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Abstract— Visualization and interaction of multidimensional data are challenges in visual data analytics, which requires optimized solutions 

to integrate the display, exploration and analytical reasionning of data into one visual pipeline for human-centered  data analysis and 

interpretation. Though it is considered to be one of the most popular techniques for visualization and analysis of multidimensional data, 

parallel coordinate visualization is also suffered from the visual clutter problem as well as the computational complexity problem, same as 

other visualization methods which visual clutter occurs with the volume of data needs to be visualized increasing. One straightforward way to 

address these problems is to change the ordering of axis to reach the minimal number of visual clutters. However, the optimization of the 

ordering of axes is actually a NP-complete problem. In this paper, two axes re-ordering methods are proposed in parallel coordinates 

visualization: 1) a contribution-based method and 2) a similarity-based method.  

The contribution-based re-ordering method is mainly based on the singular value decomposition (SVD) algorithm. It can not only provide 

users with the mathmetical theory for the selection of the first remarkable axis, but also help with visualizing detailed structure of the data 

according to the contribution of each data dimension. This approach reduces the computational complexity greatly in comparison with other 

re-ordering methods. While a similarity-based re-ordering method is based on the combination of nonlinear correlation coefficient (NCC) and 

SVD algorithms. By using this approach, axes are re-ordered in line with the degree of similarities among them. It is much more rational, 

exact and systemic than other re-ordering methods, including those based on Pearson’s correlation coefficient (PCC). Meanwhile, the paper 

also proposes a measurement of contribution rate of each dimension to reveal the property hidden in the dataset. At last, the rationale and 

effectiveness of these approaches are demonstrated  through case studies. For example, the patterns of Smurf and Neptune attacks hidden 

in KDD 1999 dataset are visualized in parallel coordinates using contribution-based re-ordering method; NCC re-ordering method can 

enlarge the mean crossing angles and reduce the amount of polylines between the neighboring axes. 

Index Terms—Multidimensional data visualization, visual analytics, parallel coordinates, axes re-ordering, singular value decomposition, 

nonlinear correlation coefficient. 

 

INTRODUCTION  

 

The rapid growth of data communication through the Internet and World Wide Web has led to vast amounts of information 

available online. In addition, business and government organizations create large amounts of data contain both structured and 

unstructured information which needs to be processed, analyzed, and visualized. Therefore, multi-dimensional data analysis is 

becoming commonplace as the number of applications increases, such as statistical and demographic computation, digital 

libraries and so on. However, traditional visualization techniques for these data sets usually require dimensionality reduction or 

selection to generate the meaningful visual representations. Dimensionality reduction, as Sara Johansson et. al [1] pointed out, 

is always employed prior to visualization for dealing with the data with a large number of attributes.  Currently, many 

dimensionality reduction methods are available to preserve the information inside the data as much as they can remove some 

less relevant data items or attributes from the original dataset. While dimension selection is mainly referred to dimension re-

ordering which means the corresponding axes of the dimension in a parallel coordinate visualization can be positioned in 

accordance to some effective rules such as similarity of dimensions to achieve good visual structures and patterns. This paper 

focuses on the dimension re-ordering instead of dimension reduction to address the problems of visual clutter and 

computational complexity. 

In 1998, Mihael Ankerst et al. [2] presented the method of using the similarity of dimensions to improve the quality of 

visualization of multidimensional data, that is using global and partial similarities for one or two-dimensional visualization 

methods. Pearson’s Correlation Coefficient (PCC) is one of the most common methods used for measuring similarity between 

two dimensions. PCC can be used for dimension reduction, clutter reduction and clustering in data visualization. At the same 

time, it has also been proved that the PCC based re-ordering problem is a NP-complete problem. Therefore, many researchers 

applied heuristic algorithms to figure out an optimal order of axes (or dimensions) in the multi-dimensional data visualization.  

This paper proposes two rational dimension re-ordering methods to support the visual analytics in parallel coordinates. And 

those two methods can also be easily applied to other visualization techniques.  

Firstly,  method to find out the contribution of each dimension in the dataset is developed on the basis of the Singular Value 

Decomposition (SVD). After the calculation of contribution rates, axes (or dimensions) are re-ordered and visualized as parallel 

coordinates from left to right according to the degree of their significances. Though the traditional heuristic algorithms can 



 

 

optimize the order of axes for one- or two-dimensional visualizations, most studies have not been done to a deeper investigation 

on how to determine the first dimension (the most significant dimension) in multi-dimensional data visualizations. The first 

dimension always attracts much more user’s attention than the others. Therefore, the one with the highest contribution rate can 

be considered as the first dimension to simplify the traditional similarity-based re-ordering methods and the one to find out the 

optimal order of parallel axes in a short time period. 

Secondly, Pearson’s Correlation Coefficient method is applied into the further investigation on axes re-ordering. As a 

correlation metric between each pair of dimensions in the dataset, PCC is available for characterizing linear systems 

statistically. Inspired by PCC, a similarity-based re-ordering method is presented in parallel coordinates which is based on the 

combination of a Nonlinear Correlation Coefficient (NCC) and the SVD algorithms. NCC is sensitive to any relationship, not 

just the linear dependence [26]. It is more rational than the current PCC method in theory and it can improve the quality of 

multi-dimensional visualizations significantly in terms of effectiveness and exactness. In our experiments, the effectiveness of 

the new method can be proved by visualizing the patterns and enlarging the mean crossing angles for better visual 

representation. 

The paper is organized as follows. The current situation and background of researching on similarity measure and 

dimension reordering in high-dimensional data visualization is introduced in Section 1. And next two dimension reordering 

approaches are stated in detail in section 2. While the experimental evaluation for our new ideas as well as the effectiveness of 

our methods in parallel coordinates visualization are further elaborated and proved in section 3. Section 4, the last part of the 

paper, is designed to make the conclusions and look forward to future work. 

1 RELATED WORK  

An effective way to improve the quality of multi-dimensional visualizations is to re-order the dimension axes in parallel 

coordinates based on similarity of data attributes.  In this section, paper begins to summarise the previous researches finished in 

the area of high-dimensional visualization. 

    Parallel coordinates[3, 4], scatter plot matrix[5], table lens[6] and pixel-oriented display[7] et al. are well-known and 

accepted as visualization techniques for high-dimensional data sets.  

    Similarity measurement as one aspect of quality metrics in high-dimensional data visualization has been addressed in 

the past few years [1, 8-11]. It is worth noting that Enrico Bertini et al [8] systematically presented an overview of quality 

metrics in many visualization techniques through a literature review of nearly 20 papers and considered correlation between 

two or more dimensions to be the main characteristic of similarity measurement. Sara Johansson[1] introduced a weighted 

quality metrics to their task-dependent and user-controlled dimensionality reduction system, where small correlation values are 

ignored to reduce the dataset that preserves the important structures within the original dataset. Andrada Tatu et al. proposed 

similarity-based function for classified and unclassified data based on Hough Space transform on the resulting image of parallel 

coordinates [10, 11]. Aritra Dasgupta et al. [9] introduced binned data model and branch-and-bound algorithm as the screen-

space metrics for parallel coordinates to reduce the computations and find the optimal order of axes.  

To enhance the high-dimensional data visualization, some studies on dimension reordering have been done to find good 

axes layouts in visualization techniques both in one- or two-dimensional arrangement[1, 8-10, 12] [13, 14] [2, 15-18, 32]. 

Mihael Ankerst et al. [2] defined similarity measures which determined the partial or global similarity of dimensions and 

argued that the reordering based on similarity could reduce visual clutter and do some help in visual clustering. Wei Peng et 

al.[15] introduced the definition of the visual clutter in parallel coordinates as the proportion of outliers against the total number 

of data points and they tried to use the exhaustive algorithm to find the optimal axes order for minimizing the member of edge 

crossings (or visual clutter). As mentioned in [16], the computational cost  ( !)n n   hampers applications of this technique to 

large high dimensional data sets. Almir Olivette Artero et al. [16] introduced the dimension configuration arrangement based on 

similarity to alleviate clutter in visualizations of high-dimensional data. They proposed a method called SBAA (Similarity-

Based Attribute Arrangement), which is a straightforward variation of the Nearest Neighbor Heuristic method, to deal with both 

dimension ordering and dimensionality reduction. Other studies have been done on the dimension reordering based on the 

similarity[11, 17, 18] [19] [20].  Michael Friendly et al.[17] designed a framework for ordering information, including 

arrangement of variables. However, the arrangement of variables is decided mainly according to the users’ desired visual 

effects. J. Yang et al. [18] established a hierarchical tree structure over the attributes, where the similar attributes were 

positioned near each other. Diansheng Guo [19] developed a hierarchical clustering method based on comparing and sorting 

dimensions by using the maximum conditional entropy. Georgia Albuquerque et al. [20] introduced the quality measures to 

define the placement of the dimensions for Radviz and also to appraise the information content of pixel and Table Lens 

visualizations.  

The most of recent dimension reordering methods are established on the basis of Pearson’s Correlation Coefficient. From 

the statistics point of view, PCC is taken as a method for measuring the linear correlation between the two random variables. 

Therefore, it is irrational to reorder the dimensions in similarity only depending on the calculation of PCC. Though Pargnostics, 

proposed by Aritra Dasgupta et al. in[1], is the most similar with our approach, the probability and joint probability during the 

computational process are both denoted as their special axis histograms, which lack the support by mathematical theories. 



 

 

Moreover, it can be seen from the definition of the mutual information that does not range in a definite closed interval as the 

correlation coefficient does, which ranges in[ 1,1] .  

Hence, it is of great importance that a rational and useful method should be proposed for correlation analysis among the 

dimensions for conveying better visual structures and patterns. In this paper, we propose two methods for dimensions 

reordering in parallel coordinates: contribution-based and similarity-based reordering methods. The contribution-based 

reordering, based on the SVD algorithm, which not only can provide theoretical support for the selection of the first dimension 

but also can visualize the clear and detailed structure of the dataset with the contribution of each dimension. Operated with it, 

much less computational complexity can be reduced and much more time can be saved than did with any other traditional 

reordering methods. The similarity-based reordering method is based on the combination of NCC and SVD algorithms, where 

dimensions are reordered in line with the degree of correlations among the dimensions. It is more rational, exact and systemic 

than other traditional methods.   

2 METHODOLOGY 

The ordering of dimension has large impact on how easily we can perceive different structures in the data[2]. Completely 

different displays and conclusions may be obtained if we interactively switch between different dimension reordering. How to 

reordering the dimensions in high-dimensional data sets meaningfully is one of the most significant problems of the researches 

on quality metrics in data visualization due to its influences on the quality of visualization in terms of readability and 

understandability. In this section, we visualize them in a rational way rather than arrange them only according to the empiricism 

or good visual effects.  

       Therefore, we propose a contribution-based reordering method based on SVD algorithm to visualize the data sets in 

parallel coordinates according to the contribution of each dimension to the whole dataset in section 2.1. Moreover, this method 

provides some theoretical support on how to determine the first dimension to visualize as well. In section 2.2, we present a 

similarity-based reordering method based on the combination of SVD and NCC algorithms. 

      Throughout this section the following notation is used: a dataset D is composed of n  dimensions (variables) with m data 

items for each one. In some cases we need to measure the statistical characters between the two dimensions X andY , where 

 1 2( , , , )T

nX x x x
, 1 2( , , , )T

nY y y y
. 

2.1 Contribution-based Re-ordering 

In the research field of matrix computation, singular value decomposition plays an important role in revealing interesting and 

attractive algebraic properties, and conveying important geometrical and theoretical insights about transformations. The entries 

of each matrix obtained by the SVD algorithm have their special physical significances. Here we apply these significances of 

matrix to our method to measure the contribution of each dimension to the dataset. 

For an m n matrix D , the singular value decomposition of it is defined as the following form[21]: 

D U V


                                                 (1) 

Where, U and V


(V


is the conjugate transpose of V ) are m m  and n n  unitary matrices respectively.   is an m n rectangular 

diagonal matrix with nonnegative real numbers (singular values of D ) in order of decreasing magnitude on the diagonal. 

There are many properties of SVD for the matrices. For example, the singular values of the matrix D are the square roots of 

eigenvalues of matrix
TD D ; the Euclidean norm of D  is equal to the largest singular value and so on. Among these properties, 

what impressed us most are that the columns of the matrices U and V  form the orthonormal basis for the space spanned by the 

columns and rows of D . For example, in the literature [30], characteristic modes are defined to reconstruct the gene expression 

patterns based on this property. By combining and analyzing these properties, we can conclude the following property in 

perspective of the numerical properties for matrix: 

Property: The entries of the first column of V in the singular value decomposition, which are denoted 

as 1 jv , 1,2, ,j n , show the contributions of columns of D to the space spanned by them, i.e. 1 2{ , , , }nspan d d d , id is 

the ith column of D . 

Based on the above property, we can design a contribution-based reordering method according to these entries of the 

column and visualize the dimensions of the dataset from left to right in parallel coordinates (See Fig. 1 and Fig. 2). From the 

perspective of data values, this reordering method provides us effective and clear visualization structure of the data.  It can help 

us take deeper insight into the dataset.  

It is natural that we can compute the contribution rate of each dimension to the whole dataset using the following possible 

measure: 
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This approach not only provides us a new reordering method helping us take much more insights into the dataset but also 

gives rise to the following re-ordering method which can help in determination of the first dimension with the most 

contribution. 

2.2 Similarity-based Re-ordering 

The correlation of two variables (dimensions/attributes) is a statistical technique that can indicate the magnitude relationship 

between the two variables. It also shows how the two variables interact with each other. In this section, we present the 

reordering methods based on the two correlation measures: Pearson’s correlation and nonlinear correlation information 

measures. 

2.2.1 Linear/Nonlinear Correlation Analysis 

Pearson’s Correlation Coefficient [22], as one of the most popular similarity measures in visualization of multidimensional 

data, is a linear correlation measurement for each pair of random variables: 
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   , x  and y behave the mean of variables X and Y respectively.  The value of PCC ranges in the 

closed interval [-1, 1], which indicates the linear correlation degree of the two variables. When it is close to 1 or -1, the PCC 

value denotes a strong relationship; and if close to 0, it means a weak relationship between the two variables. A positive and 

negative correlation coefficient denotes that both variables are in the same way or in the opposite way. 

Although linear correlation can detect the relationship between two dependable variables, the correlations can also be 

nonlinear in the real world. Mutual Information can be thought of as a generalized correlation analogous to the linear 

correlation coefficient, but sensitive to any relationship, not just linear correlation. Moreover, NCC is a method that can 

measure nonlinear relationship based on mutual information[23, 24] and redundancy[25], which is sensitive to any relationship, 

not just the linear dependence[26].  Zhiyuan Shen et al.[26, 27] did further researches on the effects of statistical distribution to 

it and made it range in a closed interval [0,1] . 

     Corresponding to the literature[2], we mainly apply NCC to compute the partial similarity measures of dimensions in 

multidimensional data visualization, while SVD is used for measuring the global one. We introduce the detailed NCC in the 

following paragraphs.  Mutual information plays an important role in the computation of NCC, which is defined as  

  ( ; ) ( ) ( ) ( ; )I X Y H X H Y H X Y                            (3) 

where ( )H X  is the information entropy of variable X :  

1

( ) ln
n

i i

i

H X p p


   

( ; )H X Y  is the joint entropy of the variables X and Y : 

1 1

( ; ) ln
n n

ij ij

i j

H X Y p p
 

   

ip denotes the probability distribution that random variable X takes the value ix , and ijp  denotes the joint probability 

distribution ( , )i ip X x Y y  of the discrete random variables X and Y .  

       After revising joint entropy of the two variables X and Y , 

1 1

( ; ) log
b b

ij ijr

b

i j

n n
H X Y
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                                   (4) 

in which b b  rank grids are used to place the sample pairs  1 1
( , )i i n
x y

 
. ijn is the number of samples distributed in the 

ijth rank grid,  Wang et al. [27] proposed the calculation method for nonlinear correlation coefficient as follows: 

1 1

( ; ) ( ) ( ) ( ; )

2 log

r r r

b b
ij ij

b

i j

NCC X Y H X H Y H X Y

n n

n n 

  

 
            (5) 

 In the following section 2.2.2, the above formula is applied to measure the linear or nonlinear relationship between the two 

dimensions in multidimensional data sets because of its sensitivity to any relationship.    



 

 

2.2.2 Similarity-based Reordering 

Since the problem of dimension reordering is similar to the Traveling Salesman problem, many researchers applied heuristic 

algorithms, such as genetic algorithms, colony optimization and nearest neighbor heuristic method etc. [2, 16], to overcome 

exhaustive time. In the method SBAA proposed by Almir Olivette Artero et al.[16], the largest value ,i js  in their similarity 

matrix s (lower diagonal) is considered to be the initial dimension “ ij ” in the new order. And then, they try to search for the 

dimensions which will be positioned in the right of it. It seems rational that we just reorder all the dimensions in line with this 

similarity. However, some dimensions always attract much more concentrations from the whole visual structure. For example, 

in parallel coordinates, the first and the last dimensions can draw much more attention than the other axes do. Therefore, 

different from the existed methods, we propose a new dimensions reordering algorithm based on the NCC and SVD algorithms. 

And these methods help users reduce the computation complexity and improve the visual readability greatly.  

       We define the similarity matrix s , which is symmetric, as follows:  
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where  

ij jis s ( )i j , which are calculated by use of nonlinear correlation coefficient.  

iis ( 1,2, , )i n  (We also can denote them as 1iv ) behaves the contribution value of the ith dimension to the whole data 

values, which is calculated by SVD algorithm. 

 

Similarity-based Reordering Algorithm 

 

Step1. Form the matrix D  of the data sets. 

Step2. Calculate the singular value decomposition of matrix D , and get the contribution factors  

iis ,  1,2, ,i n . 

Step3.Compute the other elements ijs of similarity matrix s , using our nonlinear correlation coefficient method, besides iis , 

1,2, ,i n  which have calculated in step2. 

Step4. Choose the largest value of iis , 1,2, ,i n as the extreme left attribute to start display the data sets. We denote this 

attribute as  

llS ,  1,2, ,l n . 

Step5. Get the largest value 
llS from  ,liS l i . Therefore, the 

1r th attribute is appended to the lth attribute. We get the first 

two elements of neighbouring sequence  1,NS l r . 

Step6. Repeat step5 using the
1r th  attribute as the left neighbouring attribute from 

1 1,r iS r i  until inserting all attributes into 

the NS .  

It is worth noting that this visualization method can not only provide us the similarities between each pair of dimensions, but 

also express some ideas of the self-property of each dimension. During the computation process of the nonlinear correlation 

coefficient, we chose the b b rank grids according to the empirical formula, which is mentioned in [28]:  

                       
2

51.87 ( 1)b n                               (6) 

3 CASE STUDIES  

With the application examples to demonstrate the effectiveness of our rational dimension reordering methods, we analyzed 

many data sets in this section, such as the one describing KDD Cup 1999 and Cars models for contribution-based reordering 

visualization and another one about Cars and Liver Disorders data set for our similarity-based reordering method. All of these 

data sets we tested come from the literature [29].  

3.1 Contribution-based visualization 

In this section, we utilize two data sets to show the effectiveness of our contribution-based method. Firstly, part datum from 

KDD 1999 consisting of 1113 data items with 42 attributes (including “normal” and “abnormal” labels) are analyzed in Fig. 1. 



 

 

To the whole 42 attributes, we use contribution-based reordering method as a dimension reduction step for visualizing data set. 

By setting the contribution rate as one of the simplest techniques to retain as much characteristics of the whole data set as we 

can do, we get the six attributes which retain the 99.98% of the overall information. It can be easily found that there are two 

different attacks in these 1113 data items: purple lines and red lines represent “Smurf” and “Neptune” attacks respectively. 

From the polylines among the attributes “dst_host_count” and “count”, we can find there is a big fluctuation between the 

normal and abnormal lines, which just presents us the pattern of attacks.  

On the other hand, Cars dataset with seven dimensions, which consists of 392 values, is considered to be the second example 

to test the contribution-based reordering method. We calculated the contribution of each dimension to the whole dataset using 

the property in section 2.1 and the fourth attribute named “Weight” enjoys the largest contribution factor 0.9991 (The other 

contributions are listed as the diagonal elements in the following matrix s of next section). Fig. 2 visualizes the dataset in line 

with their contribution to the values in parallel coordinates.  From the characteristic of values within the dataset, the 

visualization illustrates the contribution of each dimension from the highest rate to the lowest one. It is worth to be noticed that 

the polylines among the “Cylinders” and “Origin” attributes simplify the visual patterns due to their last two lower 

contributions to the overall data and neighboring each other. 

3.2 Similarity-based reordering visualization 

In this section, we visualize and compare the PCC with the NCC re-orderding method using Cars and Liver Disorders data 

sets. According to the literature [31], the larger the crossing angle between the polylines is, the less the cognitive load becomes, 

and the better the visualization efficiency turns to be. Therefore, in order to show the advantages in the readability and 

understandability of our method, we calculated the mean angles occurred among the polylines between two neighboring 

attributes using the following formula: 

     

_
_

_ sin

total angle
mean angle

total edge cros g


 

3.2.1 Cars Dataset 

Based on the theory in section 2.2, the similarity matrix of Cars data set was calculated as the following S . 

0.0067 0.5950 0.3236 0.0561 0.9078 0.8104 0.0302

0.5950 0.0018 0.5806 0.5028 0.8944 0.0261 0.6288

0.3236 0.5806 0.0354 0.1313 0.5223 0.9544 0.0104

0.0561 0.5028 0.1313 0.9991 0.3389 0.6968 0.0302

0.9078 0.8944 0.5223 0.3389 0.0047

S 

0.9598 0.0197

0.8104 0.0261 0.9544 0.6968 0.9598 0.0235 0.0117

0.0302 0.6288 0.0104 0.0302 0.0197 0.0117 0.0004
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    After positioning the first dimension “Weight”, which makes a significant contribution to the whole data set, we try to find 

out the one from the unordered dimensions with the largest similarity value to this dimension:
46 0.6968S  . Therefore, the 

6 th  dimension is considered to be the strongest correlation with the 4 th  one. And then, we make the  6 th  attribute to be 

appended to the 4 th  one. Similar to this process, we can get the final rational dimension order, which is  

4 6 5 1 2 7 3       

 

Corresponding to the initial Cars dataset, the reordering dimensions calculated using our algorithm is 

 
Weight Year Acceleration MPG

Cylinders Origin Horsepower

  

  
 

 

The reordering results after our analysis are visualized in parallel coordinates in Fig. 3(a).  

    We visualize Car dataset using the traditional reordering method-Pearson’s Correlation Coefficient in Fig. 3(b). The 

corresponding order of dimensions is as follows: 

 
Weight Cylinders Horsepower MPG

Year Acceleration Origin

  

  
 

     Comparing with these two images in Fig. 2, we can find that visualization structures between the “Cylinders” and 

“Origin” dimensions become much clearer and simpler with our method. In the visualization graph of NCC, the mean angle 

between the attributes “Acceleration” and “MPG” gets to 22.359 . Moreover, the mean angle between “Cylinders” and “Origin” 

attributes is 28.162 .Compared to the mean angle of the overall polylines produced in the PCC reordering method, 0.422 , the 



 

 

angle in NCC reordering one is 21.2 times larger than it. Therefore, we can find the visual effect of our reordering method is 

much better than the traditional ones. 

      Table 1 presents the detailed comparisons between the similarity values of attributes, which are calculated using PCC and 

NCC. The numbers from 1 to 7 denote the dimensions: “MPG, Cylinders, Horsepower, Weight, Acceleration, Year and 

Origin” separately. Note that no matter which method we use, the similarities between the two dimensions are the same, that 

is ij jis s ( )i j . It is obvious that there are big differences between the similarity values with two methods.  For example, to 

our knowledge, the similarity between the 3 th  (“Horsepower”) and 7 th  (“Origin”) dimensions of the dataset is not strong 

enough at all.  For example, the computation result of similarity by using PCC is 0.4552, while ours NCC is 0.0104.  

3.2.2   Liver Disorders Dataset 

Liver Disorders dataset consists of 345 instances with 7 dimensions. Fig. 4 illustrates us the final visualization result of the 

whole dataset according to their similarities calculated by NCC and PCC  methods respectively, where the dimension“MCV” 

makes the most significant contribution to the whole dataset and occupies the first place in the two reordering visualization. 

It is easy to find that polylines among the “SF” and “DN” attributes are much less than those among any other neighboring 

attributes in Fig. 4 (a) and (b). The mean crossing angle of these two dimensions, 43.515 , as the largest one in the dimensions 

reordering visualizations, simplifies the visual representation greatly. The mean crossing angle of our NCC reordering method 

to this dataset is 12.322 , which is 3.722  larger than the result calculated using PCC method. 

We also tested the other data sets such as Nursery, Iris et al. large scale ones to illustrate the advantages of our methods. All 

of them showed our methods can enlarge the mean crossing angles for better visualization. 

4 CONCLUSIONS AND FUTURE WORK  

In this paper, two new methods are proposed to improve the readability and understandability of parallel coordinates 

theoretically. At the first stage, singular value decomposition algorithm provides a new way of looking into the dimensions 

within data sets. We propose a contribution-based reordering method and a formula for contribution rate of each dimension. At 

the second stage, we present a method, named as similarity-based reordering method, for calculating the similarity between the 

two dimensions based on the nonlinear correlation coefficient and singular value decomposition algorithms rather than the 

traditional Pearson’s correlation coefficient, and then visualize the optimal dimension order according to the similarity in 

parallel coordinates.  At last, the experimental evaluations demonstrate the effectiveness and rationale of our approaches: the 

patterns of Smurf and Neptune attacks hidden in KDD 1999 dataset are visualized in parallel coordinates using the 

contribution-based reordering method; NCC reordering method enlarges the mean crossing angles of the whole data set and 

reduces the amount of polylines between some neighbouring dimensions. 

       During the process of calculation for nonlinear correlation coefficient, the more exact choice of rank grids will do much 

more help in the speed up of calculation. Therefore, we consider this issue to be our first work in priority.  Secondly,  we will 

apply our methods with interactive techniques to more real-world data sets and help users analyze the data sets using 

visualization. 
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Fig. 1. Contribution-based reordering of KDD 1999 dataset in parallel coordinates. 
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Fig. 2. Contribution-based reordering of Cars dataset in parallel coordinates. 
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(b) Measurement with PCC. 



 

 

Fig. 3. Dimension reordering of Cars dataset in parallel coordinates.        
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                                                                          (b) Measurement with PCC. 



 

 

                                      Fig. 4. Dimension reordering of Liver Disorders dataset in parallel coordinates. 

 

Table 1 The comparison of the similarity values using PCC and NCC to Cars dataset.   
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