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Abstract—Euler diagrams use closed curves to represent sets 
and their relationships. They facilitate set analysis, as humans 
tend to perceive distinct regions when closed curves are drawn on 
a plane. However, current automatic methods often produce 
diagrams with irregular, non-smooth curves that are not easily 
distinguishable. Other methods restrict the shape of the curve to 
for instance a circle, but such methods cannot draw an Euler 
diagram with exactly the required curve intersections for any set 
relations. In this paper, we present eulerForce, as the first 
method to adopt a force-directed approach to improve the layout 
and the curves of Euler diagrams generated by current methods. 
The layouts are improved in quick time. Our evaluation of 
eulerForce indicates the benefits of a force-directed approach to 
generate comprehensible Euler diagrams for any set relations in 
relatively fast time.  

Index Terms—Euler diagram, Venn diagram, force-directed. 

I. INTRODUCTION 
Euler diagrams can represent containment, exclusion and 

intersection among data sets using closed curves [10]. They 
are widely used in various areas (e.g., genetics [20]; 
ontologies [15]), and automatic diagram drawing techniques 
have been devised (e.g., [27; 30]). A number of visual 
languages use Euler diagrams as a basis (e.g., Euler/Venn 
diagrams [32]; Venn-II diagrams [28]; constraint diagrams 
[18]; see survey [29]).  

The closed curves facilitate reasoning about sets as they 
have a strong perceptual organizational effect on humans in 
dividing the space into regions and communicating 
memberships [23]. However, the curves have to be smooth 
and not too close to one another [2], highly symmetrical, and 
when possible, circles [3]. An Euler diagram should be well-
matched [4], such that the regions in the diagram correspond 
exactly to the required set relations. If possible, an Euler 
diagram should also be well-formed [26], such that: each set is 
depicted by exactly one curve; each set relation is depicted by 
exactly one region; the curves are simple, non-concurrent and 
cross when they meet; and no point is on more than two curves. 
Nonetheless, generating an Euler diagram that satisfies all of 
these criteria is not always possible [24].  

The well-matched diagrams produced by current methods 
(e.g., [27]) often have non-smooth, non-symmetric curves that 
are not easily distinguishable, as in Fig. 1. Other methods use 
circles to ensure curve smoothness and symmetry (e.g., [30]), 
but the generated diagrams are not well-matched and some of 
the regions might not correspond to any of the required set 
relations. Alternatively, some methods draw only well-formed 
Euler diagrams (e.g., [11]), but the curves are often non-

smooth and a diagram cannot be drawn for all data. Also, the 
importance of different aesthetic criteria varies by context and 
data.  

 

 

 
 

Fig. 1.  Well-matched Euler diagrams generated by a drawing method [27]. 

 

 
 

Fig. 2.  The improved layouts generated by our force-directed method, 
eulerForce, for the Euler diagrams in Fig. 1.  

 
Using a layout method, the diagram is transformed into 

another that depicts the same set relations, but optimizes 
specific aesthetic criteria. Two such methods, one by Rodgers 
et al. [25] and another by Flower et al. [14], have been 
proposed, but both are computationally expensive.  

Rodgers et al. defined (but did not implement) a method 
that uses graph transformations to generate a layout that 
satisfies a particular well-formedness property [25]. However, 
this method does not take into account important curve 
aesthetics such as regularity, smoothness and symmetry and so, 
it cannot improve the layout of diagrams like those in Fig. 1, 
which are already well-formed. Graph transformations could 
also be computationally expensive [9].  

Flower et al. implemented a method that uses a multi-
criteria optimization technique to improve curve aesthetics 
[14]. They defined metrics to handle curve roundness, 
smoothness, closeness and size uniformity, and combined them 
in a fitness function. Thus, this method could improve the 



layout of diagrams like Fig. 1A, but not Fig. 1B as their 
method handles diagrams with up to four curves. The 
effectiveness and correctness of these aesthetic metrics were 
not evaluated, and it is still unclear how the different metrics 
interact. The method uses a hill-climbing heuristic and thus, it 
is likely to encounter local minima and provide a local rather 
than a global best-optimized solution. The method is slow, as 
multi-criteria optimizations are more computationally expensive 
than single-criteria ones [21]. Assigning appropriate weights to 
the various criteria is difficult [21] and expecting users to 
assign these weights makes the method unusable. 

In graph drawing, force-directed methods have been widely 
used and evaluated to produce layouts with desired aesthetic 
features with relatively good performance [5; 19]. The physical 
analogy used by such methods is that of a system of physical 
structures (the vertices of the graph) that exert a force over 
others in the system, such that these structures move according 
to the force applied to them. The system is brought to a halt 
when the algorithm positions the structures appropriately so 
that the forces are in equilibrium. One of the simplest force-
directed methods is the spring embedder [6]. In such methods, 
the forces result from electrically charged particles (the 
vertices) that repel one another, so that the vertices are not too 
close to each other, and springs (the edges between vertices) 
that attract connected particles, so that the length of the edges 
is approximately uniform. 

A closed curve represented as a polygon is like a graph 
with a set of vertices and edges, so the repulsive and attractive 
forces used in a spring embedder for graph drawing would 
transform a closed curve into a smooth regular circle. Thus, if 
such forces are applied to all the curves in a diagram and other 
new forces are applied to ensure that the required curve 
intersections are maintained, the diagrams in Fig. 1 would be 
converted to those in Fig. 2, so the curves are smooth, more 
regular and evenly distributed. The diagram layouts in Fig. 2 
were generated by our method eulerForce, which is the first to 
use a force-directed approach to improve the curve aesthetics 
and layout of Euler diagrams.  

In this paper, we describe eulerForce, the force model and 
algorithm it uses to improve the diagram layouts, and our 
evaluation of the method. The implementation of eulerForce is 
available at http://www.eulerdiagrams.org/eulerForce. 

II. THE FORCE MODEL AND ALGORITHM 
The main challenge was to devise an appropriate force 

model that acts on the vertices, edges and curves in the 
diagram to improve the layout of Euler diagrams while still 
depicting the same set relations. This is the first force model 
for Euler diagrams, so we opted for a simple algorithm to 
equilibrate the forces. This facilitates understanding of the 
different forces and how they interact with one another to 
allow for further refinement of the force model. 

A. Force Model 
Our physical system is similar to that of the simple spring 

embedder (Section I), in that the vertices act like electrically 
charged particles and the edges like springs. The force model 
consists of repulsive and attractive forces between different 

structures in the layout, including (i) vertices, (ii) edges and 
(iii) entire polygons. Thus, the forces in our system differ from 
those used in simple graph drawing methods by systematically 
moving any of these structures rather than just the vertices.  

Similar to the typical spring embedder in graph drawing, 
our repulsive forces follow the inverse square law and our 
attractive forces follow the Hooke's law [5]. Thus, given d is 
the Euclidean distance between two structures s1 and s2 in the 
diagram, these forces are defined as follows: repulsive forces – 
inversely proportional to the squared distance between 
structures s1 and s2, so the repulsive force between s1 and s2, 
that is the repulsive force exerted on s2 by s1 and on s1 by s2, is 
fr = cr⧸d2 where cr is a constant that determines the strength of 
the force; attractive forces – directly proportional to the distance 
between structures s1 and s2 so the attractive force exerted 
between s1 and s2, that is the attractive force exerted on s1 and 
s2 by the spring between s1 and s2, is fa = cad where ca is the 
stiffness of the spring that determines the strength of the force 
and the natural length of the spring is zero. The constants cr 
and ca vary depending on the objective and the required 
strength of the force. In specific cases, the definition of the 
repulsive or attractive force could defer from those above, yet 
the direction remains unchanged. 

Our repulsive forces are the same as those used in Eades' 
spring embedder [6]. Our attractive forces are different from 
those of Eades, as Eades uses logarithmic rather than linear 
(Hooke's law) springs stating that the latter could be too strong. 
However, Di Battista et al. argue that, "it is difficult to justify 
the extra computational effort by the quality of the resulting 
drawings" [5]. Since our attractive forces assume linear, 
Hooke's law springs with natural length zero, they are the same 
as those used in Tutte's force-directed barycentre method [33]. 
We opted for such attractive forces as these forces are namely 
used to smooth the curves and to regain regions that are lost 
during the layout improvement process. Thus, while in the 
former the edges should be as short as possible to produce 
smooth curves, in the latter the force of the spring should be 
strong enough to attract structures and regain the lost regions.  

We now discuss how such repulsive and attractive forces 
between vertices, edges and polygons are used in our force 
model to generate layouts that meet our objectives (in bold). 
 

Obtaining regular, smooth, similarly shaped convex curves 
We use typical forces for a simple spring embedder [5].  
(F1) Repulsion for vertices not to be too close to one another: 
for every polygon p in the current layout and for every pair of 
distinct vertices v1 and v2 of p, a repulsive force is exerted 
between v1 and v2, so v1 and v2 move away from one another.  
(F2) Attraction for approximately uniform edge lengths: for 
every polygon p in the current layout and for every pair of 
distinct vertices v1 and v2 of p that are connected by an edge, an 
attractive force is exerted between v1 and v2, so v1 and v2 move 
closer to one another.  
 

Maintaining the same set of regions as that in the initial 
diagram layout We devised a set of forces for each different 
type of curve relation to ensure that: (a) the current improved 
layout maintains the regions in the initial layout; (b) if the 
current layout has new regions or is missing any of the regions 



in the initial layout, forces correct the layout accordingly. We 
opted to use forces to correct layouts that depict the incorrect 
set of regions rather than to disallow such layouts altogether, to 
avoid local minima. So for every pair of distinct polygons in 
the initial layout, the following forces are applied.  
(F3) If the two polygons in the initial layout do not intersect, 
and in the current layout they still do not intersect, if p1 and p2 
are these two polygons in the current layout, for every vertex v1 
of p1 and for every vertex v2 of p2, a repulsive force is exerted 
between v1 and v2, so these vertices move accordingly and the 
required disjointness of p1 and p2 is reinforced.  
(F4) If the two polygons in the initial layout do not intersect, 
but in the current layout they do intersect, if p1 and p2 are these 
two polygons in the current layout, for every vertex v1 of p1 and 
vertex v2 of p2: if v1 is inside or on an edge of p2 and v2 is inside 
or on an edge of p1, an attractive force is exerted between v1 
and v2; if v2 is not inside or on an edge of p1, a repulsive force 
is exerted on v1 by v2; if v1 is not inside or on an edge of p2, a 
repulsive force is exerted on v2 by v1. As these vertices move 
accordingly, the required disjointness of p1 and p2 is regained.  
(F5) If the two polygons in the initial layout intersect, and in 
the current layout they still intersect, if p1 and p2 are these two 
polygons in the current layout, for every vertex v1 of p1 and for 
every vertex v2 of p2: if both v1 and v2 are on the boundary of 
the overlapping region, that is v1 is inside p2 and v2 is inside p1, 
a repulsive force is exerted between v2 and v1, so these vertices 
move accordingly and the required intersection of p1 and p2 is 
reinforced; if v1 is not inside p2 and v2 is inside or on an edge of 
p1, a repulsive force is exerted on v1 by v2, so these vertices 
move accordingly and p1 and p2 are not too close to one 
another; if v2 is not inside p1 and v1 is inside or on an edge of 
p2, a repulsive force is exerted on v2 by v1, so these vertices 
move and p1 and p2 are not too close to one another.  
(F6) If the two polygons in the initial layout intersect, but in 
the current layout they do not intersect, if p1 and p2 are these 
two polygons in the current layout, for every vertex v1 of p1 
and vertex v2 of p2, a special attractive force defined as f = c/d2 
where c is a constant determining the strength of the force and 
d is the Euclidean distance between v1 and v2 is exerted 
between v1 and v2, so these vertices move accordingly and the 
required intersection of p1 and p2 is regained.  
(F7) If in the initial layout one of the polygons contains the 
other and in the current layout the polygons still depict the 
required containment: if p1 and p2 are these two polygons in the 
current layout and p2 is contained in p1, for every vertex v1 of 
p1 and for every vertex v2 of p2, a repulsive force is exerted 
between v1 and v2, so these vertices move accordingly and the 
required containment of p2 in p1 is reinforced.  
(F8) If, in the initial layout, one of the polygons contains the 
other, but in the current layout, the polygons do not depict the 
required containment, if p1 and p2 are these two polygons in the 
current layout and according to the initial layout, p2 should be 
contained in p1, for every vertex v1 of p1 and vertex v2 of p2: if 
v1 is inside or on an edge of p2 and v2 is not inside or on an 
edge of p1, an attractive force is exerted between v2 and v1; if v2 
is inside or on an edge of p1, a repulsive force is exerted on v1 
by v2; if v1 is not inside or on an edge of p2, an attractive force 

is exerted on v2 from v1. As these vertices move accordingly, 
the required containment of p2 in p1 is regained.  

F3-F8 are applied between vertices of polygons to (a) 
maintain the regions of the initial layout and (b) correct layouts 
that are not depicting the same set of regions as that of the 
initial layout. However, to ensure (a) and reduce the need for 
(b), if a vertex v1 of polygon p1 is closer to a point x on an edge 
e = (v2, v2b) of a polygon p2 than vertex v2 of p2, F3-F8 are also 
applied between v1 and e, such that e is moved based on the 
forces exerted on it about x.  

 

Depicting each set relation by exactly one region As the 
vertices are moved during the layout improvement process, a 
region depicting a set relation could be split up into more than 
one component, making the diagram difficult to comprehend as 
one of the most important well-formedness properties is not 
met [26]. Thus, for every pair of distinct polygons, p1 and p2, in 
the current layout and for every region r in any or both of p1 
and p2: (F9) while r is made up of more than one component, if 
k is the smallest component of r, for every vertex v1 of p1 and 
vertex v2 of p2, if v1 is inside or on an edge of k and v2 is not 
inside or on an edge of k, an attractive force is exerted between 
v1 and v2, so these vertices move accordingly and a component 
of r is discarded.  

 

Ensuring the curves are not close to one another Layouts 
with curves close to one another are difficult to comprehend 
[2] and could break the important wellformedness property of 
non-concurrent curves [26]. The repulsive forces in our model 
keep the vertices apart and thus aid to achieve this objective. 
 

Centring contained curves in their containing curve or 
region Sometimes a curve is contained in another curve or a 
region. The repulsive forces in the model would ensure that 
this contained polygon remains inside the containing polygon 
or region. However, centring this contained polygon in its 
containing polygon or region, so that its boundary is 
equidistant from that of the containing structure, could improve 
the layout and its symmetry. Thus, (F10) when a polygon is 
contained in another polygon or region, if c1 is the centroid of 
the contained polygon and c2 is the centroid of the containing 
polygon or region, an attractive force is exerted on c1 from 
c2, so that the entire contained polygon is moved closer to c2 
and centred in its containing polygon or region.  
 

Attaining adequately sized curves and regions If the size of 
the regions is inadequate, the layout could be difficult to 
understand, particularly when regions are not easily visible and 
their area is disproportional to that of other regions [2]. Thus, a 
set of forces is required to adjust the size of the polygons and 
to move these polygons closer or further away from one 
another, so the required adequate region areas are obtained. 

An adequate region area could be one that is similar to the 
area of other regions in the layout, so that the total area of the 
diagram is evenly distributed among its regions [2]. However, 
to facilitate the identification of the number of curves in which 
a region is located, an adequate region area could be one that 
is inversely proportional to the number of curves in which it 
resides, in that the greater the number of curves it is located in, 
the smaller the region area. So, if a k-curve region is a region 



located in k curves in a diagram with n curves, the area of the 
region is assigned a weight w=n⧸k. Thus, if for instance a 
diagram has three curves (n=3), a 1-curve region (k=1, w=3) 
will be twice as large as a 2-curve region (k=2, w=3/2) and 
three times as large as a 3-curve region (k=3, w=1). 

The size of the polygons are adjusted accordingly by 
progressively increasing or decreasing the strength of the 
repulsive force F1 that ensures that the vertices of polygons 
are not too close to one another. The greater the repulsive 
force, the further away neighbouring vertices of a polygon are 
from one another, thus enlarging the size of the polygon. The 
polygons are then moved using the following forces to adjust 
the region areas. (F11) To increase a region area: if r is the 
region whose area should be increased and c1 is the centroid of 
r, for every polygon p that contains r, if c2 is the centroid of p, 
an attractive force is exerted on c2 from c1, so that the entire 
polygon p is moved closer to c1, thus increasing its size. (F12) 
To decrease a region area: if r is the region whose area should 
be decreased and c1 is the centroid of r, for every polygon p 
that contains r, if c2 is the centroid of p, a repulsive force is 
exerted on c2 from c1, so that the entire polygon p is moved 
further away from c1, thus decreasing the size of r.  

Similar to F3-F8, other forces have been included to 
correct any generated layouts whose regions differs from those 
in the initial layout, either because new regions are displayed 
or required regions are missing. We could have disallowed 
these incorrect layouts from the layout improvement process 
altogether, but we opted to accept them and correct them using 
the following forces, to reduce the chances of reaching a local 
minimum. Thus, if while increasing or decreasing region area, 
(F13) the current layout has a region that is not depicted in the 
initial layout: if r is the region that is in the current but not the 
initial layout and c1 is the centroid of r, for every polygon p 
that contains r in the current but not in the initial layout, if c2 
is the centroid of p, a repulsive force is exerted on c2 from c1, 
so the entire polygon p is moved further away from c1, thus 
reducing the size of r and its appearance in the layout until it 
is no longer visible. If alternatively (F14) the current layout 
does not have a region that is depicted in the initial layout: if r 
is the region that is in the initial but not the current layout, for 
every pair of distinct polygons p1 and p2 that should contain 
r, if c1 is the centroid of p1 and c2 is the centroid of p2, an 
attractive force is exerted between c1 and c2, so the polygons 
that should contain r get closer and the missing region is 
regained. 

B. Algorithm 
Our algorithm is similar to that used by Eades [6] to 

balance out the forces in the system. Given some set relations, 
an Euler diagram is generated by a current automatic drawing 
method and used as the initial layout. The algorithm then goes 
through the system in discrete time steps, so that at every step, 
the resultant force exerted on each of the vertices, edges and 
entire polygons in the layout is calculated and the vertices, 
edges and entire polygons are moved accordingly based on the 
magnitude and the direction of the resultant force. This new 
layout is then used as the starting layout for the next discrete 

time step. After a number of steps, the magnitude of the 
resultant force exerted on each of the vertices, edges and entire 
polygons is reduced to zero and the algorithm stops as the 
forces in the system equilibrate and no further changes in the 
layout are carried out. 

Since most of the forces in the system are exerted on and 
relocate the vertices of the polygons in the layout, polygons 
with fewer vertices are subject to fewer changes than those 
with more vertices. Thus, before the algorithm goes through 
the system in discrete time steps, the number of vertices on 
each of the polygons in the layout is equalized. For instance, if 
a layout has two polygons p1 and p2, and p1 has 10 vertices and 
and p2 has 12 vertices, two vertices are added to p1. This is 
done by first adding a vertex x between two vertices v1 and v2 
of the polygon that are connected by an edge (v1, v2) and then, 
removing (v1, v2) and adding two new edges (v1, x) and (x, v2) 
between v1 and x and x and v2 respectively. Since the forces in 
the system can enlarge the size of the polygons, at the end of 
every discrete time step, the length of the edges of each 
polygon is checked and vertices are added to make the edges 
smaller and the polygons smoother. 

Due to the various forces in the system, a limit is set on the 
magnitude of the resultant force exerted on a structure. This 
limit is inversely proportional to the number of discrete time 
steps the algorithm has already gone through in the system, so 
major changes are only carried out at the initial steps when a 
more extensive search for an appropriate layout is required. 
During the final steps, minor changes are carried out to refine 
the layout and ensure the algorithm converges to a solution. 

The transition from the initial to the final layout is 
animated, thus facilitating understanding of how the forces in 
the system aid in improving the layout and how they interact 
with one another [5]. This method was thus helpful to 
understand and appropriately define the required forces to lay 
out Euler diagrams and to devise the first force model to 
improve the layout of such diagrams. Moreover, such a simple 
algorithm could possibly aid in preserving the mental map of 
the layout [7] from the initial to the final improved layout. 

Eades's simple spring embedder [6] was aimed for non-
dense graphs with few vertices. Poor layouts by this embedder 
are reported for graphs with hundreds of vertices [19], as in 
such cases a local minimum is more likely to be reached. As 
discussed earlier, we mitigate this issue by using specific forces 
that correct generated layouts that depict different regions than 
those in the initial layout. Even so, Euler diagram layouts 
typically have fewer than hundreds of vertices as often these 
diagrams have few curves. Later on, further sophisticated 
techniques can be adopted to handle more specific aesthetic 
criteria and to improve the efficiency and performance of our 
force-directed algorithm. 

III. EVALUATION 
To evaluate our method eulerForce, we used its software 

implementation to improve the layouts of Euler diagrams 
generated by a current drawing method [27], and we compared 
eulerForce’s layouts with those generated by the only other 
implemented layout method for Euler diagrams [14]. All the 



experiments were run on an Intel Core 2 Duo CPU E7200 
@2.53GHz with 3.23GB RAM, 32-bit Microsoft Windows XP 
Professional SP1, SP2 and SP3 and Java Platform 1.6.0.14. 

A. Accuracy, Time and Aesthetics 
We tested eulerForce on diagrams automatically generated 

by Rodgers et al.'s method [27], to evaluate its effectiveness in 
generating improved layouts that satisfy our objectives. 
Rodgers et al.'s method was chosen, as it is the only method 
that draws a diagram for set relations for which a well-
matched, well-formed Euler diagram can be drawn. Thus, if an 
improved layout generated by eulerForce did not satisfy our 
objective of depicting each set relation by exactly one region or 
our objective of ensuring the curves are not close to one 
another, the diagram layout was not well-formed and a 
limitation in our method was evident, as a well-formed 
diagram for those set relations is known to exist (i.e., the initial 
diagram generated by Rodgers et al.'s method). 

A library of Euler diagrams generated by Rodgers et al.'s 
method for all the set relations for which a well-formed Euler 
diagram with three, four and five curves can be drawn was 
assembled. This library included: nine Euler diagrams with 
three curves, 114 Euler diagrams with four curves, and 342 
Euler diagrams with five curves. 

Our method eulerForce was then used to improve the layout 
of the diagrams in this library. Fig. 3–Fig. 5 illustrate a few of: 
(i) the diagrams in the library (also Fig. 1), and (ii) the 
corresponding layout generated by eulerForce (also Fig. 2). The 
layouts (ii) in Fig. 3 and Fig. 4 depict precisely the same set of 
regions as those in the initial library layout (i) (also Fig. 1 and 
Fig. 2), but those in Fig. 5 do not and are thus examples of 
cases where eulerForce fails to produce an appropriate layout. 
We now discuss these layouts and the results obtained.  

 

Accuracy The improved layouts for all the nine and 114 
diagrams with respectively three and four curves had the same 
regions as those of the initial incomprehensible layouts, and 
thus satisfied our objective of maintaining the same set of 
regions as that in the initial diagram layout. For the 342 
diagrams with five curves, only 209 of the improved layouts 
(61%) satisfied our objective of maintaining the same set of 
regions as that in the initial diagram layout. The latter result 
could be due to the increased number of vertices that are 
unmanageable with a simple spring embedder [6; 19], 
particularly when the diagram has various regions.  

Fig. 5A(ii) generated by eulerForce for the diagram and 
initial layout Fig. 5A(i) has two new unwanted regions, abcd 
and abcde, that are not depicted in the initial layout. Thus, 
curves a and b should be disjoint. Curve a in the final layout 
generated by eulerForce in Fig. 5A(ii) is not completed smooth 
as the forces that were specifically devised to correct layouts 
depicting regions that are different from the initial are striving 
to regain the disjointness between curves a and b. However, 
these forces seem to be weaker than other interacting forces in 
the system and thus, an inappropriate layout is generated. This 
also indicates the limitations of a simple spring embedder in 
managing various interacting forces in the system. 

Fig. 5B(ii) generated by eulerForce for the diagram and 
initial layout Fig. 5B(i) has two missing required regions, ad 
and be, that are depicted in the initial layout and one new 
unwanted regions, abcde, that is not depicted in the initial 
layout. All the curves in the final layout generated by 
eulerForce in Fig. 5B(ii) are smooth and regular. However, the 
layout is not well-formed as there is a point on the three curves 
a, b and e. This example indicates the limitations of a simple 
spring embedder when a diagram has various regions. For 
various curve overlaps to be displayed, the curve will likely 
have to attain a less regular shape and thus, the strength of the 
forces, particularly those that aim at generating regular, smooth 
and similarly shaped convex curves, might have to be 
dynamically tuned using more sophisticated techniques. In fact, 
for region abcde not to be depicted in the diagram and for the 
diagram to be well-formed in that no point is on more than two 
curves, curves b, c and e should attain a more elongated shape 
rather than a circular shape, as in Fig. 5B(ii). 

Thus, more sophisticated force-directed techniques such as 
those used for laying out large graphs (e.g., [16]) should be 
adopted for the algorithm to overcome local minima and to 
handle Euler diagrams with thousands of vertices and with 
various curves and regions.  

 
 

 
Fig. 3.  Examples of (i) diagrams with four curves by Rodger et al.’s method 

[27] in our library and (ii) the correct layouts by eulerForce. 



 
Fig. 4.  Examples of (i) diagrams with five curves by Rodger et al.’s method 

[27] in our library and (ii) the correct layouts by eulerForce. 

 

 
Fig. 5.  Examples of (i) diagrams with five curves by Rodger et al.’s method 

[27] in our library and (ii) the incorrect layouts by eulerForce. 

Time On average, the final improved layout for diagrams with 
three curves was generated by eulerForce in 7 seconds, those 
with four curves in 26 seconds, and others with five curves in 
77 seconds. Thus, though our current method uses a simple 
algorithm, which is not as efficient as other more sophisticated 
alternatives, improved layouts are still generated in relatively 
fast time. This is comparable to force-directed approaches for 
graphs, which typically produce layouts in around a minute 
[19]. Also, a response time of 10 seconds or less ensures the 
users' attention is maintained [22]. However, better-optimized 
algorithms should be considered in future force-directed 
approaches for Euler diagram layouts.  
 

Aesthetics As illustrated in the examples in Fig. 2–Fig. 4, the 
curves of all the generated layouts depicting the correct set of 
the regions were smooth. Also, whenever possible, the curves 
were regular, similarly shaped and convex, all of which 
facilitate understanding [2]. So eulerForce satisfies our 
objective of obtaining regular, smooth, similarly shaped 
convex curve. Similarly, the curves of all the generated layouts 
depicting the correct set of the regions were well-formed and 
satisfied the most important well-formedness properties of 
regions made up of at most one component and non-concurrent 
curves, as in Fig. 2–Fig. 4. Even in diagrams with various 
curves contained in other curves or regions, as in Fig. 2, Fig. 
3A-C and Fig. 4A-B, none of the curves are too close to one 
another. This could have been further facilitated by the forces 
that centre contained curves in their containing curve or region.  

Layouts generated by a spring embedder are likely to be 
symmetric [8], as shown by most layouts in Fig. 2-Fig.4. 
However, besides the basic forces that are typical for a spring 
embedder in graph drawing, other forces that we devised for 
Euler diagrams are likely to aid in generating symmetric 
layouts. In particular, the forces that centre contained curves in 
their containing curve or region aid in generating highly 
symmetric layouts, as Fig. 2, Fig. 3A-C and Fig. 4A-B. 

Having adequately sized regions and curves also aid 
diagram comprehend [2]. The area of the diagram could be 
evenly distributed among its regions, but in our case we opted 
for an adequate region area that is inversely proportional to the 
number of curves in which it resides. The generated layouts 
including Fig. 2-Fig. 4 indicate that this approach is effective 
as it ensures that: curves contained in other curves or regions 
are not too large for them to fit appropriately in the containing 
curve or region with possibly other regions, as in Fig. 2, Fig. 
3A-C and Fig. 4A-B, and without breaking well-formedness; 
the number of curves in which a region is located is easier to 
identify. 

For the layouts to be effectively evaluated, formalized 
aesthetic metrics and cognitive measures are required. Very 
few studies have investigated the aesthetics of such diagrams 
(Section I), but no criteria have been formalized. 

B. eulerForce versus Previous Methods 
The only previous layout method that has been 

implemented is Flower et al.’s multi-criteria optimization 
method [14]. We compared the diagram layouts generated by 
Flower et al.’s method with those generated by eulerForce. 



As initial layouts, Flower et al. used diagrams generated by 
techniques [12; 13] available at the time. Fig. 6A(i) and Fig. 
6B(i) illustrate diagrams generated by these techniques. The 
technique we used to generate the initial layouts for eulerForce 
[27] is more recent, but yet a variant of those used by Flower et 
al. for their method.  

Given sets a, b, c, d and the set relations {ø, a, c, ac, cd, 
acd, bcd, abcd}, Flower et al.'s initial layout is Fig. 6A(i) and 
the generated improved layout is Fig. 6A(ii), while eulerForce’s 
initial layout is Fig. 1A and the generated improved layout is 
Fig. 2A. Flower et al.'s initial and final layout look similar as 
the position and the orientation of the curves is barely changed, 
indicating that the method is limited to a minimal local search 
leading to a layout whose aesthetics could be improved further. 
For instance, the layout generated by eulerForce has regular, 
similarly shaped, circular curves. The containing and contained 
curves c, d and b are centre aligned and the distance between 
curve c and d is the same as the distance between curve d and 
b. All of these features further aid in indicating subsets in the 
data depicted by the diagram, thus facilitating data analysis. So, 
in contrast to Flower et al.'s layout, eulerForce’s layout is 
symmetric, compact, easy to understand and remember. 
 

 

 
Fig. 6.  The improved layouts (ii) generated by Flower et al.'s method [14] for 

the diagrams and initial layouts (i). 

 
Similar observations are evident for the layouts depicting 

set relations {ø, a, c, d, ac, ad, bc, abc} where Flower et al.'s 
initial layout is Fig. 6B(i) and the generated improved layout is 
Fig. 6B(ii), while eulerForce’s initial layout is Fig. 3B(i) and 
the generated improved layout is Fig. 3B(ii). Flower et al.'s 
final layout, Fig. 6B(ii), was generated after 80 iterations and 
after the line segments in the diagram were converted to Bézier 
curves. The final layout of eulerForce, Fig. 6B(ii), was 
generated in 17 seconds. So a layout improvement method 
using a force-directed approach as eulerForce could be faster 
than ones using multi-criteria optimization like Flower et al.'s 
method. After all, multi-criteria optimization is known to be 
computationally expensive [21]. In contrast to eulerForce, 
Flower et al.'s method is limited to diagrams with up to four 

curves and thus, no layouts with more than four curves could 
be included in our comparative analysis. 

Though the initial layouts used by eulerForce in our 
evaluation are less comprehensible than those used by Flower 
et al.'s method, the final improved layouts generated by 
eulerForce are more aesthetically desirable and easier to use 
than those generated by Flower et al.'s method. The 
effectiveness of the layouts should be evaluated using 
formalized aesthetic metrics and cognitive measures. However, 
none are available for Euler diagrams and so, our comparative 
analysis and evaluation of the layouts was limited to a visual 
comparison of the layouts and based on the findings of the very 
few studies on Euler diagram aesthetics [2; 3; 26]. Even though 
Flower et al. defined a few aesthetic metrics to devise their 
layout method [14], these metrics were not evaluated. 

IV. CONCLUSION 
In this paper, we have described our layout method, 

eulerForce, the first method that uses a force-directed approach 
to improve the layout of Euler diagrams. Our evaluation 
indicates great potential for using force-directed techniques to 
improve Euler diagram layouts in quick time and to generate 
comprehensible diagrams given the required set relations. 

It would be interesting to evaluate the layouts generated by 
eulerForce for initial layouts that are not well-formed and for 
set relations for which a well-formed Euler diagram cannot be 
drawn. Until now, eulerForce has been evaluated for initial 
layouts that are well-formed and for set relations for which a 
well-formed diagram can be drawn. This was intentional to 
evaluate the effectiveness of the forces that we specifically 
devised to ensure that there is only one region for each set 
relation and that the curves are not too close to one another. 
However, the effectiveness of these forces in handling not 
well-formed diagrams should be evaluated, so that if necessary, 
the force model is adapted to handle such diagrams. 

We adopted a simple spring embedder algorithm to 
facilitate understanding and evaluation of our force model, 
which is the first for Euler diagrams. However, this algorithm 
is not as efficient as other force-directed algorithms and is 
unable to handle hundreds of vertices [19]. Such limitations are 
evident in our eulerForce evaluation for Euler diagram layout 
with five curves, as discussed in Section III. Until now, our 
focus was on the force model rather than the algorithm. In the 
future, sophisticated force-directed algorithms such as those 
used for laying out large graphs [17] can be adopted and 
investigated in the context of Euler diagrams.  

For instance, a multilevel approach such as that used in 
graph drawing [34] can be adopted to overcome local minima 
and to efficiently handle layouts with thousands of vertices and 
thus, with various curves and regions like those in Fig. 5. As an 
example, Hu's method [16] uses this approach to lay out graphs 
with over 10,000 vertices in less than a minute. 

The Barnes-Hut algorithm [1] can be used to efficiently and 
dynamically compute the appropriate forces at every step of the 
layout improvement process. This method has already been 
successfully used in graph drawing (e.g., [16]) and could aid in 
cases such as those in Fig. 5. Force-directed techniques in 



graph drawing have also demonstrated that adding magnetic 
fields to the system and its springs could aid in satisfying 
various aesthetic criteria [31] and should thus be considered for 
Euler diagram layouts. 

Other future work includes gathering more empirical 
evidence to assess Euler diagram aesthetics and to formalize 
metrics that evaluate the effectiveness of Euler diagram 
layouts. 
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