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT
2002), Electronic Notes in Theoretical Computer Science vol. 72
no. 3, 72(3), 2003, Elsevier, pp. 93-102.

[14] J. Flower, P. Rodgers, and P. Mutton, “Layout Metrics for Euler
Diagrams,” Proceedings of the 7th International Conference on
Information Visualization (IV), 2003, IEEE Computer Society,
pp. 272-280.

[15] J. Howse et al., “Visualizing ontologies: A case study,”
Proceedings of the 10th International Semantic Web Conference
(ISWC), 2011, Springer, pp. 257-272.

[16] Y. Hu, “Efficient and High-Quality Force-Directed Graph
Drawing,” Mathematica Journal, 10, 2005, pp. 37-71.

[17] Y. Hu, “Algorithms for Visualizing Large Networks,”
Combinatorial Scientific Computing, 2011,

[18] S. Kent, “Constraint diagrams: visualizing invariants in object-
oriented models,” Proceedings of the 12th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 32(10), 1997, ACM,
pp. 327-341.

[19] S. G. Kobourov, “Spring Embedders and Force Directed Graph
Drawing Algorithms,” Computing Research Repository (CoRR),
abs/1201.3011, 2012,

[20] L. P. Lim et al., “Microarray analysis shows that some
microRNAs downregulate large numbers of target mRNAs,”
Nature, 433, 2005, Nature Publishing Group, pp. 769-773.

[21] R. T. Marler, and J. S. Arora, “Survey of multi-objective
optimization methods for engineering,” Structural and
Multidisciplinary Optimization, 26, 2004, Springer, pp. 369-395.

[22] R. B. Miller, “Response time in man-computer conversational
transactions,” Proceedings of the December 9-11, 1968 (AFIPS)
fall joint computer conference, part I, 1968, ACM, pp. 267-277.

[23] S. E. Palmer, “Common region: A new principle of perceptual
grouping,” Cognitive Psychology, 24, 1992, Elsevier, pp. 436-
447.

[24] P. Rodgers, “A Survey of Euler Diagrams,” Journal of Visual
Languages and Computing, Special Issue on Visualization and
Reasoning using Euler Diagrams, 25, 2014, Elsevier,

[25] P. Rodgers et al., “Euler Graph Transformations for Euler
Diagram Layout,” Proceedings of the 27th IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC),
2010, IEEE, pp. 111-118.

[26] P. Rodgers, L. Zhang, and H. Purchase, “Wellformedness
Properties in Euler Diagrams: Which Should Be Used?,” IEEE
Transactions on Visualization and Computer Graphics, 18, 2012,
IEEE, pp. 1089-1100.

[27] P. Rodgers et al., “Embedding Wellformed Euler diagrams,”
Proceedings of the 12th International Conference on Information
Visualization (IV), 2008, IEEE Computer Society, pp. 585-593.

[28] S.-J. Shin, The logical status of diagrams, Cambridge University
Press, New York, NY, USA, 1994.

[29] G. Stapleton, “A survey of reasoning systems based on Euler
diagrams,” Electronic Notes in Theoretical Computer Science,
134, 2005, Elsevier, pp. 127-151.

[30] G. Stapleton et al., “Automatically drawing Euler diagrams with
circles,” Journal of Visual Languages & Computing, 23, 2012,
Elsevier, pp. 163-193.

[31] K. Sugiyama, and K. Misue, “Graph Drawing by the Magnetic
Spring Model,” Journal of Visual Languages and Computing, 6,
1995, Elsevier, pp. 217-231.

[32] N. Swoboda, “Implementing Euler/Venn reasoning systems,” in
Diagrammatic Representation and Reasoning, Springer, 2002,
pp.371-386.

[33] W. T. Tutte, “How to draw a graph,” Proceedings of the London
Mathematical Society, 13, 1963, Citeseer, pp. 743-768.

[34] C. Walshaw, “A multilevel algorithm for force-directed graph
drawing,” Proceedings of the 8th International Symposium on
Graph Drawing (GD 2000), Lecture Notes in Computer Science
1984, 2001, Springer, pp. 171-182.

