Refining Semantics for Multi-stage
Programming

by

Rui Ge

B.Sc., Simon Fraser University, 2013
B.Eng., Zhejiang University, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)
October 2016
© Rui Ge 2016

Abstract

Multi-stage programming is a programming paradigm that supports runtime code generation and execution.
Though researchers have extended several mainstream programming languages to support it, multi-stage
programming has not been widely recognised or used. The popularisation of multi-stage programming has
been impeded by the lack of development aids such as code refactoring and optimisation, for which the
culprit is the lack of static analysis support.

Van Horn and Might proposed a general-purpose approach to systematically developing static analyses
for a programming language by applying transformations to its formal semantics, an approach we believe is
applicable to multi-stage programming. The approach requires that the initial semantics be specified as an
environmental abstract machine that records the change of control strings, environments and continuations
as a program evaluates. Developing an environmental abstract machine for a multi-stage language is not
straightforward and has not been done so far in the literature.

In the thesis, we study multi-stage programming through a functional language, MetaML. The main

research problem of the thesis is:

Can we refine the pre-existing substitutional natural semantics of MetaML to a correspond-
ing environmental abstract machine and demonstrate their equivalence?

We first develop a substitutional structural operational semantics for MetaML. Then we simplify the re-
search problem along two dimensions—each dimension leads to a less complicated semantics refinement
problem. The first dimension is to refine semantics for a single-stage language rather than a multi-stage
language: we stepwise develop an environmental abstract machine, the CEK machine, for a single-stage
language, ISWIM, based on its substitutional structural operational semantics. The second dimension is
to derive a substitutional abstract machine rather than an environmental abstract machine: we stepwise de-
velop a substitutional abstract machine, the MK machine, for the multi-stage language MetaML, based on its
substitutional structural operational semantics. Finally, utilising the experience of refining semantics along
two dimensions, we stepwise develop an environmental abstract machine, the MEK machine, for MetaML,
based on its substitutional structural operational semantics. Furthermore, we introduce three proof tech-

niques which are used throughout the thesis to prove the equivalence of semantics.

il

Preface

This thesis is original, unpublished, independent work by the author, Rui Ge, under the supervision of Dr.
Ronald Garcia (Assistant Professor at UBC).

iii

Table of Contents

Abstract L il
Preface e iii
Table of Contents e iv
Listof Tables e vii
Listof Figures e viii
Acknowledgements e ix
Dedication xi
1 Imtroduction 1
1.1 General-purpose and Special-purpose Programming 1
1.2 Specialising a General-purpose Program 2
1.3 Multi-stage Programmingo 3
1.4 Static Analysis of Multi-stage Programs 4
1.5 Refining Semantics L Lo e 5
2 Formal Semantics of MetaML 10
2.1 Staging Annotations i e e e e e e e e e e e e 10
2.2 Formal Semantics of MetaML 13
2.3 Chapter Summary e e e e e e 30
3 Refining Semantics for ISWIM: Developing the CEK Machine 31
3.1 ISWIM L L e 31
32 Explicit ISWIM e 35
3.3 Suspended ISWIM L 40
3.4 Environmental ISWIM - Structural Operational Semantics 45
3.5 Environmental ISWIM - Reduction Semantics 49
3.6 Environmental ISWIM - CEK Abstract Machine 53
3.7 Chapter Summary e e e e e e e e e 57

v

Table of Contents

4 Refining Semantics for MetaML: Developing the MK Machine 58
4.1 MetaML - Substitutional Reduction Semantics oL 58
4.2 MetaML - MK Abstract Machine L oL 62
4.3 Chapter SUMMAry v i e e e e e e e e e e 66

5 Refining Semantics for MetaML: Developing the MEK Machine 67
5.1 MetaML . . L L 68
52 ExplicitMetaML 69
5.3 Suspended MetaML e 76
5.4 Environmental MetaML - Structural Operational Semantics 87
5.5 Environmental MetaML - Reduction Semantics 97
5.6 Environmental MetaML - Abstract Machine (MEK Machine) 101
5.7 Chapter Summary e e e e e e 106

6 Proof Methodology and Related Work 107
6.1 Proof Methodology e 107
6.2 Related Work e 108

7 Conclusion 110
7.1 Conclusion L e 110
7.2 Limitations and Future Work oL oo 111

Bibliography 113

Appendices

A Proofsof Chapter2 e 115
A.1 Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational

Semantics of MetaML 115

B Proofsof Chapter3 123
B.1 Equivalence of ISWIM and Explicit ISWIM 123
B.2 Equivalence of ISWIM and Suspended ISWIM 136
B.3 Equivalence of ISWIM and Environmental ISWIM 150
B.4 Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental

ISWIM .« e 155
B.5 Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environ-
mental ISWIM 0 e 158

Table of Contents

C Proofsof Chapter4 e
C.1 Equivalence of Substitutional Structural Operational Semantics and Substitutional Reduc-
tion Semanticsof MetaML Lo
C.2 Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine
(MK Machine) of MetaML e

D Proofsof Chapter5
D.1 Equivalence of MetaML and Explicit MetaML
D.2 Equivalence of MetaML and Suspended MetaML
D.3 Equivalence of MetaML and Environmental MetaML
D.4 Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental

MetaML e e e e e
D.5 Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environ-
mental MetaML

vi

List of Tables

1.1 Summary of semantics used to refine ISWIM’s substitutional structural operational semantics
to the CEK abstract machine.

1.2 Summary of semantics used to refine MetaML’s substitutional structural operational se-
mantics to the MK abstract machine. o 00000000

1.3 Summary of semantics used to solve the main semantics refinement problem.

vii

List of Figures

2.1

22

3.1
3.2

4.1

4.2

5.1
52

Evaluation of !(Aa. ~ ((Ax.(x)) (Ax.(a)))0) 5 in Substitutional Natural Semantics of MetaML.

... 23
Evaluation of !{Aa. ~ ((Ax.(x)) (Ax.(a)))0)5 in Substitutional Structural Operational Se-
manticsof MetaML. 29
Evaluation of ((Ax;.Ax;.x1) 7) 4 in Reduction Semantics of Environmental ISWIM. 51
Evaluation of ((Ax;.Ax.x;) 7) 4 in the CEK Machine. 56
Evaluation of !(Ay.(~((Ax.(x)) (Ax.y)) 0)) in Substitutional Reduction Semantics of MetaML.

... 61
Evaluation of !(Ay.(~((Ax.(x)) (Ax.y)) 0)) in the MK Machine. 65

Evaluation of !(Ay.(~((Ax.(x)) (Ax.y)) 0)) in Reduction Semantics of Environmental MetaML.100
Evaluation of !(Ay.(~((Ax.(x)) (Ax.y)) 0)) in the MEK Machine. 105

viii

Acknowledgements

I am greatly indebted to my supervisor, Dr. Ronald Garcia (Assistant Professor), for his continued support,
guidance and encouragement over the past two and a half years. In the spring of 2014, I was fortunate
in talking his postgraduate-level programming language course in which I was led into the world of pro-
gramming language theory (PLT) for the first time. Since then, he has been supervising me on the project
of refining semantics for multi-stage programming, which is presented by this thesis. I thank him for en-
couraging me to attend academic conferences and to interact with the academia, especially for financially
supporting my participation in POPL ’15 in Mumbai, India. I thank him for answering every single question
of me thoroughly, for being forbearing when I contradicted him, for arousing my enthusiasm when I felt
lazy, for comforting me when I had negative results, and for backing me up when I had hard times. I thank
him for agreeing to review my thesis during his busiest time of the year, for patiently reviewing each section
of my thesis in three to five iterations, and for providing numerous feedback on both the technical details
and my writing style. I thank him for sharing the following quotation with me, which inspires me each and

every day.

Nobody tells this to people who are beginners. I wish someone had told me. All of us who do
creative work, we get into it because we have good taste. But there is this gap. For the first
couple years you make stuff, it’s just not that good. It’s trying to be good, it has potential, but
it’s not. But your taste, the thing that got you into the game, is still killer. And your taste is why
your work disappoints you. A lot of people never get past this phase, they quit. Most people I
know who do interesting, creative work went through years of this. We know our work doesn’t
have this special thing that we want it to have. We all go through this. And if you are just
starting out or you are still in this phase, you gotta know its normal and the most important
thing you can do is do a lot of work. Put yourself on a deadline so that every week you finish
one piece. It’s only by going through a volume of work that you will close that gap, and your
work will be as good as your ambitions. And I took longer to figure out how to do this than
anyone I've ever met. It’s gonna take awhile. It’s normal to take awhile. You just gotta fight

your way through.

— Ira Glass

I am grateful to the second reader, Dr. Ivan Beschastnikh (Assistant Professor), for reviewing my thesis and
providing helpful feedback when he had a busy schedule out of town.

I thank Dr. Mark Greenstreet (Professor) and his students Ms. Jijie Wei and Ms. Yan Peng for helping
me settle into the department. I also thank my tentative advisor, Dr. David Poole (Professor), for assisting

me in academic decision making in the first eight months of the master’s programme. Thanks to Dr. Ronald

ix

Acknowledgements

Garcia (Assistant Professor), Dr. Alan Hu (Professor) and Dr. Steve Wolfman (Professor of Teaching) for
recommending me for admission to the PhD programme. Thanks to Ms. Joyce Poon and Ms. Hermie Lam
for their help in administrative affairs.

I thank my colleagues in the programming language group, especially Dr. Ronald Garcia (Assist-
ant Professor), Dr. Joshua Dunfield (Research Associate), Mr. Felipe Banados Schwerter, Mr. Evgeny
Roubinchtein, Mr. Jonatan Milewski and Mr. Khurram Ali Jafery for the insightful discussions in our
weekly reading group meetings. I also thank my colleagues in the Software Practices Laboratory for motiv-
ating me to work hard. Thanks to Mr. Felipe Banados Schwerter for being in charge of the coffee machine
and Mr. C. Albert Thompson for organising activities in the laboratory.

Employed as a teaching assistant for six terms, I thank the instructors and students for providing me the
opportunities to strengthening my teaching skills.

Thanks to Dr. Evgenia Ternovska (Associate Professor), Dr. Wo-Shun Luk (Professor), Dr. Greg Baker
(Senior Lecturer), Dr. Zonghua Gu (Associate Professor), Ms. Lieping Peng, Dr. Gencai Chen (Professor),
Dr. Shuhua Liu (Associate Professor) and Dr. Yangzheng Wang (Professor) for their various kinds of
support and encouragement when I studied at Simon Fraser University and Zhejiang University. Thanks to
my friend, Mr. Yuke Zhu, for setting a good example to me in academia, and for motivating and supporting
me to pursue an academic career.

Thanks to my friends and fellow students of the 2013 cohort at UBC, especially Mr. Zongxu Mu, Mr.
Michael Ming-An Wu, Mr. Jonatan Milewski, Mr. Yifan Peng, Mr. Ben Zhu, Mr. Shuochen Su, Mr. Yuzan
Yang, Ms. Yidan Liu, Ms. Kailun Zhang and Ms. Jianing Yu for the colourful times we have had.

Thanks to Mr. Wei Wang, Mr. Shuhan Wang, Ms. Mengran Guo and Mr. Siyu Wang for our unfailing
friendship. Thanks to my dormitory roommates, including Mr. Yizhuo Hu, Mr. Zhenyu Xia, Mr. Sifang
Liu, Mr. Boyu Li and Mr. Zhu Li, for the unforgettable experience of collective life.

Last but not least, I thank my family for their faith and love.

PELEXESARER

This thesis 1s dedicated to my parents.

X1

Chapter 1

Introduction

To motivate the idea of multi-stage programming, we first demonstrate why general-purpose solutions to
programming problems can be easier to implement and more reusable, but run more slowly than special-
purpose solutions. We then discuss how a special-purpose program can be derived from a general-purpose
program. Multi-stage programming exploits this possibility, allowing programmers to systematically trans-

form a general-purpose program into a special-purpose program generator.

1.1 General-purpose and Special-purpose Programming

Consider the problem of computing a positive integer raised to a non-negative integer. Here are two possible

solutions.!

Example 1. power n x returns the n" power of x.
power n x

| otherwise = x * (power (n - 1) x)

Example 2. power0 x returns the 0" power of x, power1 x returns the 1% power of x, power2 x returns
2" power of x, and so0 on.

power0 x =1

powerl x = x
power2 x = X * X
power3 X = X * X * X

power2016 x = X * X *...*% X
S——_——
2016 x’s

As illustrated above, one may abstract the problem into a general problem that computes a positive
integer raised to any non-negative integer. We call the power function a general-purpose program (or
solution).

In contrast, one may split the problem into multiple special problems each of which computes a posit-
ive integer raised to a fixed non-negative integer. We call the functions power0, powerl, power2, ...,

power2016, ... special-purpose programs (or solutions).

IThe code is presented in a Haskell-like syntax style.

1.2. Specialising a General-purpose Program

For example, to compute the 2016 power of natural numbers [1..100], we can utilise either the

general-purpose solution, the power function:
map (power 2016) [1..100]
or the special-purpose solution, the power2016 function:
map power2016 [1..100]

As expected, they both produce the same correct result.

Now compare the performance of the general-purpose solution and the special purpose solution.

e Provided that most programmers have knowledge of branching and recursion, the general-purpose
program power is easier to be implemented than the special-purpose program power2016 because

the former requires writing less code than the latter.

e The general-purpose program power is more reusable than the special-purpose program power2016
because the power function is much more adaptable to similar computational tasks than the power2016

function.

e The general-purpose program power runs more slowly than the special-purpose program power2016.
For example, evaluating the power function with arguments 2016 and 100 involves 2016 recurs-

ive calls of the power function before getting the multiplication 100+ 100 *...* 100 1. In contrast,

2016 100’s
executing the special-purpose program power2016 with argument 100 immediately computes the

multiplication 100 % 100 * ... x 100 without having any recursive calls or branching on an argument.

~~

2016 100’s
A special-purpose program does not always run faster than a corresponding general-purpose program.

In an extreme case, if the special-purpose program has an extremely large amount of code, it consumes
a significant amount of time and space to load the code, in which case code explosion may cause the

special-purpose program to have a higher execution cost.

The above presents a representative result of comparing a general-purpose program and a special-purpose
program that solve the same problem. In most cases, a general-purpose program is easier to implement and

more reusable, but less efficient than its special-purpose counterpart.

1.2 Specialising a General-purpose Program

Given a general-purpose program, we may predict the definite results of some of the ensuing computations.
We can replace these computations with their anticipated values, which yields a special-purpose program.
We call this process the specialisation of a general-purpose program. The program generated through spe-
cialisation inherits the advantage of running fast from ordinary special-purpose programs and avoids code

explosion whenever possible.

1.3. Multi-stage Programming

Specialisation is a well-known technique in high-performance programming. For example, popular
domain-specific languages for graphics programming such as OpenGL allows writing a general-purpose
program does not reply on a particular underlying GPU architecture. A compiler completes the job of
specialising a general-purpose program to a special program that is tailored to a specific GPU.

As an illustration, consider the problem of specialising the general-purpose power function, if there is
a priori information that we will frequently compute the 2016™ power of any given positive integer. We go
through two steps:

1. We define:
power2016’ = \x -> (power 2016 x)

2. We unfold the body of the power2016° function so that the function \x -> (power 2016 x) be-

comes

\X -> x*x*...%kx*x1
—_—

2016 x’s

which eliminates the relatively high runtime overhead associated with the power function that is

mainly caused by repeated recursive calls.

We make two assumptions in order to be able to unfold the body of the power2016° function. The first
assumption is that we can evaluate the body of a function at our convenience. This allows us to go inside a
function and evaluate its body at the time that the function is defined. Under this assumption, when we define
the function power2016°?, we can evaluate the body power 2016 x of the function \x -> (power 2016
x). The second assumption is that we can evaluate a function with partially known parameters, which is
known as partial evaluation [JGS93]. Although the second parameter x of the power function is unknown,
we can evaluate the partial application power 2016 x based on its first argument 2016. Then power 2016

x is unfolded to the expression x * x * ... * x * 1. As a result under these two assumptions, the function \x ->
—_——

2016 x’s
(power 2016 x) evaluatesto \x -> x*xX*..kx*1.
—_——

2016 x’s
As a matter of fact, the essence of these two assumptions is to let programmers customise the order in

which the terms of a program are evaluated. This capability constitutes the foundation for the programming
paradigm of our interest, multi-stage programming (MSP) [TS97, Tah99a, She01, Tah04].

1.3 Multi-stage Programming

Multi-stage programming is a programming paradigm that supports runtime code generation and execution
[TahO4]. Multi-stage programming supports meta-programming in the sense that a multi-stage program can
be executed within a multi-stage program. A multi-stage language serves as both a meta-language and an

object language.

1.4. Static Analysis of Multi-stage Programs

Multi-stage programming also supports program specialisation [JGS93]. One can start programming
with a general-purpose program and then specialise it based on the a priori information about partial inputs
of the program. A well-written multi-stage solution to a programming problem is easier to implement and
maintain, more reusable and reliable than a special-purpose solution, and runs faster than a general-purpose
solution.

Multi-stage programming lets programmers control the order in which the terms of a program are eval-
uated in order to optimise the time and space resources consumed by evaluating the program [She98]. One
can start programming with a conventional single-stage program and then specify the evaluation order of its
terms with staging annotations to make the program multi-stage.

There have been developed several multi-stage programming languages and language extensions such
as MetaML [TS97], MetaOCaml [Tah04], MetaHaskell [Mail2] and Mint [WRIT09]. We intensively study
MetaML, a functional multi-stage language that extends ML, in the thesis.

To demonstrate what how a multi-stage program differs from its single-stage counterpart, we annotate
the single-stage power and powerN functions with three staging annotations supported by MetaML.: code,
splice and run. Code, denoted by (and), are for delaying a computation. Splice, denoted by ~, is for

combining delayed computations. Run, denoted by !, is for running a delayed computation.

Example 3. The multi-stage power’ and powerN’ functions are the single-stage power and powerN func-
tions with staging annotations.

power’ n x

| n ==0= (1)

| otherwise = (~x * ~(power’ (n - 1) x))

powerN’ n = (\x -> ~(power’ n (x)))
For example, to compute the 2016™ power of 1, 2, ..., 100, we evaluate following two-stage program:

map !(powerN’ 2016) [1..100]

At the first stage, ! (powerN’ 2016) evaluates to the function \x -> x*x*...xx*1. At the second stage,
—_—

2016 x’s
the program proceeds as:

map (\x -> xxx*..xx*x1) [1..100]
2016 x’s

The recursive calls to the power’ function all happen intensively at the first stage when the run operation
! (powerN’ 2016) evaluates. They never happen again at the second stage.

We analyse this example in detail in the next chapter (Chapter 2).

1.4 Static Analysis of Multi-stage Programs

Although researchers have extended many mainstream programming languages to support multi-stage pro-

gramming, multi-stage programming as a programming paradigm has not been widely recognised or used.

4

1.5. Refining Semantics

The popularisation of multi-stage programming has been impeded by the lack of development aids such as
code refactoring and optimisation, for which the culprit is the lack of static analysis support. Our ultimate
goal is to design a sound and decidable static analysis for a multi-stage programming language.

Recently, [VHM12] proposed a general-purpose approach to systematically developing static analyses
for a programming language by applying transformations to its formal semantics. The approach requires
that the initial semantics be specified as an environmental abstract machine that records the change of con-
trol strings, environments and continuations as a program evaluates. The transformations involve using a
traditional store to collect execution information and associate it with the source program. After a num-
ber of transformations, the machine can be abstracted through its address allocation strategy. With this
primary point of abstraction, we get a sound and decidable control flow analysis, where the preciseness of
the analysis is determined by the chosen structure of the addresses used by the address allocator.

To apply the framework to multi-stage programming, we shall develop an environmental abstract ma-
chine for a multi-stage programming language. The abstract machine must be environmental because it uses

environments to archive variable bindings, allowing us to trace the function calls in its history.

1.5 Refining Semantics

Developing an environmental abstract machine for a multi-stage programming language based on a pre-
existing semantics is essentially a semantics refinement problem. A stepwise refinement process may pro-
duce several intermediate semantics before deriving the destination semantics. We briefly introduce four

operational semantics that are usually used in solving a refinement problem.

1.5.1 Operational Semantics

To model the runtime behaviour of programs in a language, we can build an operational semantics for the

language. Operational semantics include big-step semantics and small-step semantics.
e Big-step semantics is also known as natural semantics [Kah87]. It describes how the overall compu-
tation of a program takes place.

For example, in a big-step semantics, the program power 2016 100 big-steps to 1002°16,

e Small-step semantics include structural operational semantics [Plo81], reduction semantics [FH92]
and abstract machine semantics [Lan64], ordered from the least practical to the most practical imple-

mentation strategies, all of which define how a single step of computation of a program takes place.

— Structural operational semantics defines how a program computes with respect to the terms of

the program in a syntax-oriented and inductive way.

— Reduction semantics defines where a reduction may happen and what reduction may happen but

does not provide a deterministic strategy for finding a place to perform reduction.

— Abstract machine semantics refines reduction semantics in the sense that it provides a determin-

istic strategy for finding a place to perform reduction.

1.5. Refining Semantics

For example, in a small-step semantics, the program power 2016 100 small-steps to 100 * (power
2015 100).

We differentiate a substitutional operational semantics from an environmental operational semantics.

e An operational semantics is substitutional if a function call is performed by substituting the function’s
parameters by arguments where substitutions may be modelled implicitly in the meta-language or

explicitly [Ros96] as several steps of computation.

For example, calling the function \x -> x + 1 with the argumentx = 1resultsin1 + 1. Then just

looking at 1 + 1 itself does not tell whether a function call has been performed.

e An operational semantics is environmental if it uses an environment to keep track of variable bindings
so that a function call is performed by updating the function’s parameters in the environment to the

function’s arguments.

For example, calling the function \x -> x + 1 with the argument x = 1 results in x + 1 together
with a variable binding that x = 1. Then just looking at x + 1 together with the variable binding that
x = 1 implies that a function call with the argument x = 1 has been performed.

1.5.2 Refining Semantics

Having what an operational semantics is in mind, we now consider how to develop an environmental abstract

machine for a multi-stage programming language.

Main Semantics Refinement Problem. The multi-stage programming language that we study in the thesis
is MetaML. We take the pre-existing substitutional natural semantics defined in [Tah99a] as our reference se-
mantics for MetaML. The main research problem of the thesis which we call the main semantics refinement

problem is:

Can we refine the pre-existing substitutional natural semantics of MetaML to a corresponding

environmental abstract machine and demonstrate their equivalence?

As an environmental abstract machine is a small-step operational semantics, its development is more natural
and convenient to start from a structural operational semantics than a natural semantics. Thus the very
first step to take is to derive a substitutional structural operational semantics for MetaML and show its
equivalence with respect to the substitutional natural semantics. We illustrate this step in Table 1.1 and
discuss it in detail in Chapter 2.

Developing an environmental abstract machine for MetaML is not straightforward and has not been done
so far in the literature. We first attempt the main semantics refinement problem along two dimensions—each

dimension leads to a less complicated semantics refinement problem.

1.5. Refining Semantics

Stepwise Developing the CEK Machine for ISWIM. Following the first dimension of simplifying the
main semantics refinement problem, we study how to stepwise develop an environmental abstract machine
for a single-stage language ISWIM [Lan66] rather than the multi-stage language MetaML. The problem is

described as follows.

Can we refine the substitutional structural operational semantics of ISWIM to a corresponding
environmental abstract machine, which is known as the CEK machine [FF86], and demonstrate

their equivalence?
We solve the above problem step by step as follows (see Table 1.1 for a summary).

1. ISWIM: Substitutions are defined in the meta-language level. Any instance of substitution in program
immediately replaces every relevant variable as part of a single step of computation. We call this

"inexplicit" in contrast to explicit substitutions, which we discuss next.

We take the (inexplicitly) substitutional structural operational semantics of ISWIM as the starting

point of solving the refinement problem for ISWIM.

2. Explicit ISWIM: Substitutions are defined as explicit object-language constructs. An instance of
substitution replaces every relevant variable step by step by percolating explicit substitutions as several
steps of computation. This provides a manageable step on the way to developing an environmental

semantics.

3. Suspended ISWIM: Substitutions are modelled explicitly as in Explicit ISWIM and are suspended
outside of a lambda abstraction until an application is performed. This step turns the semantics more

environmental and makes the proofs of semantics equivalence tractable.

4. Environmental ISWIM: Environmental ISWIM turns explicit substitutions to environments.

Environmental ISWIM is first derived as a structural operational semantics. We then systematically
transform the semantics from structural operational semantics to reduction semantics and finally to an

abstract machine. The abstract machine is also known as the CEK machine.

The stepwise development of CEK machine for ISWIM is discussed in detail in Chapter 3.

Stepwise Developing the MK Machine for MetaML. Following the second dimension of simplifying
the main semantics refinement problem, we study how to stepwise develop a substitutional abstract ma-
chine rather than an environmental abstract machine for the multi-stage language MetaML. The problem is

described as follows.

Can we refine the substitutional structural operational semantics of MetaML to a corresponding
substitutional abstract machine, which we call the MK machine, and demonstrate their equival-

ence?

1.5. Refining Semantics

As summarised in Table 1.2, starting from the substitutional structural operational semantics of MetaML,
we first derive a substitutional reduction semantics and then a substitutional abstract machine, which we call
the MK machine. The stepwise development of MK machine for MetaML is discussed in detail in Chapter
4.

Stepwise Developing the MEK Machine for MetaML. Utilising the experience of refining semantics
along two dimensions, we eventually study how to stepwise develop an environmental abstract machine for

the multi-stage language MetaML. The problem is described as follows.

Can we refine the substitutional structural operational semantics of MetaML to a correspond-
ing environmental abstract machine, which we call the MEK machine, and demonstrate their

equivalence?
We attempt the above problem step by step as follows (see Table 1.3 for a summary).

1. MetaML: Substitutions are modelled inexplicitly, analogously to ISWIM.

We take the (inexplicitly) substitutional structural operational semantics of MetaML as the starting

point of refinement.

2. Explicit MetaML: Substitutions are modelled explicitly, analogously to Explicit ISWIM. This provides

a manageable step on the way to developing an environmental semantics.

3. Suspended MetaML: Substitutions are modelled explicitly, analogously to Suspended ISWIM. This

step turns the semantics more environmental and makes the proofs of semantics equivalence tractable.

4. Environmental MetaML: Environmental MetaML turns explicit substitutions to environments.

Environmental MetaML is first derived as a structural operational semantics. We then systematically
transform the semantics from structural operational semantics to reduction semantics and finally to an

abstract machine. We call the abstract machine the MEK machine.

The stepwise development of MEK machine for MetaML is discussed in detail in Chapter 5.

Proving Equivalence of Semantics. We introduce and use throughout the thesis three proof techniques
to prove the equivalence of two structural operational semantics, the equivalence of a structural operational
semantics and a reduction semantics, and the equivalence of a reduction semantics and an abstract machine.

We summarise the proof methodology in detail in Chapter 6.

1.5. Refining Semantics

No. Language Semantics Substitutional or Environmental Section
1 ISWIM Structural Operational Semantics (Inexplicitly) Substitutional 3.1
2 Explicit ISWIM Structural Operational Semantics Explicitly Substitutional 32
3 Suspended ISWIM Structural Operational Semantics ~ Explicitly Substitutional 33
4 Environmental ISWIM Structural Operational Semantics ~Environmental 34
5 Environmental ISWIM Reduction Semantics Environmental 3.5
6 Environmental ISWIM CEK Abstract Machine Environmental 3.6

Table 1.1: Summary of semantics used to refine ISWIM’s substitutional structural operational semantics to
the CEK abstract machine.

No. Language Semantics Substitutional or Environmental Section

1 MetaML Structural Operational Semantics (Inexplicitly) Substitutional 2.2
MetaML Reduction Semantics (Inexplicitly) Substitutional 4.1

3 MetaML MK Abstract Machine (Inexplicitly) Substitutional 4.2

Table 1.2: Summary of semantics used to refine MetaML'’s substitutional structural operational semantics to

the MK abstract machine.

No. Language Semantics Substitutional or Environmental Section
1 MetaML Natural Semantics (Inexplicitly) Substitutional 2.2
2 MetaML Structural Operational Semantics (Inexplicitly) Substitutional 2.2,5.1
3 Explicit MetaML Structural Operational Semantics Explicitly Substitutional 5.2
4 Suspended MetaML Structural Operational Semantics Explicitly Substitutional 5.3
5 Environmental MetaML Structural Operational Semantics ~ Environmental 54
6 Environmental MetaML Reduction Semantics Environmental 5.5
7 Environmental MetaML. MEK Abstract Machine Environmental 5.6

Table 1.3: Summary of semantics used to solve the main semantics refinement problem.

Chapter 2

Formal Semantics of MetaML

This chapter introduces multi-stage programming and the formal semantics of MetaML. We first introduce
the three staging annotations of MetaML and informally discuss how a multi-stage program evaluates using
examples. Then we study the pre-existing substitutional natural semantics of MetaML [Tah99a] and present
our newly developed substitutional structural operational semantics for MetaML. We finally demonstrate
that the substitutional natural semantics and the substitutional structural operational semantics are equival-
ent.

The definitions in Section 2.1 are based on [She98, TS97]. The substitutional natural semantics of
MetaML in Section 2.2 is based on [Tah99a].

2.1 Staging Annotations

MetaML uses staging annotations to explicitly control the evaluation order of terms of a program. Staging

annotations include the code operator, the run operator and the splice operator.

Code Operation. A code operation, consisting of (1) the code operator “(” “)” and (2) an operand,

indicates delaying computing the operand. If a code operation evaluates to itself, it is a code value.

Example 4. 3 + 7 evaluates to 10. The code operation (3 + 7) evaluates to itself because of delaying

computing its operand 3 + 7. Hence the code operation (3 + 7) is is also a code value.

Run Operation. A Run operation, consisting of (1) the run operator ! and (2) an operand, indicates
executing the delayed computation of the operand. A run operation expects its operand to reduce to a code

operation. A run operation eliminates the code brackets from the result of evaluating its operand.

Example 5. ! (3 + 7) evaluates to 10. Its step-by-step reduction is as follows.
113 +7)
The run operator executes the delayed computation of the operand, 3 + 7.
23+7
The addition operation 3 + 7 evaluates to 10.
310
The natural number 10 is irreducible.

10

2.1. Staging Annotations

9

Splice Operation. An splice operation, consisting of (1) the splice operator “~” and (2) an operand,
indicates splicing the delayed computation produced by evaluating the operand into the current context. A
splice operation may only appear in a delayed computation, i.e., under code brackets. Only a splice operation
can be reduced under code brackets. A splice operation expects its operand to reduce to a code value. A

splice operation eliminates the code brackets from the result of evaluating its operand.

Example 6. (~(3 + 7) * ~(3 + 7)) evaluatesto ((3 + 7) * (3 + 7)). Its step-by-step reduc-
tion is as follows.
1 { ~3+7) % ~(3+7))
The first escape operator splices the delayed computation of the operand, 3 + 7, into the context
surrounded by code brackets.
2 ((B3+7) x ~3+7))
The second escape operator splices the delayed computation of the operand, 3 + 7, into the context
surrounded by code brackets.
3(@B+7)x(3+7))
The code operation ((3 + 7) * (3 + 7)) isirreducible.

Level of a Term. To explicitly regulate under what circumstances the run operation eliminates code and
the splice operation combines code, we introduce the concept of levels. The level of a term is the difference

of the number of surrounding brackets and the number of surrounding escapes.

Example7. (1) 3in (3 + 7) is atlevel I.
(2) The first 3in (~(3 + 7) * ~(3 + 7))isatlevel2—1=1.
(3) The first3in ((3 + 7) * (3 + 7))isatlevel 1.
(4)3in ! (3 + 7)isatlevel 1.
(5) The function \x -> xin !{ ~(3 + 7) * ~((\x -> x) (3 + 7)))isatlevel | —1=0.

Roughly speaking, a splice operation ...~(t)... reduces to ...t... only if ~(z) is at level 1, and a run
operation ...!(t)... reduces to ...r... only if !(¢) is at level 0, where ¢ is an arbitrarily legal term. Level 0
corresponds to single-stage programming. An function call or an addition only reduces at level 0. For

example, 3 + 7 reduces to 10 at level O and is irreducible at other levels.

Example8. !'(~(3 + 7) * ~((\x -> x) (3 + 7))) evaluates to 100. Its step-by-step reduction is as
follows. The reducible term of each step is underlined.
L ~8 +7) » ~((\x ->x) (3+7)))
In the splice operation ~(3 + 7), the delayed computation of the operand 3 + 7 is spliced into the
context.

21 (B +7) % ~((\x ->x) (3+7))

The application (\x -> x) (3 + 7) reducesto (3 + 7).

3@+ *xxB3+7))
In the splice operation ~(3 + 7), the delayed computation of the operand 3 + 7 is spliced into the

context.

11

2.1. Staging Annotations

4 17 (3 +7) % (3+7)

The run operator executes the delayed computation of the operand (3 + 7) * (3 + 7).
583+7)%x(@B+7)
The first operand of the multiplication operation 3 + 7 reduces to 10.
610 * (3 +7)
The second operand of the multiplication operation 3 + 7 reduces to 10.
7 10 * 10
The multiplication operation 10 * 10 reduces to 100.
8 100

The natural number 100 irreducible.

The code operation introduces a code value, the run operation eliminates a code value, and the splice
operation combines code values. Taking the above evaluation as an example, in the first step, the outermost
code operation generates a code value in which two inner code operations introduce two smaller code values.
In the third step, the splice operation combines code values. In the fourth step, the run operation executes a

code value.

Evaluating a Multi-stage Program. A multi-stage program can be constructed from a conventional
single-stage program by manually adding staging annotations [TS97]. We demonstrate how a multi-stage

program evaluates through Example 3 from Chapter 1, which is re-described below as Example 9.

Example 9. The multi-stage power’ and powerN’ functions are the single-stage power and powerN func-
tions with staging annotations.

power’ n x

| n==0= (1)

| otherwise = (~x * ~(power’ (n - 1) x))

powerN’ n = (\x -> ~(power’ n (x)))

The power’ function is a special-purpose program generator. When the parameter n of the powerN’
function is known, ! (powerN n) generates a special-purpose program that computes its parameter raised to
n. For example, to compute the 4" power of an integer, ! (powerN’> 4) eventually reduces to \x -> (x *

x * x * x * 1). Its step-by-step reduction is as follows. The reducible term of each step is underlined.

1 '(poverN’ 4)

2 ! \x -> ~(power’ 4 (x)))

301\ (~(x) * ~(power’ 3 (x)))))

4 1 \x (x * ~(power’ 3 (x)))))

5 1 \x > ~((x * ~(((x) * ~(power’ 2 (x)))))))

6 ! \x (x* ~((x* ~(power’ 2 (x)))))))

7 1 \x ((x * ~((~(x) * ~(power’ 1 (x))
8 t{\x ((x* ~((x * ~(power’ 1 (x))))

X*N(

!))
)

2)
D))

))

12

2.2. Formal Semantics of MetaML

9 M \x > ~((xx ~((xx ~((x* ~((ofx) * ~(power’ 0 (x)))))))
10 1 \x > ~({(x % ~((x*x ~((x %~ x*~(ower’ 0 (x))) N))
11 \x > ~(x ok~ xox ~x*x ~(xx @) NN NN

1210\ > ~((x*x ~((xx~(xx x((xx1) D)D))

B3\ >~ xx ~((xx o xxxx1))))

4 1\ > ~((x*xo(((xxx*xx*x1)))))

15 10\x >~ x*xxxx*xx*x1)))

16 1{\x > (x *x *x*xx*1))

17 \x > (x * x * x * x * 1)

We make a few observations from the example above. (1) A run operation expects its operand to reduce to a
code operation, as illustrated by Steps 1 to 16. (2) A splice operation expects its operand to reduce to a code
operation, as illustrated by Steps 2 to 15, Steps 4 to 14, Steps 6 to 13, Steps 8 to 12 and Steps 10 to 11. (3)
A run operation eliminates the code brackets of its operand only if the operand is irreducible, as illustrated
by Steps 1 to 16. (4) A splice operation eliminates the code brackets of its operand only if the operand is
irreducible, as illustrated by Steps 2 to 15, Steps 4 to 14, Steps 6 to 13, Steps 8 to 12 and Steps 10 to 11.

Informal Reasoning is Insufficient. = Our explanation about how a multi-stage program evaluates is
informal. One may ask: what computation can be performed in the operand of a code operation, a splice
operation or a run operation? When can the body of a function be evaluated? Is our evaluation strategy
deterministic? How do we implement our evaluation strategy?

Furthermore, it is tedious and error-prone to evaluate unintuitive programs such as
H(Ay. ~ ((Ax.(x)) (Ax.(y)))0) 5, which was introduced in [Tah99a], through informal reasoning as Example

9. To rigorously explain how a multi-stage program evaluates, we need to define a formal semantics.

2.2 Formal Semantics of MetaML

Previously, we have informally discussed how MetaML works as a multi-stage programming language. In
this section, we explain the formal semantics of MetaML: its syntax, substitutional natural semantics and
substitutional structural operational semantics. For the sake of simplicity and convenience, we make two
minor modifications to the formal specifications of MetaML presented in [Tah99a]: we add natural numbers
and addition to the language, and we discard the fixed point operator from the language as a fixed point

operator can be implemented using the ¥ combinator.

2.2.1 Syntax

We first define the basic syntax of the language: terms, values and denotable terms. Then we present
some properties implied by the definitions. Finally we define the free variable function and the substitution

function.

13

2.2. Formal Semantics of MetaML

2.2.1.1 Terms
We start with two sets: the set of variables, VAR, and the set of natural numbers, N.

Definition 10 (Terms). Let TERM be the set of terms.
xe€ VAR, neN,ie N, t € TERM

t ou= x|tt|Axt| ()| ~t||n|t+1

The definition tells that a term can be (1) a variable, (2) an application in which both the operator and
the operand are terms, (3) a lambda abstraction whose body is a term, (4) a code operation whose operand
is a term, (5) a splice operation whose operand is a term, (6) a run operation whose operand is a term, (7) a
natural number, or (8) an addition operation whose two operands are terms.

Recall that the level of a term is the difference of the number of surrounding brackets and the number
of surrounding escapes. A term cannot occur at the position of an arbitrary level. For example, a splice
operation cannot occur at a level-0 position because it must be in some code operation. We use levels as

indexes to finely distinguish subclasses of terms.

Definition 11 (Level-indexed Terms). Let TERM' be the set of terms at level i.

i i . . .
t € TERM' 1, € TERM t € TERM! t € TERM' ™! t € TERM
x € TERM' 11 t € TERM' Ax.t € TERM' (t) € TERM' ~t € TERM' !
. i i
¢ € TERM t1 € TERM' t, € TERM
It € TERM! n € TERM' f1 + 1, € TERM'

The definition tells that (1) a variable can be at an arbitrary level, (2) an application can be at the any
level that its operator and operand share, (3) a lambda abstraction can be at any level that its body can, (4)
a code operation can be at any level that is one level lower than its operand, (5) a splice operation can be at
any level that is one level higher than its operand, (6) a run operation is can be at any level that its operand
can, (7) a natural number can be at an arbitrary level, and (8) an addition can be at any level that its two
operands share.

The definition ensures that a splice operation cannot be a term at level 0. A splice combines a delayed
computation into the context surrounded by code brackets. Hence the context of a splice has to be at some
level higher than 0.

We use ¢ with or without any subscript or any other superscript as a metavariable to range over TERM'.
We continue to use ¢ with or without any subscript or superscript as a metavariable to range over TERM.

We make two observations about terms and level-indexed terms. (1) The sets TERM' contain strictly
more terms as the level i increases. For example, the term ~x can be at any level higher than 0 and the
term ~~x can be at any level higher than 1. Our syntax lets us write code generators that generates code
generators. (2) Every term has at least one level. To make a conventional single-stage program multi-stage,
we can experiment annotating the program with various combinations of staging annotations as long as the

program is at level 0. We formalise our observations as the following propositions.

Proposition 12. For any i € N, TERM' C TERM' !,

14

2.2. Formal Semantics of MetaML

Proposition 13. TERM = |J TERM'.
ieN

2.2.1.2 Values

A value at level i is a term at level i that represents a result of computation at its indicated level. Thus the

definition of values closely relates to the operational semantics of the language.

Definition 14 (Level-indexed Values). Let VALUE' be the set of values at level i.

1 € VALUE™! 1, € VALUE'"!

5 where t € TERM"

x € VALUE'! t1 1, € VALUE'! ~ Axt € VALUE
t € VALUE'! t € VALUE'! t € VALUE'! v € VALUE'H!
Ax.t € VALUE™™! (t) € VALUE' ~t€ VALUE'™ v€ VALUE™! n € VALUE

f1 € VALUE™! 1, € VALUE'!

1+t € VALUE'"!

Recall that in the multi-stage language MetaML, level O corresponds to single-stage programming, and
levels higher than zero delay some computation. We briefly explain the intuition behind the above definition.
(1) A variable is not a value at level 0, analogous to the fact that a variable is not a result of computation in
single-stage programming. At higher levels, we delay dereferencing a variable, making the variable a value.
(2) As a lambda abstraction is a value in single-stage programming, it is a value at level 0. At higher levels,
it is a value if its body is a value. (3) For an application or an addition, an interesting reduction may only
happen at level 0. At higher levels, it is a value if its immediate substructures are values. (4) For a code
operation (r), it is a code value if its operand ¢ is irreducible one level up. (5) For a splice operation and a
run operation, an interesting reduction may only happen at level 1 and level O respectively. For any higher
level, a splice/run operation is a value if its operand is a value. (6) A natural number is always a value.

We use v/ with or without any subscript or any other superscript as a metavariable to range over VALUE'.

Definition 15 (Values). Let VALUE be the set of values.
VALUE = |J; VALUE' where i € N

We use v with or without any subscript or superscript as a metavariable to range over VALUE.

To demonstrate the relationship between terms and values, we make three observations. (1) There is a
one-to-one correspondence between the subclasses of terms and the subclasses of values. One the one hand,
a value at some level is a term at the next lower level. This justifies the semantics of run: if we have a level-i
value (1), then ¢ is a level-(i + 1) value but not necessarily a level-i value. Removing the brackets makes 7 a
level-i term and allows us to reduce ¢ at level i. Although running happens only at level 0, this uniformity
makes it clear that we can reason seamlessly about multi-stage programs at levels higher than 0 and 1 in the
same way that you reason about two-stage programs. One the other hand, a term at some level is a value at
the next higher level. We can always delay a computation by putting a pair of brackets around it. (2) A value
at some level represents a result of computation at that level. Hence a value at some level must be a term at
that level. This corresponds to our intuition and later formalisation of evaluating at a level. (3) Terms and

values are represented by the exact same set of syntactic symbols. More importantly, every term is a value

15

2.2. Formal Semantics of MetaML

at some level. It is always possible to turn a term to a value by putting a finite number of brackets around it.

We list our observations as the following propositions.
Proposition 16. For any i € N, VALUE'"! = TERM'.
Proposition 17. For any i € N, VALUE' C TERM.

Proposition 18. TERM = VALUE.

2.2.1.3 Denotable Terms

The denotable terms are terms that are substituted for variables in the semantics.

Definition 19 (Denotable Terms). Let DENOTABLE be the set of denotable terms.

DENOTABLE = VAR U VALUE

There are two circumstances that a variable is substituted. If a variable gets renamed, the variable is
substituted by a variable. If a lambda abstraction is applied to a value at level 0, then the lambda bound
variable is substituted by the value. Hence a variable may refer to a variable or a value at level 0. We use w

with or without any subscript or superscript as a metavariable to range over DENOTABLE.

2.2.1.4 Free Variable Function

We define FV(¢) to be the set of all variables that occur free in the term 7.

Definition 20 (Free Variable Function). Let the free variable function F'V be a total function from the set of

terms to the power set of variables.

FV : TERM — Z(VAR)
FV(x) = «x (1)
FV(l] t2) = FV(I])UFV(Q) (2)
FV(Axt) = FV(t)\{x} (3)
FV({t)) = FV() (4)
FV(It) = FV(t) (5)
FV(~t) = FV(r) (6)
FV(n) = 0 (7)
FV(t1+1) = FV()UFV(n) (8)

Example 21. FV(Ax.(x+y)) = FV(x+y)\{x} = (FV(x)UFV(y))\{x} = ({x} U {y)\{x} = {x,y\{x} =
O}

Example 22. FV((Ax.x) x) = FV(Axx)UFV(x) = (FV(x)\{x}) U{x} = ({x}\{x}) U{x} =0U{x} = {x}.

Definition 23 (Closed Terms). A term ¢ is closed if and only if FV (1) = 0.

16

2.2. Formal Semantics of MetaML

2.2.1.5 Substitution Function

We define #[w/x] to be the result of substituting the denotable term w for each free occurrence of the variable

x in the term ¢.

Definition 24 (Substitution Function). Let the substitution function -[-/-] be a total function from the 3-tuple

of the set of terms, the set of denotable terms and the set of variables, to the set of terms.

:[-/:] - (TERM x DENOTABLE X VAR) — TERM

xw/x] = w (1)

xi[w/x2] = x; wherex; #Zx; (2)

(i)w/x] = (nw/x]) (2[w/x]) 3)
]

= 7LX3.I()[X3/X]HW/)62]

where x3 ¢ FV (Ax;.to) UFV(w)U{x2} (4)

{to)w/x] = (tolw/x]) (5)
(fro)w/x] = ltow/x] (6)
(~o)w/x] = ~tolw/x] (7)
nw/x = n (8)
(+n)w/x = (n[w/x)+ (2[w/x]) ©)

Equation (4) could be replaced by the following two rules:

(Ax1.to)[w/x2] = Axj.to where x; = x 4-1)
(),xl.to)[w/xz] =),X3.t()[X3/xl] [W/XZ] where x| ;Té xp and x3 % FV(Axl .l‘()) UFV(W) U {)Cz} 4-2)

The above two rules do not rename a lambda bound variable when it does not have to. For example, by (4)
we have:

(lxl.xl)[xl/xl] = 7Lx2.x1 [xz/xl][xl/xl] = AXZ.)CQ where X1 iéXQ

In contrast, by (4-1), we have:

(?Lxl .)C])[X] /X]] = 7LX1 X1

For the sake of proof simplicity, we do not replace (4) by (4-1) and (4-2). It can be proved that these two
forms always produce alpha equivalent results. Definition 130 defines the alpha equivalence relation.
Strictly speaking, the definition itself does not define a function. In (4), x3 can be an arbitrary variable
as long as x3 ¢ FV(Ax;.to) UFV(w)U{x,}. The definition indeed defines a relation rather than a function.
To make what we have defined become a real function, we can impose a total order on variables, i.e., VAR
is a total order. In (4), let x3 be the least element from VAR such that x3 ¢ FV (Ax;.to) UFV (w)U{x2}. As
aresult, -[-/-] truly becomes a function. However, this approach makes the later proofs overcomplicated.
Alternatively, we can equate all terms that only differ in the names of their lambda bound variables,
i.e., we equal all a-equivalent terms. Then, a term is a representative of its ¢-equivalent class. Recall that

the destination semantics of the main semantics refinement problem is an abstract machine, which is close

17

2.2. Formal Semantics of MetaML

to a practical implementation. We do not use this approach because meta-linguistic equivalence classes of
variables do not map well to a concrete implementation.

At this moment, we are not concerned with how a fresh variable is chosen so we call -[- /-] the substitution

function.

Example 25. Let x # y. Then (Ax.x+y)[x/y] = Az.(x+Y)[z/x][x/y] = Az.(x[z/x] + y[z/x])[x/y] = Az.(z+
V)[x/y] = Az.(z[x/y] + y[x/y]) = Az.z+ x where z # y.

2.2.2 Substitutional Natural Semantics

We lay out the substitutional natural semantics through a family of level-indexed big-step relations.

Definition 26 (Level-indexed Big-step Relations). For any i € N, define the level-indexed big-step relation
1} be a binary relation between the set of terms at level i and the set of values at level i.
'C TERM' X VALUE/

ti—i—l i+1 Vi—H
1 Vv (lambda-(i+1))

0 (lambda-0)

Ax.t0 U0 Ax.t AxditH L A it
0 [0 0 00,0 ;070 0.0 i1 it bl il ikl ikl
540 Axt]y 5 10 vy vy /a0y (0 R N 2 L A (app-G+1))
app- T T -
l? tg ‘U’O VO ti—H té—H leJrl vll—i-l v12+1
0110 7,1 10,0 , o
754° (vi) v vy 0 gL it it »
10 1949 (run-0) L it (run-(i+1))
L L i '
b (code-i)

<ti+l> Ui (Vi+1>

{0 UO <v1> . Uiﬂ pitl
——— (splice-1) - - — (splice-(i+2))
No (splice—()) NtO ill vl p Ntt+1 il’“ Nvt+1 p

No (ref-0) x it x (ref-(i+1))

— (num-i)
n{‘n
t? UO n tg uO ny t{+l UH_] Vil-i-l t?—l Ui—H Vé—‘rl

where n = n| + ny (plus-0) . - - - - (plus-(i+1))
0000 P T T S

The big-step relation t{ Y vé reads as “t; big-steps to v, at level i, meaning that the value v; is the result
of computing the term ¢, at level i.

Recall that a term can be a variable x, an application f; f,, a lambda abstraction Ax.z, a code operation
(t), a splice operation ~t¢, a run operation !z, a natural number n and an addition operation ¢; +#,. We explain

how an arbitrary term gets evaluated by the above relation.

18

2.2. Formal Semantics of MetaML

Given a variable x, we may use the (ref-(i+1)) depending on its level. (1) If the variable x is at level O,
we get stuck because there is no (ref-0) rule. (2) If the variable is at level i + 1, the variable evaluates to
itself as it is a value at level i + 1.

Given an application ¢ f;, we may evaluate it using the (app-0) rule or the (app-(i+1)) rule depending
on the current level. (1) If the application is at level 0, we first evaluate its operator #; at level O to a lambda
abstraction Ax.t;1 and evaluate its operand 1, at level O to a value v,. Then we substitute every free occurrence
of the variable x in the term 71, by the value v,, denoted by #;[v,/x]. Finally we evaluate 1, [v,/x] at level 0
to a value v, which is the final result of evaluating the application #; #, at level 0. Evaluating an application
at level O is the same as evaluating an application in a single-stage language. (2) If the application is at level
i+ 1, we evaluate its operator 1 at level i+ 1 to a value v| and evaluate its operand #, at level i+ 1 to a value
v,. The application v; v, is a value at level i + 1, which is the result of evaluating the application ¢, 7, at level
i+ 1. We do not perform any application at levels higher than 0.

Given a lambda abstraction A x.t, we may evaluate it using the (lambda-0) rule or the (lambda-(i+1)) rule
depending on its level. (1) If the lambda abstraction is at level 0, then it evaluates to itself as it is a value
at level 0. (2) If the lambda abstraction is at level i + 1, we evaluate its body ¢ to at level i + 1 a value v,
corresponding to the intuition that we may evaluate the body of a function at levels higher than 0. Then the
lambda abstraction Ax.v is the result of evaluating the lambda abstraction Ax.r at level i + 1.

Given a code operation (¢) at level i, we may evaluate it using the (code-i) rule. We evaluate the body
of the code operation at level i + 1 to a value v. Then bracketing the value gives the result of evaluating the
code operation at level i.

Given a splice operation ~¢, we may evaluate it using the (splice-1) rule or the (splice-(i+2)) rule de-
pending on the current level. (1) If the splice operation is at level 0, we get stuck because there is no
(splice-0) rule. (2) If the splice operation is at level 1, we evaluate its operand at level O to a bracketed
value, corresponding to the intuition that a splice operation expects its operand to be a code operation. The
bracketed value is spliced into the context of the splice operation and its the result of evaluating the splice
operation ~¢. (3) If the splice operation is at level i 42, we evaluate its operand ¢ at level i 41 to a value v.
Then the splice operation ~v is the result of evaluating the splice operation ~t at level i + 2.

Given a run operation !¢, we may evaluate it using the (run-0) rule or the (run-(i+1)) rule depending on
the current level. (1) If the run operation is at level 0, we first evaluate its operand at level O to a bracketed
value, corresponding to the intuition that a run operation expects its operand to be a code operation. Then
we evaluate the bracketed value at level O (rather than level 1), corresponding to the intuition that a run
operation executes a code operation. What this step returns is the result of evaluating the run operation !¢ at
level 0. (2) If the run operation is at level i 4 1, we evaluate its operand ¢ at level i 41 to a value v. Then the
run operation !v is the result of evaluating the run operation !¢ at level i + 1.

Given a natural number n, we may evaluate it using the (num-i). The natural number itself is a value and
evaluates to itself regardless of its level.

Given an addition operation | + f,, we may evaluate it using the (plus-0) rule or the (plus-(i+1)) rule
depending on the current level. (1) If the addition is at level 0, we first evaluate its first operand ¢, at level O

to a natural number n; and evaluate its second operand #, at level O to a natural number n;. Then we compute

19

2.2. Formal Semantics of MetaML

n plus ny and get its result n. The natural number # is the result of evaluating the addition operation #; + 1,
at level 0. Evaluating an addition at level 0 is the same as evaluating an addition in a single-stage language.
(2) If the addition is at level i 4 1, we evaluate its first operand #; at level i+ 1 to a value v and evaluate its
second operand t, at level i + 1 to a value v,. The addition operation v| + v, is a value at level i + 1, which
is the result of evaluating the addition #; +#, at level i + 1. We do not perform any addition at levels higher
than 0.

Observations. The rules of the big-step relations can be classified into three categories. (1) The rules
(lambda-0), (ref-(i+1)) and (num-i) are value rules where the term being evaluated is a value at its indicated
level. (2) All the rules except the three axiomatic rules are structural rules which define how to evaluate a
term with respect to its sub-terms. (3) The rules (app-0), (run-0), (splice-1) and (plus-0) are reduction rules
which perform a real step of computation.

The big-step relations tell that the language is call-by-value. In (app-0) the variable x is substituted by
the value vg that t? big-steps to.

The rules of the big-step relations cooperate with each other in various ways. As an illustration, let i
in (code-i) be 0. Given a code operation {t') at level 0, we first evaluate its operand ¢! at level 1. When
a splice operation is encountered, we invoke (splice-1). The operand of the splice operation evaluates to a
code operation whose operand is a value. The value is then spliced to the context of ' which is surrounded
by code brackets.

Not every term has a corresponding rule. (1) There is no (splice-0) because a splice operation is always
at some level higher than 0. (2) There is no (ref-0). Level 0 of multi-stage programming corresponds to
single-stage programming in which solely evaluating a free variable is disallowed.

Nontermination terms do not big-step. For example, to evaluate (Ax.x x) (Ax.x x) at level 0, we need
to know what (Ax.x x) (Ax.x x) big-steps to at level 0. Since this circular reasoning never terminates,
(Ax.x x) (Ax.x x) does not big-step at level 0.

In (plus-0), the addition operator in the side condition is different from the addition operator in the
bottom of the rule. The addition operation in the side condition happens in the metalanguage, i.e., the
language that defines MetaML. For the sake of simplicity, we do not make clear distinction between natural

numbers in the language and in the metalanguage.

Examples. To get familiar with the big-step relations, consider the following examples. We use the black

triangle A to indicate where an evaluation gets stuck.

Example 27. Evaluate (~(1)) at level zero using the big-step relations.
We have:

(num-i)
! U (code-i)
< >U > (splice-l)

~() 4 (code-i
code-i)
(~(IN) <1>

20

2.2. Formal Semantics of MetaML

A code operation big-steps to a code value. A splice operator splices code into its current context.

Example 28. Evaluate (Ax.x) at level zero using the big-step relations.
We have:

(ref-(i+1))
(lambda-(i+1))

1
Axxl' Ax.x (code-i)

(Ax.x) 10 (Ax.x)

A code value big-steps to itself.

Example 29. Evaluate (Ax.~(x)) at level zero using the big-step relations.
We have:

(ref-(i+1))
XY x (code-0)
< >ll x) (splice-1)
2 ;Ul T (lambda-(i+1))
)

e P s

At levels higher than 0, we can go inside a lambda abstraction to evaluate its body.

Example 30. Evaluate (Ax.~x) at level zero using the big-step relations.
Observe (Ax.~x) J° because:
0
x ? (splice-1)
T (lambda-(i+1))
(code-1)

Ax.~x

(Ax.~x) |0

(Ax.~x) is a bad program. It is indeed a term, but is not meant to be written. The evaluation gets stuck at
A because to evaluate x at level 0, no rule can apply. The splice operator ~ expects the operand to evaluate

to code, but x is stuck.

Example 31. Evaluate (Ax.~(1+ 1)) at level zero using the big-step relations.
Observe (Ax.~(1+1)) Jf° because

(num-i)

191 1491
1+14°2
~(14+1))" a
Ax~(1+1) !
Ax.~(1+1)) Y0

(num-i)
(plus-0)

(splice-1)

(lambda-(i+1))
(code-i)

(Ax.~(1+1)) is a bad program. The evaluation gets stuck at A because the rule (splice-1) expects 1+ 1
to evaluate to code but 2 is not code. The splice operator ~ expects the operand to evaluate to code. Unlike

the previous example, the operand 1+ 1 is not stuck but does not evaluate to code.

21

2.2. Formal Semantics of MetaML

Programs and Answers. We can define an evaluator that takes a program as its input and provides an
answer as its output. We first define the set of programs and the set of answers.

Closed level-0 terms are programs in MetaML

Definition 32 (Programs). Let the set of programs PRGMyewmr be the set of closed terms at level 0.
PRGMpeamr = {# € TERM? | FV (¢) = 0}.

Answers are the observational results of evaluating programs. An answer can be the text function, the

text code or a natural number.

Definition 33 (Answers). Let the set of answers ANSyeramr be the union of the set {function, code} and

the set of natural numbers.

ANSMetamr, = {function,code} UN. ‘

The set of programs PRGMyeramr and answers ANSyetamr, are defined for MetaML, not for any partic-
ular semantics of MetaML.

Evaluator. We now define an evaluator in terms of the substitutional natural semantics of MetaML. Given
a program ¢, the evaluator applies the big-step relations on ¢ at level 0. If the program big-steps to a natural
number, then the evaluator outputs the number. Otherwise, the evaluator indicates the class of value that the
program big-steps to, i.e., either function or code. The evaluator is undefined for programs that get stuck

and programs that do not terminate.

Definition 34 (Evaluator based on Substitutional Natural Semantics). Let the evaluator evalyjetamrSubNat D€

a partial function from the set of programs PRGMpewmr to the set of answers ANSyeaML-

evalyvieaML:subNat © PRGMMetaML — ANSMetaML

function iff {0 Ax.t"
evalyetaML:SubNat (f) = § code if £)0 (v1)

n ifr % n

This above evaluator is defined in terms of the substitutional natural semantics. The subscript “metaML:SubNat

n evalyeamr.:subNat denotes the substitutional natural semantics of MetaML.

We demonstrate how the evaluator works by evaluating the puzzle program below that was originally
presented in [Tah99a].

{Aa. ~ ((Ax.(x)) (Ax.(a)))0)5
Example 35. We have

evalyieaML:subNat (! {(Aa. ~ ((Ax.{x)) (Ax.{a)))0)5) = code

22

€C

llz

/\

a)

a) I
Ax.(a) ' Ax.(a)
) (Ax{a) I (Ax.(a))

Ax.(x) 0 Ax.(x) Ax.(a) §° Ax.
) (Ax.(a))
(Ax

{a
(Ax.(x Y (Ax.(a))

(Ax.{a
)

)
~ (Ax.(x) (Ax(a))) $' Ax.(a) 04'0
~ ((Ax.(x)) (Ax.(@))) 0 I! (Ax.(a))0
Aa. ~ ((Ax.(x)) (Ax. <a>))0il1 Aa.((Ax.(a))0) 5U's
(Aa. ~ ((Ax.{x)) (Ax.(a))) 0) 4° (Aa.((Ax.(a))0)) Aa.((Ax.(a))0) §° Aa.((Ax.(a))0) Ax.(5)4° Ax.(5) 04°0 (5)4°(5)

S

(Aa. ~ (Ax.(x)) (Ax.(@))) 0) U1° Za.((Ax.(a))0) 5105 (2x.(5))0 10 (5)
(Aa. ~ ((Ax.(x)) (Ax.(a)))0)5 1 (5)

Figure 2.1: Evaluation of !(Aa. ~ ((Ax.(x)) (Ax.{a)))0)5 in Substitutional Natural Semantics of MetaML.

TINBISIA JO SONUBLLSS [BULIO] 'T°C

2.2. Formal Semantics of MetaML

because
da. ~ (Ax.(x)) (Ax.{a)))0) 5 1° (5)

as shown in Figure 2.1 and (5) € VALUE".

2.2.3 Substitutional Structural Operational Semantics

Previously, we have studied the substitutional natural semantics of MetaML. The main semantics refinement
problem is to define an environmental abstract machine for MetaML, which we call the MEK machine. The
MEK machine is a small-step operational semantics. As the first step in the process of deriving the MEK
machine, we refine the substitutional natural semantics of MetaML to a substitutional structural operational
semantics.

Natural semantics relates a term to its final result of computation. Structural operational semantics
relates a term to its next small step of computation on the way to its final result. One advantage of the
structural operational semantics is that it allows reasoning about programs that do not terminate such as an
operating system. In contrast, natural semantics is only defined for programs that can produce a final result.

We lay out the substitutional structural operational semantics through a family of level-indexed single-

step relations and a family of level-indexed multi-step relations.

Definition 36 (Level-indexed Single-step Relations). For any i € N, let the level-indexed single-step relation
—! be a binary relation between the set of terms at level i and the set of terms at level i.

——IC TERM' x TERM'

pil il i
No (lambda-0) Axail L 2t

(lambda-(i+1))

th —"th . th —'th :
T i @ppld) == (appR-i) 00000/, (@p0)
hWh — I Vil —> Vilyp (Ax.t%) v? —" 1710 /x]
ti [P
(run-0) L 2 (run-i)
Hly —0! it —'t
P codes)
. code-i
(it — (5
Gplicen) AT (pice qiv)
splice- ——————=—— (splice-(i+
No (splice-0) ~ly syl P ~t] — T P
No (ref-i)
No (num-i)

24

2.2. Formal Semantics of MetaML

/i i4i P i4i
1 2 : 21 7 I .
i i i i (plusL-i) i 4 i i 4 (plusR-i)
tyt+t, —' Vit —' v i

5 where n = nj + ny (plus-0)

n+n —"n

The single-step relation t{ —i té reads as “#; single-steps to #, at level i”.

Recall that a term can be a variable x, an application 7; t,, a lambda abstraction Ax.z, a code operation
(t), a splice operation ~, a run operation !¢, a natural number n and an addition operation #; +#,. We explain
how an arbitrary term gets evaluated by the above relations.

Given a variable x, we get stuck because there is no (ref-i) rule.

Given an application f| t;, we may evaluate it using the (appL-i) rule, the (appR-i) rule or the (app-0)
rule depending on the current level and whether its operator/operand is a value. We first repeatedly apply
the (appL-i) rule to evaluate the operator #; and finally get a value v;. Then we use repeatedly apply the
(appR-i) rule to evaluate the operand #, and finally get a value v,. If we have been evaluating at level 0, we
expect v| to be a lambda abstraction and we then perform the application vy v, using the (app-0) rule. If we
have been evaluating at level i + 1, the resulting application v; v, is a value at that level.

Given a lambda abstraction Ax.f, we may evaluate it using the (lambda-(i+1)) rule depending on its level
and whether the body ¢ is a value. (1) If the lambda abstraction is at level 0, then we get stuck because there
is no (lambda-0) rule. (2) If the lambda abstraction is at level i 4 1, we repeatedly apply the (lambda-(i+1))
rule to evaluate its body ¢ at level i + 1 and finally get a value v. The resulting application Ax.v is a value at
level i+ 1.

Given a code operation (¢), we may evaluate it using the (code-i) rule depending on whether its operand
is a value. We repeatedly apply the (code-i) rule to evaluate its operand ¢ and finally get a value v. The
resulting code operation (v) is a value .

Given a splice operation ~¢, we may evaluate it using the (splice-1) rule or the (splice-(i+1)) rule de-
pending on the current level and whether its operand is a value. (1) If the splice operation is at level 0, we
get stuck because there is no (splice-0) rule. (2) If the splice operation is at level i + 1, we repeatedly apply
the (splice-(i+1)) rule to evaluate its operand ¢ and finally get a value v. (2.1) If we have been evaluating at
level 1, we expect v to be code operation and we apply (splice-1) to merge the code into the context. (2.2) If
we have been evaluating at level i + 2, the resulting splice operation ~v is a value at that level.

Given a run operation !t, we may evaluate it using the (run-0) rule or the (run-i) rule depending on
the current level and whether its operand is a value. We first repeatedly apply the (run-i) rule to evaluate its
operand ¢ and finally get a value v. (1) If we have been evaluating at level O, we expect v to be code operation
and we apply (run-0) to execute the code. (2) If we have been evaluating at level i + 1, the resulting code
operation !v is a value at that level.

Given a natural number n, we get stuck because there is no (num-i) rule.

Given an addition operation #; + f,, we may evaluate it using the (plusL-i) rule, the (plusR-i) rule or

the (plus-0) rule depending on the current level and whether its first or second operand is a value. We first

25

2.2. Formal Semantics of MetaML

repeatedly apply the (appL-i) rule to evaluate the first operand #; and finally get a value v;. Then we use
repeatedly apply the (plusR-i) rule to evaluate the second operand #, and finally get a value v,. If we have
been evaluating at level 0, we expect vy and v; to be two natural numbers and we perform the addition v +v;
using the (plus-0) rule. If we have been evaluating at level i + 1, the resulting addition v; + v; is a value at
that level.

Observations. The rules of the single-step relations can be classified into two categories. (1) The rules
(app-0), (run-0), (splice-1) and (plus-0) are reduction rules which perform a real step of computation. (2)
The other rules are structural rules which define how to evaluate a term with respect to its sub-terms. There
are no value rules in the single-step relations as opposed to the big-step relations. This is because stepping
always does work and there is no work left to do for values.

The single-step relations tell that the language is call-by-value. The (app-0) rule restricts the operand of
the application to be a value.

The big-step relations do not specify which argument to a two-argument operation, like function ap-
plication or addition, must be evaluated first. The single-step relations, on the other hand, force evaluation
to proceed from left to right, as indicated by (appL-i), (appR-i), (plusL-i) and (plusR-i). We say that the
single-step relations are tailored to leftmost reduction.

The single-step relations have fewer rules than the big-step relations. (1) There are no (lambda-0), (ref-
(i+1)) and (num-i) because values do not reduce in the single-step relations but evaluate to themselves in the
big-step relations. (2) There is no (ref-0), analogous to the fact that evaluating a free variable in a single-
stage programming language is disallowed. (3) There is no (splice-0) because a splice operation is always

at some level higher than 0.

Intuitively, a level-indexed single-step relation — defines a single step of computation at level i. To
represent multiple (zero or more) steps of computation at level i, we define the level-indexed multi-step

relation —*.

Definition 37 (Level-indexed Multi-step Relation). Define the level-indexed multi-step relation —s™* to be
the reflexive-transitive closure of the level-indexed single-step relation —".

—#*C TERM! X TERM!

i Ik 41 i [
. iy H—"14L 1, — 1‘3

g where t; —' £; (step) PR (refl)
1 I ’

- P (trans)
h—n

The multi-step relation t{ — 1, reads as “f; multi-steps to 7, at level i”. The (step) rule implies that
the multi-step relation respects the single-step relation with the same level index. The (refl) rule implies that

the multi-step relation is reflexive. The (trans) rule implies that the multi-step relation is transitive.

Examples. To get familiar with the substitutional structural operational semantics, consider the following

examples. These examples are the same as the ones in we presented for substitutional natural semantics.

26

2.2. Formal Semantics of MetaML

Example 38. Evaluate (~(1)) at level 0 using the substitutional structural operational semantics.
We have:

(splice-1)

— deci
N 0 i (code-i)

{~(
Observe (1) £ because:

1—la (code i)

(1) —

The evaluation gets stuck at A because there is no (num-i) rule. Furthermore, we have (1) € VALUE'.

By the (step) rule of the multi-step relation, (~(1)) —%* (1).

Example 39. Evaluate (Ax.x) at level O using the substitutional structural operational semantics.
Observe (Ax.x) A" because

1
X A& (lambda-(i+1)
Axx — .
—=—=——— (code-i)

(Ax.x) —

The evaluation gets stuck at A because there is no (ref-i) rule. Furthermore, we have (Ax.x) € VALUE".

By the (refl) rule of the multi-step relation, (Ax.x) —° (Ax.x).

Example 40. Evaluate (Ax.~(x)) at level O using the substitutional structural operational semantics.
We have:

(sphce 1)
(lambda-(i+1))
(code-i)

() —
Ax.~(x) —" Ax.
(Ax.~(x)) —0 <7Lx.x>

Observe (Ax.x) A" because

1
XA (lambda-(i+1)
Axx — .
===~ — (code-i)

(Ax.x) —0

The evaluation gets stuck at because there is no (ref-i) rule. Furthermore, we have (Ax.x) € VALUE.

By the (step) rule of the multi-step relation, (Ax.~(x)) —* (Ax.x).

Example 41. Evaluate (Ax.~x) at level O using the substitutional structural operational semantics.
Observe (Ax.~x) £ because:

x—04 (splice-1)

_~x (lambda-(i+1))
Axox 1 ey

(Ax.~x) —>

27

2.2. Formal Semantics of MetaML

The evaluation gets stuck at A because there is no (ref-i) rule. Furthermore, we have (Ax.~x) ¢ VALUE®
and (Ax.~x) is a stuck term.
By the (refl) rule of the multi-step relation, (Ax.~x) —% (Ax.~x).

Example 42. Evaluate (Ax.~(1+ 1)) at level O using the substitutional structural operational semantics.
We have:

(plus-0)

(splice-1)

(lambda-(i+1))

(code-i)

14192
~(141) —t~2
Ax.~(1+1) —! Ax.~2
(Ax.~(1+1)) —0 (Ax.~2)

Observe (Ax.~2) /Y because:

0
2= A (plice-(i+1))
— (lambda-(i+1))
X.~L —

code-i
(Ax.~2) —0 ()
The evaluation gets stuck at A because there is no (num-i) rule. Furthermore, we have (Ax.~2) &
VALUE" and (Ax.~2) is a stuck term.
By the (step) rule of the multi-step relation, (Ax.~(141)) —% (Ax.~2).

Evaluator. We now define an evaluator in terms of the substitutional natural semantics of MetaML. Given
a program ¢, the evaluator applies the multi-step relations on ¢ at level 0. If the program multi-steps to a
natural number, then the evaluator outputs the number. Otherwise, the evaluator indicates the class of value
that the program multi-steps to, i.e., either function or code. The evaluator is undefined if the program

gets stuck or does not terminate.

Definition 43 (Evaluator based on Substitutional Structural Operational Semantics). Define the evaluator
evalyeaML:Subsos to be a partial function from the set of programs PRGMpepamr. to the set of answers

ANSMetaML -

evalyeaML:subsos : PRGMMetamL, — ANSMetaML

. 0
function ifr —0* Ax.r
evalyeaML:Subsos () = code if 1 —0 (V1)

n ifr —%p

This evaluator is defined in terms of the substitutional structural operational semantics. The subscript

“MetaML:SubsOs 1N evalymeaML:subsos denotes the substitutional structural operational semantics of MetaML.

We demonstrate how the evaluator works by evaluating the same puzzle program as Example 35.

28

6¢C

where Ax.(a) € VALUE!

~ (Ax. <a>> —! Ax.{a)
~ (Ax(a)) 0 —' (Ax.(a)) O
Aa. ~ (Ax.(a)) 0 —! La.(Ax.(a)) O
(Aa. ~ (Ax.(a) 0) —° (Aa.(Ax.{a)) 0)
Aa. ~ (Ax.(a) 0) —°1(da.(Ax.{a)) O)
H{Aa. ~ (Ax.(a)) 0) 5 —°1(Aa.(Ax.(a)) 0) 5
A, ~ (Ax.(a)) 0) 5 —°1(Aa.(Ax.(a))0)5.

(b) Derivation of

where Aa.(Ax.(a)) 0 € VALUE!

H{Aa.(Ax.{a)) 0) —° La.(Ax.(a)) O
{Aa.(Ax.(a)) 0) 5 —° (Aa.(Ax.{a)) 0) 5
(c) Derivation of !(Aa.(Ax.(a)) 0) 5 —° (Aa.(Ax.(a)) 0) 5.
(a

where

) € TERM" and 0 € VALUE?

(Ax.(a)) 0 —" (a)
Aa.(Ax.{a)) 0 —° La.(a)

(Aa.(Ax.(a)) 0) 5 —° (a.(a)) 5
(d (Ax.{a)) 0) 5 —0 (La.(a)) 5.

) Derivation of (Aa.

where (a) € TERM® and 5 € VALUE?

(Aa.{a)) 5 —0 (5)
(e) Derivation of (Aa.(a)) 5 —° (5).

Figure 2.2: Evaluation of !(Aa. ~ ((Ax.(x)) (Ax.(a)))0)5 in Substitutional Structural Operational Semantics of MetaML.

TINBISIA JO SONUBLLSS [BULIO] 'T°C

2.3. Chapter Summary

Example 44. We have

evalyeramL:subsos ({(Aa. ~ (Ax.(x)) (Ax.(a)))0)5) = code

because
{Aa. ~ ((Ax.(x)) (Ax.(a)))0)5 0 (5)

as shown in Figure 2.2 and (5) € VALUE'.

Examples 35 and 44 show that two evaluators we have defined so far agree on the evaluation of the

puzzle program !(Aa. ~ ((Ax.(x)) (Ax.{a)))0) 5. In fact, these two evaluators agree on all programs.

Theorem 45 (Kleene Equality of Evaluators). For any t € PRGMmewaML, €ValvetaMmL:SubNat(2) is Kleene equal

10 evalyeiaML:Subsos (1)-

The above theorem uses Kleene Equality introduced in [Kle52]: for any expressions A and B, A is Kleene
equal to B if and only if (1) both A and B are defined and are equal or (2) both A and B are undefined. We

prove the theorem in the appendices.

2.3 Chapter Summary

We first introduced three staging annotations and informally discussed how a multi-stage program evaluates.
Then we studied the pre-existing substitutional natural semantics of MetaML and derived a substitutional
structural operational semantics for MetaML. We defined evaluators for both semantics and demonstrated

their equivalence.

30

Chapter 3

Refining Semantics for ISWIM: Developing
the CEK Machine

Following the first dimension of simplifying the main semantics refinement problem, we study how to
stepwise develop an environmental abstract machine for the single-stage language ISWIM rather than the

multi-stage language MetaML. The problem is restated as follows.

Can we refine the substitutional structural operational semantics of ISWIM to a corresponding
environmental abstract machine, which is known as the CEK machine, and demonstrate their

equivalence?

We tackle this problem progressively in several manageable steps through several intermediate semantics.

3.1 ISWIM

ISWIM, whose acronym stands for “if you see what I mean”, was originally developed by [Lan66]. It
was introduced to understand and design the whole landscape of programming languages [Lan64]. It has
influenced the development of functional programming languages such as ML and Haskell.

We consider a variant of ISWIM that has natural numbers and addition. We sometimes call what is
presented in this section Substitutional ISWIM in order to differentiate it from the subsequent dialects, i.e.,
Explicit ISWIM, Suspended ISWIM and Environmental ISWIM.

3.1.1 Syntax

We first define the basic syntax of the language: terms, values and denotable terms. Then we define the
free variable function, the substitution function and the alpha equivalence relation. We finally present the
commutativity of substitutions.

3.1.1.1 Terms, Values and Denotable Terms

We start with two sets: the set of variables, VAR, and the set of natural numbers, N.

Definition 46 (Terms, Values and Denotable Terms). Let (1) TERM be the set of terms, (2) VALUE be the
set of values, and (3) DENOTABLE be the set of denotable terms.

31

3.1. ISWIM

x € VAR, n € N, r € TERM, v € VALUE, w € DENOTABLE

t = x|tt|Axt|n|t+t
v = Axt|n
w o= x|v

ISWIM can be viewed as a single-stage restricted form of MetaML. Given the syntax of MetaML, if we

remove all terms that contain any staging annotation or is not at level 0, we get ISWIM.

3.1.1.2 Free Variable Function

We define the free variable function as follows.

Definition 47 (Free Variable Function). Define the free variable function F'V to be a total function from the

set of terms to the power set of variables.

FV : TERM — Z(VAR)

FV(x) = x (1)
FV(tll‘z) = FV(II)UFV(Q) (2)
FV(?th) = FV(t)\{x} (3)

FV(n) = 0 (4)
FV(ti+n) = FV()UFV(t) (5)

The free variable function for ISWIM is the same as for MetaML but restricted to the single-stage part.

Definition 48 (Closed Terms). A term ¢ is closed if and only if FV (t) = 0.

3.1.1.3 Substitution Function

‘We define the substitution function as follows.

Definition 49 (Substitution Function). Define the substitution function -[- /-] to be a total function from the

3-tuple of the set of terms, the set of denotable terms and the set of variables, to the set of terms.

‘[-/:] : (TERM x DENOTABLE X VAR) — TERM

xi[w/x2] = wwherex; =x; (1)

xiw/xy] = x; wherex; # x, (2)

(1)w/x] = (n]w/x]) (2lw/x]) (3)
]

= Axz.dolxs/xi][w/x2]
where x3 ¢ FV (Ax;.to) UFV (w)U{x2} (4)
nw/x| = n (5)
(1 +n)w/x] = (alw/x])+ (&2[w/x]) (6)

The substitution function for ISWIM is the same as for MetaML but restricted to the single-stage part.

32

3.1. ISWIM

3.1.1.4 Alpha Equivalence Relation

Alpha equivalence reflects that the particular choice of the bound variable in a lambda abstraction does not

matter. Two terms are ¢-equivalent if and only if they are identical except for renaming bound variables.

Definition 50 (Alpha Equivalence Relation). Define the alpha equivalence relation ~, to be a binary relation

between the set of terms and the set of terms.

~g C TERM x TERM

1 ~alb1 H2~al2
X~ X (var) (111 t12) ~q (021 122)

(app)

txs/x1] ~a ta]x3/x2]
(/lxl.tl) ~a (AXZ-IZ)

where x3 ¢ FV(t;) UFV(t;) (lam)

i ~af1 Ho~al2 (plus)
plus
(ti1 +112) ~a (f21 +122) negn (num)

We did not introduce the alpha equivalence relation for MetaML in the previous chapter. This is because
it is usually not difficult to demonstrate equivalence of two semantics of the exact same language. However,
in this chapter and later chapters, we need to prove equivalence of semantics of different dialects of ISWIM
or MetaML. It is not uncommon that two semantics evaluate the same term to two syntactically different
values that have the same meaning semantically. Since our evaluators only concern observational results,
such values should be equated. For example, Ax.x and Ay.y represent the same lambda abstraction. They
are related by the alpha equivalence relation. Furthermore, the alpha equivalence relation makes our proofs

easier. In many cases, we may replace a term by its alpha equivalent term in our proof at our convenience.
Example 51. We have ((Ax.xx) (Ax.x)) ~q ((Ay.yy) (Az.z)). The left-hand side and right-hand side of the
relation represent the lambda abstractions that only differ naming lambda bound variables.

3.1.1.5 Commutativity of Substitutions

We make several observations with respect to the commutativity of substitutions, which are useful in justify-
ing the design of the succeeding semantics. (1) After substituting a variable with a denotable term that does
not contain it, further substitutions for the same variable have no meaningful effect, so they can be dropped.
(2) Two non-clashing substitutions can commute with one another. (3) More generally, two substitutions

that arise in practice during an evaluation commute which involves more work to ensure no clash happens.
Proposition 52. If x ¢ FV(wy), then t{wy /x][wa/x] ~q t[w1/x].
Proposition 53. If x| # x2, x| ¢ FV(w2) and xo ¢ FV (wy), then t|wy /x1][wa/x2] ~q t[wa/x2][w1/x1].

Proposition 54. t[w; /x1][wa/x2] ~q t[x3/x1][W2/X2][wi1[W2/X2] /x3] where x3 ¢ FV (Ax;.tg) UFV (w)U{x2}.

33

3.1. ISWIM

3.1.2 Substitutional Structural Operational Semantics

We lay out the substitutional structural operational semantics through the single-step relation — and the

multi-step relation —*,

Definition 55 (Single-step Relation). Let the single-step relation — be a binary relation between the set

of terms and the set of terms.

—— C TERM x TERM

I — 12) —

HH1th — oy (appL) Vi1 —>Viin (appR) (lx.t) Vv — t[v/x] (app)

1 — 12
hi+tHh —tha+n

hy —

TR p———— where n = ny 4+ ny (plus)

(plusR)

(plusL)

n +n—n

The single-step relation t; — £, reads as “t; single-steps to ,”.

Definition 56 (Multi-step Relation). Let the multi-step relation —* be the reflexive-transitive closure of

the single-step relation —.

—* C TERM x TERM

n —* h I —* 13

— where t{ — 1, (step) (trans)

S — refl
t — b t—>*t()

H—"*t3

The multi-step relation t; —* #, reads as “¢; multi-steps to £,”.
The single-step relation and multi-step relation for the substitutional structural operational semantics of
ISWIM are the same as for the substitutional structural operational semantics of MetaML but restricted to

the single-stage part.

Example 57. Consider ((Ax;.Ax,.x1) 7) 4 where x| Z x;.
By the substitutional structural operational semantics of ISWIM, we have:

((Ax1.Ax2.x1) 7) 4
— (Axp.x1)[7/x1] 4

(Axa.xi[x2/x2][7/x1]) 4 where x # x)
= (Axx[7/x1]) 4

A~ Y~ /N~
~— — — ~— ~— ~— ~—

= (Ax7)4 5
— T[4/x) 6
= 7 7

The first single-step is indeed from (1) to (5), including applying the substitution [7/x;] on the lambda
abstraction Ax;.x;. The substitution is performed in the meta-language and does not count as any additional

reduction step.

34

3.2. Explicit ISWIM

Properties. We observe the following properties that are useful in proving semantics equivalence. (1) The
single-step relation preserves alpha equivalence. During an evaluation, we may conveniently replace a term
by its alpha equivalent term without changing the observational result of the evaluation. (2) The multi-step
relation preserves the closedness of a term. Evaluating a program never produces the error of evaluating a

free variable. This ensures that the behaviour of a program does not depend on the outside world.
Proposition 58. Ift, ~q 1y, and t,, — ta,, thenty,, — ty, and t,, ~o tp,.

Proposition 59. If FV(t;) = 0 and t; —* tp, then FV (t;) = 0.

Programs and Answers. To define an evaluator for ISWIM, we first programs and answers.

Closed terms are programs in ISWIM.

Definition 60 (Programs). Let the set of programs PRGMwsv be the set of closed terms.
PRGMswim = {l € TERM ‘ FV(t) = @}. ‘

An answers is the text function or a natural number.

Definition 61 (Answers). Let the set of answers ANSiswiv be the union of the set {function} and the set

of natural numbers.

ANSIswiM = {function} UN. ‘

The set of programs PRGMswim and the set of answers ANSiswiv are defined for ISWIM, not for any

particular dialect or semantics of ISWIM.
Evaluator. We now define an evaluator in terms of the substitutional structural operational semantics of
ISWIM.

Definition 62 (Evaluator based on Substitutional ISWIM). Let the evaluator evaliswim:subsos be a partial

function from the set of programs PRGMjgwv to the set of answers ANSiswiM-

evaliswim:subsos : PRGMiswim — ANSiswim

function ifr —* Ax.t/
evaliswim:subsos (1) = .
n ift —*n

This evaluator is defined in terms of the substitutional structural operational semantics of ISWIM. The
subscript “iswiM:subsos’ 1 evaliswim:subsos denotes the substitutional structural operational semantics of
ISWIM. The evaluator is essentially the same as the single-stage subset of the evaluator defined in terms of

the substitutional structural operational semantics of MetaML.

3.2 Explicit ISWIM

Consider again the (app) rule of the substitutional structural operational semantics of ISWIM.

o) v — 1[v/a] PP

35

3.2. Explicit ISWIM

Because the substitution function -[- /-] is defined as equations in the meta-language, the (app) rule says that
in the expression f[v/x] each free occurrence of the variable x is immediately replaced by the value v in
the term ¢. Evaluating a substitution does not take any additional step regardless of how complicated the
substitution is. It is not evident how to attain our objective of this chapter, i.e., how to develop an environ-
mental abstract machine for ISWIM, based directly on the substitutional structural operational semantics of
ISWIM.

We propose to turn the big gap of what is less clear into several small moves of what is more evident,
each of which leads to an intermediate semantics. As the very first move, we integrate the percolation of
substitutions into the structural operational semantics, leading to explicit substitutions [Cur85, ACCL91].

As aresult, the (app) rule becomes

Ot v — 1= y] “PP)

where [x :=v] is an explicit substitution. Depending on how complex the term 7 is, it may take several steps
to percolate the substitution [x := v] through the term ¢.

We call the resulting dialect Explicit ISWIM and present its structural operational semantics.

3.2.1 Syntax

We first define the basic syntax of Explicit ISWIM: terms, values and denotable terms. Then we define the

free variable function, the substitution function and the alpha equivalence relation.

3.2.1.1 Terms, Values and Denotable Terms

Definition 63 (Terms, Values and Denotable Terms). Let (1) TERM be the set of terms, (2) VALUE be the
set of values, and (3) DENOTABLE be the set of denotable terms.
x € VAR, n €N, t € TERM, v € VALUE, w € DENOTABLE

x]tt])tx.t]n|t+t|

v = Axt|n

t

wo o= x|v

The language has been enhanced with a term surrounded by an explicit substitution ¢[x := w], which
means that each free occurrence of the variable x in the term ¢ needs to be substituted by the denotable
term w. Evaluating an explicit substitution takes steps. In contrast, an implicit substitution #[w /x| used in
Substitutional ISWIM represents the result of substituting the denotable term w for each free occurrence of

the variable x in the term 7.

3.2.1.2 Free Variable Function

We define the free variable function by extending Definition 47 to accommodate explicit substitutions.

Definition 64 (Free Variable Function). Let the free variable function F'V be a total function from the set of

terms to the power set of variables.

36

3.2. Explicit ISWIM

FV : TERM — Z(VAR)

FV(lxi=w]) = (FV()\{x})UFV(w) (6)

Equations (1)-(5) are the same as Definition 47 in Substitutional ISWIM. Recall that #[x := w] is intro-
duced to represent what an application (Ax.r) w evaluates to. Observe that there is no free variable introduced
or eliminated during the evaluation. We have FV (t[x :=w]|) = FV ((Ax.t) w) = (FV(t)\{x}) UFV(w).

3.2.1.3 Substitution Function

We define the substitution function by extending Definition 49 to accommodate explicit substitutions.

Definition 65 (Substitution Function). Let the substitution function -[- /-] be a total function from the 3-tuple

of the set of terms, the set of denotable terms and the set of variables, to the set of terms.

-[-/-]: (TERM X DENOTABLE X VAR) — TERM

(tolx1 :=wi)[wa/x2] = tolxz/xi][wa/x2][x3 := wi[wa/x2]]
where x3 ¢ FV(Ax;.to) UFV(w)U{x2} (7)

Equations (1)-(6) are the same as Definition 49 in Substitutional ISWIM. Recall that Proposition 54 says
t[wl/xl] [WQ/XQ] ~o l‘[Xj;/)C]][Wz/xZ] [W] [WQ/)CQ]/Xg] where x3 ¢ FV()L)C] .t()) UFV(W) U {XZ}, corresponding
to Equation (7).
3.2.1.4 Alpha Equivalence Relation

We define the alpha equivalence relation by extending Definition 50 to accommodate explicit substitutions.

Definition 66 (Alpha Equivalence Relation). Define the alpha equivalence relation ~, to be a binary relation

between the set of terms and the set of terms.

~g C TERM x TERM

Wiy~ W2 N [X3/X1] ~a lz[x3/xz]

(tl [X1 = W]]) ~a (lz[Xz = W2]>

where x3 ¢ FV(t;) UFV(z2) (sub)

All rules except the (sub) rule are the same as Definition 50 in Substitutional ISWIM. Recall that
tlx := w] is introduced to represent what an application (Ax.r) w evaluates to. If we can show
(Ax1.t1) wi ~q (Axz.t2) wa, then we should be able to show (¢ [x] := wi]) ~¢ (f2[x2 := w2]). The premise

of the (sub) rule indeed shows (Axj.t;) wi ~g (Axa.12) wo.

37

3.2. Explicit ISWIM

3.2.2 Structural Operational Semantics

We lay out the structural operational semantics through the single-step relation —, the single-step substitu-
tion reduction relation —*, the multi-step substitution reduction relation —** and the multi-step relation
—".

Definition 67 (Single-step Relation). Define the single-step relation — to be a binary relation between the

set of terms and the set of terms.

— C TERM x TERM

i — 2 by —1t» (app)
Hith) — b (appL) Vit —»Viin (appR) (lx.t) vV — t[x = V] PP
I — 2) —»

(plusL) (plusR) where n = nj + n; (plus)

n+n —n

Hhi+h —t+0h Vit —vi+i2

The only rule that is different from Substitutional ISWIM is (app) which replaces the meta-language
substitution [v/x] with the explicit substitution [x := v]. The definition of the single-step relation is currently
incomplete because how explicit substitutions percolate has not been defined yet.

To specify how explicit substitutions percolate, we define a new relation #[x := w| —* ¢. This relation

ensures that explicit substitutions percolate deterministically.

Definition 68 (Single-step Substitution Reduction Relation). Let the single-step substitution reduction rela-
tion —* be a binary relation between the set of terms and the set of terms.
—* C TERM X TERM

X (var-eq-subst) Ml = W — 1 where x| # x; (var-df-subst)

Al = w] —* n (num-subst)

(t) [x :=w] —* (t1[x == w]) (2[x:=w]) (app-subst)

(Il —I-tz)[x = w] X (tl [x — W]) T (tz[x — W]) (plus-subst)

Gon 100 =] — Ana [= mollea = w] where x3 ¢ FV(Ax;.t) UFV(w)U{x2} (lam-subst)

n [x1 = Wl] —X 15

(subst-subst)

I3 [Xl = W]][)Cz = W2] —X tz[XQ = WZ]

Most of the rules describe how explicit substitutions behave when encountering other terms in the lan-
guage. Rules (var-eq-subst), (var-df-subst), (app-subst), (lam-subst), (num-subst) and (plus-subst) corres-
pond to Equations (1) to (5) of Substitutional ISWIM’s substitution function (Definition 49) respectively.
The (subst-subst) rule implies that only a single-step of substitution reduction may happen underneath an

explicit substitution.

38

3.2. Explicit ISWIM

Every single-step substitution reduction counts as a single step of computation. We add the following

rule to the definition of the single-step relation, Definition 67.
where # [x := w| —* 1, (subst)

fx:=w|—n

Definition 69 (Multi-step Substitution Reduction Relation). Define the multi-step substitution reduction
relation —** to be the reflexive-transitive closure relation on the single-step substitution reduction relation
—.

Definition 70 (Multi-step Relation). Define the multi-step relation —* to be the reflexive-transitive closure

relation on the single-step relation —.

Example 71. Let x; # x,. We observe that

((Ax1.x2) 5)[x2 :=2] /= (x2[x1 :=5])[x2 :=12].

As (Ax;.x2) 5 — x2[x; := 5] is merely a single-step computation but not a substitution reduction, it
cannot be performed underneath the explicit substitution [x := 2.

The explicit substitution [x, := 2] has to propagate first. Correctly, we have:

(Ax1.x2) 5)[x2 :=2]

(
— ()Lxl .XQ)[XQ = 2] 5[)62 = 2]
— (Axpxafxg i= 2] :=2]) 5[x2 :=2] where x; Z x,
— (kxl .)Q[xl = xl][xz = 2]) 5
— xafxp i=xq] e i=2)[x) = 5]
— xafxp :=2|[x) :=5]
— 2[x;:=15]
— 2

Example 72. Let x; # x,. By the structural operational semantics of Explicit ISWIM, we have:

(Ax; Axa.xp) 7
— (Axp.xp)[xg :=7]
— 7LJC2.X1 [XQ =)CQ] [x1 = 7] where x; 5_’5)61

In contrast, by the substitutional structural operational semantics of ISWIM, we have:

(Ax1.Ax2.x1) 7
— (Axp.x1)[7/x1]
= Axy.x1[x2/x2)[7/x1] where x, # x;
= Axp.x1[7/x1]
= Axy.7

Explicit ISWIM takes two single-steps while Substitutional ISWIM completes the execution in one
single-step. Explicit ISWIM terminates at a lambda abstraction where its body is a term surrounded by
explicit substitutions. Explicit ISWIM reduces substitutions in a lazy fashion in the sense that it only pushes
explicit substitutions to the body of a lambda abstraction but does not perform any substitution reduction on

the body of a lambda abstraction.

39

3.3. Suspended ISWIM

Properties. We observe the following properties that are useful in proving semantics equivalence. (1) The
single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of a
term. These are the same properties that Substitutional ISWIM holds.

Proposition 73. Ift,, ~q tp, and t,, — ta,, thenty,, — 1y, and t,, ~o tp,.

Proposition 74. If FV(t;) =0 and t; —* 1, then FV (t;) = 0.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Explicit ISWIM.
The evaluator is analogous to the one defined in terms of Substitutional ISWIM.

Definition 75 (Evaluator based on Structural Operational Semantics of Explicit ISWIM). Define the eval-
uator evaliswiM:Expsos to be a partial function from the set of programs PRGMswim to the set of answers

ANSIsWIM.-

evaliswiM:Expsos : PRGMiswim — ANSiswim

function ifr —* Ax.t/
evaliswim:Expsos () = .
n ift —*n

This evaluator is defined in terms of the structural operational semantics of Explicit ISWIM. The sub-

script “1swiM:Expsos” in evaliswiM:Expsos denotes the structural operational semantics of Explicit ISWIM.

We claim that the evaluators defined in terms of the Substitutional ISWIM and Explicit ISWIM are

equivalent.

Theorem 76 (Kleene Equality of Evaluators). For any t € PRGMiswim, evaliswiv:subsos () is Kleene equal

10 evaliswim:Expsos ()-

We prove the theorem in the appendices.

3.3 Suspended ISWIM

Explicit ISWIM models how substitutions percolate at the semantical level. However, the integration has
introduced unnecessary or unconventional computation. Consider the (lam-subst) rule of the structural op-

erational semantics of Explicit ISWIM.

Gon 11002 = 1] — A =]2 = w] where x3 ¢ FV (Ax.t) UFV(w)U{x2} (lam-subst)

Pushing an explicit substitution into a lambda abstraction requires rewriting the body of the lambda ab-
straction. Furthermore, when an explicit substitution is pushed into a lambda abstraction, a new explicit
substitution to rename the lambda bound variable is created, which may get pushed downward.

We propose to delay explicit substitutions outside of any lambda abstraction until the lambda abstraction

is called in an application. The resulting dialect is Suspended ISWIM.

40

3.3. Suspended ISWIM

3.3.1 Syntax

We first define the basic syntax of the Suspended ISWIM: terms, values and denotable terms. Then we
define the free variable function, the substitution function and the alpha equivalence relation.

3.3.1.1 Terms, Values and Denotable Terms

Definition 77 (Terms, Values and Denotable Terms). Let (1) TERM be the set of terms, (2) VALUE be the
set of values, and (3) DENOTABLE be the set of denotable terms.
x € VAR, n € N, t € TERM, v € VALUE, w € DENOTABLE

t u= x|tt|Axt|n|t+1]txi=w]
v u= | (Axap)[x:=w]||n
w o= x|v

The definition uses (Ax.t)[x := w] to represent that the lambda abstraction Ax.t is surrounded by zero or
more explicit substitutions [x := w].? Since we delay explicit substitutions outside of lambda abstractions,
(Ax.t)[x := w] is a value in Suspended ISWIM.

A term surrounded by explicit substitutions, #[x] := w;|[x2 := wy]...[x, := wy], truly represents a term
surrounded by explicit substitutions cascadedly, (...((¢[x; := wy])[x2 := wa])...) [xn := wy,]. We usually omit

the parentheses for convenience.

3.3.1.2 Free Variable Function, Substitution Function and Alpha Equivalence Relation

The free variable function, substitution function and alpha equivalence relation are the same as Explicit
ISWIM (Section 3.2).

3.3.2 Structural Operational Semantics

We lay out the structural operational semantics through the single-step relation —, the single-step substitu-
tion reduction relation —*, the multi-step substitution reduction relation —** and the multi-step relation
—".

Definition 78 (Single-step Relation). Let the single-step relation — be a binary relation between the set
of terms and the set of terms.

ZWe state several syntactic conventions. (1) [x; := w;] denotes zero or more explicit substitutions. (2) [x; := wi]:’zl denotes either

. o . o —n .
zero explicit substitutions or n explicit substitutions of the form [x| := wy][xz := wa]...[x, := wy]. (3) [x; := w;];__, denotes either
zero explicit substitutions or n explicit substitutions of the form [x_; :=w_;]|[x_p :=w_]...[x_, :=w_,]. (4) [x; :==w;] denotes

. - ———t— . o
one or more explicit substitutions. [x; := w,-]i:jl denotes n explicit substitutions of the form [x_; := w_1][x_p := w_s]...[x_p :=
Ww_p].

41

3.3. Suspended ISWIM

—— C TERM x TERM

I ——hy _fn ol — ——— (app)
M h—inh (appL) Vifol — V] I (appR) (Ax.t)[xi :=wi] v —> t[x == v][x; := wj]
L2 (plusL) 22 (plusR) where n.= nj +n (plus)

Hhi+h —ty+0h Vit —vi+i2 ny+ny; —n

nx=wl—n where 11 [x := w] —* 1, (subst)

The only rule that is different from Explicit ISWIM is the (app) rule.

Someone may attempt to use the following one as the (app) rule.

(app-incorrect)

(Ax.t)[xi = wi] v —t[x; ;== wi][x:=v

This rule is incorrect. For example, if (app-incorrect) is used, we have ((Ax.x)[x :=9]) 7 — x[x :=9][x :=
7] — 9Jx :=7] — 9. In contrast, Explicit ISWIM evaluates ((Ax.x)[x :=9]) 7 to 7, and Substitutional
ISWIM evaluates ((Ax.x)[9/x]) 7 to 7 as well.

Someone may attempt to use the following one as the (app) rule.

O =T v 1 ol =i =] where xo ¢ FV (Ax.t)UU;(FV(w;) U{x;}) (app-optional)

This rule is correct but not ideal. We want to eliminate all renamings in Suspended ISWIM, but (app-
optional) still renames the lambda bound variable.

Keep in mind that this chapter aims to develop an environmental operational semantics for ISWIM. The
(app) rule promotes the substitution for the lambda bound variable to the front, overwriting any existing
explicit substitution for that variable, which is close to the operation of updating an environment. We shall
keep the (app) rule.

To specify how explicit substitutions percolate, we define the single-step substitution reduction relation
—x.

Definition 79 (Single-step Substitution Reduction Relation). Let the single-step substitution reduction rela-

tion —* be a binary relation between the set of terms and the set of terms.

42

3.3. Suspended ISWIM

—* C TERM x TERM

where x| # x; (var-df-subst)

var-eq-subst
w (9) xi[x2 = w] —*x;

— (num-subst)
nfx :=w] n

(11) :=w] —* (t1[x :=w]) (2[x :=w]) (app-subst)

(l‘l -l-tz)[x = w] X (tl [x — W]) T (fz[x — W]) (plus-subst)

no (lam-subst)

n [x1 = W]] —X 15
filxy = willx i=wa] —" io[xp == wy

(subst-subst)

All rules are the same as the single-step substitution reduction relation of Explicit ISWIM. The (lam-
subst) rule no longer exists in Suspended ISWIM because a lambda abstraction surrounded by explicit
substitutions is a value.

The above two definitions have fully eliminated variable renamings. The denotable term w in an arbitrary

substitution [x := w| must be a value. As a result, the definition of denotable terms in Definition 77

shall be replaced by

where w € DENOTABLE, x € VAR and v € VALUE. For convenience, we may use [x := v] or keep using

[x := w] to represent an explicit substitution in Suspended ISWIM.

Definition 80 (Multi-step Substitution Reduction Relation). Define the multi-step substitution reduction
relation —** to be the reflexive-transitive closure relation on the single-step substitution reduction relation
—%.

Definition 81 (Multi-step Relation). Define the multi-step relation —* to be the reflexive-transitive closure

relation on the single-step relation —.

Example 82. Consider ((Ax;.Ax.x1) 7) 4 where x; # x,. By the structural operational semantics of Sus-

pended ISWIM, we have:
((Ax; Axy.xp) 7) 4

— (Axpx))fx1:=7)) 4
— X1 [XZ = 4] [x1 = 7]
— X1 [x1 = 7]

— .

43

3.3. Suspended ISWIM

In contrast, by the structural operational semantics of Explicit ISWIM, we have:

(Ax1.Axp.x1) 7) 4
(Axz.x1)[x1:=17]) 4
(

N
— (Axpxifx i=xo]fx; :=7]) 4 where x; # x)
— X1 = x0x i=T)[x =4

— xpfx1 :=T]xp =4

— T[xp:=4]

— 7

Suspended ISWIM takes two fewer steps than Explicit ISWIM. Given (Ax;.x;)[x; := 7], Suspended
ISWIM does not push the substitution [x; := 7] into the lambda abstraction Ax;.x;. Instead, the substitution
is suspended until the lambda abstraction is called in an application. Given ((Ax;.x1)[x; :=7]) 4, Suspended

ISWIM promotes the substitution for the lambda bound variable to the front, resulting in x [x, := 4][x; :=7].

Properties. We observe the following properties that are useful in proving semantics equivalence. (1)
The single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of
a term. These are the same properties that Substitutional ISWIM and Explicit ISWIM hold.

Proposition 83. Ift, ~q tp, andt,, — t,,, thenty,, — ty, and ty, ~q tp,.

Proposition 84. If FV (1)) =0 and t; —* 1, then FV (t;) = 0.

Evaluator. We now define an evaluator in terms of the substitutional structural operational semantics of
Suspended ISWIM. The evaluator is analogous to be one defined for Explicit ISWIM.

Definition 85 (Evaluator based on Structural Operational Semantics of Suspended ISWIM). Let the eval-
uator evaliswiM:sussos be a partial function from the set of programs PRGMswiv to the set of answers

ANSisWIM.-

evaliswim:sussos : PRGMiswiv — ANSiswim

function ifr —* (Ax.t')[x; := wy]
evaliswim:sussos (1) = .
n ift —*n

This evaluator is defined in terms of the structural operational semantics of Suspended ISWIM. The sub-

script “rswim:sussos’ in evaliswim:sussos denotes the structural operational semantics of Suspended ISWIM.

We claim that the evaluators defined in terms of the Substitutional ISWIM and Suspended ISWIM are

equivalent.

Theorem 86 (Kleene Equality of Evaluators). For anyt € PRGMiswim, evaliswim:subsos () is Kleene equal

to evaliswim:sussos (7).

We prove the theorem in the appendices.

44

3.4. Environmental ISWIM - Structural Operational Semantics

3.4 Environmental ISWIM - Structural Operational Semantics

Suspended ISWIM is peculiar in the sense that the top-level structure of a lambda abstraction surrounded
by zero or more explicit substitutions is not immediately recognisable. Consider (lxt)m;; | Which
truly represents (...(((Ax.t)[x; := wi])[x2 := wa])...)[x, := w,]. To ensure that its top-level structure is a
lambda abstraction, we have to dive down through the cascaded explicit substitutions to search for a lambda
abstraction.

Furthermore, since our evaluator only concerns closed terms, we can safely claim that all denotable terms
substituting variables in cascaded explicit substitutions are closed. Then a cascade of explicit substitutions
can be viewed as a whole when operating on a term and its subterms. For example, consider a cascade of
explicit substitutions operating on a variable, xm;;. We compare x against x; where i = 1,2, ...,n in
order. There are two possibilities. (1) If none of x;’s refers to x, the cascaded explicit substitutions disappear,
i.e., xm:; | steps to x. (2) If we find the leftmost x, where 1 < p < n such that x, refers to x, then x is

replaced by w;, and the remaining cascaded substitutions [x; := wi]n , disappear, i.e., x[x; := w,-]?:l steps to

i=p+
wp where x;, is the leftmost x; such that x = x;,. We make these two gbservations because the denotable term
wp is closed and remains unchanged when encountering any explicit substitution. After further analysis, we
realise that there will always be a cascade of explicit substitutions that reach a variable in Suspended ISWIM.
It is a natural step to treat a cascade of explicit substitutions as a whole and replace it by an environment,

leading to Environmental ISWIM.

3.4.1 Syntax

We first define the basic syntax of the Environmental ISWIM: terms, values, denotable terms, configurations

and environments. Then we define the free variable function.

3.4.1.1 Terms, Values, Denotable Terms, Configurations and Environments

Definition 87 (Terms, Values, Denotable Terms and Configurations). Let (1) TERM be the set of terms,
(2) VALUE be the set of values, (3) DENOTABLE be the set of denotable terms, (4) CONF be the set of
configurations, and (5) ENV be a finite partial function from the set of variables to the set of denotable

terms.

fi
x € VAR, n € N, r € TERM, v € VALUE, w € DENOTABLE, ¢ € CONF, p € ENV = VAR = DENOTABLE
p

t = x|tt|Axt|n|t+t

v = n|<Ax.t, p> where FV(Ax.t) C dom(p)
woi= v

¢ = v]cc|c+cl(t, p) where FV(t) C dom(p)

A pair of a term and an environment where the former is closed by the latter, i.e., (r, p) where FV (1) C
dom(p) or <Ax.t, pr where FV (Ax.t) C dom(p), is called a closure. A pair of a lambda abstraction and an
environment where the former is closed by the latter, i.e., <Ax.r, p> where FV (Ax.t) C dom(p), is called a

closure value.

45

3.4. Environmental ISWIM - Structural Operational Semantics

A closure makes its top-level structure immediately evident. For example, given a closure (Ax.z, p), itis
immediately recognisable that its top-level structure is a lambda abstraction Ax.r without having to dive into
the environment p. In contrast, in Suspended ISWIM, to check the top-level structure of (Ax.t)[x := w], we
have to dive down through the cascaded explicit substitutions [x := w] until reaching the lambda abstraction
Ax.t.

Unlike the previous dialects of ISWIM, Environmental ISWIM deems the set of configurations rather

than the set of terms to be the fundamental set on which the operational semantics is defined.

Definition 88 (Environments). An environment p € ENV is a finite partial function from the set of variables
to the set of denotable terms. Let dom(p) be the domain of the environment p and rng(p) be the range of

the environment p. Let p[x — w| be an environment update and p(x) be an environment lookup. We have:

w ifx=y

p(y) ifx#y

plx—=wi(y) =

Suppose an environment p maps x| to wi, X2 to wa, ..., X, to w,,, where x; # x; for any i, j such that i # j,

and p has no other mapping. The environment p can be represented as a finite set { (x;, w1), (x2,w2), ..., (Xp,wy) }.

The domain of the environment p is dom(p) = {x;,x2,...,x,} and the range of the environment p is

mg(p) = {wi,wa,...,wn}.

3.4.1.2 Free Variable Function

We define the free variable function by extending Definition 47 to accommodate configurations.

Definition 89 (Free Variable Function). Let the free variable function F'V be a total function from the set of

configurations to the power set of variables.

FV : CONF — Z(VAR)
FV(x) = x (1)
FV(thtn) = FV()UFV() (2)
FV()Lx t) = FV(@)\{x} (3)
FV(n) = 0 (4)
FV(t1 +1) = FV()UFV(n) (5)
FV({,p) = 0 (6)
FV(<ddx.t, pr) = FV({Ax.t, p)) (7)
FV(cica) = FV(c1)UFV(c2) (8)
FV(ci+c) = FV(c1)UFV(ca) (9)

Equations (1)-(5) are the same as Definition 47 in Substitutional ISWIM. Equations (6) and (7) are based
on the definitions of closures and closure values. Equations (8) and (9) are analogous to Equations (2) and

5).

46

3.4. Environmental ISWIM - Structural Operational Semantics

Definition 90 (Closed Configurations). A configuration c is closed if and only if FV(c) = 0.

3.4.2 Structural Operational Semantics

We lay out the structural operational semantics of Environmental ISWIM through the single-step relation

— and the multi-step relation —*.

Definition 91 (Single-step Relation). Define the single-step relation — to be a binary relation between the
set of configurations and the set of configurations.
— C CONF x CONF

Ci] — C12 C2] —> €22
Cl1 Cp —> C12 C2 (appL) V] C21 —> V1 €2 (appR) Q()lx.t), pev— (t, p[x»—> V]> (app)

C11 — C12
ClitC—cip+cp

ny+ny—n

€] — €22
(plusL) Vi+c21 — Vit
where n = ny +ny (plus)

(plusR)

((Ax.t), p) — <(Ax.t), p> (clos-env)

T —w where p(x) = w (var-env)

m (num-env)

((h), p) — (t1, P) (2, P) (app-env)

(plus-env)

(h+1), p) — (1, p) +(t2; P)

The single-step relation ¢c; — ¢, reads as “c; single-steps to ¢;”. (1) Rules (appL), (appR), (plusL),
(plusR) and (plus) are analogous to the rules of the same names in Suspended ISWIM’s single-step relation.
The only difference is that Suspended ISWIM defined the relation on terms but we now define the relation
on configurations. (2) The (app) rule models performing an application by environment updating, which
completes the unfinished job of Suspended ISWIM’s (app) rule. (3) The other rules discuss how to evaluate
a closure. The (clos-env) rule turns a closure to a closure value. Other (*-env) rules correspond to Suspended
ISWIM’s single-step substitution reduction relation.

Rules of the single-step relation can be categorised into reduction rules and structural rules. Structural

rules are (appL), (appR), (plusL) and (plusR). The others are reduction rules.

Definition 92 (Multi-step Relation). Define the multi-step relation —* to be the reflexive-transitive closure

of the single-step relation —.

Example. To get familiar with the structural operational semantics, consider the following example.

Example 93. Consider (Ax;.Ax;.x1) 7) 4 where x| Z x;.

47

3.4. Environmental ISWIM - Structural Operational Semantics

We first construct a configuration that pairs the above term with an empty environment, i.e., (((Ax;.Ax2.x1) 7) 4, 0).

By the structural operational semantics of Environmental ISWIM, we have:

((Ax1.Ax2.x1) 7) 4, 0) (1)
— ((Ax1.Axp.x1) 7, 0) (4, 0) (2)
— (((Ax1.Axp.x1), 0) (7, 0)) (4,0) (3)
— (<(Ax;.Axz.x1), 0> (7,0)) (4,0) (4)
— (<(Ax;Axz.x1), O 7) (4, 0) (5)
— ((Axz.xr), {(x1,7)}) (4, 0) (6)
— <(Axpx1),{(x1,7)}> (4, 0) (7)
— <A(Axpx1),{(x1,7)}> 4 (8)
— (1, {(x2,4), (x1,7)}) 9)
— 7. (10)

As shown in Line (1), we always evaluate a program with an empty environment.

Property. We observe the following property that is useful in proving semantics equivalence. The multi-
step relation preserves the closedness of a term. This is the same property that Substitutional ISWIM,
Explicit ISWIM and Suspended ISWIM hold.

Proposition 94. If FV (c1) =0 and ¢; —* ¢, then FV (c3) = 0.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Environmental
ISWIM. Environmental ISWIM’s multi-step relation is defined on sets of configurations rather than sets of
terms. Given a program ¢, the evaluator applies the multi-step relation on the configuration (¢, @) in which
the program is associated with an empty environment. The evalutor is otherwise analogous to the evaluator
defined for Suspended ISWIM.

Definition 95 (Evaluator based on Structural Operational Semantics of Environmental ISWIM). Let the

evaluator evaliswim:Envsos to be a partial function from the set of programs PRGMjswv to the set of answers

ANSisWIM.-

evaliswiM:Envsos : PRGMiswiv — ANSiswim

function if (r, 0) —* <(Ax.t"), p>
evaliswiM:Envsos (1) =

n if (t, 0) —*n

This evaluator is defined in terms of the structural operational semantics of Environmental ISWIM. The
subscript “iswiM:Envsos’ in evaliswiM:Envsos denotes the structural operational semantics of Environmental
ISWIM.

We claim that the evaluators defined in terms of Substitutional ISWIM and Environmental ISWIM are

equivalent.

48

3.5. Environmental ISWIM - Reduction Semantics

Theorem 96 (Kleene Equality of Evaluators). For any t € PRGMiswim, evaliswim:subsos (?) is Kleene equal

to evaliswim:Envsos ()

We prove the theorem in appendices.

3.5 Environmental ISWIM - Reduction Semantics

This chapter aims to develop an environmental abstract machine for ISWIM. Since a reduction semantics
can be viewed as a concise representation of an abstract machine, we develop a reduction semantics for

Environmental ISWIM, based on which we develop an abstract machine in the next section.

3.5.1 Syntax

The definitions of terms, values, denotable terms, configurations and environments are the same as Section
34.

3.5.1.1 Evaluation Contexts

We now define evaluation contexts to regulate the only places where an arbitrary reduction may happen.

Definition 97 (Evalutation Contexts: Inside-out). Let ECXT be the set of evaluation contexts.

E € EcXT, c € CONF, v € VALUE

O e EcXT (ept

E € ECXT
E[vO] € EcxT

E € EcXT

—_ R
E[Oc] € EcXT (appR)

(appL)

E € ECXT
E[v+0] € EcXT

E € ECXT
E[O+c| € ECXT

(plusL)

(plusR)

The sole hole [J in an evaluation context can be filled by a configuration. E|c] is a configuration con-
structed by filling the sole hole of the evaluation context E by the configuration c.

There is a correspondence between evaluation contexts and structural rule of the single-step relation
defined as Definition 91. (1) The evaluation context E[(J ¢| allows reduction at the operator position of an
application, corresponding to the (appL) rule of the semantics. (2) The evaluation context E[v [J] allows
reduction at the operand position of an application, corresponding to the (appR) rule of the semantics. (3)
The evaluation context E [+ ¢| allows reduction at the first operand position of an addition, corresponding
to the (plusL) rule of the semantics. (4) The evaluation context E[v+] allows reduction at second operand
position of an addition, corresponding to the (plusR) rule of the semantics. (5) The evaluation context [
allows reduction immediately.

This definition is called inside-out because it makes the innermost structure of an evaluation context the

most evident. An alternative but equivalent definition of evaluation contexts is provided in Definition 106.

49

3.5. Environmental ISWIM - Reduction Semantics

3.5.2 Reduction Semantics

We lay out the reduction semantics of Environmental ISWIM through the notions of reduction %, the re-

duction relation — and the multi-reduction relation —*.

Definition 98 (Notions of Reduction). Let the notions of reduction, %, be a binary relation between the set

of configurations and the set of configurations.

% C CONF x CONF

AAx.t), prv Z (t, plx—]) (app)

ni+ny % nwheren=n;+n; (plus)
(Ax.t), p) Z# <(Ax.t), p> (conf-lam)
(x, p) # wwherep(x)=w (conf-var)
(n,p) Z n (conf-num)
((in), p) Z (1, p) (02, P) (conf-app)
(h+n2),p) Z (1, p)+ (2, P) (conf-plus)

The notion of reduction ¢; Z c; reads as “c; reduces to ¢;”. Each notion corresponds to one reduction

rule of the single-step relation defined as Definition 91.
Definition 99. If ¢ Z c,, then c; is a redex and ¢, is a contractum.

Definition 100 (Reduction Relation). Let the reduction relation — be a binary relation between the set of
configurations and the set of configurations directly based on the notions of reduction Z%.
— C CONF x CONF

C1 <@CQ
E[C]] '—>E[Cz]

The reduction relation ¢; — c¢; reads as “c; single-reduces to ¢;”. The above definition states that the
reduction relation respects performing any notion of reduction in an evaluation context.
Intuitively, the reduction relation — defines a single step of computation. We define —* to represent

multiple (zero or more) steps of computation.

Definition 101 (Multi-reduction Relation). Define the multi-reduction relation ——* to be the reflexive-

transitive closure of the reduction relation —.
The multi-reduction relation ¢; —* ¢, reads as “c; multi-reduces to ¢;”.

Example 102. Consider (Ax;.Ax;.x1) 7) 4 where x; # x,.
We first pair above term with an empty environment, constructing the configuration (((Ax;.Ax2.x1) 7) 4, 0).

By the reduction semantics of Environmental ISWIM, we have:
((Ax1Axp.x1) 7) 4, 0) —* 17

as demonstrated in Figure 3.1.

50

3.5. Environmental ISWIM - Reduction Semantics

HlllIIIIIIIlIIIIIHIIIIIIIlIII\Illllllllllll

—~
—~

kxl.lxg.xl))4 @>
((Ax1.Ax2.x1) 7) 4, 0)]
(Ax1.Ax2.x1) 7, 0) (4, 0)]
Axi sz x1) 7, (Z)>< 0)

4, 0)][((Ax1.Axz.x1) 7, 0)]

4, 0)][((Ax1.Ax2.x1), 0) (7, 0)]
X1. Z,xz x1), 0) (7, 0)) (4, 0)

i%[D (7, O)][{(Ax1.Axz.x1), 0)]

—_—— o~
L

4,0

4, 0)][0 (7, 0)][«(Ax1.Ax2.x1), O]
1. AXQ)C]) 0> <7 @)) <4, @)
4,
4

A
—~

0)][«(Ax1.Ax2x1), 05 CI[(7, 0)]
s 0)][(lxl)LX2 xl) (/D3 DH7]

1. },XQ xl) (/D3 7) <4 ®>

4, 0)][a(Ax1 Axz.x1), 05 7]

4, 0)][((Axz.x1), {(x1,7)})]
x2.x1), {(x1,7)}) (4, 0)

04, 0)][(Ax2.x1), {(x1,7)})]

04, 0)][«(Axax1), {(x1,7)15]
(Mz x) (0.7} (4, 0)

Ofa(Arsx1), {(ct,)} e T[4, 0)
Ofa(Axax1), {(x1, 7)) > O[]
<1(A.X2.X1) { X1,)}l> 4
D[<1(7Lx2.x1) {(xl,)}D 4]
O, {(oa,4), (x1, 7))
<x17{(x274)7(x177)}>
D[<X1,{(XQ,4),(X1,7)}>]
Of7]

7.

Od0=0O0Ox00xx00=<00=00
>

ﬁﬁp

—

where (((Ax1.Ax2.x1) 7) 4, 0) Z ((Ax1.Axp.x1) 7, 0) (4, 0)

where ((Ax1.Ax2.x1) 7, 0) Z ((Ax1.Ax2.x1), 0) (7, 0)

where <(7LX1.7L)C2.X1)7 @> X Q(AXI.AXZ.)Q), o>

where (7, 0) Z 7

where < (Ax;.Axp.x1), 0> 7% ((Axa.x1), O[x; — 7])

where ((Ax2.x1), {(x1,7)}) Z <(Axa.x1), {(x1,7)}>

where (4, 0) Z 4

where <1()VX2.X1),{(X1,7)}1> 4% <X1,{(X1,7)}[)C2 '—>4]>

where (x1,{(x2,4), (x1,7)}) Z7

Figure 3.1: Evaluation of ((Ax;.Ax2.x1) 7) 4 in Reduction Semantics of Environmental [ISWIM.

51

3.5. Environmental ISWIM - Reduction Semantics

To apply the reduction semantics on a term, follow the following pattern repeatedly until the resulting

term is a value.
1. Break the term into an evaluation context and a redex.
2. Apply a notion of reduction on the redex and get a contractum.
3. Plug the contractum into the evaluation context and get a new term.

However, the reduction semantics does not tell how to break a term into an evaluation context and a redex.
In other words, the reduction semantics does not encode a systematic strategy to search for an evaluation

context and a redex.

Property. We observe the following property that is useful in proving semantics equivalence. The multi-
step relation preserves the closedness of a term. This is the same property that the previos ISWIM dialects
hold.

Proposition 103. If FV(c;) =0 and ¢; —* ¢;, then FV (cy) = 0.
Evaluator. We now define an evaluator in terms of the reduction semantics of Environmental ISWIM.

The evalutor is analogous to the evaluator defined in terms of the structural operational semantics of Envir-
onmental ISWIM.

Definition 104 (Evaluator based on Reduction Semantics of Environmental ISWIM). Let the evaluator

evaliswiM:EnvRed b€ a partial function from the set of programs PRGMswv to the set of answers ANSiswiMm.

evaliswiM:EnvRed : PRGMiswim — ANSiswiM

function if (r, 0) —* <(Ax.t"), p>
evaliswiM:EnvRed (1) =

n if (r, 0) —*n

This evaluator is defined in terms of the reduction semantics of Environmental ISWIM. The subscript

“ISWIM:EnvRed 1N evaliswim:EnvRed denotes the reduction semantics of Environmental ISWIM.

We claim that the evaluators defined in terms of the structural operational semantics and the reduction

semantics of Environmental ISWIM are equivalent.

Theorem 105 (Kleene Equality of Evaluators). For anyt € PRGMiswim, evaliswiv:Envsos () is Kleene equal

10 evaliswim:EnvRed (1)-

We prove the theorem in appendices.

52

3.6. Environmental ISWIM - CEK Abstract Machine

3.6 Environmental ISWIM - CEK Abstract Machine

Reduction semantics can be viewed as a concise representation of an abstract machine in the sense that it
abstracts away the search for an evaluation context and a redex. In contrast, an abstract machine encodes a
systematic strategy to search for an evaluation context and a redex. We finish refining semantics for ISWIM
by developing an abstract machine for Environmental ISWIM. The environmental abstract machine is also

known as the CEK machine.

3.6.1 Syntax

The definitions of terms, values, denotable terms, configurations and environments are the same as Sections
3.4 and 3.5.

3.6.1.1 Evaluation Contexts

We provide two definitions of evaluation contexts. The first definition is the same as the one used in Section
3.5. The second one is as follows. These two definitions are equivalent and are used interchangeably at our

convenience.

Definition 106 (Evaluation Contexts: Outside-in). Let ECXT be the set of evaluation contexts.
E € ECXT, ¢ € CONF, v € VALUE

O e EcXT (ep)

E c EcxT
(vE) € ECXT

E ¢ EcxT

(E c) € ECXT (appR)

(appL)

E € EcXT (plusL) E € EcXT

—_— ——————— (pluskR
(E+c) € EcXT (v+E) € ECXT (plusR)

This definition is called outside-in because it makes the outermost structure of an evaluation context the
most evident.
3.6.1.2 Machine Configurations
The states of an abstract machine are represented by machine configurations.

Definition 107 (Machine Configurations). Let CFG be the set of machine configurations.

C € CFG, c € CONF, v € VALUE, E € ECXT
C == v
[{E, ¢)r
| (E, o)t
[(E, v)b

The machine operates in four modes: the value mode v, the reduce mode (E, c);, the focus mode (E, c¢)¢
and the build mode (E, v)p.

53

3.6. Environmental ISWIM - CEK Abstract Machine

A machine configuration (E, c)» where ? € {r,f,b} unloads to the configuration E[c|. Precisely, the

configuration c¢ in the machine configuration (E, c), needs to be a redex.

3.6.2 CEK Abstract Machine

We lay out an abstract machine of Environmental ISWIM, which is known as the CEK machine, through

the reduction relation ek and the multi-reduction relation ——7, .

Definition 108 (Reduction Relation). Let the reduction relation —ex be a binary relation between the set

of machine configurations and the set of machine configurations.

—cek € CFG x CFG

Reduce rules:

(E, a(Ax.t), p>v)y ek (E, (&, plx—=v]))s (r-app)
(E, ni+n2)y +—cek (E,n)fwheren=n;+ny (r-plus)
(E, (Axt), p))r ek (E, <(Ax.t), pp)s (r-conf-lam)
(E, (x, p))r —cek (E, w)fwherep(x)=w (r-conf-var)
(E, (n, p))t +—cek (E, n)s (r-conf-num)
(E, (1 12), P))r +—reek (E, (11, p) (12, P))s (r-conf-app)
(E, (t1 +12), pP))r ek (E, (t1, p) +{t2, P))s (r-conf-plus)
Focus rules:
(E, {t, p))r ek (E, {t, P))r (f-conf)
(E,crea)r ek (E[0c], c1)t (f-app)
(E, a(Ax.t), pryy —cek (E, <(Ax.t), pr)p (f-lam)
<E, I’l)f —>cek <E, l’l>b (f—num)
(E,c1+c2)f ek (E[O4c2], c1)s (f-plus)
Build rules:
(O, V)b +—cek V (b-val)
(E[0ca], vi)o ek (E[vi O], c2)r (b-appL)
(EviOd], va)p +——cek (E, vi v2); (b-appR)
(E[O+4c2], vi)o ek (E[vi+0], c2)¢ (b-plusL)
<E [v1 + Eﬂ, V2>b —>cek <E, V1 + V2>r (b—plusR)

The reduction relation C; — ¢k Co reads as “C single-reduces to C”.

A machine configuration at the reduce mode, (E, c);, signifies that a proper notion of reduction can be
applied on the redex c¢. A machine configuration at the focus mode, (E, c)¢, indicates searching downward
into the configuration ¢ for a redex to reduce. A machine configuration at the build mode, (E, v)p, returns
the value v to the current evaluation context £. A machine configuration at the value mode, v, represents

that the value v is the result of executing the machine.

54

3.6. Environmental ISWIM - CEK Abstract Machine

Intuitively, the reduction relation —— . defines a single step of computation. We define —7 to

represent multiple (zero or more) steps of computation.

Definition 109 (Multi-reduction Relation). Let the multi-reduction relation —7, be the reflexive-transitive

closure of the reduction relation —>ex.

*

ek G2 reads as “Cy multi-reduces to C;”.

The multi-reduction relation C; —>
The abstract machine defined above is also known as the CEK machine. C stands for control, i.e., the
configuration under evaluation, E stands for environment, and K stands for continuation, i.e., the evaluation

context.

Example 110. Consider (Ax;.Axp.x1) 7) 4 where x| # x,.
We first construct a machine configuration that contains the above term with an empty evaluation context
and an empty environment and start running the machine configuration at focus mode.

By the CEK machine, we have
(O, (Ax1 Axa.x1) 7) 4, 0))g—2g 7

as demonstrated in Figure 3.2.

Evaluator. We now define an evaluator in terms of the CEK machine. CEK machine’s multi-reduction
relation is defined on sets of machine configurations. Given a program ¢, the evaluator applies the multi-
transformation relation on the machine configuration ({J, (¢, @))¢ in which the program is associated with
an empty environment and an empty evaluation context. The evaluator is otherwise analogous to the one

defined in terms of the reduction semantics of Environmental ISWIM.

Definition 111 (Evaluator based on CEK Machine). Let the evaluator evaliswiv.cex be a partial function

from the set of programs PRGMswm to the set of answers ANSiswiM-

evaliswim:cex : PRGMiswiv — ANSiswim

function if (O, (z, 0))f —7, <(Ax.t'), p>

cek

n if <|:|7 <t7 0>>f ’—>:ek n

evaliswim:cex (1) =

This evaluator is defined in terms of the CEK machine. The subscript “iswim:cex” in evaliswim:CEK
denotes the CEK machine of ISWIM.

We claim that the evaluators defined in terms of the reduction semantics and based on the CEK abstract

machine of Environmental ISWIM are equivalent.

Theorem 112 (Kleene Equality of Evaluators). For anyt € PRGMiswimM, evaliswiv:Envred (?) is Kleene equal

to evaliswim:cex ().

55

3.6. Environmental ISWIM - CEK Abstract Machine

(g, (((Axy.Axa. x1) 7) 4, 0)
——>cek <|:|, <((7LX1 .7L)C2 x1) @>
—>cek <D, <(7Lx1.7tx2.x1) 7 @> <4, @>
——>cek <D[D <4, 0)], <(AX1.)L)C2.X1> 7 ®>
e (O[O0 (4, 0Y], (Ax1.Ax2.x1) 7, 0)
—>cek <D[D <4, 0)], (lxl l)@ X1, > <7, 0>
ek (O[O0 4, 0)][O0 (7, 0)], (Ax1.Axz.x1, 0)
e (O[04, 0)][O (7, 0)], (Ax1.Ax2.x1, 0)
——>cek <D[|:| <4 @)][D <7 0)] <1),x1 ./le.X], 0>
e (O[04, 0)][0 (7, 0)], Ax Axa.xi, O
——>cek <|:|[|:| <4 0>][<17LX1 A,XQ X1, (/D3 D], <7, @)
e (O[O (4, 0)][<Ax1. Axaxy, 0 O], (7, 0)
——>cek <|:|[|:| <4 0>][<IA,X1 A,XQ X1, (/D3 D], 7
—>cek <D[D <4, 0)][47Lx1 QLXZ X1, 0 D], 7
——>cek <D[D <4, 0)] <IAX1.AXZ.X1, 07
ek (O[O (4, 0)], (Axp.xy, {(x1,7)})
ek (O[O (4, 0)], (Axa.xr, {(x1,7)})
—>cek <|:|[|:| <4, ®>], <])VX2.X1, {(X1,7)}\>
ek (O[O (4, 0)], Axa.xy, {(x1,7) >
—>cek <D[<17LX2.X1, {(X1,7)}l> D], <4, @)
ek (O[<Axp.xp, {(x1,7)}> O, 4, 0)
—>cek <|:|[<17LXZ.X1, {(X1,7)}l> D], 4
—>cek <D[<17Lx2.x1, {(x1,7)}l> D], 4
——>cek <|:|, <1/lX2.X1, {(X1,7)}l> 4
—rcek <Dv <x1’ {(x1’7)’ (x274)}>
cek <D> <x17 {(x1’7)7 (x274)}>
—>cek <|:|, 7
—>cek <D, 7
ek /

Figure 3.2: Evaluation of ((Axj.Ax2.x1) 7) 4 in the CEK Machine.

[ing

e " - ~— " " " ~— ~— ~— ~—— ~— ~— ~— ~— ~— ~— ~— ~— ~——

e T T - e T T T e o e e T T e N

3.7. Chapter Summary

We prove the above theorem in appendices.
As a corollary, the evaluators defined in terms of the Substitutional ISWIM and the CEK machine are

equivalent.

Corollary 113 (Kleene Equality of Evaluators). For any t € PRGMiswim, evaliswiM:subsos(?) is Kleene

equal to evaliswim:cex (1)-

Proof. It immediately follows from Theorems 96, 105 and 112 by the transitivity of Kleene equality. U

3.7 Chapter Summary

Following the first dimension of the semantics refinement problem, this chapter solved the following prob-

lem that is less complicated than the main semantics refinement problem.

Can we refine the substitutional structural operational semantics of ISWIM to a corresponding
substitutional abstract machine, which is known as the CEK machine, and demonstrate their

equivalence?

We accomplished the development progressively in several manageable steps, each of which led to an in-
termediate semantics. We first studied the substitutional structural operational semantics of ISWIM. Then
we successively developed the structural operational semantics of Explicit ISWIM, the structural opera-
tional semantics of Suspended ISWIM, the structural operational semantics of Environmental ISWIM, the
reduction semantics of Environmental ISWIM, and finally derived the abstract machine of Environmental
ISWIM. The abstract machine of Environmental ISWIM is also known as the CEK machine.

We defined an evaluator based on each semantics. By proving the equivalence of every two adjacent
semantics, we finally showed that the CEK machine is equivalent to the substitutional structural operational
semantics of ISWIM.

57

Chapter 4

Refining Semantics for MetaML:
Developing the MK Machine

Following the second dimension of simplifying the main semantics refinement problem, we study how to
stepwise develop an substitutional abstract machine rather than an environmental abstract machine for the

multi-stage language MetaML. The problem is restated as follows.

Can we refine the substitutional structural operational semantics of MetaML to a corresponding
substitutional abstract machine, which we call the MK machine, and demonstrate their equival-

ence?

Recall that Sections 3.4, 3.5 and 3.6 have shown an approach to refining a structural operational semantics
to a reduction semantics and finally to an abstract machine. We adopt the same strategy in deriving the MK

machine.

4.1 MetaML - Substitutional Reduction Semantics

MetaML’s substitutional structural operational semantics has been presented in Section 2.2. Following the
path of refining a structural operational semantics to a reduction semantics as shown in Section 3.5, we

derive a substitutional reduction semantics for MetaML.

4.1.1 Syntax

The definitions of terms, values and denotable terms are the same as Section 2.2.1.

4.1.1.1 Evaluation Contexts

Section 3.5 defined evaluation contexts to regulate the only places where an arbitrary reduction may happen

in a single-stage language. We now extend the definition to accommodate the multi-stage setting.

Definition 114 (Level-indexed Evaluation Contexts: Inside-out). Let ECXT' ™/ be the set of evaluation

contexts with inner level i and outer level j.

58

4.1. MetaML - Substitutional Reduction Semantics

E—/ ¢ EcXT" ™/, t' € TERM/, V' € VALUE'

e EcxT ™ (ept-D)

E € EcxT' ™/
E[0#] € EcxT ™/

E € EcxT ™/ :
< -~ (appR-i)

(appL-1) . .
bp E[V| O] € Ecx1"™/

(1))
ECECXT " (lambda-(i+1))
E[Ax.0) € Bcxr(th)—J

E € EcxT' ™/ E ¢ Ecxtlith—i E € EcxT ™/

- - (code-1) —— (splice-(i+1)) — (run-i
E[(0)] € Ecxtl+D—/ E[~[)] € EcxT P E['0J] € EcxT ™/ (ron-)
i—oj i—oj
E G‘ECXT __ (plusL-i) .E € EcXT __ (plusR-i)
E[O+1] € EcxT™/ E[V,+0] € EcxT™/

An evaluation context E‘—°/ comes with an inner level i and an outer level j. The inner level i is the level
of the hole of the context, indicating the level of terms that can fill the hole. The outer level j is the level of
the term produced by the context when the hole of the context is filled.

The sole hole (' in an evaluation context can be filled by a level-i term. E'/[¢] is a level-j term
constructed by filling the sole hole of the evaluation context E/=/ by a level-i term /. The levels i and j
in an evaluation context E// can be related in any of the following three ways. (1) i > j. For example, a
level-0 term !{Ax.x) can be represented as (CO[!0][((0)][Ax.00])!~C[x]. (2) i = j. For example, a level-0 term
(Ax.x) ((Ax.x) 7) can be represented as (C[(Ax.x) O])°~°[(Ax.x) 7]. (3) i < j. For example, a level-1 term
~((Ax.x) (Ax.x)) can be represented as (([~[J])* ! [(Ax.x) (Ax.x)].

The definition of evaluation contexts is motivated by the structural rules of the single-step relations

(Definition 36). For example, the (code-i) rule
t{“ il it

T

(code-1)

tells that a code operation at level i can be evaluated by reducing its operand at level i+ 1. Since an evaluation
context defines where a reduction may happen, we may replace the (code-i) rule by an evaluation context
(ON@])+ D= and allow any level-(i + 1) reduction to happen at the hole of the context. We observe
the following correspondences between evaluation contexts and structural rule of the single-step relations
(Definition 36). (1) The evaluation context E[[J té] corresponds to (appL-i). (2) The evaluation context
E[v| O] corresponds to (appR-i). (3) The evaluation context E[Ax.0] corresponds to (lambda-(i+1)). (4)
The evaluation context E[!(J] corresponds to (run-i). (5) The evaluation context E[([J)] corresponds to
(code-i). (6) The evaluation context E[~[J] corresponds to (splice-i). (7) The evaluation context E[(J+ 73]

corresponds to (plusL-i). (8) The evaluation context E[v| +] corresponds to (plusR-i). To get familiar with

59

4.1. MetaML - Substitutional Reduction Semantics

the above correspondences, consider the following example:

— (splice-1)

~x) — x .
(lambda-(i+1))
Ax.~{x) —1 Ax.x ,
(code-1)

(Ax.~{x)) —0 (Ax.x)

The level-0 term (Ax.~(x)) can be represented as (O[{(1)][Ax.00]) %[~ (x)]. The evaluation context (O[((1)][Ax.00]) !0
corresponds to the structural rules (code-i) and (lambda-(i+1)).
We can get the evaluation contexts that are suitable for a single-stage language such as ISWIM if we
remove the rules that involve any multi-stage annotation and repeatedly apply the rules that define evaluation
contexts with an inner level 0 and an outer level 0.

This definition is inside-out. An outside-in definition is provided in Definition 121.

4.1.2 Substitutional Reduction Semantics

We lay out the substitutional reduction semantics through a family of level-indexed notions of reduction %",
a family of level-indexed reduction relations —' and a family of level-indexed multi-reduction relations
i,

Definition 115 (Level-indexed Notions of Reduction). For any i € {0, 1}, let the level-indexed notions of
reduction %' be a binary relation between the set of terms at level i and the set of terms at level i.
A" C TERM' x TERM!

(Axt) v %70 OpO/x] (app-0)
ol 0 v (run-0)
~h gt V! (splice-1)

ni4+ny #° nwheren=n;+n, (plus-0)

The notion of reduction t{ 74 té reads as “t; reduces to t, at level i”. Each notion corresponds to one

reduction rule of the single-step relations presented in Definition 36.

Definition 116 (Level-indexed Reduction Relations). For any i € N, let the level-indexed reduction relation
+—' be a binary relation between the set of terms and the set of terms directly based on the notions of

reduction % .

! C TERM' x TERM'
J apj +J
H At

EIt]) — BVt

The reduction relation t{ i té reads as “t; single-reduces to #, at level i”. The above definition states
that the reduction relation respects performing any notion of reduction in an evaluation context.

Intuitively, a level-indexed reduction relation —' defines a single step of computation at level i. We
define the level-indexed multi-reduction relation —* to represent multiple (zero or more) steps of compu-

tation at level i.

60

4.1. MetaML - Substitutional Reduction Semantics

)
[0][~])°°(Ax.(x)) (Ax.y)]
1[0 0][~O))°~[(Ax.y)] where (Ax.(x)) (Ax.y) Z° (Ax.y)

100D~ (Ax.y)]
1100]) =0 Ax.y] where ~(Ax.y) Z' Ax.y

y) 0)] where !{Ay.((Ax.y) 0)) Z° Ay.((Ax.y) 0)

IIIIIHLIIIII

Figure 4.1: Evaluation of !(Ay.(~((Ax.(x)) (Ax.y)) 0)) in Substitutional Reduction Semantics of MetaML.

Definition 117 (Level-indexed Multi-reduction Relations). For any i € N, let the level-indexed multi-reduction

relation —* be the reflexive-transitive closure of the reduction relation —".
The multi-reduction relation #| — ¢} reads as “¢ multi-reduces to 1, at level i”.

Example 118. Consider !{Ay.(~((Ax.(x)) (Ax.y)) 0)).

By the substitutional reduction semantics of MetaML, we have:
H{Ay.(~((Ax.(x)) (Ax.y)) 0)) == Ay.((Ax.y) 0)

as demonstrated in Figure 4.1.

A comparison of Figures 4.1 and 3.1 tells that MetaML’s substitutional reduction semantics follows
the exact same three-step break-apply-plug pattern of evaluating a program as Environmental ISWIM’s

reduction semantics.

Evaluator We now define an evaluator in terms of the substitutional reduction semantics of MetaML. The
evaluator is analogous to the evaluator defined in terms of the substitutional structural operational semantics
of MetaML.

Definition 119 (Evaluator based on Substitutional Reduction Semantics of MetaML). Let the evaluator

evalyetaML:SubRed b€ a partial function from the set of programs PRGMyetamr to the set of answers ANSpetaML-

evalyeaML:SubRed : PRGMMetaML — ANSMetaML

. 0
function ifr+—0* Ax.r/
evalyeami:SubRed (f) = { code if £ 0% (V1)

n if t —0% p

This evaluator is defined in terms of the substitutional reduction semantics. The subscript “Metamr:SubRed”

in evalpeamr-subrRed denotes the substitutional reduction semantics of MetaML.

We claim that the evaluators defined in terms of the substitutional structural operational semantics and

the substitutional reduction semantics of MetaML are equivalent.

61

4.2. MetaML - MK Abstract Machine

Theorem 120 (Kleene Equality of Evaluators). For any t € PRGMpmetaML, €ValyetaML:Subsos (7) is Kleene

equal to evalyieraML:SubRed (1)-

We prove the theorem in appendices.

4.2 MetaML - MK Abstract Machine

With a systematic strategy to search for an evaluation context and a redex, we can refine MetaML’s sub-
stitutional reduction semantics to a corresponding substitutional abstract machine which we call the MK
machine. This section mostly follows the path of refining Environmental ISWIM’s reduction semantics to
the CEK abstract machine as presented in Section 3.6.

4.2.1 Syntax

The definitions of terms, values and denotable terms are the same as Sections 2.2.1 and 4.1.

4.2.1.1 Evaluation Contexts

Evaluation contexts have been defined in Section 4.1 as inside-out. We provide an outside-in definition as

follows. These two definitions are equivalent and are used interchangeably at our convenience.

Definition 121 (Level-indexed Evaluation Contexts: Outside-in). Let i, j € N. Define ECXT' ™/ to be the

set of evaluation contexts with inner level i and outer level ;.

Oe EcxT/™/ (ept-))
E € EcXT ™/ . E € EcxTi ™/ .
(E t}) € EcxT—/ (@ppl) (v] E) € EcxT' ™/ (apPR-D)
2 1

E € EcxT U+
Ax.E € EcxTi—Ut!

7 (lambda-(j+1))

E € Ecxr'Uth , E € Ecx1'™/ .y E € Ecx1' ™/ ,
—— (code-j) ———— (splice-(j+1)) —==—=="" (tun-j)
(E) € ECXTi ™ ! ~E € BcxT U+ IE € ECXT ™/ !
i—oj i—oj
E € EcxT — (plusL-) .E € EcXT __ (plusR-j)
(E+1) € EcxT™/ (v{ +E) € EcxT"*/

4.2.1.2 Machine Configurations

Section 3.6 defined the states of the CEK machine through four modes of machine configurations. We

extend the four-mode definition to accommodate multiple stages.

Definition 122 (Machine Configurations). Let CFG be the set of machine configurations

62

4.2. MetaML - MK Abstract Machine

C € CFG, t' € TERM', V' € VALUE', E/ € EcxT' ™/
c =W
| (i, ET0, ¢'),
| (i, E=0, t')¢
| (i, E=0, i)y,

The machine operates in four modes: the value mode 1°, the reduce mode (i, E'=°, t'),, the focus mode
(i, EF0 1), the build mode (i, E0, Vi),

A machine configuration (i, E—0,), where ? € {r,f,b} unloads to the configuration E—°[¢].

4.2.2 MK Abstract Machine

We lay out the substitutional abstract machine, i.e., the MK machine, through the reduction relation —

and the multi-reduction relation —

Definition 123 (Reduction Relation). Let the reduction relation — be a binary relation between the set

of machine configurations and the set of machine configurations.

—rmk € CFG x CFG

Reduce rules: (i, E/0, 1),

0, E, Ax.t9)0), ——me (0, E, 110 /x])¢ (r-app-0)
0, E, ')y —me (0, E, v)¢ (r-run-0)
(1, E, ~(WY)y ——me (1, E, v')¢ (r-splice-1)
0, E, ni+n2)y +——mk (0, E, n)f where n =n; +ny (r-plus-0)
Focus rules: (i, E/=0,)¢
(i+1,E, x)f —mx (i+1, E, x)p (f-var-(i+1))
(i, E,t1) —mk (i, E[On], ti)f (f-appL-i)
0, E, Ax.t)s —mc {0, E, Ax.t)y (f-lambda-0)
(i+1,E, Axt)y +——mk (i+1, E[Ax.0], t)f (f-lambda-(i+1))
i Ey) i (41, EQO)], e (code-d)
(i+1,E, ~t)y +—mk (i, E[~O], t)f (f-splice-(i+1))
(i, E, ')y +——mk (i, E[!O], t)¢ (f-run-i)
(i, E, n) ——mk (i, E, n)p (f-num-i)
(i, E,ty +0)f —mk (i, E[O48], 1) (f-plusL-i)

Build rules: (i, E0, vi),

63

4.2. MetaML - MK Abstract Machine

0,0, v)p > mk (b-value-0)
(i, E[Ot], vi)p +—mk (l, Elvi O], t2)¢ (b-appL-i)

0, Evi O], va)b ——mk (0, E, vi v2)r (b-appR-0)
(i+1,EviO, va)b —mk (i+1,E,viv), (b-appR-(i+1))
(i+1, EAx.O, v)p —mk (i+1, E, Ax.v)p (b-lambda-(i+1))

1 EOL o e 6 O (b-code-(i+1))
0, E[~O], v)p —mk (1, E, ~v); (b-splice-0)
(i+1, E[~O], v}b +—>mk <z—|—2 E, ~v)y (b-splice-(i+1))
O, E'TL, v)b —mk (0, E, W), (b-run-0)
(i+1, E'O], v)p +——mk (i+1,E, W) (b-run-(i+1))
(i, EO+t], vi)b —mk (i, Evi+0], ©2)f (b-plusL-i)
0, Elvi+0], va)p +—mk (0, E, vi +w2); (b-plusR-0)
(i+1, Evi+0], v2)p +——mk (i+1, E, vi+w), (b-plusR-(i+1))

The reduction relation C; —p G, reads as “Cy single-reduces to Cy”.

The intuition behind the above relation is analogous to that of CEK machine’s reduction relation. See
comments below Definition 108.

Intuitively, the reduction relation ——y defines a single step of computation. We define ", to

represent multiple (zero or more) steps of computation.

Definition 124 (Multi-reduction Relation). Let the multi-reduction relation — ", be the reflexive-transitive

closure of the reduction relation — .

The multi-transformation relation Cy —7, C> reads as “Cy multi-reduces to C;”.
The abstract machine defined above is also known as the MK machine. M stands for multi-stage and K

stands for continuation, i.e., the evaluation context.

Evaluator. We now define an evaluator in terms of the MK machine. The MK machine’s multi-reduction
relation is defined on machine configurations. Given a program ¢, the evaluator applies the multi-reduction
relation on the machine configuration (0, [J, 7)¢ in which the program is associated with an empty evaluation
context and is evaluated at level 0. The evaluator is otherwise analogous to the one defined in terms of the

substitution reduction semantics of MetaML.

Definition 125 (Evaluator based on MK Machine). Let the evaluator evalyemamr:Mx be a partial function

from the set of programs PRGMpgetamr to the set of answers ANSyetaML -

evalvieaMLMK © PRGMMeamr, — ANSMeaML

function if (0, O, f)f— lxt
evalyieaML:MK (1) = code if (0, O,)¢ —2y (V1)
n <07 0, t>f '—>mk n

64

4.2. MetaML - MK Abstract Machine

(. o, A (~(Ax.0) () 0))s
SRG) opo), O (~(Ax.0)) () 0))s
—rmk (1, DO, Ay.(~((Ax.{x)) (Ax.y)) 0))¢
e (1, [OJ(TH] [Ay.0), ~((xdx) () Oy
e (. Lo AY.D]O 0, ~((A%.00)) (Aex)))r
e (O O[O0 (Ay D)0 0] [~ (Ax.(x) (A
o (0 O[O AD)CO)~DIO (Axy)], Ax.(a))r
e (O OO Ay DO 0]~O)0 (Aey)], Ax.()bs
—rmk (0, OOO)[Ay.L)[O0][~O][(Ax.(x) O, Ax.y)s
—rmk (0, DO A.O][O0][~O][(Ax.(x)) O, Ax.y)y
—mk (0, OO O] [Ay.O)[O o]~ (Ax.(x)) (Ax.y))r
—mk (0, CROKO)Ay.O)E o] [~0], (Ax.y))r
—mk (0, OO O] [Ay.O)[O o]~ (Ax.y))e
—rmk (1, DROO)[Ay.O][D o] [~O][(B)], Ax.y)e
—mk (1, DO Ay.glCo][~O(D)], Ax.y)b
—rmk (0, COKO)]Ay.O)C o] [~0], (Ax.¥))b
—mk (1, D] [ay.0E o], ~(Ax.Y))r
—rmk (1, OO (O] [Ay.O)[O 0], Ax.y)

—mk (1, OO [ay.0o o], AxX.y)b

——mk <17 D[!D]KD)HA))'DH(AX')’)DL 0>f

—rmk (1, COKO)]Ay.O)[(Ax.y) O], 0)b

—mk (1, DOKE)Ay.], (Ax.y) O)p
—rmk (1, DO, Ay.((Ax.y) 0))v
—mk (0, o], (Ay.((Ax.) 0)))b
—mk (0, 0O, H{Ay.((Ax.y) 0)))r
—mk (0, O, Ay.((Ax.y) 0))¢
—rmk (0, O, Ay.((Ax.y) 0))p

—mk AY-((Ax.y) 0)

Figure 4.2: Evaluation of !{Ay.(~((Ax.(x)) (Ax.y)) 0)) in the MK Machine.

This evaluator is defined in terms of the MK machine. The subscript “petamrL:MK™ 10 evalyetamL: MK
denotes the MK machine of MetaML.

Example 126. Consider !{1y.(~((Ax.(x)) (Ax.y)) 0)).
We have:

evalyeamL:MK (1 {Ay.(~((Ax.(x)) (Ax.y)) 0))) = function

This is because
(0, 8, H{Ay.(~((Ax.(x)) (Ax.y)) 0)))r i Ay.((Ax.y) 0)

as demonstrated in Figure 4.2.

The above example has appeared as Example 118. By MetaML’s substitutional reduction semantics, we

have:
evalyeaML:subRed (! (A.(~((Ax.(x)) (Ax.y)) 0))) = function

The evaluators defined in terms of the substitutional reduction semantics of MetaML and the MK machine

65

4.3. Chapter Summary

agree on evaluating the the evaluation of the puzzle program !(Aa. ~ ((Ax.(x)) (Ax.(a)))0). In fact, these

two evaluators agree on all programs.

Theorem 127 (Kleene Equality of Evaluators). For any t € PRGMpetaML, €ValyetaMmL:SubRed (2) is Kleene

equal to evalyietamL MK (1)-

We prove the above theorem in appendices.
As a corollary, the evaluators defined in terms of the substitutional structural operational semantics of

MetaML and based on the MK machine are equivalent.

Corollary 128 (Kleene Equality of Evaluators). For any t € PRGMyeaML, €ValMetamL:subsos (f) is Kleene

equal to evalyteramL:MK ()

Proof. 1t immediately follows from Theorems 120 and 127 by the transitivity of Kleene equality. O

4.3 Chapter Summary

Following the second dimension of the semantics refinement problem, this chapter solved the following

problem that is less complicated than the main semantics refinement problem.

Can we refine the substitutional structural operational semantics of MetaML to a corresponding
substitutional abstract machine, which we call the MK machine, and demonstrate their equival-

ence?

Given the substitutional structural operational semantics of MetaML, as a manageable step towards devel-
oping the MK machine, we developed an equivalent substitutional reduction semantics. Then based on
the substitutional reduction semantics, we developed an equivalent substitutional abstract machine, the MK
machine.

We defined an evaluator for each semantics. By proving the equivalence of every two adjacent semantics,
we finally showed that the MK machine is equivalent to the substitutional structural operational semantics
of MetaML.

66

Chapter 5

Refining Semantics for MetaML:
Developing the MEK Machine

Developing an environmental abstract machine for the multi-stage language MetaML is not straightforward.
On the one hand, even for a single-stage language such as ISWIM, it is challenging to refine a substitutional
structural operational semantics to a corresponding environmental abstract machine. On the other hand, it is
uneasy to refine semantics for a multi-stage language such as MetaML even if substitutions are not replaced
with environments.

Chapter 3 studies how to develop an environmental abstract machine for the single-stage language
ISWIM. We split the problem into two subproblems. The first subproblem is to stepwise refine the known
substitutional structural operational semantics to a corresponding environmental structural operational se-
mantics. The crucial points of our approach include replacing meta-language substitutions by explicit sub-
stitutions, modelling how an explicit substitution percolates through a term at the semantical level, delaying
explicit substitutions outside lambda abstractions and replacing cascaded explicit substitutions by environ-
ments. The second subproblem is to stepwise refine the environmental structural operational semantics to
a corresponding environmental abstract machine. The key to our approach is relating these two semantics
by an environmental reduction semantics because a reduction semantics is a concise representation of an
abstract machine. At this point, we are unclear whether our approach to refining semantics for ISWIM is
applicable to MetaML.

To understand how refining semantics for MetaML is different from ISWIM and whether our approach
to refining semantics for ISWIM is applicable to MetaML, Chapter 4 studies how to develop a substitutional
abstract machine for the multi-stage language MetaML. This problem is analogous to the second subproblem
of refining semantics for ISWIM. Taking the same approach, we successfully derive a substitutional abstract
machine for MetaML. After Chapter 4, we are now familiar with refining semantics for MetaML and we
believe refining semantics for MetaML is analogous to refining semantics for ISWIM.

Utilising the experience of solving two less complicated semantics refinement problems in Chapters 3
and 4, we concentrate on the main semantics refinement problem in this chapter. We study how to stepwise
develop an environmental abstract machine for the multi-stage language MetaML. The problem is restated

as follows.

Can we refine the substitutional structural operational semantics of MetaML to a correspond-
ing environmental abstract machine, which we call the MEK machine, and demonstrate their

equivalence?

Taking the approach to refining semantics in Chapter 3, we propose to first stepwise derive an environmental

67

5.1. MetaML

structural operational semantics for MetaML and then refine the semantics to an environmental abstract
machine. We also draw lessons from Chapter 4 for refining a structural operational semantics to an abstract
machine for MetaML.

5.1 MetaML

For convenience, this section revisits the substitutional structural operational semantics of MetaML, which

has been intensively studied in Section 2.2.

Terms, Values and Denotable Terms. Terms, values and denotable terms have been defined in Section

2.2 using inductive rules. We present an equivalent definition in Backus Naur Form (BNF) as follows.

Definition 129 (Terms, Values and Denotable Terms). For any i € N, let TERM' be the set of level-indexed
terms at level i and VALUE' be the set of level-indexed values at level i. Let DENOTABLE be the set of
denotable terms.

x € VAR, i,n € N, t € TERM', v/ € VALUE/, w € DENOTABLE
0 = x| O0 At | Y [10 | | 0410
ti—H e— | tH'l ti+1 ‘ ﬂ,x.l‘H—] | <ti+2> ‘ Nti ‘ !ti—H ’n | ti'H —l—ti'H
W= At () |
v a= x| Axd! [02 | W vt !
Vo |22 L2 | () |yt | 12 | [2 g2
woou= x|W

Given how concise the above BNF definition is, we can more clearly present the syntax changes between
different dialects of MetaML.

Alpha Equivalence Relation. Section 3.1.1.4 presents the alpha equivalence for the single-language
ISWIM and justifies why such a relation is necessary for proving equivalence of semantics of different
dialects of ISWIM or MetaML. We extend the definition of alpha equivalence for ISWIM (Definition 50) to

accommodate the multi-stage setting.

Definition 130 (Alpha Equivalence Relation). Let the alpha equivalence relation ~, be a binary relation on

terms.

68

5.2. Explicit MetaML

~g € TERM x TERM

1 ~af21 t2~al2 (apD)
- app
Xrogx (Var) (t11 t12) ~a (021 122)

t[xz/x1] ~q t2]x3/x2]

(lxl .2‘1) ~o (sz.tz)

where x3 ¢ FV(t;) UFV(2) (lam)

TN o (g code ——— - 8 11Ce — (run
(1) ~a (1) ~I g D (splice) Ity ~q 2

I ~abh1 H2~al2
(th +112) ~a (f21 +122

) (plus) 7 (num)

The alpha equivalence relation makes proving equivalence of semantics easier. In many cases, we may

replace a term by its alpha equivalent term in a proof at our convenience.

Properties. We observe the following properties that are useful in proving semantics equivalence. (1) The
single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of a

term. They are the same properties that Substitutional ISWIM holds.
Proposition 131. [fti ~q th and t| —' 1}, thents —' 1}, and t}, ~q 1},.

Proposition 132. [fFV(t}) =0 and ti —*' 1}, then FV (t}) = 0.

5.2 Explicit MetaML

Following the path of refining Substitutional ISWIM to Explicit ISWIM in Section 3.2, we refine Substi-
tutional MetaML to Explicit MetaML. Explicit MetaML replaces Substitutional MetaML’s meta-language
substitutions (e.g., t[w/x]) by explicit substitutions (e.g., 7[x := w|) and models how an explicit substitution

percolates through a term at the semantical level.

5.2.1 Syntax

We first define the basic syntax of Explicit MetaML: source terms, runtime terms, values and denotable
terms. Then we define the free variable function, the substitution function and the alpha equivalence relation.
5.2.1.1 Source Terms, Runtime Terms, Values and Denotable Terms

Definition 133 (Source Terms, Runtime Terms, Values and Denotable Terms). For any i € N, let STERM'
be the set of level-indexed source terms at level i, RTERM' be the set of level-indexed runtime terms at level

i and VALUE' be the set of level-indexed values at level i. Let DENOTABLE be the set of denotable terms.

69

5.2. Explicit MetaML

x € VAR, i,n € N, t/ € STERM', t' € RTERM', v/ € VALUE', w € DENOTABLE
= x| Axad | () | 1) [| 1)+
G = [At) [~ [|| 1
0 = x| OO A0 |) U0 | 0410 || Ad® ||| O]k i = W]
= | gl it ‘)Lx.t”l | <ti+2> | ~t | 1pitl ’n | . _|_ti+1 ‘ &x.to | ti[x = W]
W= Y || Ax®
v = x Iy Axvt O3 [e vt vt || Ax®
yit2 o= ’ Pit2 4it2 ’ Ax.iT2 ’ <vi+3> ’ ~opit] ’ 1yit2 ’ n ‘ Yit2 yit2 ’ &XJO
wo o= x[W

The set of source terms of Explicit MetaML is the same as the set of terms of Substitutional MetaML.
Explicit MetaML has been enhanced with an explicit substitution #[x := w], which means that each free
occurrence of the variable x in the term ¢/ needs to be substituted by the denotable term w. Evaluating an
explicit substitution takes steps.

To make Explicit MetaML be consistent with Substitutional MetaML, we must ensure that a value at
one level must be a value at any higher level. To preserve this property in Explicit MetaML, we introduce
an underlined lambda abstraction, Ax.t°. To understand the necessity of this change of syntax, consider the
example of substituting a lambda abstraction for a variable where the variable is at a level higher than 0.
Since a lambda abstraction acts as a denotable term, it must be a level-0 value. When the substitution is
performed, the lambda abstraction is at a level higher than 0. We only perform substitution reduction for the
body of a lambda abstraction at a level higher than 0. Although the lambda abstraction is a level-0 value, it
may not be a value at a level higher than 0. We explain the reason in more detail through Example 142 after
presenting the semantics.

Explicit MetaML differs from Substitutional MetaML in what terms count as values. A (conventional)
lambda abstraction Ax.t% is no longer a value at level 0. An underlined lambda abstraction Ax.° is a value

at any level. We usually call Ax.vit1! alevel-(i+ 1) lambda value and call Ax.1° a level-0 lambda value.

5.2.1.2 Free Variable Function

We define the free variable function by extending Substitutional MetaML’s Definition 24 to accommodate

underlined lambda abstractions and explicit substitutions.

Definition 134 (Free Variable Function). Let the free variable function F'V be a total function from the set

of runtime terms to the power set of variables.

70

5.2. Explicit MetaML

FV : RTERM — Z?(VAR)

Fv@x.zj _ %V(Ax.z) (16)
FV(x:=w]) = (FVEO\XDHUFV(w) (11)

Equations (1)-(9) are the same as Definition 20 in Substitutional MetaML. Equation (10) is trivial.
Equation (11) is analogous to Equation (6) of Explicit ISWIM’s free variable function (Definition 64).

5.2.1.3 Substitution Function

We define the substitution function by extending Substitutional MetaML’s Definition 24 to accommodate

underlined lambda abstractions and explicit substitutions.

Definition 135 (Substitution Function). Let the substitution function -[-/-] be a partial function from the
3-tuple of the set of runtime terms, the set of denotable terms and the set of variables, to the set of runtime

terms.

-[-/:] * (RTERM x DENOTABLE X VAR) — RTERM

(&xl.to)[w/xz] = &X3.lo[X3/X1HW/X2]

where x3 ¢ FV (Axy.to) UFV(w)U{x2} (10)
(tolx1 :=wi])[wa/x2] = toxs/x1][wa/x2][x3 1= wi[w2/x2]]

where x3 ¢ FV(lxl.l‘o) UFV(W) @] {xz} (11)

Equations (1)-(9) are the same as Definition 24 in Substitutional MetaML. Equation (10) is analogous
to Equation (4). Equation (11) is analogous to Equation (6) of Explicit ISWIM’s Definition 65.
5.2.1.4 Alpha Equivalence Relation

We define the alpha equivalence relation by extending Substitutional MetaML’s Definition 130 to accom-

modate underlined lambda abstractions and explicit substitutions.

Definition 136 (Alpha Equivalence Relation). Let the alpha equivalence relation ~ be a binary relation on

runtime terms.

71

5.2. Explicit MetaML

~g € RTERM x RTERM

t[x3/x1] ~q ta[x3/x2]

(Axy.11) ~q (Axp.12)

where x3 ¢ FV(t;) UFV(t2) (lamu)

Wy~ W2 N [x3/x1] ~a lz[xs/xz]

(t1[x1 :=w1]) ~q (B2]x2 :=w))

where x3 ¢ FV (t;) UFV(;) (sub)

All rules except the (sub) rule are the same as Definition 130 in Substitutional MetaML. The (lamu) rule
is analogous to the (lam) rule. The (sub) rule is analogous to the (sub) rule of Explicit ISWIM’s Definition
66.

5.2.2 Structural Operational Semantics

We lay out the structural operational semantics of Explicit MetaML through the level-indexed single-step
relations —', the level-indexed single-step substitution reduction relations —*/, the level-indexed multi-

step substitution reduction relations —** and the level-indexed multi-step relations —*.

Definition 137 (Level-indexed Single-step Relations). For any i € N, let the level-indexed single-step rela-
tion —' be a binary relation between the set of runtime terms at level i and the set of runtime terms at level

i

—!C RTERM' X RTERM'

liJrl i+1 I;Ll

(lambda-0)

Axt® —9 Ax.10

i i i
fhy — Iy

i 4 i 4

Ihlp — I b

(appL-1)

- - — (lambda-(i+1))
/lx.tfrl —itl lx.té“

/i i
21 7 I .
i i i . (@pR-)
Vil — viiy

0 0 =19

(app-0)

0 (run-0)

2 (code-i)

i i
h—0h

i i+1

() =T

- (splice-(i+1))
f

i (splice-1)

~ly —

72

5.2. Explicit MetaML

/i i4i P i4i
1 2 : 21 7 I .
i i i i (plusL-i) i i i i 4 (plusR-i)
tyt+t, —' Vit —' v i

5 where n = nj + ny (plus-0)

n+n —"n

The (app-0) rule is different from Substitutional MetaML and is analogous to the (app) rule of Explicit
ISWIM’s Definition 67. The (lambda-0) rule is new, corresponding to the definition of level-0 values. There
is no equivalent of the (lambda-(i+1)) rule for underlined lambda abstractions because an underlined lambda
abstraction is a value at any level.

The definition of the level-indexed single-step relations is currently incomplete because the percolation
of explicit substitutions has not been defined yet.

To show how explicit substitutions percolate, we define new relations #'[x := w] —*/ ¢/ for substitution

reductions. The new relations ensure that explicit substitutions percolate deterministically.

Definition 138 (Level-indexed Single-step Substitution Reduction Relations). For any i € N, let the level-
indexed single-step substitution reduction relation —* be a binary relation between the set of runtime

terms at level i and the set of runtime terms at level i.

— X C RTERM' x RTERM!

(var-eq-subst) — where x| # x; (var-df-subst)

Xty xi[x2 = w] —* x

(num-subst)
nx:=w —*n

()=] — (= w]) (= w]) T

(plus-subst)

(1 +)= w] — (1] v = wl) + (v = w

. . . h F HUF lam-
(o 1) = 1] — Axs £1fer = 3] 2 1= w] where x3 ¢ FV(Ax;.t') UFV(w)U{x2} (lam-subst)

. h F LOYUF lamu-sub
(Ao 29) 2 = 1] — Aors 1 = 3] 2 1= w] where x3 ¢ FV(Ax.t°) UFV(w)U{x,} (lamu-subst)

<ti+1>[x — W] N <ti+1[x) (code-subst)

(run-subst)

(1) e :=w] —% i x = w]

(splice-subst)

(~t)) [x = w] —X D i = w

(subst-subst)

tilx i=wi] —X 1
]

thxr = wi[xa = wa] —¥ xp :=wy

73

5.2. Explicit MetaML

Most rules describe how explicit substitutions behave when encountering other terms in the language.
Every rule except the (lamu-subst) rule and the (subst-subst) rule correspond to an equation of Substitutional
MetaML’s substitution function (Definition 24). The (subst-subst) rule is analogous to the (subst-subst)
rule of Explicit ISWIM’s single-step substitution reduction relation, implying that only a single-step of
substitution reduction may happen underneath an explicit substitution. The (lamu-subst) rule accommodates
the newly invented underlined lambda abstraction and is analogous to the (lam-subst) rule.

Every single-step substitution reduction counts as a single step of computation. Thus we add the follow-

ing (inj-subst) rule to the definition of the level-indexed single-step relations, Definition 138.

I where i —* £ (inj-subst)
—
1 2

Definition 139 (Level-indexed Multi-step Substitution Reduction Relations). For any i € N, let the level-
indexed multi-step substitution reduction relation —** be the reflexive-transitive closure of the level-

indexed single-step substitution reduction relation —*'.

Definition 140 (Level-indexed Multi-step Relations). For any i € N, let the level-indexed multi-step relation

—* be the reflexive-transitive closureof the level-indexed single-step relation —'.

Example 141. Consider !(Ay.(~((Ax.(x)) (Ax.y)) 0)).
By the structural operational semantics of Explicit MetaML, we have:

H(Ay.(~((Ax.(x)) (Ax.y)) 0))
—0 1Ay.(~((Ax.(x)) (Ax.y)) 0))
—0 Ay (~((Ax.x)) (Ax.y)) 0))
—0 Ay (~ ()= (Axy)]) 0))
—0 Ay (~((xlx = (Axy)])) 0))
—0 1(Ay.(~(Axy) 0))
—0 1(Ay.((Ax.y) 0))
—0 Ay.((Ax.y)0)
—0 Ay.((Ax.y)0)

As a comparison, by the substitutional structural operational semantics of MetaML, we have:

HAy.(~((Ax.(x)) (Ax.y)) 0))
—0 1Ay (~(()[(Axy) /x]) 0))
= KA.(~([(Axy)/x])) 0))
= NAy.(~{(Ax.y) 0))
—% YAy.((Axy) 0))

Explicit MetaML takes eight single-steps while Substitutional MetaML completes the execution in three
single-steps. Some of these right steps are percolating an explicit substitution through a term and the rest

are turning a lambda abstraction to its underlined counterpart.

74

5.2. Explicit MetaML

Example 142. Suppose x; # x3 and w € DENOTABLE. Consider (Ax.(x1)) ((Ax2.(Ax3.x2)) w).
By the structural operational semantics of Explicit MetaML, we have:

(Ax1-(x1)) (Ax2-(Axs.x2)) w)
— (A u)) (Axz.(Axz.xz)) w)
—0 (Axr(x)) (A o= w))
—0 (Ax1.(x1)) (Axg.xalxs := x4][x2 :=w]) where x4 & FV(Ax3.t) UFV(w) U {x3}
—0 (A1) (Axaxa[xs = xa][x2 1= w))
—0) 1 = (Axgxafxs i= x4 [x2 :=w))]
—0 gy i= (Axgxa[xs = xg][xo = w])])
—0 (Axgxolxs i= xy][x2 == w)])

Suppose we had not introduced the underlined lambda abstraction to Explicit MetaML, the above ex-

ample would become:

Axi.(x1)) (Axp.(Axz.x2)) w)

(
—0 (Ax1.(x1)) (Ax3.x2)[x2 := w])
0 (Axp.(x1)) (Axg.xalxs := x4][x2 :=w]) where x4 & FV(Ax3.t)UFV (w)U{x3}
—0) 1 = (Axgxafxs i= x4 [x2 :=w))]

(
(
(
{
0 gy i= (Axgxa[xs == xg][xo = w])])
(
(
(

—0 (Axgxals 1= xg)[xp 1= w))
—0 Axg.x[x0 = w))
—0 (Axg.w)

After two single-steps, the lambda abstraction Axs.x;[x3 := x4][x, := w] is a level-0 value. Then it becomes
a denotable term in the next step and shall be identified as a denotable term at all times ever since. However,
after five single-steps, the lambda abstraction Ax4.x; [x3 := x4][x2 := w] is put into the context of level 1. We
can apply the (lambda-(i+1)) rule to evaluate the body of the lambda abstraction at level 1. This destroys the
property that a value at one level must be a value at any higher level, making Explicit MetaML inconsist-
ent with Substitutional MetaML. To avoid this awkward circumstance, we let a level-0 lambda abstraction
single-step to its underlined counterpart and make it a value at any level to prevent it from being reduced at
higher levels.

In Explicit MetaML, explicit substitutions stop within the top of the body of a level-0 lambda value,
even if it sits at higher level. This plays into the development of the analogous conception closures in

Environmental MetaML.

Properties. We observe the following properties, which are useful in proving semantics equivalence. (1)
The single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of
a runtime term. These are the same properties that Substitutional MetaML holds and are analogous to the
ones that Explicit ISWIM holds.

75

5.3. Suspended MetaML

Proposition 143. [fti ~q th and t} —' 1}, then ti —' 1} and t}| ~q 1},

Proposition 144. [fFV (t}) =0 and t; —*' £}, then FV (t}) = 0.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Explicit
MetaML. The evaluator is analogous to the one defined in terms of Substitutional MetaML.

Definition 145 (Evaluator based on Structural Operational Semantics of Explicit MetaML). Define the
evaluator evalyeaMmL:Expsos t0 be a partial function from the set of programs PRGMpemr to the set of

answers ANSMetaML-

evalyetaMLExpsOS © PRGMMetamL — ANSMetaML

. . 0
function ifr —% Ax.r/
evalyietaML:Expsos (f) = ¢ code if 1 —0 (v1)

n ifr —%p

This evaluator is defined based on the structural operational semantics of Explicit MetaML. The sub-
SCript “MetaML:Expsos” 1N evalyeaML:Expsos denotes the structural operational semantics of Explicit MetaML.
We claim that the evaluators defined based on Substitutional MetaML and Explicit MetaML are equi-

valent.

Theorem 146 (Kleene Equality of Evaluators). For any t € PRGMyetamr, €ValyietaML:subsos (?) is Kleene

equal to evalyeaML:Expsos (1)-

We prove the theorem in the appendices.

5.3 Suspended MetaML

Following the path of refining Explicit ISWIM to Suspended ISWIM as presented in Section 3.3, we re-
fine Explicit MetaML to Suspended MetaML. Suspended MetaML delays explicit substitutions outside
of a level-0 lambda value until the lambda abstraction is called in an application. When performing an
application at level 0, Suspended MetaML promotes substitution for the lambda bound variable to the
front and overwrites any existing explicit substitution for that variable. That is, a level-0 application
(Ax.1%)[x; := w;] V0 single-steps to °[x := v'][x; :== w;] in Suspended MetaML. This transformation mo-
tivates introducing additional complexity in the ensuing dialects of MetaML. Proving the correctness of
this transformation for Suspended MetaML is substantially more complex than for Suspended ISWIM. We
introduce a notion of well-boundness judgement to help justify this transformation.

5.3.1 Syntax

We first define the basic syntax of the language: source terms, runtime terms, values and denotable terms.

Then we define the free variable function, the substitution function and the alpha equivalence relation.

76

5.3. Suspended MetaML

5.3.1.1 Source Terms, Runtime Terms, Values and Denotable Terms

Definition 147 (Source Terms, Runtime Terms, Values and Denotable Terms). For any i € N, let STERM'
be the set of level-indexed source terms at level i, RTERM' be the set of level-indexed runtime terms at level
i and VALUE' be the set of level-indexed values at level i. Let DENOTABLE be the set of denotable terms.

x € VAR, i,n € N, tl € STERM', t' € RTERM', v/ € VALUE', w € DENOTABLE
= x| Axad [() | 1) [1)+
1 om T | A] [1
0 = x| OO At) | U0 | n 0410 AxtO | Ox = w]
AU [At () [t [| g | A | £ = w] ‘
W= Y || (Axd®) = w]
v = x| v At O [[[vt || (Axt) [x = w]
VIF2 = x| V22 A2 (V) | | 02 | | vt vt || (At0) [i= W]
wo o= x|

In Explicit MetaML, a level-0 lambda value Ax.¢° is a value at any level. Since Suspended MetaML does
not push explicit substitutions into an underlined lambda abstraction, a level-0 lambda value surrounded by
explicit substitutions, (Ax.r%)[x := w], is a value at any level.

Suspended MetaML evaluates the level-0 application (Ax.2)[x; := w;] V¥ to t%[x := %] [x; :== w;] rather
than °[x := xy|[x; := wj][xy :=v°] (Where xy is a fresh variable). To make it sound with respect to Explicit
MetaML, we need to ensure that FV(+°) N (U;{x;}) = 0. In Suspended MetaML, the only way that +°
can have free variables is as a result of performing an evaluation under lambdas at levels higher than O.
It is sufficient to make sure that whenever we go under a lambda during an evaluation at a level higher
than 0, the lambda bound variable gets renamed to a fresh variable so that it is guaranteed not to clash
with other variables. That is, when evaluating a lambda abstraction Ax.t 1 where £it! ¢ VALUE !, we
rename the lambda bound variable x to a globally fresh variable xy, resulting in Axy.t""![x := xy], which
is observationally equivalent to Ax.t'*!. To avoid falling in a loop of renaming the lambda bound variable,
we replace A by its hatted counterpart A to explicitly indicate that such a renaming has been done. This
explains why we need a hatted lambda abstraction in Suspended MetaML. We demonstrate this in detail in
Example 157.

5.3.1.2 Free Variable Function

We define the free variable function by extending Explicit MetaML’s Definition 134 to accommodate hatted

lambda abstractions.

Definition 148 (Free Variable Function). Let the free variable function F'V be a total function from the set

77

5.3. Suspended MetaML

of runtime terms to the power set of variables.

FV : RTERM — Z?(VAR)

FV(lx.t). : .FV(lx.t) (1.1)

Equations (1)-(10) are the same as Definition 134 in Explicit MetaML. Equation (11) tells that the free

variables of a hatted lambda abstraction is the same as its unhatted counterpart.

5.3.1.3 Substitution Function

We define the substitution function by extending Explicit MetaML’s Definition 135 to accommodate hatted
lambda abstractions.

Definition 149 (Substitution Function). Let the substitution function -[- /-] be a partial function from the
3-tuple of the set of runtime terms, the set of denotable terms and the set of variables, to the set of runtime

terms.

-[-/:] * (RTERM x DENOTABLE X VAR) — RTERM

(Axi.t0)[w/xa] = Axs.tofxs/x1][w/x2)
where x3 & FV (Ax1.to) UFV (w)U{x} (12)

Equations (1)-(11) are the same as Definition 135 in Explicit MetaML. Equation (12) is analogous to
Equations (4) and (10).
5.3.1.4 Alpha Equivalence Relation

We define the alpha equivalence relation by extending Explicit MetaML’s Definition 136 to accommodate

hatted lambda abstractions.

Definition 150 (Alpha Equivalence Relation). Let the alpha equivalence relation ~ be a binary relation on

runtime terms.

~g € RTERM x RTERM

1 [x3/x1] ~g t2[x3 /2]
(ixl.tl) ~a (iXZ‘IZ)

where x3 ¢ FV(t;) UFV(2) (lamh)

All rules except (lamh) are the same as Definition 136 in Explicit MetaML. The (lamh) rule is analogous
to the (lam) rule and the (lamu) rule.

78

5.3. Suspended MetaML

5.3.2 Structural Operational Semantics

We lay out the structural operational semantics of Suspended MetaML through the level-indexed single-step

relations —', the level-indexed single-step substitution reduction relations —*/, the global single-step

relation > — , the level-indexed multi-step substitution reduction relations —X* the level-indexed multi-

step relations —** and the global multi-step relation > —*.

Definition 151 (Level-indexed Single-step Relations). For any i € N, let the level-indexed single-step re-

lation —' be a 5-ary relation on the power set of variables, the power set of variables, the power set of

variables, the set of runtime terms at level i and the set of runtime terms at level i.

—1 C P(VAR) x Z(VAR) x Z(VAR) x RTERM' x RTERM'

—— ——— (lambda-0)
UV 2 (Axt®)xj = w;] —0 (Axt%)[x; :=w)]

UV, X b Axdt —H Ly i = xy]

where 1'+! ¢ VALUE'"! and xy ¢ 2" (lambda-(i+1)-t)

U Uy U{xh &b it it it
UV, 2 F dxdith 1 Lyt

(lambda-(i+1)-r)

| (lambda-(i+1)-v)

YV X Axyitl it fx it

Lo i i 4 78 i [
UV, 2t —t, UV 2y —'y,

— —=— (appL-i — —=— (appR-i
UV Xt th —"t, 1 (appL-i) UV X vt —"V 1), (appR-)
N =10 _ 40,0 o——— @pp-0)
UV X F (Axt?)xi i=wi] vV —Y 10 i =V [= wy]
%;”V;%I—ti —>it§)
(run-i) 01 (run-0)

UV, 2 ¢ — UV, 2=y —0y
UV 2 it i it
U2) —

(code-1)

UV, X il —t)
UV, X b ~th —H

. lice-(i+1
q (splice-(i+1)) WA~

%;”I/;%I—Ih—ﬂ't{z) ?/;“f/;%l—télﬁ"téz
. : — - (plusL-i) — ==
UV, Xt +1 — 1, + 1 UV, X BV +t5 —' V] +15

where n = n; +n, (plus-0
UV X Fng+n,—On 1+ (p)

where ;¥ ; Z + t{ —Xi té (inj-subst)

%;”//;%I—ti —>it§

: (splice-1)
v

(plusR-i)

79

5.3. Suspended MetaML

Definition 152 (Level-indexed Single-step Substitution Reduction Relations). For any i € N, let the level-
indexed single-step substitution reduction relation —*' be a 5-ary relation on the power set of variables,
the power set of variables, the power set of variables, the set of runtime terms at level i and the set of runtime

terms at level i.

—MC P(VAR) x Z(VAR) x Z(VAR) x RTERM' x RTERM'

— (var-eq-subst)
UV X Exlxi=w] —Xw

— where x| Z xp (var-df-subst)
UV, 2 xix =w] —¥ x;

(num-subst)

UV, Z Fnlxi=w| — Xy

— — _ (app-subst)
UV () x=w| —" (f[x:=w]) (Fx:=w])

— — . (plus-subst)
UV X +8)x=w —=X (tx:=w)+ @Hx:=w

where xy ¢ 2~ (lam-subst)

UV X F (Axy 75 g = w] —*ED Lyt oy =][:= w]

no (lamu-subst)

UV, X+ (t’+1>[x;: W] —X <tl+1[x::W]> (code-subst)

. - _subst
UV T ()] o i] SUPSY

, , - (splice-subst)
UV X F (ot [xi=w] —2 D o[i= w] P

U UV X Eiix i=w —Y 1
UV, X ¢ tix = wix = wa] —Y t[xp 1= o]

(subst-subst)

The level-indexed single-step relation % ; ¥; 2" -t} —') reads as “f; single-steps to , at level i bound
by %,V and 2.

To make a small-step when evaluating a program, we need to repeatedly apply the structural rules until
we find a subterm of the program on which a reduction rule can be applied. Suppose we have found such
a subterm 7! that is reducible and we have %;¥; 2 ¢, —' ¢}, As illustrated by the (subst-subst) rule
and the (lambda-(i+1)-r) rule, the free variables of the term t{ must be bound by any means (i.e., explicit
substitutions or hatted lambda bound variables) in the surrounding scope, which are tracked by % . The free
variables of the term t{ that are bound by hatted lambda bound variables are also tracked by the variable
set 7 because the well-boundness judgement introduced in Definition 159 needs to pay special attention to
these variables. Both of the variable sets %7 and ¥ play important roles in justifying the (app-0) rule. The
variable set 2 records all variables in the subterm #| and its surrounding scope. We need the variable set
Z to determine whether a variable is fresh in the sense that it has not appeared in the term being currently

evaluated or in its surrounding scope. The variable sets %/, 7 and 2" help specify the well-boundness

80

5.3. Suspended MetaML

property of terms (Proposition 161).
The (app-0) rule is refined from the following (app-0-naive) rule.

xo & FV (Ax.t%)U
UV, 2 F (Axt®)[xi = wi] VO —0 0 := xo][x; := wi][xo :=)] Ui(FV (w;) U{x;})

(app-0-naive)

The (app-0-naive) rule is semantically correct but not ideal. We want to eliminate renamings in any level-0
application, but the (app-0-naive) rule still renames the lambda bound variable.

Observe that if FV (%) N (UJ;{x;}) = 0, then we can promote the substitution [xo := 1°] to the front of the
explicit substitutions m Then we can eliminate renaming the lambda bound variable x by combining
[x := x0] and [xo := v°] to [x :=1°]. It is provable that when the (app-0) rule is applied to a subterm of an
intermediate result of evaluating a program, we have FV (%) N (J;{x;}) = 0. We discuss the intuition behind
this after presenting the well-boundness judgement whose primary purpose is to help complete this proof.

Since the ultimate goal of the main refinement problem is to develop an environmental operational
semantics for MetaML, the (app-0) rule promotes the substitution for the underlined lambda bound variable
to the front, superseding any existing explicit substitution for that variable, which is close to the operation
of updating an environment in Environmental MetaML that is introduced in the next section.

Explicit MetaML’s (lambda-(i+1)) rule is replaced with three (lambda-(i+1)-?) rules in Suspended
MetaML. To evaluate a level-(i + 1) lambda abstraction, if its body is not a level-(i + 1) value, we first
apply the (lambda-(i+1)-t) rule to rename the lambda bound variable to a fresh variable that has not oc-
curred in the current term being evaluated and in the surrounding scope and replace A by 2 to indicate
such a renaming is done. It is important to check whether the lambda abstraction is already a value before
renaming the lambda bound variable, which ensures no unnecessary renaming can happen. Checking this is
a deep syntactic operation in Suspended MetaML but becomes a shallow check in the MEK machine. Then
we repeatedly apply the (lambda-(i+1)-r) rule to reduce its body until it is a value. Finally we apply the
(lambda-(i+1)-v) rule to change 2 back to A. Suspended MetaML forces the renaming to make the (app-
0) rule sound. Example 157 shows evaluations would behave unexpectedly if Suspended MetaML used
Explicit MetaML’s (lambda-(i+1)) rule instead.

The (lam-subst) rule no longer concerns level 0 because a level-0 lambda abstraction surrounded by
explicit substitutions single-steps to its underlined counterpart which is a level-0 value. There is no (lamu-
subst) rule because an underlined lambda abstraction surrounded by explicit substitutions is a value at any
level.

To apply the level-indexed single-step relation on a program, the variable sets %/;7; 2" need to be
properly initialised. Moreover, from a user’s perspective, the only interface to the single-step relation should
be the program to be evaluated. We define the global single-step relation, which initialises the variable sets

;Y 2 by itself and only shows what an entire program single-steps to.

Definition 153 (Global Single-step Relation). Let the global single-step relation > — be a binary relation

between the set of level-0 runtime terms and the set of level-0 runtime terms.

>t —) ifandonlyif 0;0; VAR(t)) 1) —0¢)

81

5.3. Suspended MetaML

The global single-step relation > t? — tg reads as “¢; single-steps to #,”.

Definition 154 (Level-indexed Multi-step Substitution Reduction Relations). For any i € N, let the multi-
step substitution reduction relation —** be a 5-ary relation on the power set of variables, the power set of
variables, the power set of variables, the set of runtime terms at level i and the set of runtime terms at level i
directly based on the level-indexed single-step substitution relation —*'.

—**C P(VAR) x Z(VAR) x Z(VAR) x RTERM' x RTERM'

where % ;V ;X Ftl —X 1} (step) (refl)

UV Xt —x* g UV, X -t —Xix g
UV Xt —" it YV X UVAR(t) bt —* 1]
UV, X =t —

(trans)

Definition 155 (Level-indexed Multi-step Relations). For any i € N, let the level-indexed multi-step relation
—* be a 5-ary relation on the power set of variables, the power set of variables, the power set of variables,
the set of runtime terms at level i and the set of runtime terms at level i directly based on the level-indexed
single-step relation —"'.

—"*C P(VAR) x Z(VAR) x Z(VAR) x RTERM' x RTERM'

. — where %V ;X Ht} —' 1 (step) —
UV Xt —" 1 UV, X =t —"r

UV Xt — UV, 2 UVAR() b — ™ 1l
%;”/;%I—t{ —>i*t§

(refl)

(trans)

Definition 156 (Global Multi-step Relation). Let the global multi-step relation > —* be the reflexive-
transitive closure of the global single-step relation > —.

Example 157. Consider !{Ay.~(((Ay.(Ax.x)) n) (y))).

82

5.3. Suspended MetaML

By the structural operational semantics of Suspended MetaML, we have:

=)
o
=
<
=
—
<
>
)
0]
>
£
= =
Na¥ =
AN L
N >
5 [
0]
s =
B
=
/~ %
= = o —~ —_
NN 1) —~ e
I e =EE2=
. I mu /\/\\V//./w
= = =T =
NS E N S a2 E a2 52
S~ ~ N
D»__\))__qqd g = =l mm»
R . £ 33 220w
e A R i s SSHF[LS
e~~~ ~ —_ - "~ = N = ...|...
R N S CHCRCRC) A N] FE =
P = - | B S SwIEms =
NN~ | s NN NN « o= 2 &
~ A A .. N NN R < —~
TSV LS s 1777777 07w
S RRRLLAEEAE) TS E 28L& EEEE
~ R R A~~~ o~ .
RS da R =222 o
RS e RORoRR O 3
R S TR R R < A5 s = 7 b=
V,AAAAV,V,JJMHMM .V.,__.__.__ ° A A A A A A A A
A R I R e I =T S
(((((((((((XZZZZZ
V,ZZZZZZZZZZZZZZZZZZZZ‘M
R R KR KRKRKRKRKRKRKRKRKRKRKRKRKRKRKR KR N W 3
=
.—
-
TTT7T7TT7T 1177171177771 €
=)
DDDDDDDDDDDDDDDDDDDDM
Q
=
o £
° 3
2 ©
=
o =
5 O
wn B

83

n| (y). Hence

Since we did not rename the lambda bound variable at the first single-step before we dove into the body

of the lambda abstraction, we have FV ({y)) N{y} # 0 for the boxed application (Ax.x)[y :

whose result is incorrect. The boxes highlight a critical mistake of the evaluation.

5.3. Suspended MetaML

we cannot apply the (app-0) rule to the application. We should apply the (app-0-naive) rule and we get
x[x :=xo|[y := n][xo := (y)] where xo ¢ FV (Ax.x) UFV (n)U{y}.

Example 158. Consider !(Ay.(~((Ax.(x)) (Az.y)) 0)) 5.

By the structural operational semantics of Suspended MetaML, we have:

HAY.(~((Ax.(x)) (A2-(3))) 0)) 5
> — !(%u.(w((lx.(x» (Az.()) 0)[y:=u]) 5 where u ¢ {x,y,z}
>— HAu(~((Axx)) (Az.00) by = u] Oy :=u))) 5
> HAu(~((Ax.&x)) (Az.0)))Dy = u]) Oy :=u))) 5
>— HAu(~((Ax)= u] (Az.0))y o= u]) Oy = u))) 5
> HAu(~((Ax)y = u] (Az.0)) [y = u]) Oy = u))) 5
>— HAu(~ (A)= o] (A2.0))y o= u]) Oy := u))) 5
> HAu(~()pe= (Az.)y = ullly = u] Oy :=u))) 5
>— HAu(~(abe= (A2 O) = ul))ly = u] Oy :=u))) 5
> HAu(~(xlei= (Az.0)) = ul]ly = u]) Oy :=u))) 5
>— HAu(~((Az.0)l = ully = u]) Oy :=u])) 5
>— HAu((Az.0))b:=ully:=u] Oy :=u])) 5
>— HAu.((Az.(y)[y :=ully:=u] 0)) 5
>— HAu((Az.(0)y = ully:=u] 0)) 5
>— (Au.((Az.(0)y:=ul[y:=u]0))5
>— (Au.((Az.(0):=ul[y:=u]0))5
>— ((Az.()y = u]ly:=u] 0)[u:= 5]
>— (Az.(0)y:=ully == u][u:= 5] 0u:=>5]
>— (Az.(0)y = ully == u][u:=5]0
>—)[z:=0]y:=ully:=ulfu:=5]
>— Oz:=0)y=ully:=ulfu:=5]
>— (z:=0]y:=u))[y:=ul[u:=5]
>— (Yz:=0]y:=u]ly:=u])[u:=5]
>— (yle=0]y:=u][y:=ullu:=5])
>— (ly=ully:=ul[u:=5])
>— (uly:=ullu:=5])
>— (u[u:=15])
>— (5)

Consider the boxed term, y[z := 0][y := u][y := u][u := 5]. The variable y is bound by the substitution
[y := u] in which the denotable term u is bound by the substitution [u := 5]. By the (subst-subst) rule, Suspen-
ded MetaML resolve the substitutions by performing one substitution at a time. If we represent substitutions
using environments, a trivial approach will go wrong. This is discussed in detail at the beginning of the next

section.

84

5.3. Suspended MetaML

Properties. Our sole purpose of developing the structural operational semantics is to evaluate programs
which are closed level-0 source terms. To evaluate a program ¢ at level 0, we expect that the program #°
multi-steps to a value ¥ at level 0. Suppose the closed term t? is an intermediate result of evaluating the
program ¢. For any subterm f,; of the term t?, we want to ensure that all its free variables are bound in
its surrounding scope. In particular, we are interested in the free variables that are bound by hatted lambda
bound variables in the surrounding scope. We define the following judgement to specify the well-boundness

of a term. We demonstrate how this judgement helps prove the correctness of the (app-0) rule.

Definition 159 (Well-boundness Judgement). Let the well-boundness judgement - wb be a ternary relation
on the power set of variables, the power set of variables and the set of runtime terms.
F wb C Z(VAR) x Z(VAR) x RTERM

m where x € %

U VEnuwb U,V +Etrwb
62/;7/|—l‘1 th wb

U J{x}; YV Etwb
UV Ax.t wb

where x ¢ ¥

U U{x} ¥V Erwb
U,V Ax.twb

where x ¢ ¥

U I{x}; V' U{x} Ftwb
@/;“//l—ix.twb

where x ¢ ¥
UV Etwb
UV = (t)y wb

UVt wb
UV b~ t wb

UV Etwb
UV Hltwb

UV +Fnwb

@/;Af/l—tl wb %;”f/l—l‘z wb
UVt +1nwb

UV Ewwb U JI{x}V Etwb
UV Ftx:=w|wb

where x ¢ V'

The well-boundness judgement 7%/ ; ¥+t wb reads as “f is well bound by % and 7.
We come back to our discussion on the well-boundness of the subterm #;; of the term t?. By the above
definition, we have 0;0 t? wb. Observe that a sub-derivation of 0;0 - #; wb must be the derivation of

U,V + t11 wb for some variable sets % and ¥'. The variable set % tracks all free variables of the subterm

85

5.3. Suspended MetaML

t11 that are bound in the surrounding scope. We observe the following property which shows if a term is well
bound, we can get an upper bound of the free variables of the term. We can use well-boundness judgement

to estimate the free variables of a term.
Proposition 160. If % ;¥ 1t wb, then FV (t) C % .

The variable set ¥ in % ;¥ - t11 wb tracks the free variables of the subterm #;; that are bound by hatted
lambdas in the surrounding scope. Consider a special case of the subterm #;; of the term t?. Suppose 11
is an application (&x.to)m W that is reducible by the (app-0) rule. Since the (app-0) rule is not
a substitution reduction, it cannot be applied under any explicit substitution. Thus the free variables of
v) must be bound by hatted lambdas in its surrounding context, which are tracked by the variable set #
of the judgement % ;% F (Ax.1%)[x; := w;] V) wb. By the definition of the well-boundness judgement, we
have x; ¢ 7. Hence we have FV(+°) N (U;{x;}) = 0, which we call the well-boundness of the application
(Ax.t%)[x; := w;] V0. This guarantees the correctness of the (app-0) rule.

The well-boundness judgement cooperates well with the multi-step relation. The second property says

the former is preserved by the latter.
Proposition 161. If % ;¥ -1l wb, VAR(t)) C 2,V CU C X and UV ; X 1t} —™ 1), then U ; V' +
th wh.

As a corollary of the above properties, the multi-step relation preserves the closedness of runtime terms.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Suspended
MetaML. The evaluator is analogous to the one defined for Explicit MetaML.

Definition 162 (Evaluator based on Structural Operational Semantics of Suspended MetaML). Define the
evaluator evalpetamL:sussos to be a partial function from the set of programs PRGMyeamr to the set of

answers ANSMetaML-

evalyetaML:suss0s : PRGMMetaML — ANSMetaML

function ift 7 —* (Ax.t”) = wi]
evalMewaML:sussos (f) = { code if >t —* (v1)

n if>t —*n

This evaluator is defined based on the structural operational semantics of Suspended MetaML. The
subscript “MetaML:Suss0s’ 1N evalyeaML:sussos denotes the structural operational semantics of Suspended
MetaML.

We claim that the evaluators defined in terms of Substitutional MetaML and Suspended MetaML are

equivalent.

Theorem 163 (Kleene Equality of Evaluators). For any t € PRGMpeaML, €ValyeraML:subsos (7) is Kleene

equal to evalyieiamL:Sussos (1)-

We prove the above theorem in appendices.

86

5.4. Environmental MetaML - Structural Operational Semantics

5.4 Environmental MetaML - Structural Operational Semantics

Refining Suspended ISWIM to Environmental ISWIM is discussed in Section 3.4. For a term surrounded
by cascaded explicit substitutions, tm, every denotable term w; is closed in Suspended ISWIM. It is
a natural step to replace the explicit substitutions with a corresponding environment.

However, MetaML allows replacing a variable by a open denotable term. In Suspended MetaML, the
denotable term of some early explicit substitution in a cascade may have free variables that are bound by

some later substitution. Example 158 shows

> WAy (~((Axd) Azy) 0) S —* (vlz:=0lly = ully := u)[u = 5))

where u ¢ {x,y,z}. The term y[z := O][y := u][y := u][u := 5] has y bound by u that is bound by 5. If we
represent the explicit substitutions that surround a term by one environment, an environment lookup may
lead to an unsound result. For example, we represent y[z := 0]y := u][y := u][u := 5] by pairing y with the
environment p = {(z,0), (y,u), («,5)}. Looking up y in the environment p returns u solely which is not
paired with an environment. Then we incorrectly output u as the final result of the evaluation. The correct
result is 5 because u is bound to 5.

To refine Suspended MetaML to Environmental MetaML, we propose to replace cascaded explicit sub-
stitutions with meta-environments instead of environments. A meta-environment is a finite sequence of
environments, among which the free variables of one environment are bound by the next environment in
the sequence. To evaluate a variable with a meta-environment, we look up the variable in the first environ-
ment of the meta-environment and return the lookup result paired with the remaining environments of the
meta-environment. For example, y[z := 0][y := u][y := u][u := 5] may be represented by pairing y with the
meta-environment (py;py) where p; = {(z,0), (y,u)} and p, = {(u,5)}. After one small-step of evaluation,
we have u paired with the meta-environment p, because p;(y) = u. After another step, we get the final result

5 because py(u) =5.

5.4.1 Syntax

We first define the basic syntax of the Environmental MetaML: source terms, runtime terms, values, denot-

able terms, configurations, environments and meta-environments. Then we define the free variable function.

5.4.1.1 Source Terms, Runtime Terms, Values, Denotable Terms, Configurations, Environments

and Meta-environments

Definition 164 (Source Terms, Runtime Terms, Values, Denotable Terms and Configurations). For any
i € N, let STERM' be the set of level-indexed source terms at level i, RTERM' be the set of level-indexed
runtime terms at level i, VALUE' be the set of level-indexed values at level i, and CONF' be the set of level-
indexed configurations at level i. Let DENOTABLE be the set of denotable terms and ENV be a finite partial
function from the set of variables to the set of denotable terms.

87

5.4. Environmental MetaML - Structural Operational Semantics

x € VAR, i,n € N, tl € STERM', t' € RTERM', v/ € VALUE', w € DENOTABLE, ¢ € CONF,
fin
p € ENV = VAR = DENOTABLE

10 = x| OO AxdO | (D) | 1O | | 10 44O

A= ‘ an ey |lx i ‘ <ti+2> | ~tt | 1+l |n ’ i +ti+1
. : . !

0 = x| OO0 aAxd® pr 0| Y [10 [|0 +1°

A= 5 ‘ Jianiias! | Ax.pit] ‘ <ti+2> ’ ~tt ’ 171 |n ’ . +ti+1

W= g At pr | () [n

v = x vt [At [OB I e v !

Yit2 .= ‘ Pit2 yit2 | Ax.yit2 | (vi+3> | ~pitl | 1yit2 | n ’ pit2 _|_Vi+2

w = x|W

A= A Ax | 0, pr oy | (et 10 | O+ O

b= L A A AT T pr o | (P2 | el [1et | T 4 et

We usually call Ax.c™! alevel-(i+1) non-value lambda if ¢ ¢ VALUE! and a level-(i+1) lambda value
if c € VALUE"!,

Definition 165 (Environments). An environment p € ENV is a finite partial function from the set of variables
to the set of denotable terms. Let dom(p) be the domain of the environment p and rng(p) be the range of

the environment p. Let p[x — w] be an environment update and p(x) be an environment lookup. We have:

w ifx=y

p(y) ifx#y

plxrw](y) =

Definition 166 (Initial Environments). Let 2~ C VAR. The initial environment Pi}%t is the identity function

whose domain is 2.
Definition 167 (Meta-environments). A meta-environment p* € ENV™ is a finite sequence of environments.

An empty meta-environment is denoted by €. A meta-environment containing an empty environment is
denoted by (0;¢€).

A term paired with a meta-environment, i.e., ¢ t , pTyor(lx.to, p* D, is called a closure. A level-0
lambda abstraction paired with a meta-environment, i.e., ¢ Ax.t°, p* D, is called a closure value. A clos-
ure that is not a value, ¢ ¢/ , P* D, is called a non-value closure. A closure makes its top-level structure
immediately evident. For example, it is immediately recognisable that its top-level structure of the closure
a4 Ax.t% p* D is a level-0 lambda abstraction Ax.t° without having to dive into the meta-environment p*.

As a comparison, in Suspended MetaML, to check the top-level structure of (Ax.t%)[x; := w;], we have to

88

5.4. Environmental MetaML - Structural Operational Semantics

dive down through the cascaded explicit substitutions m until reaching the level-0 lambda abstraction
Ax.10.

A closure ¢ ¢, p* D has the meta-environment p*. The meta-environment of the closure ¢ 7, (0;€) b has
one environment (). The meta-environment of the closure ¢ ¢, € D has no environments.

Environmental MetaML’s closures are different from Environmental ISWIM’s closures. In Environ-
mental ISWIM, for an arbitrary closure (¢, p), the term 7 is closed by the environment p. In Environmental
MetaML, a closure € ¢, p* D is a pair of a term ¢ and a meta-environment p*. Suppose p* = p1;02;...; Pm-
The free variables of the term ¢ are bound by the first environment p;. If the first environment p; does not
close the term ¢, the free variables of the closure ¢ ¢, p; D must be bound by the second environment p, and
the free variables of the closure € ¢, (p1;p2) D must be bound by the third environment ps3, and so on. The
closure € 7, p* D may also have free variables, which are bound by its surrounding context.

The design choice of closures and closure values are compatible with the original interpreter of MetaML
introduced in [Tah99a]. To ensure that any variable that has been eliminated by some substitution or renam-
ing does not escape from the scope of the substitution or renaming, they used a delayed environment called a
cover. A cover works like a normal environment on non-function terms. If a cover encounters a function, the
substitutions of the cover are delayed and are only performed on the result of calling the function. Analog-
ously, in Environmental MetaML, environments on a level-0 lambda abstraction are delayed, as modelled
by closure values. These environments work like normal environments on the result of applying the level-0
lambda abstraction.

Unlike the previous dialects of MetaML, Environmental MetaML deems the set of configurations rather
than the set of (runtime) terms to be the fundamental set on which the operational semantics is defined.
Recall that programs are closed level-0 source terms. To evaluate a program t0, we first pair it with the
initial meta-environment (pimR(tS);s), resulting in the initial configuration ¢! = ¢ #2, (pi:l/ﬁR(tg);s) . We
then pass the initial configuration to the operational semantics. Someone may wonder why the initial meta-

Var(1?) VAR(?)

environment is (p, .~ °’;€) rather than (0;¢€). In short, choosing (p,;, ;&) makes rules of the semantics

consistent, eases proving equivalence of semantics and preserves the correctness of the semantics. We
discuss its reasons in detail after introducing the evaluator for the semantics.

5.4.1.2 Free Variable Function

We define the free variable function by extending Substitutional MetaML’s Definition 20 to accommodate

configurations.

Definition 168 (Free Variable Function). Let the free variable function F'V be a total function from the set

of configurations to the power set of variables.

89

5.4. Environmental MetaML - Structural Operational Semantics

FV : CONF — Z(VAR)
FV(x) = x (1)
FV(n) = 0 (2)
FV(cica) = FV(c1)UFV(c) (3)
FV(Ax.c) = FV(c)\{x} (4)
FV({c)) = FV(c) (5)
FV(lc) = FV(c) (6)
FV(~c) = FV(c) (7)
FV(ci+c2) = FV(c1)UFV(c) (8)
FV(et,e») = FV(t 9)
FV(at, pi;p20) = U;FV(pa(x;)) where x; € FV(at, py ») (10)
FV(Q Axt, p*D) = FV(€Axt, p*)») (11)

Equations (1)-(2) are the same as Equations (1) and (7) of Definition 20 in Substitutional MetaML.
Equations (3)-(8) are analogous to Equations (2)-(6) and (8) of Definition 20. Equations (9)-(11) are based
on the definitions of closures and closure values.

5.4.2 Structural Operational Semantics

We lay out the structural operational semantics of Environmental MetaML through the level-indexed single-
step relations —/, the global single-step relation > — , the level-indexed multi-step relations —* and
the global multi-step relation > —*.

Definition 169 (Level-indexed Single-step Relations). For any i € N, let the level-indexed single-step rela-
tion — be a 4-ary relation on the power set of variables, the power set of variables, the set of configurations

at level i and the set of configurations at level i.

90

5.4. Environmental MetaML - Structural Operational Semantics

—1 C P(VAR) x Z(VAR) x CONF' x CONF'

Y U{x} 2 c’i“ —yitl cé“)
]) ") (lambda-(i+1))
VX F Axce]T —T Axc)

. i i
VX) —'),

) V. X+ cél —i Cé2
- (appL-i)

— —==— (appR-i
; ViZ o b —ivi ch, CPPRY

. i i i
VX2), —' e

-0
V2 Axt0, (p;p*) DV —0 €0, (p[x—=0];0%) D (2pp-0)

: —= (run-i run-0
Vi & Fldp —'d (run-i) V20N —0 ! (pZse)» ()
VX c’frl —yitl cé“)
7 — (code-i)

V2T —)

”V;%&—c‘i%icé (splice-(i+1))
. . ~ (splice-(i+
VX b~ — P

splice-1

VX~ — 1yl (sp)
VX —tel,

”f/;%l—c’il-i-cé —)"c"u—i—cé

VX b —sicl
(plusL-i) 17

VX v+ iy 4 (plusR-i)
) ViT e ViTCp

where n = ny + n; (plus-0)
VX bFn+n—n 1+ @

lam-0-env
V2 aAxt’, p* p —00 Axt0, p* D (.

Vi X QAT (p;p*) B — T Loy £ (plc = xw] [xv =] (P v = xw])*) D
where xy ¢ 2 (lam-(i+1)-env)

. (clov-env)
V2 EadAxt, pi D, p3 ¥ —" 0 Axt, (pf3p3) D

— (den-env)
VX HAw, e —'w

- (var-env)
V2 Eax, (pip*) b —"€p(x), p*

(num-env)

VX Fan, pty—'n

_ (app-env)
VX EAtty, p*) —" A, p* DAL, pTD PP

. . . (code-env)
7/;3(/1/'|_| <t’+1>, P*) ! <‘ t"H, P* .)

— P (run-env)
Vi, Z E, pry—"at, pty

. . . splice-env
y;%F‘Ntl’p*'*)l-‘rlN‘tl’p*'(p)

. (plus-env)
VXt +0, p") —"Ct, p* O+, pFD

91

5.4. Environmental MetaML - Structural Operational Semantics

The level-indexed single-step relation ¥'; 2" F c’i —i cé reads as “c; single-steps to ¢, at level i bound
by ¥ and 2.

To make a small-step when evaluating a program, we need to repeatedly apply the structural rules until
we find a configuration of the program on which a reduction rule can be applied. In the meanwhile, we
keep track of lambda bound variables when we dive into the body of a level-(i+1) non-value lambda using
the (lambda-(i+1)) rule. Suppose we have found such a configuration c‘i that is reducible and we have
V. X+ c’i —i cé. The free variables of c’i must be bound by lambda bound variables of level-(i+1)
non-value lambdas in the surrounding scope, which are tracked by the variable set #'. The variable set
Z records all variables in the configuration c’i and its surrounding scope. We need the variable set 2~ to
determine whether a variable is fresh in the sense that it has not appeared in the configuration being currently
evaluated or in its surrounding scope. The variable sets ¥ and 2" help specify the well-boundness property
of configurations (Proposition 177).

We briefly explain some rules of the single-step relation. (1) The (app-0) rule models an application by
updating the environment, which completes the unfinished job of Suspended MetaML’s (app-0) rule. (2)
The (run-0) rule is about executing a code value at level 0. Someone may want to replace the configuration
o', (piﬁ’ft;s) D with the value v!. This is incorrect. The single-step relation is defined on configurations.
The value v' must be paired with a meta-environment in order to be evaluated at level 0. (3) The (*-env)
rules discuss how to evaluate a closure. (3.1) The (lam-0-env) rule turns a closure into a closure value.
(3.2) The (lam-(i+1)-env) rule combines Suspended MetaML’s (lambda-(i+1)-t) rule and (lam-subst) rule.
To evaluate a lambda abstraction at a level higher than 0, we must rename the lambda bound variable to a
fresh variable before diving into the body, where the fresh variable must have not occurred in the current
configuration being evaluated or in its surrounding scope. (3.3) The (clov-env) rule concatenates two meta-
environments. (3.4) The (den-env) rule is trivial. (3.5) The other (*-env) rules correspond to Suspended

MetaML'’s single-step substitution reduction relations.

Definition 170 (Global Single-step Relation). Let the global single-step relation > — be a binary relation

between the set of level-0 configurations and the set of level-0 configurations.

>c) —) ifandonlyif 0;VAR())) —0)

The global single-step relation > C(1) — cg reads as “c; single-steps to ¢;”.

Definition 171 (Level-indexed Multi-step Relations). For any i € N, let the level-indexed multi-step relation

—* be a 4-ary relation on the power set of variables, the power set of variables, the set of configurations

at level i and the set of configurations at level i directly based on the level-indexed single-step relation —»'.
—*C P (VAR) x Z(VAR) x CONF' x CONF'

. — . —— (refl
VX) —"d, ”V;%I—c’—ﬂ*c’()

VX o —" VX UVAR(K) b — ™
V.2 c’i i cé

where ;.2 ¢ —'), (step)

(trans)

Definition 172 (Global Multi-step Relation). Let the global multi-step relation > —* be the reflexive-

transitive closure of the global single-step relation > —.

92

5.4. Environmental MetaML - Structural Operational Semantics

Example 173. Consider !(Ay.(~((Ax.{x)) (Ax.y)) 0)). We first construct a configuration that pairs the

above term with an initial meta-environment:

CAy.(~((Ax.(x)) (Ax)) 0)), ({(x,x), (3:¥)}:€) D

By the structural operational semantics of Environmental MetaML, we have:

Ay (~((Ax.(x)) (Ax.)) 0)), ({(x,x), (v, ¥)}:€) D
>— 1 (Ap(~((Ax.(x)) (Ax.y)) 0)), ({(x,x), (1Y) }:€) D
>— NCAp(~((Ax.(x)) (Ax.y)) 0), ({(x,x),(,¥)}:€) D)
>— Az ~((Ax.(x)) (Axy)) 0, ({(x,x), 2),(z,2)}:€) D) where z
>— HAz.(C~((Ax.(x) (Ax.y)), ({(x,%),(3,2), (z,2) }5€) D €O, ({(x,%),(%,2), (2,2) }:€) D))
>— NAz.(~((Ax.(x)) (Ax.y)), ({(x,%), (112), (z.2) }:€) D €0, ({(x,%),(1,2),(z,2) }:€) D))
>— NAz(~(C(Ax.(x), ({(x,x),(3,2),(z,2)}:€) D€ (Axy), ({(x,%), (112), (z:2)};€) D) €0, ({(x,%), (¥,2), (2,2)
>— HAz.(~(0 (Ax.(x)), ({(x,x),(0,2),(z:2) }:€) D € (Axy), ({(x,%),(3,2),(2,2) }:€) D) € 0, ({(x,%),(3,2), (2,2)
>— NAz.(~(0 (Ax.(x), ({(x,x),(3,2),(z,2)}s€) DO (Axy), ({(x,%), (112), (z:2)};€) D) € 0, ({(x,%), (¥,2), (2,2)
>— Az (~(€x), ({(x,0 (Axy), ({(x.x),(1,2),(z:2)}:€) D), (1.2), (z,2)}:€) D) €0, ({(x,x), (1:2), (2,2) }:€) D)
>— NAz.(~(ex, ({(x,0 (Axy), ({(x,x),(,2),(z,2)}:€) D), (1:2), (z:2) }:€) 9) €0, ({(x,%), (1,2), (z,2) }:€) D))
>— NAz.(~(€q (Axy), ({(x,x),(3,2),(z,2)}:€) D, () 9) €0, ({(x,x),(3,2),(z,2)}:€) D))
>— NAz.(~(0 (Axy), ({(x,x),(1,2), (z,2) }:€) D) €0, ({(x,%),(1,2),(z,2) }:€) D))
>— HAz.(0 (Axy), ({(x,%),(0,2),(z,2)}:€) D €0, ({(x,%),(3,2),(z,2) }:€) D))
>— Az.(0 (Axy), ({(x,x),(1,2),(z,2)};€) DO))
>— €Az.(0 (Axy), ({(x,x),(12), (z,2)}:€) D 0), ({(x,%), (0,¥), (z,2) };€)
>— 0 Az.(0 (Axy), ({(x,%),(3,2),(z,2) }:€) D 0), ({(x,%), (3,¥), (z:2) };€)

Properties. Our sole purpose of developing the structural operational semantics is to evaluate programs
which are closed level-0 source terms. To evaluate a program ¢ at level 0, we construct the initial configur-

ation ¢? = ¢ 10, (pl\;ﬁR(). €) D and pass it to the structural operational semantics. We expect that the initial

configuration multi-steps to a level-0 value v°. Suppose the closed configuration c(l) is an intermediate result
of evaluating the initial configuration c?. We then repeatedly apply the structural rules on c(l) until we find its
subconfiguration c; on which a reduction rule can apply. We want to ensure that all free variables of ¢ are
bound in its surrounding scope by lambda bound variables of level-(i+1) non-value lambdas. We define the
following judgement to specify the well-boundness of a configuration. We demonstrate how this judgement

helps prove the correctness of the (app-0) rule.

Definition 174 (Well-boundness Judgement). Let the well-boundness judgement - wb be a ternary relation

on the power set of variables, the power set of variables and the set of configurations.

93

¢ {x.y}

5.4. Environmental MetaML - Structural Operational Semantics

Fwb C Z(VAR) x #(VAR) X CONF

m where x € %

UV Ecrwb U,V Fcrwb

U,V e cywb
U U{x}; ¥ Fcwb N »
UV Ax.c® wh where x ¢

U U{x}; ¥V Fcwb
UV Axv T wb

where x ¢ ¥

U U{x}; ¥V U{x}Fcwb
UV Ax.c' T wb

where ¢'*! ¢ VALUE™! and x ¢ ¥

UV +=twb
U,V E(t)wb

UV Etwb
UV E~t wh

UV +twb
UV =t wb

UV Fnwb

U, VEnwb U,V Etwb
UVt +1twb

UV +twb
U,V Eat, epwb

UV pulom) Wb U UG iV - €ty (BV1€) D wh where VAR(¢ 7, ;" D) C dom(p;) for any p;,
w7 F A, (P E) pwh pi(yj):y*iforany@ari?yj67/’
and x,,, € FV (€1, (i ;€) D).

UVt pi »wb
U,V EQt, pi Dwb

Notation 175. A sequence of environments, p1;P2;...; P, can be abbreviated as p;}' or p;.

The well-boundness judgement % ;¥ + ¢ wb reads as “c is well bound by % and #”. The variable set
% tracks all free variables of the configuration ¢ that are bound any means in the surrounding scope. We
observe the following property which is analogous to Suspended MetaML’s Proposition 160.

Proposition 176. If % ;¥ \ ¢ wb, then FV (¢) C % .

We come back to our discussion of the well-boundness of the subconfiguration c1; of the configuration
0(1)- By the definition of well-boundness judgement, we have 0;0 + c(l) wb. Observe that a sub-derivation

of 0;0 + c(l) wb must be the derivation of % ;¥ & ¢;; wb for some variable sets % and ¥'. The variable

94

5.4. Environmental MetaML - Structural Operational Semantics

set ¥ tracks all free variables of the configuration c;; that are bound in the surrounding scope by lambda
bound variables of level-(i + 1) non-value lambdas. Recall that other than level-(i + 1) non-value lambdas,
the structural rules do not allow evaluating under lambdas or closures. Thus the variable set % is the same
as 7. We have ¥; 7 F c¢11 wb.

Consider a special case of the configuration cj;. Suppose ci; is an application ¢ Ax.t%, (pi';€) D v°
that is reducible by the (app-0) rule. The free variables of v* must be bound by lambda bound variables of
level-(i + 1) non-value lambdas in its surrounding context, which are tracked by the variable set ¥ of the
judgement ;¥ + q Ax.t%, (pi';€) Dv° wb. By definition, p;(y;) =y, for any y; € ¥. By Proposition 176,
FV(»’) C ¥. Hence, p;(y,) =y, for any y, € FV(+°), which we call the well-boundness of the application
a Ax.t%, (pifs€) DY,

We briefly explain how the correctness of the (app-0) rule is guaranteed by the well-boundness of the
application ¢ Ax.t°, (p/7;€) D v’. Let’s represent each environment as a set of variable-and-denotable-term

pairs. We have:

Pt = {(x1i,wii) b { Ge2i, wai) b oo { (o, wini) }

Then the application ¢ Ax.t°, (p;1';€) D v denotes

(Axd®) {wrexi] Hwar/xoi] e Wi 2] } V°

where each braced set of substitutions works as an environment and substitutions in each braced set are
unordered. We first rename the lambda bound variable x to a globally fresh variable xy and then push all

braced sets of substitutions under the new lambda. We get:

Aoy (O wri/xnilfen /) {Dwai /x2] oew /3] o { Wi /X [y /2] }) V°

Then we perform the application and get:

(O wixai] b /2 {Twai /xail bow 2w A Do o] P S 30]}

By the well-boundness of the application ¢ Ax.t%, (p;}';€) D v°, we know for any y, € FV(»°), y, is substi-
tuted by itself in the first m braced sets of substitutions. Then we can splice the last braced substitution into

the first braced set and eliminate renaming the lambda bound variable. We get

O[] [0 /3] { wai /xail oA Wi /mi] }
which corresponds to
2, (pife = [:p3€) »

in the (app-0) rule of Environmental MetaML..
The well-boundness judgement cooperates well with the multi-step relation. The following property

says the former is preserved by the latter. It is analogous to Suspended MetaML’s Proposition 161.

Proposition 177. If V',V + c’i whb, VAR(c’i) CZ,VCXand VX F ci1 i cé, then V7V F cé whb.

95

5.4. Environmental MetaML - Structural Operational Semantics

As a corollary of the above properties, the multi-step relation preserves the closedness of configurations.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Environmental
MetaML. Environmental MetaML’s multi-step relation is defined on sets of configurations rather than sets
of runtime terms. Given a program ¢, the evaluator applies the multi-step relation on the initial configuration
a1, (pi:ﬁR(t);s) D which pairs the program with the initial environment of the program. The evaluator is

otherwise analogous to the one defined for Suspended MetaML.

Definition 178 (Evaluator based on Structural Operational Semantics of Environmental MetaML). Let the

evaluator evalyetamL:Envsos b€ a partial function from the set of programs PRGMpetami to the set of answers

ANSMetaML-
evalMeuML:Envs0S : PRGMMetaML — ANSMetaML
. . v, 0

function if > ¢, (pinﬁR(t);s) b —"dAxt", p* D

. VAR(t
evalveaML:Envsos (t) = { code if & at, (poatVig) p—* (1)

. VAR(t

n if >a1, (P ();e) D —"n

This evaluator is defined in terms of the structural operational semantics of Environmental MetaML. The
subscript “MetaML:Envs0s” 1N evalpetamr -Envsos denotes the structural operational semantics of Environmental
MetaML.

c . . VAR(#?
Someone may wonder why the initial configuration has the meta-environment (p AR(f5)

init

;€) rather than

(0;€). First of all, for any program ¢, the initial configuration € ¢, p* » is closed regardless of whether
0 0

p*= (pi}l’ﬁR(ts);e) or p* = (0;€). Choosing (pimR(tS);s) still preserves the closedness of the initial config-

()

uration. Secondly, as implied by the theorem at the end of this section, choosing (pi:ﬁR ;€) over (0;€)

does not destroy the soundness or completeness of the semantics. Thirdly, having the meta-environment
(pi:ﬁR(tg) ;€) in the initial configuration is consistent with the (run-0) rule where the newly constructed con-
figuration has the meta-environment (p{f{t;s). Fourthly, by the well-boundness judgement, given a well
bound closure ¢ 7, p* D where p* = p;, we must have VAR(q z, p; D) C dom(p;) for any p;. If we do not

R())

choose (pVA ;€) over (0;€), we need a more complicated well-boundness judgement that may obscure

it

the fundamental concepts, making proving semantics equivalence more complicated. In Section 7.2, we

propose a novel way of modelling environments, which no long requires the ad-hoc step of collecting all the
variables that exist in the program for the initial configuration as (piXﬁR(t?) J€).

We claim that the evaluators defined in terms of Substitutional MetaML and Environmental MetaML

are equivalent.

Theorem 179 (Kleene Equality of Evaluators). For any t € PRGMpMeaML, €ValyetaML:Subsos (7) is Kleene

equal 10 evalyiewaML:Envs0s (1)-

We prove the theorem in appendices.

96

5.5. Environmental MetaML - Reduction Semantics

5.5 Environmental MetaML - Reduction Semantics

Following the path of refining a structural operational semantics to its corresponding reduction semantics as
presented in Sections 3.5 and 4.1, we refine Environmental MetaML'’s structural operational semantics to a

reduction semantics.

5.5.1 Syntax

The definitions of source terms, runtime terms, values, denotable terms, configurations and meta-environments

are the same as Section 5.4.

5.5.1.1 Evaluation Contexts

Section 4.1 defined evaluation contexts for Substitutional MetaML. Unlike Substitutional MetaML, Envir-
onmental MetaML defines its semantics on configurations rather than on terms. Taking this difference into
consideration, we define evaluation contexts for Environmental MetaML, which is analogous to Substitu-
tional MetaML’s Definition 114.

Definition 180 (Evaluation Contexts: Inside-out). Let ECXT' ™/ be the set of evaluation contexts with inner

level i and outer level j.

E™J ¢ EcxT"™/, ¢! € CONF!, v/ € VALUE'
— (ept-i)
Oe Exct™ P
E € ExcT' ™/ , E € ExcT' ™/ :
. — (appL-1) , — (appR-1)
E[0] € Excr™/ bp E[v) O] € ExcT™/ bp
(i+1)—oj
ECEXCT " (lambda-(i+1))
E[Ax.0] € Excr(th) =/
i—j . (i+1)—j i—j
E ¢ Excr 1 (code-i) E € ExcT —— (splice-(i+1)) £ € EXct — (run-i)
E[(O)] € Excrti+D—/ E[~0)] € ExcTi ™/ E['00] € ExcT ™/
i—oj i—oj
E€EXCT ™ (hlusL-) ECEXCT 7 (pusR-)
E[0+c] € Excr™/ E], +0] € ExcT™/

5.5.2 Reduction Semantics

We lay out the reduction semantics through the level-indexed notions of reduction %', the level-indexed
single-reduction relations —/, the global single-reduction relation > —, the level-indexed multi-reduction

relations —* and the global multi-reduction relation > —*.

Definition 181 (Level-indexed Notions of Reduction). For any i € N, let the notions of reduction %' be a

binary relation between the set of configurations at level i and the set of configurations at level i.

97

5.5. Environmental MetaML - Reduction Semantics

F' C P(VAR) x CONF' x CONF'
Z = aaxt (p;p) 00 Z° «f° (plx = p%) (app-0)
2+ 1o 2 Y (plie)y (run-0)
X ~hy gt ! (splice-1)
2+ n+n, #° nwheren=n;+n (plus-0)
2+ Axt% p*y Z° aAxt® p*D (conf-lam-0)
X At (pip)» Z dxn. Y (plx e xn]s (p[xy — xn])* D (conf-lam-(i+1))

where xy ¢ 2

X CQAxt, piD, P50 # 4 Axt, (p}ip;) D (conf-clov-i)
A (0, ed Z w (conf-den-i)
2+ «x, (p;p")d Z €p(x), p*D (conf-var-i)
2+ «n,p*y A n (conf-num-i)
2 F Cht, p*y A €1, p* Va2, p*D (conf-app-i)
2+ o pry A (et pry) (conf-code-i)
2+ Cpty At pty (conf-run-i)
2+ (~t p* Yy FH ~at pty (conf-splice-)
2 CH+b,p") A, PP V+at, PP D (conf-plus-i)

The notion of reduction 2" + ¢! %' ¢!, reads as “cy reduces to ¢, at level i bound by 2"”. Each notion
corresponds to one reduction rule of the single-step relations presented in Definition 169. The variable set
2 records all variables in the configuration ¢ and in its surrounding context, which is used in the (conf-

lam-(i+1)) rule to determine whether a variable is globally fresh.

Definition 182 (Level-indexed Single-reduction Relation). For any i € N, let the level-indexed single-
reduction relation —' be a binary relation between the set of configurations at level i and the set of config-

urations at level i directly based on the notions of reduction %/.

! C CONF x CONF'
X bt Bt
X & EI]] —T Bl

The level-indexed single-reduction relation 2" F ¢} ! cé reads as “c; single-reduces to ¢, at level i
bound by Z7”. The above definition states that the single-reduction relation respects performing any notion

of reduction in an evaluation context.

Definition 183 (Global Single-reduction Relation). Let the global single-reduction relation > +— be a binary

relation between the set of level-0 configurations and the set of level-O configurations.

> —) if and only if VAR(cY) F ¢ —9 9

The global single-reduction relation > c(l) — cg reads as “c; single-reduces to ¢;”. It is defined based

on the single-reduction relation with a particular initialisation of the variable set .2 .

98

5.5. Environmental MetaML - Reduction Semantics

Definition 184 (Level-indexed Multi-reduction Relations). For any i € N, let the level-indexed multi-reduction
relation —* be the a binary relation between the set of configurations at level i and the set of configurations
at level i directly based on the level-indexed single-reduction relation —'.

——*C P (VAR) x CONF' x CONF'

P c’i — cé where 2" ¢ —' ¢, (step) iR (refl)

X = ZTUVAR(CH) b b — cf

(trans)

A l—c’i i cg

Definition 185 (Global Multi-reduction Relation). Let the global multi-reduction relation > —* be the

reflexive-transitive closure of the global single-reduction relation > —.

Example 186. Consider !{Ay.(~((Ax.(x)) (Ax.y)) 0)).

We first construct a configuration that pairs the above term with an initial meta-environment:

CAy.(~((Ax(x)) (Ax)) 0)), ({(x:x), (3:¥) }:€) D

By the reduction semantics of Environmental MetaML, we have:

> €Ay (~((Ax.(x)) (Axy)) 0)), ({(x,x), (3, y)}:€) D
—" 0 Az (0 (Axy), ({(x%), (3:2), (2,2)}:€) D 0), ({(x,%), (37¥), (z,2)}€) D

as demonstrated in Figure 5.1.

A comparison of the Figure 5.1 with Figures 3.1 and 4.1 tells that Environmental MetaML’s reduction
semantics follows the exact same three-step break-apply-plug pattern of evaluating a program as Environ-

mental ISWIM’s reduction semantics and Substitutional MetaML’s reduction semantics.

Property. The global multi-reduction relation preserves the closedness of a configuration. This is the same
property that Environmental MetaML’s structural operational semantics holds.

Proposition 187 (Closedness of Configurations). If> ¢ —* ¢ and FV () = 0, then FV () = 0.
Evaluator. We now define an evaluator based on the reduction semantics of Environmental MetaML. The

evaluator is analogous to the evaluators defined based on the structural operational semantics of Environ-
mental MetaML.

Definition 188 (Evaluator based on Reduction Semantics of Environmental MetaML). Let the evaluator

evalyeraML:EnvRed D€ a partial function from the set of programs PRGMyeramr to the set of answers ANSyetaML -

99

5.5. Environmental MetaML - Reduction Semantics

~
) o~~~
= - w W w W ~
inet —~ AL AR~
e T ww ¥ -
N ~ PR S S
2 T oS X ga ag W
5 h TPy - - b
= NN WY YrY e~ R
z = AR AA o osnwow
o> o 22 wo oo R
=5 —~ = —~ = B o~ ~
Nej =R == 3 o N —~
= KX X == —x U
= N = == Pt =
- N S [N~ ~
— a " _a e) o ™~
T ~m e~ = == =
a =Wl R e 1o = YD W
XA HAS SR~ 2T
aa wiTvSoSw TS At s S
AT S . A=A I PN Y) —_—
a ww MN&“M&\M%&W\\L@/OM)N@ w e
T SR s ant T mec modAaN guws LW
w —~~ N b A~ i ~ — e
o) T~ K0 o L=/ s~ AN T A W~
oy Ny w002 WwN oW ST G v =
e Moo naa o oo 7Zv7w\x/(\ R =]
- - == = (e AR - -~ N P — —
e S A A S e S S S A N A
- el RS RS —_ o~
= =22 oA AAD LR T e T NS s AN ©
£ 2= EXTNmUoaoS ST T F 0 e g
T AR AT RO NNS gyS TR TSR R 2 NG §
N I A R N AN A = o TR Do =Non
rallaT e 1 _twe e 2 o PR a2 S
O A e T S I R i N N N No~—
(X\S/\/\e\uVUVM-VﬂVN-VﬂVND va. I V/{((E(K = = Py
g R A e e B D !
e e T el e S e e g R N s SN a an
S Ly s P e N Y s X\LJ/I\G)GG-KX P y\'}Xv\uN RS — o
. v 5 = = ! 7 >
A lIITD AW IEETHAT s a5 p TS S H SR R woooww
— - LR oNTT NSO N o e s 1t O R R R —~ m s
a © ST BE I e T K on o Sall Hag oo
o~ n N I O S S R i AN 0)
— SRDIILI SRR AN SN S a s s oSS T R T W ARy
- N IR R AT S AR R AR A LD =7 7 =7 7 nNEoKO o e -
—_~ PR R R VRS n w = O ANg = R R s
a= W YNLESTS ieww S0 oK ¥ oe—w— oo 22 TS Y ve o Sk
- e N T NE oo ReTs) RS <R RS & o & Yoo R oo < o o PN N RS
— ~ g =22 - =% e w LT 77 N7 T i e ey 7“((w 7 Ne RNV ING Na NN
W~ =& N 2 = = = = SO00z0o0d s - —
—_—— oW - - = - ? c o OO0 ocoloc o Foo N "= o <— — e e e P
aa o a2 g s o e T S S g e s e nERER
TR A Tl T el OO0 OO TOO00=00g00x®7 7 200 R SRR
Vﬂy Nl e R oYL 2 02 == NN)NN‘NNX’II. PN ==L
PR NSEES = = e e ALl L~ e ST T L I =
a -~ T a TR i~ aa—~aaiaaiaaiaalaa~— aa“aa’aa chﬂ\&/ e R e e =
At Al TN o=y @) < < < XS @ — - “ ~ =" 2=
— S e R AL e e S s N D s D S T s N L S N W e s e s s 0 oo rRo o ®
WD w g P S c T W W W WWoWW DWW W WA W W W WO W w2 AT o oz
-~ = = oA el = N = e Nz
}\h\h}ﬂfx\;\ln/\ZO 7\.“}}\7#}}-}}D}}D}} WAL AN AN A A A e S ST N Y e~ —~
\.de X\V//(\{HO ~ N D R te —~ —~— e v e e R TN Do NN oW ~ww
N PR TR IO T A A NN N N S NN S NN NN o NN DN N s NN T NN = e N LS =
TN P N S O S S R R I I R R I A RS MRS g R g
= RN N NN B I e R TN L= A==
\/r(ﬁ“\hOO(\v./yynAaAZ N AT T AT T AT T AT TN T T AT T e T e oo N wvee
- > ‘2 {.2.22.2 PR Ne P P N A b
= - - x»»)nﬂx S A N N AT T T N N T N NN Z\U\H\U\T//W\T/\U\@/\U\D/}\D/\U\S/(V\,/W\S/ NN NN
e I I R e P S R D T T T T N T N R T N S e R N S e i SR g,
Co ol U U E TR RSl Ao DT x})\@}\@\/}
- - < 7 e - O e — =
R e S i S P g S S TRt L A S e e
== (\/.\/\/x\xﬂ.ulxlx(x\xxhwxxzxxzxxzxxrixx/Wxexx\)xey(\(\Z/W(y\.@(y\/WZv
oA o s oo S S SIS P PG oG P P P S S o PSR o e e S S —~ = ~ e
RHEERDID LR ST S ST EERETEESEESRERESEERE (B EDEEDRERE N ERE TS T
Ol oRrRRO Ny —— [e) [R R R s} R L S v e ™ e B R e S S
NSRS A= I B S riurirSuriust Sustust SustesiNustusiiiustustreustasiis tustusii DN F S VN S SIS S
= RN K RRTZ G o R o B R e o A O e I TN NS
AR ARSI Al T RS A0 RS S HS TS KOO HOSORSS ST Koo RS S s s T
RN A 0% R ew i ewrewwewrewwew s iww wewcRww rww-sww N J— 7 S~
RIS nﬂwwﬂﬂy-xﬂwﬂﬂ < ~ ~ ~ (e ~ ~ = i NG e
- 55"l o< ux—- - —-Q00-00 00 00 700 040 OO0 0000 sogogsaas ===
A e s = === e S Nt e AR SR
= = RS~ = = = = = I -
ESSEL&ES S 2002002002002 00200=00£00 200200003838
x/w\/w\x./\.lx.w nﬂ/\ZZ%ZZx.ZZmZZx.ZZx.ZZ .,ZZHZZ,.AZZLZZ\NZZ\.N{\(\\!N(\(\\%
S AASEES LS SRS SIS SIS SISSISIgIITIITIIISIEII oo S o
«/l\/l\«w 7 «\/\/(\/\/«\/\//(\\\/\//\\/\//\\/\//\\/\//\\/\/x))ﬂ\/\/(\/\/nM\/\/nM Ui ul
—_ = < \
T e2d d 2BE5EH m_\@w@m\w\m\@%@/ﬂ_\%@@w\ﬁm\w\/D\@/M\@/D\%/D\@(G/D\(MM(MM(
<57 0050000000000 00w00-00-00-00+00C00%%s 555 5
< S o= oo N s N s N T N T T, N S N T e Y T Y S = N e = N = =
193 «00200S00S00S00S00S00S00S00sS00sS00sS00sS00sS375355°S
el o T T e T o T e e T e e T e e T e e T e T e T e e T s e T e e 00w OO ©
all hall b all b alllballllallllallllallballallalllalllalllal il al Il al

100

Figure 5.1: Evaluation of !(Ay.(~((Ax.(x)) (Ax.y)) 0)) in Reduction Semantics of Environmental MetaML.

5.6. Environmental MetaML - Abstract Machine (MEK Machine)

evalyvieaML:EnvRed ©: PRGMMeaML, — ANSMetaML

function if >dqt, (pizﬁR(t);e) by —* 0 Axt”, p* D
evalMetaML:Eaned(t) = 4§ code if > ¢ z, (Pi\;ﬁR(t);e) p—" <V1>
n if >q1, (pi\]:ﬁR(t);s) b—*n

This evaluator is defined based on the reduction semantics of Environmental MetaML. The subscript
“MetaML:EnvRed . 1N evalpetaMmL-EnvRed denotes the reduction semantics of Environmental MetaML.
We claim that the evaluators defined in terms of the structural operational semantics and the reduction

semantics of Environmental MetaML are equivalent.

Theorem 189 (Kleene Equality of Evaluators). For any t € PRGMpMetaML, €Va@lMetaML:Envsos (f) is Kleene

equal to evalyietaML:EnvRed (7)-

We prove the theorem in appendices.

5.6 Environmental MetaML - Abstract Machine (MEK Machine)

Following the path of refining a reduction semantics to a corresponding abstract machine as presented in
Sections 3.6 and 4.2, we refine Environmental MetaML'’s reduction semantics to an abstract machine. We

call the abstract machine the MEK machine.

5.6.1 Syntax

The definitions of source terms, runtime terms, values, denotable terms, configurations and meta-environments
are the same as Sections 5.4 and 5.5.

5.6.1.1 Evaluation Contexts

Analogous to Substitutional MetaML’s Definition 121, we provide an alternative definition for evaluation

contexts.

Definition 190 (Evaluation Contexts: Outside-in). Let i, j € N. Define ECXT ™/ to be the set of evaluation

contexts with inner level i and outer level j.

101

5.6. Environmental MetaML - Abstract Machine (MEK Machine)

E™J ¢ EcXT"™/, ¢! € CONF!, v/ € VALUE'
——— (ept))
O e Excr/™/ P
E € ExcT' ™/ . E € ExcTi ™/ .
= — (applj) — (appR-))
(E ¢)) € ExcT'™/ (vi E) € ExcT'™/
i—o(j+1)
ECEXCT_ ' (lambda-(j+1))
Ax.E € ExcTi U+
E € ExcTi—U+D) E ¢ ExcT' ™/ . E € ExcT' ™/ .
_ lice-(j+1 EeBXCT =
(E) € EXcT™J (code-)) ~E € ExcTi—UtD (splice-G+1) IE € ExcT ™/ (run-y)
i—oj i—oj
E e. ExcT — (plusL-) _E € EXcT — (plusR-j)
(E+cj) € ExcT ™/ (v{ +E) € ExcT ™/

5.6.1.2 Machine Configurations

Section 4.2 defines the states of the MK machine through four modes of machine configurations. We revise

the four-mode definition to accommodate an environmental semantics.

Definition 191 (Machine Configurations). Define CFG to be the set of machine configurations.

i,jeN, CeCFa, ¢! € CONF, v\ € VALUE', EI—™/ ¢ EcTx' ™/
c = W
| (i, E0,),
‘ <l7 Elﬂo? cl>f
| <la El_00> vl>b

The machine operates in four modes: the value mode W0, the reduce mode (i, E "H’O, Ci)r, the focus mode
(i, E=0, cl)y, the build mode (i, E0, vi)y,.

A machine configuration (i, E=™°, ¢!}, where ? € {r,f,b} unloads to the configuration E/~[¢/]. Pre-
cisely, the configuration ¢’ in a machine configuration at reduce mode (i, E™™, ¢/); needs to be a redex.
5.6.2 Abstract Machine (MEK Machine)

We lay out the abstract machine of Environmental MetaML, i.e., the MEK machine, through the reduction

relation —pex and the multi-reduction relation ——7 .

Definition 192 (Reduction Relation). Let the reduction relation — ek be a binary relation between the set

of machine configurations and the set of machine configurations.

—mek & CFG x CFG

102

5.6. Environmental MetaML - Abstract Machine (MEK Machine)

Reduce rules: (i, E0, ¢f);

0,E, 0 Axt% (p:p*) DVO)r —mek (
<07 E, !<V1>>r —mek <

<17 E, N<V]>>r —mek <

<0 E, n +I’l2>r —rmek

0, E, € Axt%, p* 9)y —rmex (

<i+ 1, E, ¢ A«x.l‘iJrl-, (p,P*) .>r —mek <

(i, E, € Axt, P} Dy P5 M +—mek (i,
(i, E, qw, €D)r —mek (

<i7 E, €x, (Pyp*) .>r —mek <

(i, E, €n, p* Oy +—mek

<i7 E, ¢t 1, P* .>r —mek <

(i, E, ™), p*) —mek (i, E

<i7 E7 . !tl’ !)>.< .>r Hmek <

<i’ E, ¢ Nti7 P* '>r —mek <

(i, E, €1 +12, p* D)y +—mek

Focus rules: (i, /=0,)¢

Build rules: (i, E0, vi),,

(0, O, v)y
<i,E[DCﬂ V1)b
(0, E[vi O], v2)p

(i+1, E[vi O], v2)p

(i+1, EAxO], vy
(i+1, E[(O)], v)b

)
)
)
)
v)
)
(0, E[~DI], v)y
v)
V)
v)
)
)
2)

(i+1, E[~O], v)p

(0, E['CH], v)y
(i+1, E['O], v)p
(i, E0+ca], vi)p

(0, E[v; +0, v
(i+1, E[vi+0, v

V2)b
2/b

0, E, 1% (plx—=1"];:p%) 0)¢
0, E, (v, (puatEI0D)),
1, E, Vl>f

0, E, n)f where n =n; +ny

0, E, 0 Ax.t% p* D)¢

i+1,E, Axy.q l‘i+l, (plx— xn];plen — xn]*))¢
where xy ¢ VAR(E[€ Ax.t't) (p;p*) »])

i, E, 4 Axt, (p{:p3) D)t

i, E, w)g

L E, €p(x), p* M)y

i, E, n)¢

LE €t, p" Dt p* D)g
(et pr)y

i, E, 101", p* »);

i, E, ~(t, p*)¢

LE Qt, p* 0+, p* 0

—mek < E 41, P >
—mek < +1 E x>

—mek (6 E[O 2], c1)f
—mek (0, E, 4 Ax.t, p* D)y
—mek (i1, E[Ax.0], ¢)¢
—mek (i+ 1, E[O)], o)
—mek (i E[~O], ¢)¢
—rmek (6 E['O], o)f
—mek (i E, m)p

—rmek (6 E[0+c], ci)r

—>mek V

F—rmek (i, E[vi O], e2)r
Frmek (0, E, viva)r
—mek (it 1, E, viva)p
—mek ({1, E; Axv)y
—rmek (6 E, (V)b
—mek (1, E, ~V)r
—>mek <i+2, E7 ~v>b
—rmek (0, E, W)y
—>mek <l+ 1, E, !V)b
—rmek (6 E[vi +0, ¢2)
—rmek (0, E, vi+v2)
—mek < +1, E, V1+V2>

(f-conf-1)
(f-var-(i+1))
(f-appL-i)
(f-lambda-0)
(f-lambda-(i+1))
(f-code-1)
(f-splice-(i+1))
(f-run-i)
(f-num-i)
(f-plusL-i)

(b-value-0)
(b-appL-i)
(b-appR-0)
(b-appR-(i+1))
(b-lambda-(i+1))
(b-code-(i+1))
(b-splice-0)
(b-splice-(i+1))
(b-run-0)
(b-run-(i+1))
(b-plusL-i)
(b-plusR-0)
(b-plusR-(i+1))

(r-app-0)
(r-run-0)
(r-splice-1)
(r-plus-0)

(r-conf-lam-0)

(r-conf-lam-(i+1))
(r-conf-clov-i)
(r-conf-den-i)
(r-conf-var-i)
(r-conf-num-i)
(r-conf-app-i)
(r-conf-code-i)
(r-conf-run-i)
(r-conf-splice-(i+1))

(r-conf-plus-i)

103

5.6. Environmental MetaML - Abstract Machine (MEK Machine)

The reduction relation C; —pex Co reads as “Cy reduces to G or “Cy single-reduces to C;”.
The intuition behind the above relation is analogous to that of CEK machine’s reduction relation. See

comments below Definition 108.

Definition 193 (Multi-reduction Relation). Let the multi-reduction relation —" be the reflexive-transitive

closure of the reduction relation — ek

The abstract machine defined above is also known as the MEK machine. M stands for multi-stage, E

stands for environment, and K stands for continuation, i.e., the evaluation context.
Example 194. Consider !(Ay.(~((Ax.(x)) (Ax.y)) 0)).

We first construct a closure that pairs the above term with an initial meta-environment:

Ay (~((Ax.(x) (Axy)) 0)), ({ (%), () }:€) D

Then we construct the initial machine configuration at focus mode:

(0, 0, € {Ay.(~((Ax.(x)) (Ax.y)) 0)), ({(x,x), (3, 3) }:€) D

By the MEK machine, we have:

(0, 0, € {Ay.(~((Ax.(x)) (Ax.y)) 0)), ({(x,x), (3,¥)}:€) D)
ek 0 A42.(0 (Axy), ({(6,x), (1:2),(2,2)}3€) DO), ({(x,%), (,7), (2,2) }:€) D

as demonstrated in Figure 5.2.

Evaluator. We now define an evaluator in terms of the MEK machine. The MEK machine’s multi-
reduction relation is defined on machine configurations. Given a program ¢, the evaluator applies the
multi-reduction relation on the machine configuration (0, [J, ¢ 7, (pi:ﬁR(t);e) D)r in which the program is
associated with an initial meta-environment and an empty evaluation context. The evaluator is otherwise

analogous to the one defined in terms of the reduction semantics of Environmental MetaML.

Definition 195 (Evaluator based on MEK Machine). Let the evaluator evalyeramr.Mek be a partial function

from the set of programs PRGMpgetamr to the set of answers ANSpyetaML-

evalyvieaML:MEK : PRGMMeaML — ANSMetaML

function if (0, O, €1, (piXﬁR(t);e) D)y Ax.t", p* D

evalyeaML:MEK (1) = { code if (0, O, ¢ 1, (P;ﬁtR(I);S) P)f ek vh
n if <Oa Da a1, (pi:;tR(t);g) '>f '_)rtlek h

This evaluator is defined based on the MEK machine. The subscript “MetamL:MEK™ I evalyetaML:MEK
denotes the MEK machine of Environmental MetaML.

104

5.6. Environmental MetaML - Abstract Machine (MEK Machine)

T TR T D)
P N N

eSS S =~
S22sssgss
o222 =
NN

B PNENEN R R
S55 555009
<RI = o= 7
SScSRI<<4345%
—~— T <
\/\/\/)))(((
T aanDS =
oo iEs3EooR
iR R RTTE
SSSR=x=5% %
TITSTTSCS
e dURIN I
SELEEE TR
=S SRR R - w
== SSoR< T

v w .“/‘\--AA

ARSI S NGNG I ASS

where z ¢ {x,y}

ffffffffffff Pl T Tl el e el e = T = T S = T T T = B = B = L = R e T]
La gy g n o n D s n S n s an n 80 e 8 8800 sy e
-
m
~— - o
=
v — — - a D
vy @ @ ~ e~~~ —~
& 2 2
- - O W A A A A
- - - - NN S S
= 7 N TN - a SRR SN S)
N - W w o~ PEE S R
~= ~ P R) AN
= N R e o T
e = A NN G RARERRR
~— ~ TN N e TN P
~ —~ P e GG NSNS NSNS N
~ = [e e
; 5 STy s EERER
< = ZEE Ly R
- aw “ Hay(\VuVﬂ NANG NG NG NG
~ - .. - T == NaNs) s ass s Ry
WO~~~ - = \v//DDm/\h\h NstasNsNSN
oot N N s aal N ~ZSooc5as
ZZ}}}MC,)).A nA.a.sencoc)\./ —~
P e e ~ =) Ao oo
v n T e R~ ToRRAL LR o
ARG A s — A2 o~~~
T LN N NN = e e T = — W wwww
TR T T T e eaan ANN NN SA —~ e O\cﬂsmc,.,;.,.,;
N g NN ST o~ S AL AN S S
BEENNY M N T T R e et P TN e St T T w2 CALART VRN EW
e N N e > —~ e~~~ NI~ —~—Tw AL~ ~="Tr L L L T LD
NS s s A A W W W W s A A TN N AW W LW W W N s NN N N N
RR - - AN N N L Nl S I N ALG e e RN g
et s NN TN NN T NN AN s e A AN N AN LA A A AN~ s o o o o -
SRR R T AA NN NN NI N I I T N NN g g s e Ere e e
S S S SR T TN N N N N T Ty R R s o q N N NN s T Ty s s S)
S ARt G G G S R e e e N S SU A £ SRR LRSS 22
S esiastasNa it S NP II T TINIeT) - e) —~ . [l =
S S T HE NN 2 NSRS E NN IO EISTY PR PR v T tret e bretres
o o DD X A A A AN Y A T A AN TN D Y Z\h\m/xx7x7x7xax7
el Sl PGP LA O S e PRI) P I T T T
BNENENE V.,\.V/,(\(\\h\)v\h\)v\.n((((\v\h = v.,)\h\h)\)(}\(NN e g d S oESSSsss
T T T T T s N M s i B T s B N N N P S e T tre P eriastastastusiasiast
RIRRRIFAaaHEE 8RR R R ERISI B g oREERR == 10 R T, T T
SCCTTTR ST LESSESSS - - 288 < RN S S S N P . 8122
~ N e e R R R R — R R R R R R = .= PNENENENEN
A~~~ R~—RZ Do o NN ARNE 2N) — - = = Ay T
\X/\X/\X/\X/\X/»((I i i A) I et e st tre e e R R R R R R
B R i e I TN e SN i NS e Ne THIIsSI=S
R R R R TR R R RE R R R AASASNAR I RR DDA R AR R —_ =
RRIRIR LI T T T e T TS aasEs A AT AT
S TS L TR < = TS AASANCANCS
D e et R R Svivn e fe I A [bl SR =8 i R YRS
222 NG((\(\(\(\(\(\((\(\((\/x\/X\” xvaGG(\(\(G\/G\((\OO STUHIRIILIL
— 0000
'--'DDDD
AR
[t N anten Yanten Yanten WAVCIGIN
T
SR UL
WENN S
falafiofs Koo Kol
ERRRe e e
RREERE K HEKE
-
T T T
BAERERRSSSS
NSNS
S338555T
SSSS s s e e e
e gooooo
... B000covooo | | . =E===== . e .
ooogogoooogooooggoooggogood Ooooo
L.l el | ooaoos
aaaaaaaaaaaasaaaaaaaaaaaaaaaayww
WW w T
A AL AL ASAE A A AL S S A AL AL AL AL AL AL AL AS AL AL AL AL AE AE AL AL A N
sttt st sttt s st sttt S SRR
LS A L A A S A A L A A A A S A A A T A A A L A A N
MO I O R R R O R R R R O R R I RO R R NN
QN NN NN N NN N NN NN NN NN NN TN
PR G P P P P G P PG GG GG GG GGG G P PGPSR I IOI
VA A A 2 A A A S A A A A A A S A L A A A A e A A A L A
FAARARAARAARARAARAARARARAARAARARAAASA XX
2222222222222 22222222222222200 %%
e e L L L Lo Lo i e e e e e e e T T T T e T T T e e e e R N)
R R R R R R R R R R R R R R R e R R Rr e R e e rEEEE
HEEEEESEHEEREEEESEEEREESEEEERES ST
REBILBIBERILBBEIRIEBERIERBERILRRBEERE
N M S e e M e M e e e e e e e e e e e e e e e e e e e) e e e e
C O S ST ST ST TS ST STSTTSTSTSTSTSS 8 % % =
"'-"-"‘-'-""---""---'MM\MM
.. .00o00000000000000000000000000co99 .
googoooooooooooogoooooooonoooooagoooon
SSSSRSRSSRSISISNNISSISSIISNSISISISISISISISIISISIIIINIIIIS, L
T T T T T e o o e o o o T e e o o e e e e e T L L L o o L L L e e L L e
O00gooooooooofdooooooooogoooggoooogogooog
o o B PP e P PP P P s PP P P P P P P P P P Pt
ggogooooooooooooogoooooooooooooggoaoon
OOo000ooooooooooooooooooooooooooooooooooooooo Qg
sl S S SS ST S SS SIS S S ~ === =~ STt A A A === SoSSSSS

I e e e e e, e e e e

Figure 5.2: Evaluation of !{Ay.(~((Ax.(x)) (Ax.y)) 0)) in the MEK Machine.

5.7. Chapter Summary

We claim that the evaluators defined in terms of Environmental MetaML’s reduction semantics and the

MEK machine are equivalent.

Theorem 196 (Kleene Equality of Evaluators). For any t € PRGMpeaML, €ValMetaML:EnvRed () is Kleene

equal to evalyetamL:MEK ().

We prove the above theorem in appendices.
As a corollary, the evaluators defined in terms of Substitutional MetaML and the MEK machine are

equivalent.

Corollary 197 (Kleene Equality of Evaluators). For any t € PRGMyeaML, €ValMetamL:subsos (f) is Kleene

equal to evalyetamL:MEK (1)-

Proof. 1t immediately follows from Theorems 179, 189 and 196 by the transitivity of Kleene equality. [

5.7 Chapter Summary

Utilising the experience of refining semantics along two dimensions, this chapter eventually solved the

following semantics refinement problem.

Can we refine the substitutional structural operational semantics of MetaML to a correspond-
ing environmental abstract machine, which we call the MEK machine, and demonstrate their

equivalence?

We accomplished the development progressively in several manageable steps, each of which led to an inter-
mediate semantics. We first reviewed the substitutional structural operational semantics of MetaML that we
developed in Section 2.2. Then we successively developed the structural operational semantics of Explicit
MetaML, the structural operational semantics of Suspended MetaML, the structural operational semantics
of Environmental MetaML, the reduction semantics of Environmental MetaML, and finally derived the ab-
stract machine of Environmental MetaML. We call the abstract machine of Environmental MetaML the
MEK machine.

We defined an evaluator based on each semantics. By proving the equivalence of every two adjacent
semantics, we finally showed that the MEK machine is equivalent to the substitutional structural operational
semantics of MetaML.

By this chapter together with Chapter 2, we have successfully solved the main semantics refinement

problem.

106

Chapter 6

Proof Methodology and Related Work

We first summarise three proof techniques that were adopted throughout the thesis the prove semantics

equivalences. Then we compare our thesis with the related work.

6.1 Proof Methodology

Most proofs of the thesis can be categorised as proving (1) the equivalence of two structural operational
semantics, (2) the equivalence of a structural operational semantics and a reduction semantics, or (3) the

equivalence of a reduction semantics and an abstract machine.

Proving Equivalence of Two Structural Operational Semantics. To prove the equivalence of structural
operational semantics of language A (defined by the single-step relation —> and the multi-step relation
—) and structural operational semantics of language B (defined by the single-step relation —p and the
multi-step relation —5), we first define a bisimulation relation between their terms, i.e., ~ C TERM4 X

TERMp. Then the key is to demonstrate that the bisimulation relation respects the following properties.

1. Vp € PRGM, inj,(p) ~ injg(p).

That is, for any program, its injected initial terms in languages A and B shall be related.

2. If va ~ v, then obsa (va) = obsg(vp).

That is, two related values shall have the same observable results.

3. Canonisation:

(a) If va ~1p, then tg —>5 vp and va ~ vp.

(b) If ta ~ vp, thentpn —} va and vp >~ vp.
4. Weak Bisimulation:

(a) Ifl‘A1 >~ 1B, and IA, —A A, then 1B, —)E 1B, and A, > 1B,.

(b) If IA, 1B, and g, —B IB,, then IA, —)Z A, and I, X 1B,.

The above-mentioned framework of proving the equivalence of structural operational semantics was motiv-
ated by the bisimulation proof method [Sanl1, PS12].

107

6.2. Related Work

Proving Equivalence of a Structural Operational Semantics and a Reduction Semantics. To prove
the equivalence of a structural operational semantics (defined by the single-step relation — and the multi-
step relation —*) and a reduction semantics (defined by the reduction relation — and the multi-reduction

relation —*) of the same language, the key is to prove the following two lemmas.

1. If t{ — 1», then t; — 7.

We may need to prove: If t; — 1, and E € ECXT, then E[t;] — E|[t2].

2. If t;y — 1, then t; — 1.

We may need to prove: If t; — 1, and E € ECXT, then E[t;] — E|[t2].

Proving Equivalence of a Reduction Semantics and an Abstract Machine. To prove the equivalence of
a reduction semantics (defined by the single-reduction relation — and the multi-reduction relation —*)
and an abstract machine (defined by the reduction relation — 4y and the multi-reduction relation ——7,) of

the same language, we first define a translator .7 to translate any machine configuration to its corresponding

term. Then the key is to prove the following two lemmas.

1. IfE()[l‘()] =E [2‘1] and E; [l‘l] — E [l‘z} where t| Z t,, then <E(), l‘()>f — <E()7 l‘()>f.

abs

We may need to prove: If t = Ey[t;] and t; Z 1, then (E, t); — 5 (EE\, 11)1.

2. If Cy — s Co, then ﬁ(Cl) —* g(CZ).

The above-mentioned framework of proving the equivalence of a reduction semantics and an abstract ma-
chine was motivated by the proof of the equivalence of the CC machine and the substitutional reduction
semantics of ISWIM in [FFF09].

The above-mentioned three proof frameworks are adaptable to more complex languages. For example,
the language of our interest may define its single-step relation (or the single-reduction relation) on config-
urations rather than on terms. As a result, we need to replace all #’s by ¢’s in the frameworks. As another
example, in a multi-stage language, a machine configuration may have a level component. As a result, we

need to add one more component of levels to any machine configuration in the last framework.

6.2 Related Work

Multi-stage Programming Languages. Several multi-stage programming languages and language ex-
tensions have been developed. For example, there are MetaML [TS97, She98, Tah99a, Tah99b] extends
ML, MetaOCaml [Tah04] extends OCaml, MetaHaskell [Mail2] extends Haskell, Mint [WRIT09] extends
Java and Metaphor [NRO4] that extends Cc*. We intensively studied MetaML in the thesis.

Operational Semantics of MetaML. Taha [Tah99a] modelled a minimal subset of MetaML through two
formulations that extend the lambda calculus, i.e., the A-M language and the A-U language. They presented

a call-by-value substitutional natural semantics and a call-by-name substitutional natural semantics for the

108

6.2. Related Work

A-M language. They developed a call-by-name substitutional reduction semantics for the A-U language and
demonstrated its equivalence with respect to the call-by-name substitutional natural semantics of the A-M
language.

Our thesis took the call-by-value substitutional natural semantics of A-M language defined in [Tah99a]
as the reference semantics of MetaML. The substitutional structural operational semantics of MetaML de-
veloped in Chapter 2 can be deemed as a call-by-value substitutional structural operational semantics for the

A-M language.

Refining Semantics for ISWIM. Felleisen et al. [FFF09] presented how to develop the CEK machine
from the substitutional reduction semantics of ISWIM and demonstrated their equivalence. Given the sub-
stitutional reduction semantics of ISWIM, they first derived a substitutional abstract machine called the
CC machine in which a machine state is composed by a control string and an evaluation context. They
then simplified the CC machine to the SCC machine to eliminate unnecessary state transition rules and
side-conditions. Next they introduced a date structure called a continuation to make the evaluation context
around the current control string the most evident and they refined the SCC machine to the CK machine
in which a machine state is composed by a control string and a continuation. Finally they refined the CK
machine to an environmental abstract machine, the CEK machine, by introducing environments to represent
substitutions. Each CEK machine state has three components: a control string, an environment and a con-
tinuation. Furthermore, they built an evaluator for each above-mentioned semantics and they demonstrated
the equivalence of the evaluators.

Chapter 3 of our thesis developed the CEK machine from the substitutional structural operational se-
mantics of ISWIM. Instead of deriving a series of abstract machines, we developed a series of structural
operational semantics. We introduced explicit substitutions in the structural operational semantics of Ex-
plicit ISWIM, suspended explicit substitutions in the structural operational semantics of Suspended ISWIM
and environments in the structural operational semantics of Environmental ISWIM. We developed a reduc-
tion semantics for Environmental ISWIM, based on which the CEK machine was formulated.

Our thesis represents continuations by evaluation contexts. [FFF09] maintained a unique data structure

to represent continuations but we did not.

Explicit Substitutions. The idea of explicit substitutions was introduced in [Cur85, ACCL91]. The de-
velopment of Explicit ISWIM was partially inspired and motivated by the definitions of Ax-terms and the

definitions of Axgc-reduction in the Axgc-calculus [Ros96].

Proof Methodology. As mentioned in the previous section, the framework of proving the equivalence
of structural operational semantics was motivated by the bisimulation proof method [Sanl11, PS12]. The
framework of proving the equivalence of a reduction semantics and an abstract machine was motivated by
the proof of the equivalence of the CC machine and the substitutional reduction semantics of ISWIM in
[FFF09].

109

Chapter 7

Conclusion

‘We conclude this thesis, summarise the limitations and list several directions for future work.

7.1 Conclusion

This thesis studied the problem of refining operational semantics for MetaML. We took the pre-existing
substitutional natural semantics presented in [Tah99a] as the reference semantics of MetaML. The main

research problem of our thesis, which was called the main semantics refinement problem, was stated as:

Can we refine the pre-existing substitutional natural semantics of MetaML to a corresponding

environmental abstract machine and demonstrate their equivalence?

As an environmental abstract machine is a small-step operational semantics, its development is more natural
and convenient to start from a structural operational semantics than a natural semantics. In Chapter 2, we
developed a substitutional structural operational semantics for MetaML and demonstrated its equivalence
with respect to the substitutional natural semantics.

We then simplified the main semantics refinement problem along two dimensions—each dimension
leads to a less complicated semantics refinement problem.

Following the first dimension, Chapter 3 studied how to develop an environmental abstract machine for a
single-stage language, ISWIM, rather than the multi-stage language MetaML. We refined the substitutional
structural operational semantics of ISWIM to its corresponding environmental abstract machine known as
the CEK machine.

Following the second dimension, Chapter 4 studied how to develop a substitutional abstract machine
rather than an environmental abstract machine for the multi-stage language MetaML. We refined the sub-
stitutional structural operational semantics of MetaML to its corresponding substitutional abstract machine,
which we called the MK machine.

Utilising the experience of refining semantics along two dimensions, Chapter 5 finally studied the main
semantics refinement problem, i.e., how to develop an environmental abstract machine for MetaML. We
refined the substitutional structural operational semantics of MetaML to its corresponding environmental
abstract machine, which we called the MEK machine.

Furthermore, three proof techniques were adopted throughout the thesis to prove the equivalence of
two structural operational semantics, the equivalence of a structural operational semantics and a reduction

semantics, and the equivalence of a reduction semantics and an abstract machine.

110

7.2. Limitations and Future Work

7.2 Limitations and Future Work

We briefly summarise the limitations of our thesis and point out several research ideas to be further explored

in future work.

Simplifying Abstract Machines. = We developed the CEK machine in Chapter 3, the MK machine in
Chapter 4 and the MEK machine in Chapter 5. These machines have several redundant transformations of
machine configurations. Felleisen et al. [FFF09] simplified abstract machines by (1) letting the machine
exploit information from both the control strings and the evaluation contexts, and (2) combining definite
transformations. Adopting the same approach, we can simplify our CEK machine, CK machine and MEK

machine analogously. For example, for the MEK machine, the (b-appR-0) rule
(0, E[vi O], v2)b —mek (0, E, vi v2)r
and the (r-app-0) rule
(0, E, Ax.1, (p;p*) D V0>r —rmek (0, E, € i, (plx+— vO];p*) D)¢
can be merged into one rule
(0, E[vi O], v2)b —mek (0, E, ¢ 1, (plx+— vO];p*) D)s.

Modelling Fresh Variables. The (lambda-(i+1)-t) rule of the single-step relation of Suspended MetaML,
the (lam-(i+1)-env) rule of the single-step relation of Environmental MetaML, the (conf-lam-(i+1)) rule of
the notions of reduction of Environmental MetaML and the (r-conf-lam-(i+1)) rule of the single-transformation
relation of the MEK machine require that the variable xy is globally fresh in the sense that it has not ap-
peared in the current term/configuration being evaluated or in its surrounding context. Being globally fresh
is a very strict restriction on xy.

To loosen the restriction, we may maintain a set of variables # to keep track of the variables that have
lost their freshness due to acting as a fresh variable before in the above-mentioned rules. Then we may
interpret “xy is fresh” as that the variable xy is locally fresh and does not belong to 7#'. We need formal

proofs to support our conjecture.

Modelling Environments by Finitary Functions. In Environmental MetaML, to evaluate a program
t0, we first construct the initial configuration ¢ 2, (pi::ﬁR(tg);e) D and pass it to the semantics. Moreover,
Environmental MetaML reduces !(v!) to the initial configuration ¢ 7, (pi‘fg;;e) » where the variable set 2~
contains the variables in the current configuration being evaluated and in its surrounding context. Envir-
onmental MetaML models environments as partial functions from variables to denotable terms and needs
collecting all variables that exist in the program for the initial configurations.

We propose to model environments as total functions from variables to denotable terms with the re-

striction that only a finite number of variables do not map to themselves, which we call finitary functions.

111

7.2. Limitations and Future Work

There are several reasons that finitary functions are suitable for modelling environments in Environmental
MetaML. First of all, this model eliminates the extra ad-hoc step of collecting all variables that exist in the
program for the initial configurations. The initial meta-environment in an initial configuration is simply the
singleton list containing the identity environment. Secondly, this model captures the possibility of comput-
ing with open terms while preserving the finitary character of any environment that may arise during real
computation. Thirdly, this model still allows us to reason by induction on non-identical mappings of envir-
onments. Fourthly, this model allows separating the computer representation (i.e., a finite list of mappings)
from the mathematical model (i.e., a finitary function). We conjecture that changing how environments are

modelled in Environmental MetaML will not cause fundamental problems in developing the MEK machine.

Machine-checked Proofs. All proofs of the thesis are handwritten, which we believe are error-prone. We

may utilise the proof assistants [BC04, BDN0O9] to check our proofs mechanically.
Abstract Interpretation of MEK Machine. The reason that we developed the MEK machine is to apply

a general-purpose framework of developing static analysis [VHM12] to it. With the help of the framework,

it is expected that we are able to get a sound and decidable control flow analysis for MetaML.

112

Bibliography

[ACCL91] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy, Explicit substitutions, Journal of func-

[BCO4]

[BDNO9]

[Cur85]

[FF86]

[FFF09]

[FHO2]

[JGS93]

[Kah87]

[Kle52]

[Lan64]

[Lan66]

[Mail2]

tional programming 1 (1991), no. 04, 375-416.

Yves Bertot and Pierre Casteran, Interactive theorem proving and program development, Spring-
erVerlag, 2004.

Ana Bove, Peter Dybjer, and Ulf Norell, A brief overview of agda—a functional language with de-
pendent types, International Conference on Theorem Proving in Higher Order Logics, Springer,
2009, pp. 73-78.

P. L. Curien, Categorical combinatory logic, pp. 130-139, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1985.

Matthias Felleisen and Daniel P Friedman, Control operators, the secd-machine, and the -

calculus, Indiana University, Computer Science Department, 1986.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt, Semantics engineering with plt
redex, The MIT Press, 2009.

Matthias Felleisen and Robert Hieb, The revised report on the syntactic theories of sequential

control and state, Theoretical computer science 103 (1992), no. 2, 235-271.

Neil D Jones, Carsten K Gomard, and Peter Sestoft, Partial evaluation and automatic program

generation, Peter Sestoft, 1993.
G. Kahn, Natural semantics, pp. 22-39, Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.

S.C. Kleene, Introduction to metamathematics, Bibliotheca Mathematica, Wolters-Noordhoff,
1952.

Peter J Landin, The mechanical evaluation of expressions, The Computer Journal 6 (1964), no. 4,
308-320.

, The next 700 programming languages, Communications of the ACM 9 (1966), no. 3,
157-166.

Geoffrey Mainland, Explicitly heterogeneous metaprogramming with metahaskell, ACM SIG-
PLAN Notices, vol. 47, ACM, 2012, pp. 311-322.

113

[NRO4]

[Plo81]

[PS12]

[Ros96]

[Sanl1]

[She98]

[SheO1]

[Tah99a]

[Tah99b]

[TahO4]

[TS97]

[VHM12]

[WRIT09]

Gregory Neverov and Paul Roe, Metaphor: A multi-stage, object-oriented programming lan-

guage, pp. 168—185, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
Gordon D Plotkin, A structural approach to operational semantics.

Damien Pous and Davide Sangiorgi, Enhancements of the bisimulation proof method, Advanced

Topics in Bisimulation and Coinduction (2012).

Kristoffer Hggsbro Rose, Explicit substitution: tutorial & survey, Computer Science Depart-
ment, 1996.

Davide Sangiorgi, Introduction to bisimulation and coinduction, Cambridge University Press,
New York, NY, USA, 2011.

Tim Sheard, Using metaml: A staged programming language, Advanced Functional Program-

ming, Springer, 1998, pp. 207-239.

, Accomplishments and research challenges in meta-programming, pp. 2—44, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

Walid Taha, Multi-stage programming: Its theory and applications, Ph.D. thesis, Oregon Gradu-
ate Institute of Science and Technology, 1999.

, A sound reduction semantics for untyped cbn mutli-stage computation. or, the theory
of metaml is non-trival, ACM SIGPLAN Notices 34 (1999), no. 11, 34-43.

, A gentle introduction to multi-stage programming, Domain-Specific Program Genera-
tion, Springer, 2004, pp. 30-50.

Walid Taha and Tim Sheard, Multi-stage programming with explicit annotations, ACM SIG-
PLAN Notices, vol. 32, ACM, 1997, pp. 203-217.

David Van Horn and Matthew Might, Systematic abstraction of abstract machines, Journal of
Functional Programming 22 (2012), no. 4-5, 705-746.

Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif, and Walid Taha,
Multi-stage programming for mainstream languages, Tech. report, Technical Report TR09-02,
Rice University, 2009.

114

Appendix A

Proofs of Chapter 2

A.1 [Equivalence of Substitutional Natural Semantics and Substitutional

Structural Operational Semantics of MetaML

We demonstrate the equivalence of the substitutional natural semantics and the substitutional structural

operational semantics of MetaML.
Lemma 198.
1 Ife D pep Ao it —— 20D A g8,
2. Ifth, —*tl, thent) £ —* 11, 15,
3. Ifthy —* 1, then Vi th —* Vi 1),
4. Ift, —* 15, then 1t} —*11s.
5. IFEFT s D) (L hep (p1y i (g1
6. Ifti —* 1, then ~ti —*0+1) ~gh,
7. Ifth, —M 1y, thent) | + 1 —* 1, +1).
8. Ifth, —*th, then v +15, —* Vi +15,.
Proof. We proceed by cases.
1. Suppose the length of 1! —*(1) 4+l jg j ¢ N. By induction on j.

(a) (j=0). Thenri™ =t1 By (refl), Ax.tit!h —* () Ay git1,

(b) Suppose i1 —— U ¢l (D) 4+l By the induction hypothesis, Ax.ri™! —*(+1)
Axtil Given #iT! — 1 51 by (lambda-(i+1)), Ax.t{]! —™1 Ax.£i"!. By (step) and (trans),
Axaith D) 2t

2. Suppose the length of t{; —* ¢/, is j € N. By induction on j.

(a) (j=0). Thenri, =1i,. By (refl), ¢}, t5 —* 1}, 15
(b) Suppose t{l — O ti“ — (D) t{z. By the induction hypothesis, til té —¥i till té'. Given

t{ll —f t{2, by (appL-i), t{” té' —f t{z té. By (step) and (trans), t{l té' ¥ t{z té.

115

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

98]

. Analogous to Case 2.
4. Suppose the length of i —* £} is j € N. By induction on .

(@) (j=0). Thenri =1¢. By (refl), Iri —*11].

(b) Suppose i — ()@ 1 —(0 t,. By the induction hypothesis, !t} —*/1ti,. Given ¢}, —' 1},
by (run-i), !t{1 —>i!t§. By (step) and (trans), !t{ —>*i!t§.

5. Analogous to Case 4.
6. Analogous to Case 4.
7. Analogous to Case 2.

8. Analogous to Case 3.

Theorem 199. —* admits every rule from |'.

1. Ax.t® —9 Ax.10.
2. Ift{url —yx(irD) vé“, then ?Lx.t{“ oy x(iHD) lx.vé“.
3. Ift? —*0 /lx.t?l, tg —*0 vg, and t?l [vg/x] ——*00 then t? tg —x0,,0,
4. Ift{ i v’i and té ¥ vé, then t{ té ¥ v’i vé.
5. 01) —0 (vhy and vi —70V, then 1) —019.
6. Ifti —* i then 1F —* i,
7. Qf e i) it ey (1) 4 (i1,
8. Ift" —0 (WY, then ~t0 —*1 yl,
9. Iftt —* Vi, then ~t' —*+1) i,
10. x —*HD) i,
11. n —*n.
12. Ift? —*0p, tg —*0 ny, and n = ny + ny, then t? —i—tg — 0.
13. Ift{ N v’i and té —y¥ vé, then t{ —|—t£ ¥ vi1 —}—Vé.
Proof. We proceed by cases.

1. By (refl), Ax.t% —*9 Ax.10.

116

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

2. By Lemma 198 Case 1.

3. By Case 4, 1) 1) —*0 (Ax.t9)) v3. By (app-0), (Ax.t9,) V9 — 9, 19/x]. By (step), (Ax.t)|) v) —*0
19, [V9/x]. Together with £, 19 /x] —** 10, by (trans), £9) —*0 0.

4. By Lemma 198 Case 2, t{ té i v’i té. By Lemma 198 Case 3, v’i té —¥i v’i vé. By (trans), t{ té —¥i
Vi vh.

5. By Case 6, !t) —*1(v1). By (run-0), !(v}) —°vl. By (step), !(v}) —*¥ vl. Together with

1 0,0 0 0,0
vy —v;, by (trans), r] —* v3.

6. By Lemma 198 Case 4.
7. By Lemma 198 Case 5.
8. By Case 9, ~1% —*1 ~(v!). By (splice-1), ~(v') —! v!. By (step) and (trans), ~t® —*! y!,
9. By Lemma 198 Case 6.
10. By (refl), x —*(+1) x,
11. By (refl), n —* n.
12. By Case 13, t? +tg — 0y +ny. By (plus-0), ny +no —0n. By (step) and (trans), t? +tg —0 .

13. By Lemma 198 Case 7, 1! +t§ — v’i +t§. By Lemma 198 Case 8, v} 41, —* v’i +vi,. By (trans),
4t —* v v

O]

We demonstrate the soundness of the substitutional structural operational semantics with respect to the

substitutional natural semantics of MetaML.

Corollary 200 (Soundness of Substitutional Structural Operational Semantics w.r.t Substitutional Natural

Semantics). Ift' |}' v thent' —* i,

Proof. We proceed by induction on the derivation of #/ |}/ v/,
Case 1. (lambda-0). By Theorem 199 Case 1.

Case 2. (lambda-(i+1)). By Theorem 199 Case 2.

Case 3. (app-0). By Theorem 199 Case 3.

Case 4. (app-(i+1)). By Theorem 199 Case 4.

Case 5. (run-0). By Theorem 199 Case 5.

Case 6. (run-(i+1)). By Theorem 199 Case 6.

117

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

Case 7. (code-i). By Theorem 199 Case 7.
Case 8. (splice-1). By Theorem 199 Case 8.
Case 9. (splice-(i+2)). By Theorem 199 Case 9.
Case 10. (ref-(i+1)). By Theorem 199 Case 10.
Case 11. (num-i). By Theorem 199 Case 11.
Case 12. (plus-0). By Theorem 199 Case 12.

Case 13. (plus-(i+1)). By Theorem 199 Case 13.

Theorem 201.
1. If Ax.t; —* vy, then either

(a) i=0andv, = Ax.t; ; or
(b) i=(+1)>01 —x(+1) véirl, and vy = lx.véirl.
2. Ifti to —*' v, then t; —* v’i, ty —*¥ vé, and either
(a) i=0, v(l) = lx.t?l, and t?l [vg/x] —* 0y or
(b) i=(+1)>0, v:v{H véﬂ.
3. If 'ty —* vy, then t; —* v’i, and either
(a) i=0,=(v},), and v, —*vy; or
(b) i=(j+1)>0 and vy =",
4. If (t) —*" vy, then t; —yx(it1) v"lH, and v, = <v’i+1>.
5. If ~1 —* vy, then i = (j+1)>01 % v{, and either
(a) j=0,V"=(}), andv, =v},; or
(b) j=(k+1)>0,and vy = ~A".
6. If x —* v, theni= (j+1) >0, and v = x.
7. Ifn —*) thenv = n.
8 Ifty +to —* v, then t; —* v’i, ty —* vé, and either

(a) i=0, v(l) =ny, vg =ny, and v = ny +ny; or

118

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

(b) i=(j+1)>0,v=vi"" 4"
Proof. We proceed by cases.
1. We proceed by cases on i.

(a) (i =0). Then, Ax.tr; € VALUE?, and Ax.t; A—°. By (refl), v, = ?Lx.t?.
(b) (i=(j+1) > 0). Suppose the length of Ax.t; —*U+1 v, is k € N. By induction on k.

i. (k=0). Then, v, = Ax.t;, and ; € VALUE'"!. By (refl), t; —*UtD 1.
ii. Suppose Ax.t; — MUY g, KU+ y, Proceed by cases on Ax.t; —s/*1 #,. The only
case is (lambda-(i+1)). Then, r; —/*! 151, and 1, = Ax.t2;. Given Ax.ty; — KU

by the induction hypothesis, r,; —*(+1) g and v, = lx.vélﬂ. By (step) and (trans),

f —*Uth vé_lH.
2. Suppose t; does not multi-step to a value. Then, (appL-i) is the only rule that is applicable, and it
keeps applying, in which case #; #, can never multi-step to v. Hence, #; has to multi-step to a value,

LI

ie.,t; —* v1 Analogously, #, has to multi-step to a value, i.e., f» —¥ v2 We have 11 1, —*' v} v2

We proceed by cases on i.

(a) (i=0). Assume) # Ax.t),. Then, V) v /=0 and v) v) & VALUE®. We gett; rp —*01919 /=0
v, which contradicts with 7; , —*? v. Hence, v(l) = lx.t?l.

Given W19 = (Ax.t),) V9, (app-0) is the only rule that is applicable. By (app-0), (Ax.t);) v —°

19, 09/x]. Given (Ax.t%,) V9 —*% v, by the determinism of the language, %, [/x] —*0 v.

(b) (i=(j+1)>0). Then /"' V)™ e VALUE/ ! v = v T p]H

3. Suppose t; does not multi-step to a value. Then, (run-i) is the only rule that is applicable, and it keeps
applying, in which case !#; can never multi-step to v,. Hence, #; has to multi-step to a value, i.e.,

ti —* vi. We proceed by cases on i.

(a) (i =0). Assume Y # (vl,). Then, W) /=0 and W) & VALUE®. We get !} —* 1) /=0y,
which contradicts with Ity —* v,. Hence, v{ = (v],).
Given WY —'<v11> (run-0) is the only rule that is applicable. By (run-0), !(v},) —°v1,. Given
.<v11) —* 0y, by the determinism of the language, v11 —*0y,

(b) (i= (j+ 1) > 0). Then, 'v]+1 € VALUE/ !, V) :!V{Jrl.

4. Suppose t; does not multi-step to a value. Then, (code-i) is the only rule that is applicable, and it
keeps applying, in which case (¢;) can never multi-step to v,. Hence, #; has to multi-step to a value,
ie., t; —* D i Then, (Vi) € VALUE'. vy = (vi™1).

5. Analogous to Case 3.
6. By (refl), x —*Ut) x. x € VALUE/ ! v = .

119

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

7. By (refl), n —* n.n € VALUE'. v =n.

8. Analogous to Case 2.

O]

We demonstrate the completeness of the substitutional structural operational semantics with respect to

the substitutional natural semantics of MetaML.

Corollary 202 (Completeness of Substitutional Structural Operational Semantics w.r.t Substitutional Nat-
ural Semantics). Ift' —* Vi then t' |J' V.

Proof. We proceed by the structure of #/ € TERM' and by induction on the size of derivation of £/ —*/ V.

Case 1. (' =x). By Theorem 201, i = (j+ 1) > 0, and v = x. By (ref-(i+1)), x |,/ *! x
Case2. (t'= t{ té). By Theorem 201, t{ N v"l, té — ¥ vé, and either

e i=0,09=AxtY, and), V9 /x] —*9%; or
o i=(j+1)>0vT = v{“ vé“.
Given #i —* v\ and £, —* vi,, by the induction hypothesis, ¢} |}’ v} and #} |/ v,. Proceed by
cases on i.
Casei. (i=0). Obviously the derivation of 0, [/x] —*° ¥ is smaller than that of £{ £ —*°
0. By the induction hypothesis, 2, [9/x] 1*9 1. Together with £ {° Ax.{; and
19 1949, by (app-0),) £9 1919°.
Caseii. (i=(j+1)>0). leentﬁ“lli”1 jtl andt’“ | RARRYA 7+ by (app-(i+1)), th JH Yl

Jj+1 JH
Vi V.

Case 3. (t' = Ax.t}). By Theorem 201, either
° iannde:lx.t?;or
o i=(j+1)>0,6"" — U and vt = Axw]
Proceed by cases on i.

Casei. (i =0). By (lambda-0), Ax.t) | Ax.t).

Caseii. (i= (j+1) > 0). By the induction hypothesis, tlj+l l}j“ JrL By (lambda-(i+1)),
),x.t{+l Yt lx.vé”.

Case 4. (t' = (i*1)). By Theorem 201, i1 —*(+1) i1 and v/ = (yi*1). By the induction hypothesis,
+1 w+1 i+1 By (code 1) <z+1> Uz+1 < z+l>

Case 5. @(t't!= Nt{). By Theorem 201, t{ —¥ v’i, and either

120

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

1. i=0, v(l) = <v}1>, and v! = Vh; or
2. i=(j+1)>0,and v = NV{-H.
Given #; —*' v\, by the induction hypothesis, #| |/ v}. Proceed by cases on i.

Casei. (i=0). Givent) |} (v],), by (splice-1), ~? {1 v1,.
Caseii. (i=(j+1)>0). By (splice-(i+2)), ~r/ T Ji+2 s/t

Case 6. (t' =!t}). Analogous to Case 5.
Case7. (t' =n). By Theorem 201, v/ = n. By (num-i), n |}/ n.
Case8. (t'= t{ + té). Analogous to Case 2.
O

We demonstrate the soundness and completeness of the substitutional structural operational semantics

with respect to the substitutional natural semantics of MetaML.

Theorem 203 (Soundness and Completeness of Substitutional Structural Operational Semantics w.r.t Sub-

stitutional Natural Semantics). For any i € N, t' ||\ v/ if and only if t —* V.
Proof. 1t directly follows Corollaries 200 and 202. O
We prove the Kleene equality of evaluators evalyieamr:subNat (7) and evalyietamr:subsos (7)-

Theorem 204 (Kleene Equality of Evaluators). For any t € PRGMpeaML, €ValMetaMmL:SubNat(?) is Kleene

equal to evalyieamL:subsos (1)-

Proof. For any t € PRGMpetamr, by Theorem 203, 10 UO W if and only if 10 —5+0,0

We first show if evalyeramr:subNat (f) = @ where a € ANSpeML, then evalyieamr -subsos (1) = a.

0 0
Case 1. If evalyeramr -subNat (f) = function, then ¢ % Ax.t". Thent —% Ax.t".

We have evalyeramr:subsos (f) = function.

Case 2. If evalyieiamr:subNat () = code, then ¢ |10 (v!). Then t —0* (v1).

We have evalyeramr:subsos (f) = code.

Case 3. If evalyieramr subNat () = 7, then ¢ |° n. Then t —% n,

We have evalyetamL:subsos (t) = 1.
We then show if evalpetaML:SubsOS (l‘) = a where a € ANSMetaML, then evalMetaML:SubNat(t) =a.

0 0
Case 1. If evalyeramr subsos () = function, then t —% Ax.t". Then ¢ || Ax.t”.

We have evalMetaML:SubNat(t) = function.

121

A.l. Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

Case 2. If evalyieramr:subsos (t) = code, then t —%* (v1). Then ¢ ||° (v1).

‘We have evalMetaML:SubNat(t) = code.

Case 3. If evalyetaMr.:SubSOS (l‘) =n, then t —9% . Then ¢ Uzo n.

We have evalyetamr:subNat (f) = 7.

We observe that evalyieramr:subNat (7) s undefined if and only if evalyeramr:subsos () is undefined. Therefore,

evalMetaML; SubNat(t) is Kleene equal to evalMetaML;subsos (l) Il

122

Appendix B

Proofs of Chapter 3

B.1 Equivalence of ISWIM and Explicit ISWIM

We demonstrate the equivalence of the substitutional structural operational semantics of ISWIM and the
structural operational semantics of Explicit ISWIM. We use subscripts “syp” and “exp” to differentiate the
syntax of (Substitutional) ISWIM from the syntax of Explicit ISWIM.

B.1.1 Bisimulation Relation

We first introduce a bisimulation relation that relates (Substitutional) ISWIM terms to Explicit ISWIM

terms.

Definition 205 (Bisimulation Relation). Define the bisimulation relation ~ to be a binary relation up to alpha

equivalence between the set of terms in (Substitutional) ISWIM and the set of terms in Explicit ISWIM.

~ C TERMgyp X TERMeyp

ta, =ty tay =1, la ™1 .
——— (var-sim app-sim (lam-sim)
x=x) tay tay ™, th, (app) (Ax.ty) >~ (Ax.tp)
tay X1y, gy =1p, ta >ty We>=wp)
——— (num-sim lus-sim - (subst-sim)
nap (num-sim) lay Flay > 1y, +1p, (P) ta|Wa /x| > tpx := wp)

Remark 206. We explain each rule of the relation as follows.

(var-sim) A variable x from (Substitutional) ISWIM relates to the same variable x from Explicit ISWIM.

(app-sim) An application t,, t,, from (Substitutional) ISWIM and an application #;, #5, from Explicit ISWIM

are related, if their operators f,, and #;, are related, and their operands #,, and #;, are related.

(lam-sim) A lambda abstraction Ax.z, from (Substitutional) ISWIM and a lambda abstraction Ax.f;, from
Explicit ISWIM with the same bound variable are related, if their bodies #, and #, are related.

(num-sim) A natural number n from (Substitutional) ISWIM relates to the same natural number n from
Explicit ISWIM.

(plus-sim) An addition of terms #,, +1,, from (Substitutional) ISWIM and an addition of terms #;, +1,, from
Explicit ISWIM are related, if their first operands #,, and 1, are related, and their second operands #,,

and 7, are related.

123

B.1. Equivalence of ISWIM and Explicit ISWIM

(subst-sim) A term surrounded by a substitution #,[w, /x| from (Substitutional) ISWIM and a term surroun-
ded by an explicit substitution [x := wj] from Explicit ISWIM are related, if the terms 7, and 7, are

related, and the denotable terms w, and w;, are related.

Remark 207. The bisimulation relation ~ is up to alpha equivalence. We immediately have: (1) if 7, ~ 1,
and t,, ~q t,, thent,, ~ 15, and (2) if t, >~ 1, and t}, ~¢ 1}, thent, ~13,.
B.1.2 Unload Function

We define U (¢) to unload an Explicit ISWIM term 7 to (Substitutional) ISWIM.

Definition 208 (Unload Function). Define the unloading function U to be a total function from the set of
terms in Explicit ISWIM to the set of terms in (Substitutional) ISWIM.

U : TERMexp — TERMgyp
Ux) = x
U(tl 2‘2) = U(l‘])U(l‘z)
UAxt) = Ax.U(t)
Un) = n
U(ll—l—lz) = U(l‘l)—l-U(l‘z)
Ulli=w]) = U@UW)/A

Lemma 209 (Equality of Related Terms w.r.t. Unload Function). Ift, ~ ty, thent, = U(t).

Proof. We proceed by structural induction on #, >~ ;.

Case 1. (var-sim). Then, 7, = t, = x. We immediately get x = U (x).

Case?2. (app-sim). Then, t, =1, t,, and 1, =1, t,, where t,, >~ 1, and #,, ~ t;,. By the induction
hypothesis, t,, = U(ty,) and t,, = U(tp,). Hence U (tp, tp,) = U(tp,) U(tp,) = ta, ta,-

Case 3. (lam-sim). Then, 7, = Ax.ty, and 1, = Ax.t, where t, > 1p,,. By the induction hypothesis, 75, =
U(tp,). Hence U (Ax.tp,) = Ax.U(tp,) = Ax.tp,.

Case 4. (num-sim). Then, #, = 1, = n. We immediately get U (n) = n.

Case 5. (plus-sim). Then, t, = t,, +1,, and t, = t,, +1;, where t,, ~ 1, and t,, >~ ,,. By the induction
hypothesis, 7, = U(tp,) and t,, = U(tp,). Hence U (tp, +1t5,) = U(tp,) + U(tp,) = ta, +1a,.

Case 6. (subst-sim). Then, 1, =t,,[wg, /x| and t, = 1p,, [x := wy, | Where t,, >~ 1, and w,, >~ w;,. By the in-
duction hypothesis, t,, = U (1,) and w,, = U (wp,). Hence U (1, [x :==wp,) = U (1,) [U (wp,) /x] =

lay [Wm /]

124

B.1. Equivalence of ISWIM and Explicit ISWIM

B.1.3 Substitution Normal Form

In Explicit ISWIM, the terms that cannot perform single-step substitution reduction are in substitution nor-

mal form.

Definition 210 (Substitution Normal Form). A term ¢ € TERMeyp, is in substitution normal form if and only
if t /=%,
Remark 211. We use s with or without any subscript or superscript as a metavariable to range over the set

of terms of Explicit ISWIM in substitution normal form.

Remark 212. An Explicit ISWIM term in substitution normal form is not necessarily in the normal form
with respect to the single-step relation —. For example, (Ax.t) v is in substitution normal form but is not

in the normal form with respect to the single-step relation —.
Lemma 213. Ift, >t [x := wy,], then tp,, —** sp,, sp, [x := wp,]| —** s, and t, >~ sp,.

Proof. We proceed by structural induction on t, >~ 1, [x := wy,]. Only (subst-sim) applies. Let 7, = 1,4, [wq, /x]

and we have

fgg = 1p, Wqy X Wp,

lay [Wal /x] ~1p, [x = Wb|]’
We proceed by cases on #,, € TERMgyp.

Case 1. (t;, = x) We have

XX0p W =Wy

X[Wa, [x] 2 tp, [x 1= wp,]

Then, x[wg, /x] = w,,. We proceed by cases on x =~ 1, .

Casei. (var-sim). Let 7, = x. Then, x —** x, x[x 1= wp,,| —* wp,,, and w,, >~ wp,.

Caseii. (subst-sim). Let t,, = 13, [x1 := wp,,]. Given x > t;,, [x] := wp,,], by the induction
hypothesis, we have 1,,, —** sp,,,, 8p,, [x1 :=wp,, | —*" 5p,, and x ~ s, ,. We proceed
by cases on x ~ s5,. The only case is (var-sim), so let s, = x. Then, #,, —*" x,

x[x = wp,] —* wp,, and wy, > wp,.

Case2. (ty = xo and xo # x). We have

Xo = 1p Way = Wp,

X0[Wa, /X] = tp, [x 1= wp,]

Then, xo[wq, /x] = x9. We proceed by cases on xp >~ 1,
Casei. (var-sim). Let ,, = xo. Then, xo —** xg, xo[x := wj, | —* x0, and x¢ =~ xp.

125

B.1. Equivalence of ISWIM and Explicit ISWIM

Case ii. (subst-sim). Let #,, =1, [x1 := wp,,]. Given xo 2 t,, [x1 := wy,,], by the induction hy-
pothesis, we have t,,, —** sp,,, $p,, [X1 1= Wp,] —** 5p,,, and xp =~ 5p,,,. We proceed
by cases on xp >~ s5,,. The only case is (var-sim), so let sp,, = xo. Then, 1,, —** xo,

Xo[x := wp,] —** x0, and by (var-sim) xp = xo.

Case 3. (tg, = (ta,, tay,)). We have

(tan talz) iy Wa = Wp

(tall taIZ)[WaI /X] = 1p, [x = Wbl]‘

Then, (t4,, tay,) [Wa, /X] = (tay, [Wa, /X]) (tay,[Wa, /x]). We proceed by cases on (1,4, ta,,) > tp, .

Casei. (app-sim). Lett,, = (ty,, tp,,) Where t,,, ~1p,, and t,,, ~1,,. We have (5, tp,,) —**
(tpy, thy,) and (tp,, tp,,)[X := wp, | —* (tp,, [x := wp,]) (tp,,[x := wp,]). By (subst-sim)
and (app-sim), we get (tq,, [Wa, /X)) (tay, [Wa, /%)) =2 (t,, [x 1= W,]) (tpy, [x := wp,]).

Caseii. (subst-sim). Let tp, = tp, [x1 := wp,,]. Given (t,, ta,) = tp,, [X1 := Wp,,], by the in-
duction hypothesis, we have t,,, —** sp,, Sp,, [X1 := Wp,,| —>*" $p,,, and (14, ta,,) =
Sp,,- We proceed by cases on (4, ta,,) = sp,. The only case is (app-sim), so let
Sbyy, = (tpysy thyy,) Where 4, > tp,, and t4, >~ tp,,,. Then, t,, —** (tp,,, tp,,,) and
(Thyay toyy) X := Wi, | =% (tpy, [X := Wi,]) (b5, [¥ := Wp,]). By (subst-sim) and (app-

sim), we get (tau [Wal /x]) (talz [thl /x]) = (tbm [x = Wle (tbm [x = Wbl])'

Case 4. (ty, = Axo.lq,,). We have

(AXO‘tall) iy Way =W

(Ax0-Lay,) [Way /X] 2= 1, [x 1= Wi].

Then, (Axq.ta,,)[Wa, /X] = AX1.Lay, [X1/X0][Wa, /x] Where x| & FV (Axo.tg,,) UFV (wg,) U{x}. We

proceed by cases on (Axg.ty,,) > 1p,.

Casei. (lam-sim). Let 1, = Axo.tp,, Where t,, ~1,,,. We have Axo.t,,, —** Ax¢.1p,, and
(Axo.tp,) [x 1= wp, | —* Axa.tp,, [x0 :=x2][x := wp, | Wwhere xo & FV (Axo.tp,,) UFV (wp,)U
{x}.
Let x3 ¢ FV(Axq.tg,,) UFV (wg,) UFV (Axo.tp,,) UFV (wp,) U{x}, then by the defin-
ition of o-equivalence, we get Axy.ty,, [x1/X0][Wa, /X] ~a AX3.t4,,[X3/x0][Wa, /X] and
Axp.tp,, [X0 == x2][x 1= Wi, | ~q Axz.tp,, [X0 1= x3][x 1= wp,]
By (lam-sim) and (subst-sim), we get Ax3.t4,, [x3/X0][Wq, /X] = Ax3.1p,, [X0 := x3][x :=

wp, . Hence we have Ax;.t,,, [x1 /x0][Wa, /X] 22 Axa.1p,, [X0 1= X2][x := wp,]

Caseii. (subst-sim). Let 1, = 13, [x1 := wp,,]. Given Axg.ty,, > 1, [x1 := wp,,], by the induc-
tion hypothesis, we have t,,, —** sp,,, Sp,, [X1 := Wp,, | —** 5p,,, and Axg.t4,, = Sp,,.

We proceed by cases on (Axg.t411) = sp12. The only case is (lam-sim), so let sp,,, =

126

B.1. Equivalence of ISWIM and Explicit ISWIM

Case 5.

Case 6.

Axo.tp,,, Where t,, >~ tp,,,. We have t,, —** Axq.tp,,, and (Axo.tp,,,)[x := wp, | —*
Axp 1y, [X0 := x2][x := wp, | where x; ¢ FV (Axg.tp,,,) UFV (wp,) U{x}.

Let x3 & FV(Axo.tg,,) UFV (wg,) UFV (Axo.tp,,,) UFV (wp,) U{x}, then by the defin-
ition of at-equivalence, we get Axj.tq,, [X1/X0][Wa, /X] ~a AX3.14,,[x3/X0][Wa, /x] and
Axa.ty,,, [X0 i= x2][x i= wp, | ~a AX3.1p,,, [X0 1= x3][x 1= wp,]

By (lam-sim) and (subst-sim), we get Ax3.t4,, [x3/x0]|[Wq, /X] =2 Ax3.1p,,, [X0 := x3][x :=

wp, |. Hence we have Ax;.1,,, [x1/X0][Wa, /X] = Ax).1p,,, [X0 1= x2][x := wp,].

(ts, = n). We have

nX~fp Wq X Wp

n[wg, /x| > tp, [x 1= wp,].

Then, nw,, /x| = n. We proceed by cases on n >~ 1y, .

Case 1.

Case ii.

(num-sim). Let #,, = n. We have n —** n, n[x 1= wy,] —* nand n ~ n.

(subst-sim). Let #,, = 15, [x1 := wp,,|. Given n >~ 1, [x; := wp,,], by the induction hy-
pothesis, we have t,,, —*" s,,, Sp,, [X1 := Wp,,] —** sp,,, and n >~ s, ,. We proceed
by cases on n >~ sp,,,. The only case is (num-sim), so let s, = n. We have 1, —** n,

n[x :=wp,] —** n and by (num-sim) n ~ n.

(ta; =ta,, +14,,). We have

layy Tlay, =1y, Way = Wp,

(tall +talz)[wd| /X] = 1p, [x = Wbl}‘

Then, (t4,, +1a),) Wa, /X] = tay, [Wa, /X] +tay, [Wa, /x]. We proceed by cases on t4,, + 14, > 1p,.

Case 1.

Case ii.

(plus-sim). Lett,, =15, +1p,, Where t,,, ~1p,,, and t,,, ~1,,,. We have ;| +1,,, —**
tpy, thy, and (1, 15,) [X = wp, | — 1, [x 1= wp, | + 15, [x := wp,]. By (subst-sim) and
(plus-sim), we get 1y, [Wa, /X] + 10y, [Wa, /X] 22 1y, [1= Wi, | 15, [x 1= wp,]

(subst-sim). Let t, = tp,,[x1 1= wp,,]. Given t4,, +14, > 1, [x1 := wp,,], by the in-
duction hypothesis, we have t,,, —** sp,,, $p,, [X1 := Wp,,| —** 5p,,, and 14, +14,, >
Sp,- We proceed by cases on 14, +14, ~ 5p,,. The only case is (plus-sim), so let
Shy, = by, + b, Where t,, ~1,, and t,, ~1t,,. Then, t,, —** 1, +1,, and
(thyyy F1b1my) [X := Wi | =% 1y, [x 1= Wp, | + 1, [X := wp,]. By (subst-sim) and (plus-

sim), we get lay [Wdl/x] +lap, [Wal /x] = tpyy, [x = Wbl] + b1 [x = Wbl]’

127

B.1. Equivalence of ISWIM and Explicit ISWIM

B.1.4 Canonisation

Given two related terms, if one term is a value, then the other term is a value or multi-steps to a value. We

have the following two lemmas.
Lemma 214 (Canonisation of (Substitutional) ISWIM). Ift,, ~ vy, then t,, € VALUEgyp.

Proof. We proceed by structural induction on #,, ~ vj,.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). This case is vacuous.

Case 3. (lam-sim). Let#,, = Ax.ty,, and vy, = Ax.t,,, where t,,, ~1,,. We have Ax.t,;, € VALUEg.
Case 4. (num-sim). Let?,, = v;, = n. We have n € VALUEg,.

Case 5. (plus-sim). This case is vacuous.

Case 6. (subst-sim). This case is vacuous.

Lemma 215 (Canonisation of Explicit ISWIM). If v, >~ 1y, then t,, —" vy, and vy, >~ vp,.

Proof. We proceed by structural induction on v,, ~t5,.

Case 1. (var-sim). This case is vacuous.
Case 2. (app-sim). This case is vacuous.

Case 3. (lam-sim). Let v, = Ax.t,, and t,, = Ax.t,,, Where 1, =~ 1,,,. We have Ax.t,,, —* Ax.tp,,
Ax.tp,, € VALUEeyp and vy, ~ AX 1, .

Case 4. (num-sim). Let v, =1, =n. We have n —* n, n € VALUEyp, and v,, >~ n.
Case 5. (plus-sim). This case is vacuous.

Case 6. (subst-sim). Let v, = t4,,[Wq, /x| and 1, = 15, [x := wp,| where 1., >~ tp,, and w,, ~ wp, . By
Lemma 213, we get tp,, [x := wp,| —* sp,, and t4,, [Wq, /x| =~ 55,,. We proceed by cases on

lay [Wal /x] = Sy,

Casei. (var-sim). This case is vacuous.
Case ii. (app-sim). This case is vacuous.

Case iii. (lam-sim). Let #,,, [wg, /x] = Ax;.1,,,, and sp,, = Ax;.15,,, Where t,,,, ~1,,,. We have

Iy, [x = Wbl] —* 7LX1.tbm, Axy Ip121 € VALUEexp and Va, = 7L)C1.tbm .

128

B.1. Equivalence of ISWIM and Explicit ISWIM

Case iv.

Case v.

Case vi.

num-sim). Let ¢, [w,, /x| = sp,, = n. We have t5, [x ;= wp, | —* n, n € VALUEg
11 1 12 11 1 p

and v, ~n.
(plus-sim). This case is vacuous.

(subst-sim). This case is vacuous.

B.1.5 Explicit Substitution Descendant Relation

We define the explicit substitution descendant relation and show its well-foundedness. As a result, we can

do induction on explicit substitution descendants.

Definition 216 (Explicit Substitution Descendant Relation). For any 71,7, € TERMexp, 11 <* 1, if and only if

ty —* t1. We call <* the explicit substitution descendant relation.

Definition 217 (Weight Function). For any t € TERM.yy, its weight is W (r) where W is a function defined

as follows.

W @ TERMeyp —> Z7

Wix) = 1
W(tit) = W()+W(n)+1

W(Axt) = 1

W(n) = 1
W(ti+r) = Wt)+W()+1

W(tx:=w]) = W@)-(Ww)+1)

Lemma 218 (Substitution reduction decreases weight.). For any ti,to € TERMeyyp, if t} —* 1o, then W (1) <

W(l‘]).

Proof. We proceed by structural induction on t; —* 1;.

Case 1. (var-eq-subst). Let 7] = x[x := w]

2 =w. Then, W (x[x:=w]) =W (x)- (W(w)+1) =W (w)+

and ¢
1. We have W (w) < W(w) + 1 = W (x[x := w]).

Case 2. (var-dif-subst). Let r; = xj[x; := w] and t, = x; where x| Z xp. Then, W (x[x; :=w]) = W(xy) -
(Ww)+1)=W(w)+1. Wehave W(x;) =1 < W(w)+ 1 =W (x1[x2 := w]).

Case 3. (num-subst). Lett; =n[x:=w|and t; = n. Then, W (n[x:=w]) =W (n)-(W(w)+1)=W(w)+1.
We have W(n) =1 <W(w)+1=W(n[x:=w)).

Case 4. (app-subst). Let 1; = (t11112)[x :== w] and 1, = (¢;1[x := w]) (t12[x := w]). Then, W(rj;[x :=
w]tip[x:=w]) = W(t[x :=w)) +W(nzlx:=w])+1=W(r1) - (Ww)+ 1)+ W(t2) (W(w)+
1) +1= (W(t]l) +W(l‘12)) . (W(W) + 1) + 1 and W((l‘]] t]z)[x = W]) = W(l‘]] t]z) . (W(W) +

129

B.1. Equivalence of ISWIM and Explicit ISWIM

1) = W(tn)+W(tz2)+1)-(Ww)+1) = (W(t1) +W(t2)) - Ww)+1)+W(w)+ 1. We
have W((t11[x :=w]) (ti2fx :=w)])) = W (t11) +W(t12))- W(w) + 1)+ 1 < (W(t11) +W(t12)) -
(W(W) + 1) +W(W) +1= W((I]] t]z)[x = W])

Case 5. (plus-subst). Let 7; = (t;1 +t12)[x := w] and 1, = 111 [x := w|] +f2[x :== w]). Then, W (z;;[x :
wl+tafei=w]) =W(nilx:=w)) +W(tae:=w) +1=W(n)- (W) + 1) +W(n2) - (W(w)
D4+1=W(t)+W(t2))- (Ww)+ 1)+ 1Land W((t11 +t12)[x :=w]) = W(t11 +t12) - (W (w) +
)= W(tn)+W(n2)+1)-(Ww)+1) = (W(t) +W(n12))- (W(w)+1)+W(w)+ 1. We have
W(ti[x:=wl+tlx=w]) = (W(n1) +W(n2)) - (Ww) + 1) +1 < (W) + W(h2)) - (W(w) +
D+W(w)+1=W((ti +112) [x := w]).

Case 6. (lam-subst). Let t; = (Ax;.t)[xz := w]| and 1, = Ax3.t[x; := x3][x2 := w]| where x3 ¢ FV (Ax;.t)U
FV(w)U{x2}. Then, W((Ax1.t11)[x2 :=w]) = W(Axy.t11) - (W(w) +1) = W(w) + 1. We have
W(Axz.tii[x1 :==x3][x2 :=w]) =1 <W(w)+1=W((Ax1.111) [x2 1= w]).

Case 7. (subst-subst). Lett; =111 [x; := wi][x2 :=wp] and 1, = 121 [x2 := wy] where t1 [x] := wi| —* 1.
By the induction hypothesis, W (t21) < W (t11[x; := wi]). Then, W(t21[x2 := wa]) = W(t1) -
(W(w2)+1) and W (z11 [x1 :=wi][x2 :=wa]) =W (t11[x1 :=w1])- (W (w2)+1). We have W (t2; [x2 :=
wo)=W(ta1)- (W(wa)+1) =W (t21)- (W(w2)+1) <W(t11[x1 :=w1])- (W(wa)+1) =W (t11]x; :=

W]][]Cz = Wz]).
O

Lemma 219 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation <* is well-founded.

Proof. Lemma 218 has proved that if t{ —* 15, then W(t,) < W (z;), for any #,.to € TERMeyp. For any
t € TERMeyp, the length of the descending chain with respect to <* starting from ¢ is bound by W (). Hence,

the explicit substitution descendant relation <* is well-founded. O

B.1.6 Bisimulation

We demonstrate (Substitutional) ISWIM bisimulates Explicit ISWIM. Intuitively, given two related terms,

if one term single-steps, then the other term multi-steps, and the resulting two terms are related.

Lemma 220 (Simulation: Explicit ISWIM simulates (Substitutional) ISWIM.). Ift, ~1t, andt, — t,,,
thent,, —* tp, and t,, >~ 1p,.

Proof. We proceed by induction on the structure of #,, ~ #;,, and by induction on the explicit substitution

descendants <* 1;,, simultaneously.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Lett,, =14, t4, and t,, =1p,, tp,, Wheret, ~ 1, andt,, ~1,,. We proceed by cases

ON ty, — Iy,

130

B.1. Equivalence of ISWIM and Explicit ISWIM

Case 3.

Case 4.

Case 5.

Case 6.

Casei.

Case ii.

Case iii.

(appL). Let t,,, — t4,, and t,, = t4,, t4,,- By the induction hypothesis, t,,, —* 11,
and t4,, >~ tp,,. Then, ;| tp,, —" tp,, tp,, and by (app-sim) t,,, t4,, =~ tp,, tp,,-

(appR). Lett,,, = va,,, tay, — tay, and 1y, = Vg, tay,. Given vy, >~ 1, , by Lemma 215,
tp,, —" vp,, and v4,, > vp,,. By the induction hypothesis, t,,, —" 15, and t4,, >~ 1,,.

Then, t5,, th,, —>" Vb, by, —" Vb, thy, and by (app-sim) vy, ta,, ~ Vi, thy, -

(app). Let t,,, = Ax.ty,,,, ta, = Vay,, and tg, = tq,,,[Va,/X]. Given Ax.ty,, ~tp,,,
by Lemma 215, #,,, —* vp,, and Ax.ty,,, =~ vp,,. Given v, ~1,,, by Lemma 215,
th,, —" Vb, and vq,, > vp,,. We proceed by cases on Ax.t,,,, > vj,,. The only case is
(lam-sim), so let v, = Ax.tp,,, and t,,,, >~ 1p,,,. Then, tp,,, tp,, —" (Ax.tp,,,) tp,, —*
(AX.tpy,,) Vb, — tbyy, [X := Vb,]. By (subst-sim), we get t4,,, [Va,, /X] 2 tp,,, [X := Vb,].

(lam-sim). This case is vacuous.

(num-sim). This case is vacuous.

(plus-sim). Let t,, = t4,, +1t4,, and t,, = tp,,, +1p,, Where t,,, ~1,,, and t,,, ~ t5,,. We proceed by

cases on fy, — tg,.

Case 1.

Case ii.

Case iii.

(plusL). Let t,,, — t4,, and t4, = t4,, +14,,. By the induction hypothesis, t,,, —" t5,,
and 14y, >~ t5,,. Then, t;, +1,, —" tp,, +1p,, and by (plus-sim) to,, +14,, ~ th,, +1p,,-

(plusR). Let t4,, = Vay,s ta, — tay, and ty, = vg,, +14,,. Given v, >~ 1p,,, by Lemma
215, tp,, —" vp,, and vy, >~ vp,,. By the induction hypothesis, f,, —* 1;,, and
tay, ~tpy,. Then, ty, +tp, — i, +1tp,, —" Vp,, +1p,, and by (plus-sim) v, +24,, =
Vb t by,

(plus). Let t,,, = ny, t4,, = n2, and t,, = n where n = n; +ny. Given n; >~ 1t,,, by
Lemma 215, t,, —" v, and ny >~ vy, ,. Given np ~1ty,,, by Lemma 215, t,,, —" vp,,
and np ~ vp,,,. We proceed by cases on ny ~ vp,,,. The only case is (num-sim), so let
vp,, = n1. We proceed by cases on ny ~ vj,,. The only case is (num-sim), so let
Vp, = np. Then, tp,, +1,, —* ny +1tp, —* ny +ny — n where n = n; +ny. By

(num-sim), we get n =~ n.

(subst-sim). Let #,, =t4,,[Wq,, /x] and tp, =15, [x := wp,,| Where t,,, ~15,, and wy,, =~ wp,,. Given

ta, >y, [x :=wp,,], by Lemma 213, 1, [x := wp,,,| —** 5p,, and t,, =~ s,,. Then, sp,, <*15,,. If

ta, — ta,, by the induction hypothesis, s3,, —" 15, and t,, ~ 1,,. We have t,,, —" sp,, —" 1,.

O]

Remark 221. In the last case of the proof, given t,, ~ 1, t,, ~ sp,, and sp,, <* 1, if t,, — 1,,, by the

induction hypothesis, s,,, —* 1, and t,, ~ 1, .

Lemma 222 (Single-step explicit substitution reduction preserves simulation relation.). If t,, ~ 1, and

ty, —" ty,, then ty, > 1p,.

131

B.1. Equivalence of ISWIM and Explicit ISWIM

Proof. We proceed by structural induction on #,, ~ ;. Since t,, —* 1;,,, only (subst-sim) applies. Let
tay = tay [Way, /%1] and 1, = tp,, [x1 := wp,,| Where 1,, ~ 1, and wg,, >~ w;,,. We proceed by cases on
Ip, —X Ip,.

Case 1. (var-eq-subst). Let #,,, = x1. We have x; [x := wp,, | —* wp,,,. We proceed by cases on t,,, =~ x;.

The only case is (var-sim), thus we get z,,, = x;. Then, xi[wa,, /X1] = wq,, and wy,, =~ wy,, .

Case 2. (var-dif-subst). Let #5,, = x, and x» # x;. We have x[x; := wp,,] —* x2. We proceed by cases

on 74, =~ x. The only case is (var-sim), thus we get #,,, = x2. Then, x2[w,, /x1] = x2 and x3 >~ x;.

Case 3. (num-subst). Let 7,,, = n. We have n[x; := wj,,] —* n. We proceed by cases on #,,, ~ n. The

only case is (num-sim), thus we get t,, = n. Then, n[w,,, /x1] =n and n >~ n.

Case 4. (app—subst). Let oy, =ty thypn- We have (tbm tbm)[xl = Wb”] —X (tbm [x1 Z:Wb“]) (tbm[xl =
wp,,]). We proceed by cases on t,,, 1, tp,,,- The only case is (app-sim), thus we get #,,, =
Layy Laygs Layy = Ty, and lajy = Thyy,- Then, (tam tall2)[wa11/x1] = (tam [Wall/xl]) (tdnz[wdn/xl])
and by (subst-sim) and (app-sim) (tam [Wan/xl]) (tallz [Wall/‘xl]) = (tbm [xl = an]) (tbllz[xl =

Wbll])'

Case 5. (plus-subst). Let t,,, = tp,,, +1p,,,- We have (t,,, +1p,,)[x1 := wp,, | —* 1, [X1 1= wp,,] +
Ip,, |X1 := wp,,]. We proceed by cases on t,,, ~ fp,,, +1,,- The only case is (plus-sim), thus we
gettqy, = layy, T laypss tayy =y, and Tayyy = Ipyyy- Then, (tam +tﬂ112)[wa11/x1] = layy, [Wall/xl] +
tay 1, Way, /X1] and by (subst-sim) and (plus-sim) t,,,, [Wa,, /X1] +tay 1, Way, /X1] 22 thy,, [X1 1= Wi, | +

tbnz[xl = an]'

Case 6. (lam-subst). Let 1, = Axy.tp,,,. We have (Axa.tp,,,)[x1 1= wp,,]| —* Axz.tp,,, [x2 1= x3][x] =
Wp,,] Where x3 & FV (Axp.tp,,,) UFV (wp,,) U {x1}. We proceed by cases on t,,, =~ Ax>.1p,,,,. The
only case is (lam-sim), thus we get t,,, = Axy.1,,,, where t,,,, ~1p,,,. Then, (Axz.14,,,)[Wa,, /x1] =
Axs.ta,, [xa/x2)[Wa,, /x1] Where x4 & FV (Axa.tg,,,) UFV (wg,,) U{x1}.
Let xs ¢ FV(Axa.tp,,,) UFV (wp,,) UFV (Axp.tq,,,) UFV (wg,) U{x1}, we have Ax3.tp,, [x2 :=
x3)[x1 == wpy, | ~a Axs .ty [x2 1= xs][x1 :=wp,,] and Axa L4, [Xa/X2][Way, [X1] ~a AXs 2y, [X5 /%2) [Way, /X1].
By (subst-sim) and (lam-sim), we get Axs.t,,,, [Xs5/x2][Wa,, /X1] =2 Axs.tp,,, [X2 := x5][x1 := wp,,].

Hence Axg.t4,,, [Xa/X2)[Way, /X1] = Ax3.1p,,, [%2 := x3][x1 1= wp,,].

Case 7. (subst-subst). Let t,, = 1p,,, [X2 := wp,,|. We have (ty,,,[x2 := wp,,]) [x1 1= wp,, | — 1, [x1 1=
wp,,] where t,,, [X2 1= wp,,| —* 1,,,. By the induction hypothesis, #,,, = #5,,,. Then, by (subst-

sim) Zq,, [Wan /xl] X lpyy, [xl = Wbll]'
O

Lemma 223 (Simulation: (Substitutional) ISWIM simulates Explicit ISWIM.). Ift,, ~ 1, and t,, — tp,,

thent, —" t,, and t,, > t,.
Proof. We proceed by induction on the structure of #,, ~1;,.

132

B.1. Equivalence of ISWIM and Explicit ISWIM

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

(var-sim). This case is vacuous.

(app-sim). Lett,, =14, ta, and tp, =1tp,, tp,, Where t,, ~1,,, and t,,, > 1, ,. We proceed by cases

onfty, — Ip,.

Case 1.

Case ii.

Case iii.

(appL). Let t,,, — t5,, and t, = 1p,, 1p,,- By the induction hypothesis, #,,, —" t4,,
and 14, >~ tp,,. Then, t,,, t4,, —" tay, ta), and by (app-sim) t,,, ta,, = th,, tp),-

(appR). Letty,, =vp,,, tb,, — tp,, and tp, = vp,, Ip,,. Givent,, ~vp,,, by Lemma 214,
ta,, —" Va,, and v, > vp,,. By the induction hypothesis, #,,, —" t4,, and t4,, > 13,,,.
Then, t4,, tay, —" Vay, tay, —" Vay, tay, and by (app-sim) vy, tay, = Vi, t,, -

(app). Let 1, = Ax.tp,,,s by, = Vb, and tp, =t [x := vp,,]. Given ty,, ~ Ax.tp,,,,
by Lemma 214, t,,, —* v, and v,,, =~ Ax.tp,,,. Given t,, >~ vp,, by Lemma 214,
tay, —* Vay, and v, >~ vj,,. We proceed by cases on v,,, =~ Ax.1p,,,,. The only case is
(lam-sim), so let v, , = Ax.ty,,, and t,,,, >~ 1p,,,. Then, 14, t4,, —" (Ax.1y,,) ta;, —*
(AX.tay,) Vay, — tayy [Vay, /%] By (subst-sim), we get t4,,, [Vay, /X] = thy,, [X := Vi,

(lam-sim). This case is vacuous.

(num-sim). This case is vacuous.

(plus-sim). Let t,, = t4,, 14, and t,, = tp,,, +1p,, Where t,,, ~1,,, and t,,, ~ t5,,. We proceed by

cases on f, — tp,.

Casei.

Case ii.

Case iii.

(plusL). Let t,,, — 13, and t, = 1p,,, +1p,,. By the induction hypothesis, #,,, —" 1,,,
and 14, >~ tp,,. Then, t,,, +14,, —" tay, +14,, and by (plus-sim) t,,, +14,, > tp,, +1p,,-
(plusR). Let t,, = vp,,» tp,, — tp,, and t, = vp,, +15,,. Given t,,, >~ vp,,, by Lemma
214, t,,, —" vq,, and vy, =~ vp,,. By the induction hypothesis, #,, —* t,,, and
tay, ~tpy,. Then, ty,, +ta,, —" Vg, +ta;, — Va,, 14y, and by (plus-sim) vy, +14,, =
Vbyy by,

(plus). Let t5,, = ny, tp,, = n2, and #, = n where n = n; +ny. Given t,,, ~ nj, by
Lemma 214, t,,, —" v4,, and v,,, ~n;. Givent,,, ~ny, by Lemma 214, t,,, —" v,
and v,, >~ ny. We proceed by cases on v,,, ~ nj. The only case is (num-sim), so let
Va,, = n1. We proceed by cases on v,,, >~ ny. The only case is (num-sim), so let
Va,, = 2. Then, t,, +14, —" n1 +1t4, —" ny +ny — n where n = n; +ny. By

(num-sim), we get n =~ n.

(subst-sim). Let #,, =t4,,[Wq,, /x] and tp, =15, [x :=wp,,| Where t,,, ~15,, and wy,, >~ wp,,. Given

ta, >ty [x = wp,, |, by Lemma 213, 1, [x := wp,, | —** s,, and 1,, =~ sp,,,. Since 1, [x := wp,,]

is not in the substitution normal form but sp,, is in substitution normal form, we have #,, [x :=

Wp,, | —* th,, —** sp,,. By Lemma 222, ¢, ~1,, . We also have t,, —™ 1,,.

133

B.1. Equivalence of ISWIM and Explicit ISWIM

B.1.7 Soundness and Completeness

We demonstrate the soundness and completeness of Explicit ISWIM with respect to (Substitutional) ISWIM.

Theorem 224 (Soundness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). Ift,, ~1,, andt, —" v,, in
(Substitutional) ISWIM, then t,, —"* vy, in Explicit ISWIM and vy, >~ vp,.

Proof. We proceed by induction on the length of 7,, —* v,, .

Case 1. (0). Lett,, =v,,. By Lemma 215, t,, —* vp,, and v,, >~ vp,.

Case2. (n+1). Lett, — 14, —() Va,. Givent,, ~t,, andt,, — t,,, by Lemma 220, t,, —* t;, and
tay = tp,. Given t,, = t, and t,, —") v,,, by the induction hypothesis, 7, —* v, and v, = vy,,.
We have 1, — 1, —" v, and v, >~ vyp,.

O]

Remark 225. The parenthesised superscripted number n in —) denotes the number of single step is 7.

Theorem 226 (Completeness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). Ift,, ~t,, andt,, —" vy,
in Explicit ISWIM, then t,, —" vy, in (Substitutional) ISWIM and v,, >~ vy, .

Proof. We proceed by induction on the length of #,, —* vp,.

Case 1. (0). Lett, =vp,. By Lemma 214, t,, € VALUE. Letv,, =1t,. We have t,, —™ v,, and

Va, 2 Vp,.

Case?2. (n+1). Letty,, — 13, —m vp,. Givent,, ~t,, andt,, — tp,, by Lemma 223, ¢,, —* t,, and
ta, > tp,. Givent,, ~tp, and tp, ——m) Vp,, by the induction hypothesis, t,, —* v4, and vy, ~ vp,.

We have t,, —* v4, and vy, >~ vp,.

B.1.7.1 An alternative proof.

We demonstrate a different proof of Theorem 226 which does not use Lemma 223. We start with two

lemmas. Their proofs are omitted.

Lemma 227. Ift, ~t,, tp, — tp, and t,, % ty,, then ty, —> t4,.
Remark 228. Lemma 227 does not imply whether or not #,, ~ 1, .
Lemma 229. [ft,, ~tp, and t,, —> t4,, then t,, —" 1y, and ty, ~ tp,.

Remark 230. Lemma 229 is stronger than Lemma 220. In other words, Lemma 229 implies Lemma 220.

We restate and prove Theorem 226 as follows.

134

B.1. Equivalence of ISWIM and Explicit ISWIM

Theorem 231 (Completeness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). Ift, ~t, andt, —" v},
in Explicit ISWIM, then t,, —" vq, in (Substitutional) ISWIM and v, ~ vy, .

Proof. We proceed by induction on the length of 1, —* v,.

Casel. (0). Lett,, =vp,. By Lemma 214, t,, € VALUE,. Let v,, =1,. We have t,, —" v,, and

Va, 2 Vp, .

Case2. (n+1). Letty, — 15, —(n) vp,. We proceed by cases on t,, ~ 1, in particular on whether it is

(subst-sim) or not.

Casei. (subst-sim). Let t,, = 1,4, [Wq, /x| and tp, = 1, [x := wp, | Where 14, >~ 1p,,, and w,, ~

wp,. By Lemma 213, #,, —** s55,,. Observe that 1, is not in substitution normal

-
form but sp, is in substitution normal form. By the determinism of the small-step
semantics, t,, —* t, —*) 5, —+(@ v, and p+¢q = n where p,q > 0. By Lemma

222, t4, =~ tp,,. By the induction hypothesis, #,, —* v,, and v, >~ vp,.
Caseii. (other cases). We proceed by cases on whether #,, ~15,.

Case a. (tz ~1p,). Then, by the induction hypothesis, t,, —* v,, and v,, >~ vp,.

Case b. (tq #tp,). By Lemma 227, t,, — t,,. By Lemma 229, 1, — 1y, and
ta, > 1p,. By the determinism of the small-step semantics, ,, — 1, —(P)
Ihs —s(@) vp, and p+q = n where p,q > 0. By the induction hypothesis,

tay, —" Vg, and vy, > Vp,.

B.1.8 Kleene Equality of Evaluators
We prove the Kleene equality of evaluators evaliswim:subsos (f) and evaliswim:Expsos (7).

Theorem 232 (Kleene Equality of Evaluators). For any t € PRGMswimM, evaliswim:subsos (¢) is Kleene equal

10 evaliswim:Expsos (1)-

Proof. We first show if evaliswiM:subsos (l) = a where a € ANSswiMm, then evalISWIM:EXpsos (t) =a.

Case 1. If evaliswin:subsos (f) = function, then t —* Ax.t’. By Theorem 224, ¢t —* v/ and Ax.t’ ~ V.
Proceed by induction on Ax.t’ ~ V. The only case is (lam-sim). Then v/ = Ax.f"” and ¢’ ~¢”. We

have evalISWIM;EXPSOS (l‘) = function.

Case 2. 1If evaliswim:subsos (t) = n, then t —* n. By Theorem 224, 1 —* v/ and n ~ V. Proceed by

induction on n ~ V. The only case is (num-sim). Then v/ = n. We have evaliswim:Expsos () = A.
y p

We then show if evalISWIM;Expsos (l) = a where a € ANSiswim, then evaliswim:subsos (l) =da.

135

B.2. Equivalence of ISWIM and Suspended ISWIM

Case 1. If evaliswim:Expsos (f) = function, then r —* Ax.t’. By Theorem 226, 1 —* v and v ~ Ax.1".
Proceed by induction on v/ ~ Ax.t’. The only case is (lam-sim). Then v/ = Ax.f"” and "' ~¢'. We

have evaliswim:subsos () = function.

Case 2. If evaliswim:Expsos (f) = n, then t —* n. By Theorem 226, 1 —* v/ and v/ ~ n. Proceed by

induction on V' ~ n. The only case is (num-sim). Then v = n. We have evaliswim:subsos (£) = n.

We observe that evaliswiv:subsos (#) is undefined if and only if evaliswim:Expsos (¢) is undefined. Therefore,

evalISWIM;SubSOS (l‘) is Kleene equal to evalISWIM:ExpSOS (l‘)]

B.2 Equivalence of ISWIM and Suspended ISWIM

We demonstrate the equivalence of the substitutional structural operational semantics of ISWIM and the
structural operational semantics of Suspended ISWIM. We use subscripts “gup”" and “g;5” to differentiate the
syntax of Substitutional ISWIM from the syntax of Suspended ISWIM.

B.2.1 Simulation Relation

We first introduce a bisimulation relation that relates (Substitutional) ISWIM terms to Suspended ISWIM

terms.

Definition 233 (Bisimulation Relation). Define the bisimulation relation ~ to be a binary relation up to
alpha equivalence between the set of terms in (Substitutional) ISWIM and the set of terms in Suspended
ISWIM.

~ C TERMgup X TERMgys

Igy X1y, lay =1p, ty,2>=1p .
——— (var-sim app-sim (lam-sim)
x=x (var-sim) tay tay > tp, tp, (app-sim) (Ax.ty) = (Ax.tp)
toy Xty gy X1p, Ig>=1lp Wqg=Wp .
——— (num-sim lus-sim - (subst-sim)
g () ta, Fla, =1y, +1p, (p) ta[Wa /x| = tpx := wp)

Remark 234. The bisimulation relation is the same as the one in proving the equivalence of (Substitutional)
ISWIM and Explicit ISWIM.

Remark 235. The bisimulation relation ~ is up to alpha equivalence. We immediately have: (1) if 7, ~ 1,
and 14, ~q tg4, thent,, ~ 1, and (2) if t, ~ 1, and 1, ~q tp, then t, > 13,,.

B.2.2 Unloading Function
We define U (¢) to unload an Suspended ISWIM term ¢ to (Substitutional) ISWIM.

Definition 236 (Unloading Function). Define the unloading function U to be a total function from the set of
terms in Suspended ISWIM to the set of terms in (Substitutional) ISWIM.

136

B.2. Equivalence of ISWIM and Suspended ISWIM

U : TERMgs — TERMgyp

Ux) = x
Utit,) = Un)U(r)
U(Axt) = AxU(t)
Un) = n
Ulh+n) = Um)+U(nR)
Utle:=w]) = U@OUW)/x]

Lemma 237 (Equality of Related Terms w.r.t. Unloading Function). Ift, >~ t,, thent, = U(tp).

Proof. We proceed by structural induction on #, >~ ;.

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

(var-sim). Then, #, = t, = x. We immediately get x = U (x).

(app-sim). Then, #, =1, t,, and 1, = 1, 1, where t,, >~ 1, and t,, ~ t,,. By the induction
hypothesis, t,, = U(ty,) and t,, = U(tp,). Hence U (tp, tp,) = U(tp,) U(tp,) = ta, ta,-

(lam-sim). Then, 7, = Ax.to, and #,, = Ax.t,, Where 14, ~ 1. By the induction hypothesis, 7,, =
U(tp,). Hence U (Ax.tp,) = Ax.U(tp,) = Ax.tp,.

(num-sim). Then, t, = t, = n. We immediately get U (n) = n.

(plus-sim). Then, t, = t4, +14, and t, = t,, +1,, wWhere t,, ~ 1, and t,, > t;,. By the induction
hypothesis, 7, = U(tp,) and t,, = U(tp,). Hence U (tp, +1t5,) = U(tp,) + U (tp,) = ta, +1a,.

(subst-sim). Then, t, = t,, [Wg4, /x] and t, = 1, [x := wp,, | where t,, >~ 1;,, and w,, =~ wy,. By the in-
duction hypothesis, t,, = U (1,) and w,, = U (wp,). Hence U (1, [x :==wp,) = U (1,) [U (wp,) /x] =

tay [Wa, /X]

B.2.3 Substitution Normal Form

In Suspended ISWIM, the terms that cannot perform substitution reduction are in substitution normal form.

Definition 238 (Substitution Normal Form). A term ¢t € TERMyy is in substitution normal form if and only

if 1 /%

Remark 239. We use the metavariable s with or without any subscript or superscript to range over the terms

in substitution normal form.

Remark 240. A Suspended ISWIM term in substitution normal is not necessarily in the normal form with

respect to the single-step relation —. For example, (Ax.t) v is in substitution normal form but is not in the

normal form with respect to the single-step relation —.

137

B.2. Equivalence of ISWIM and Suspended ISWIM

Remark 241. In Suspended ISWIM, (Ax.r)[x; := v;] is in substitution normal form. However, in Explicit

ISWIM, (Ax.t)[x; := v;] is not in substitution normal form.

T ———————h Ir——a—/]
Lemma 242. If 1, ~ 1, and tp, = (Ax.ty,)[x;i :=wp,];_,, then to, = (Ax.ty,)[Wa;/Xil;i_ (s ta), =~ 1y, and

Wq, = wyp, foranyi=1,2,...,n.
Proof. We proceed by induction n.

Case 1. (0). Let 1, = Ax.t,,. We proceed by cases on #,, >~ Ax.tp,,. The only case is (lam-subst). Then,
ty, = Ax.ty, and ty,, > 1p,,.

n

Case2. (n+1). Letty = (Ax.tp,)[xi :=wp,],_ | [Xnt1 1= wp,,]

We proceed by cases ont,, =~ (Ax.tp,,)[x; 1= wb,]?:] [Xn+1 :=Wp,,,|. The only case is (subst-subst).

Then, t4, = 14, [Wa,., /Xnt1], ta, = (Axtp,,)[xi := Wb,-],r'l:p and w,,,, ~ wp,.,. By the induction

hypothesis, #,, = (lx.ta”)[wai/xi]?:l, tay, =2y, and wg, > wy, for any i = 1,2,...,n. Therefore,

71/1/_}'_ .
tay = (Ax.ta))[Wa, /Xil,—y s tay, = tpy,> and wy, >~ wy, forany i =1,2,...,n,n+1.

Lemma 243. Ift, ~ wy, and wp, € VALUEgy, then t,, € VALUEgyp.

Proof. We proceed by cases on wy, € VALUEg;.

Case 1. (wp, = n). We proceed by cases on f,, >~ n. The only case is (num-sim). Then, #,, = n and

fq, € VALUEgyp.

Case2. (wp, = (Axtp,,)[xi = Wbo,']?:1)~ By Lemma 242, t,, = (lx.ta”)[waot./xi}?:], tay, 1y, and wy, =~
wp,, forany i =1,2,...,n. Then, #;,, € VALUEgp.

Lemma 244. [ft, >~ t, [x := wp, |, then tp,, —*" sp,, sp, [x 1= wp,| —*F 5p,, and t, > sp,.

Proof. We proceed by structural induction on 7, >~ 1, [x := wp, |. Only (subst-sim) applies. Let t, = 4, [Wq, /%]

and we have

tal = tb| wal = Wb|

lay [Wal /x] ~1p, [x = Wb|]’
We proceed by cases on #,, € TERMgyp.

Casel. (t;, = x) We have

XXMy Wg X Wp

x[wal/x} = 1p, [x = Wbl]’

138

B.2. Equivalence of ISWIM and Suspended ISWIM

Then, x[wg, /x] = w,,. We proceed by cases on x >~ 1, .

Casei. (var-sim). Let#, = x. Then, x —** x, x[x 1= wp, | —* wp,,, and wy, >~ wp,.
Caseii. (subst-sim). Let t,, = tp,,[x1 := wp,,]. Given x =~ 15, [x; := wp,,], by the induction
hypothesis, we have t,,, —** sp,,, Sp,, [X1 :=Wp,, | —*" $p,,, and x >~ s, ,. We proceed
by cases on x >~ sy, .
Case a. (var-sim). Let 55, = x. Then, t,, —*" x, x[x := wp,, | —* wyp,,, and w,, ~
Wp, .

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case2. (ty = xo and xo # x). We have

X0 Xtp Wg =Wy,

X0[Wa, /X] =t [x 1= wp, .

Then, xo[wq, /x] = x9. We proceed by cases on xp >~ 1,

Casei. (var-sim). Let 7, = xo. Then, xog —** xo, xo[x := wj, | —* X0, and xo =~ xo.

Caseii. (subst-sim). Let 1, =1y, [x] :=wp,,]. Given xg > 15, [x1 1= wp,,], by the induction hy-
pothesis, we have t,,, —** sp,,, Sp,, [X1 1= Wp,] —** 5p,,, and xp =~ 5p,,,. We proceed
by cases on xo >~ sp,,.

Case a. (var-sim). Let s5,, = xo. Then, t,, —** x¢, xo[x := wjp,] —** X0, and by
(var-sim) xp >~ xg.

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 3. (ty, = (tay, tay,)). We have

(tull talz) =y Wa =W,

(tall talz)[wal/x] = 1p, [x = Wb1]'

Then, (t4,, tay,) [Wa, /X] = (tay, [Wa, /X]) (tay, [Wa, /x]). We proceed by cases on (14, ta,,) > tp, .

Casei. (app-sim). Lett,, = (ty,, tp,,) Where t,,, ~1p,, and t,,, ~1,,. We have (5, tp,,) —**
(tpy, thy,) and (tp,, tp,,)[X := wp, | —* (tp,, [x := wp,]) (tp,,[x := wp,]). By (subst-sim)
and (app-sim), we get (t,,, [Wa, /X]) (tay, [Wa, /X]) = (tp,, [x 1= wp,]) (tpy, [x 1= wp,]).

Caseii. (subst-sim). Let 1, =1, [x1 := wp,,]. Given (f4,, t4,,) = tp,, [X1 := wp,,], by the induc-
tion hypothesis, we have t,,, —** sp,,, Sp,, [X1 :=wp,, | —*" sp,,» and (t4,, ta,,) > Sp,, -
We proceed by cases on (fg,, ta;,) = Spy,-

Case a. (app-sim). Let sp, = (tp,,, tb,,,) Where 14, ~ 15, and t,, ~ t;,,. Then,
Ty = (M1 Tbyy) AN (1, Ty,)6 := Wiy | = (1,5, [x = Wi]) (B, [x =

1

wp,]). By (subst-sim) and (app-sim), we get (t4,, [Wa, /X]) (tay, [Wa, /X))

(tbm [x:= Wbl]) ([b122 b= Wbl])'

139

B.2. Equivalence of ISWIM and Suspended ISWIM

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 4. (ty, = Axo.ty,,). We have

(Axo.tay,) =1y, Way > Wp,

(A’xo'tall)[Wal /x] = 1p, [x = Wbl]’

Then, (Ax0.ta,,)[Wa, /X] = Ax1.Lay, [X1/X0][Wa, /x] Where x| & FV (Axo.tg,,) UFV (wg,) U{x}. We

proceed by cases on (Axp.t,,,) 2 1p,.

Casei. (lam-sim). Let#, = Axq.tp,, Wheret,,, ~15,,. We have Axg.tp,, —** Axq.tp,,, (Ax0.1p,,) [x:=

Wp, | — (Axo.tp,,) [x := wp, |, and (Axq.ta,,) [Wa, /x] = (Axo.tp,,) [x := wp,].

Caseii. (subst-sim). Let t,, = 13, [x1 := wp,,]. Given Axg.ty,, > 1, [x1 := wp,,], by the induc-
tion hypothesis, we have 1, , —** s,,, Sp,, [X1 := Wp,,] —*" 5p,, and Axq.14,, = 5p,,.

We proceed by cases on (Axo.f411) = Sp12-

Case a. (lam-sim). Let 55, = Axq.lp,,, and t,, > tp,,.
We have 1, —** Ax0.1p,,,, (AX0.1p,,,) [x 1= wp, | —** (Ax0.1p,,,) [X:= Wi,],
and by (subst-sim) (Axg.t4,,) [Wa, /X] = (Ax0.tp,,,) [X 1= wp,].

Case b. (subst-sim). Let s,, = (Ax,l.thm)mzl.
By Lemma 242, Ax.t,, = (lx_l.ta,],)[wa()i/xi]zl, Ly, =2 tpyyy> and Wy,
W, for any i = 1,2,...,n. We have t,, —*" (Ax_;.tp,,,)m:’
(AX_ 1ty) Bt 1= Wy [5= Wiy | = (A1t) 7 = Wi]y [2= Wy,

and by (subst-sim) (Ax0.La,,) [Wa, /1] = (Ax_1 £y,) o6s 1= W]y [i= w).

Case 5. (ty =n). We have

n~itp Wq = Wp

n[wg, /x| >ty [x 1= wp, .

Then, njw,, /x| = n. We proceed by cases on n >~ 1y, .

Casei. (num-sim). Let 7, =n. We have n —** n, n[x := wy;] —*nand n ~n.

Caseii. (subst-sim). Lett,, =15, [x1 := wp,,]. Given n >~ 1, [x| := wp,, |, by the induction hy-
pothesis, we have t,,, —** s,,, Sp,, [X1 := Wp,,] —** sp,,, and n =~ s;,,. We proceed

by cases onn =~ sp,,.

Case a. (num-sim). Let sp,,, = n. We have 1,, —** n, n[x := wp,] —** n and by
(num-sim) n ~ n.

Case b. (subst-sim). This case is vacuous by Lemma 242,

Case 6. (ty, =14, +14,,). We have

140

B.2. Equivalence of ISWIM and Suspended ISWIM

tay Tlap =My, Wa = Wp,

(tall +tﬂlz)[wa1/x] = 1p, [x = WhJ'

Then, (t4,, +ta,)[Wa, /X] = ta, Wa, /%] + ta;,[Wa, /X]. We proceed by cases on t,,, + 14, = 1p, .

Casei. (plus-sim). Lett, =1y, +1p, Wheret,, ~1t,, andt,, ~t,,. We have t,,, +1,,, —**
tpy, oy, and (1, 15, [X 1= wp, | — 1, [x 1= wp, | + 15, [x := wp,]. By (subst-sim) and
(plus-sim), we get t,,, [Wa, /X] +1a, [Wa, /X] 2 1, [X := Wi, | + 11, [x 1= wp,].

Caseii. (subst-sim). Let t,, =1, [x| := wp,,]. Given t,,, +14, > 1, [X1 := wp,,], by the induc-
tion hypothesis, we have t,,, —** sp,,, Sp,, [X1 := Wp,, | —*" 5p,,, and 14, +14,, > 5p,,.

We proceed by cases on #,,, +14,, > Sp,,-

Case a. (plus-sim). Let 55, = tp,,, +1p,,, Where t,,, >~ 15, and t,, ~ 1p,,,,. Then,
thy =" Uy, iy, AN (T, 1y,) [1= Wi, | = 1) [x 1= W |1y, [x2=
wp,]. By (subst-sim) and (plus-sim), we get t4,, [Wq, /X] + ta, [Wa, /X] =
Ty [X 2= Wiy | 41 5 [x := W |

Case b. (subst-sim). This case is vacuous by Lemma 242.

B.2.4 Canonisation

Given two related terms, if one term is a value, then the other term is a value or multi-steps to a value. We

have the following two lemmas.

Lemma 245 (Canonisation of (Substitutional) ISWIM). Ift,, ~ vy, thent,, € VALUEgyp.

Proof. We proceed by structural induction on #,, >~ vj,.

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

(var-sim). This case is vacuous.

(app-sim). This case is vacuous.

(lam-sim). Let #,, = Ax.t,,, and v, = Ax.t,, wWhere t,, ~1,,,. We have Ax.t,,, € VALUEgyp.
(num-sim). Let #,, = v;, = n. We have n € VALUE;,.

(plus-sim). This case is vacuous.

(subst-sim). Let vy, = (Ax.tp,,) [xi := wbi];;nl. By Lemma 242, t,, = (lx.ta”)[wai/x,-];;nl, ta), =~
tp,,» and wg, >~ wp, for any i = 1,2,...,n. We have (lx.ta”)[wai/x,-];zzl € VALUEgp.

Lemma 246 (Canonisation of Suspended ISWIM). If v, ~t,, then t,, —* vy, and va, >~ vp,.

141

B.2. Equivalence of ISWIM and Suspended ISWIM

Proof. We proceed by structural induction on v,, > 1, .

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

(var-sim). This case is vacuous.

(app-sim). This case is vacuous.

(lam-sim). Let v,, = Ax.t,,, and 1, = Ax.tp,, where t,, ~1,,. We have Ax.tp,, —* Ax.tp,,,

Ax.ty,, € VALUEg and vy, =~ Ax.1p, .

(num-sim). Let v,, = 1, = n. We have n —* n, n € VALUEep, and v,, ~ n.

(plus-sim). This case is vacuous.

(subst-sim). Let vy, = 14, [Wq, /x] and tp, = tp, [x := wp,]| Where 15, ~ 1, and wy, >~ wp,. By

Lemma 244, we get tp,, [x := wp,| —* sp,, and t4,, [Wg, /x| = sp,,. We proceed by cases on
tay, [Wa, /X] = sp,, Where 1,,, [Wq, /x| € VALUEp.

Casei.

Case ii.

Case iii.

Case iv.

Case v.

Case Vi.

(var-sim). This case is vacuous.
(app-sim). This case is vacuous.

(lam-sim). Let #,,, [wq, /X] = AX1.14,,, and sp,, = Ax].1p,,, Where t,,,, >~ 1},,,. We have
Iy, [x = Wbl] —* lxl.tbm, Ax) 1p121 € VALUEgs and Vg, =~ lxl.tbm.

(num-sim). Let t,,, [wg, /x| = sp,, = n. We have 1, |x := wp, | —* n, n € VALUE
11 1 12 11 1 p

and v,, ~n.

(plus-sim). This case is vacuous.

(subst-sim). Let sp, = (Ax.1p,,,) [xi 1= Wbo;]:l:l‘ We have 1y, [x :=wp, | —* (Ax.1p,,,) [Xi 1= Wp,,]

1 E——]
(Ax.tpy,) [xi := wpy,],_; € VALUEgys, and vy, o~ (Ax.ty,,,) [Xi i= wp, |,y -

B.2.5 Explicit Substitution Descendant Relation

We define the explicit substitution descendant relation and show its well-foundedness. As a result, we can

do induction on explicit substitution descendants.

Definition 247 (Explicit Substitution Descendant Relation). For any #1,f, € TERMgy,] <* 1, if and only if

tp —* t1. We call <* the explicit substitution descendant relation.

Definition 248 (Weight Function). For any 1 € TERMgy, its weight is W (¢) where W is a function defined

as follows.

W : TERMgs — ZT

142

n
i=1

B.2. Equivalence of ISWIM and Suspended ISWIM

Wix) =1
Wt = Wh)+W(n)+1

W(Axt) = 1

Wn) = 1
Wt+n) = Wh)+W()+1
W(thx:=w]) = W() - (W(w)+1)

Lemma 249 (Substitution reduction decreases weight.). For any t;,to € TERMgys, ift; —* 1o, then W (12) <

W(l‘l).

Proof. We proceed by structural induction on t; —* ;.

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

(var-eq-subst). Let#; = x[x:=w| and t, = w. Then, W (x[x:=w]) =W (x)- (W(w)+ 1) =W(w)+
1. We have W (w) < W(w)+ 1 =W (x[x :=w]).

(var-dif-subst). Let f; = xj[x; := w] and #, = x| where x; # xp. Then, W (x| [xz :=w]) = W(x;) -
(Ww)+1)=W(w)+1. Wehave W(x;) =1 <W(w)+1=W(x;[x; :=w]).

(num-subst). Let#; = n[x:=w] and t, = n. Then, W (n[x:=w]) =W (n)- W(w)+1)=W(w)+1.
We have W(n) =1 <W(w)+1=W(n[x:=w)).

(app-subst). Let #; = (t11112)[x := w] and 1, = (t11[x := w]) (t12]x :=
wltpfx = w]) = W (it x = w]) + W(tip[x = w]) + 1 =W () - (W(w) +
)+1=W(t) +W(t12)) (W(w)+1)+1 and W((t11 t12)[x := w])
1) =W(tn) +W(ti) +1)- (Ww) + 1) = (W(tn) + W(h2)) - (W
have W((t11[x := w]) (tiz[x :=w])) = (W(t11) + W(t12)) - (W (w) + 1
(Ww)+1)+W(w)+1=W((tr11 t12)[x := w]).

wl).

)+W(f12) (W(w
W (t1 t12) - (W(w
1)+ W(w)+ 1.

< (W) +W(t2))-

)+
)

£33

(plus-subst). Let t; = (f11 +t12)[x := w] and £, = t11[x := w| +t2[x := w]). Then, W(t1;[x:
wltipli=w]) =W = w) +W(tale=w)) +1=W(m)- (W) + 1) +W(n2) - (W(w)
D4+ 1=W(t)+W(t2)) - (W(w)+ 1)+ 1Land W((tr11 +t12)[x :=w]) = W(t11 +t12) - (W (w) +
D)= W(tn)+W(ti)+1)- Ww)+1) = W(t) +W(t2)) - (W(w)+1)+W(w)+ 1. We have
W(ti[x:=w|+tax:=w]) = (W(tn)+W(t2) - Ww)+1)+1 < (W(t)+W(t2)) - (W(w)+
1) +W(w)+1=W((ti +t2)[x:=w]).

(subst-subst). Let 1 = 111 [x1 := wi][x2 := wy] and 1, = 131 [x2 := wy] where 711 [x] 1= wi] —* 1.
By the induction hypothesis, W (t21) < W (t11[x; := wi]). Then, W(t21[x2 := wa]) = W(t21) -
(W(wp)+1)and W (111 [x1 :=wi][x2 :=wa]) =W (t11[x1 :=wi])- (W (w2) +1). We have W (£ [x2 :=
wo)=W(ta1)- (W(wa)+1) =W (ta1)- (W(wa)+1) <W(t11[x1 :=w1])- (W(wa)+1) =W (t11[x; :=

W]][Xz 1=W2]).

O

Lemma 250 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation <* is well-founded.

143

B.2. Equivalence of ISWIM and Suspended ISWIM

Proof. Lemma 249 has proved that if t; —* 1,, then W (1) < W(z), for any #,.t, € TERMg,. For any
t € TERMgy;s, the length of the descending chain with respect to <* starting from # is bound by W (¢). Hence,

the explicit substitution descendant relation <* is well-founded. O

B.2.6 Bisimulation

We demonstrate (Substitutional) ISWIM bisimulates Suspended ISWIM. Intuitively, given two related terms,

if one term single-steps, then the other term multi-steps, and the resulting two terms are related.

Lemma 251 (Simulation: Suspended ISWIM simulates (Substitutional) ISWIM.). Ift,, ~t,, andt, —t,,
where FV (t,,) =0 and FV (tp,) = 0, then t,, —* tp,, and t,, >~ t,,, where FV (t,,) =0 and FV (t,,) = 0.

Proof. We proceed by induction on the structure of #,, ~ #;,, and by induction on the explicit substitution

descendants <* 1;,, simultaneously.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Lett,, =14, 1), and t,, =1p,, 1, Where t,,, ~1,,, andt,, ~ 1, ,. We proceed by cases

on ty, — g,

Casei. (appL). Let t,,, — t4,, and t,, =14, 14,,- By the induction hypothesis, t;,,, —" #,,
and t,,, ~tp, . Then, t;,, tp,,, —" tp,, tp,, and by (app-sim) t,,, ta,, = thy, tp,,-

Caseii. (appR).Lett,,, =vq,,, ta,, — tay, andty, = Vg, tay,. Given vy, >~ 1, , by Lemma 246,
t,, —" vp,, and v, >~ vp,,. By the induction hypothesis, #,,, —" #,,, and t4,, ~ 13,,,.
Then, t5,, th,, —>" Vb, b, —" Vb,, thy, and by (app-sim) vy, tay, =~ Vi, th,, -

Case iii. (app). Let ty,, = Ax.lay,s tay, = Vay,» a0d g, = tay,, [Vay,/X]. Given Ax.ty,,, =~ tp,,,
by Lemma 246, t,,, —* v, and Ax.ty,,, ~ vp,,. Given v, 1 ,, by Lemma 246,

th,, — " vp,, and v,,, ~ v, We proceed by cases on Ax.z,,,, ~ v
12 12 12 12 111 11

Case a. (lam-sim). Letv,,, = Ax.tp,,, and t,,,, > 1p,,,. Then, tp,, tp,, — (Ax.1p,,,) tp,, —"

(Ax.tp,,) Vb, — by, [:= vp,]. By (subst-sim), we get t,,,, [Va,,/X] =
Thyy, [X = Vi,).

Case b. (subst-sim). Let v, = (/lxo.tbm)m;;l. By Lemma 242, we have
AX.tg,, = (lxo.ta”“)m?:l,tbm 14, and wg, >~ wyp, forany i=1,2,...,n.

We know ()on'tann)[wai/xi]:l:l ~a 2’x—l'talm [x—l/xo] [Wai/xi}?:l where x_ ¢

FV(Axo.ta,,,)Y (Ui(FV(wg,)U{xi})). Wehave Ax.ty,,, ~q AX_1.tay,,, [X=1/%0]

[Wai/xi]:l:l' Then, (Ax'tam) Vai, ~o (Axfl'taml [X*I/XO] [Wai/xi]:l:l) Vay,-

We have (A'xfl Lay [xfl/xo] [Wai/xi];l:l) Vay, — layyyy [X,I/X()] [Wai/xi];l:l [Vlllz/xfl]

and (Ax.ta,,,) Vay, —> tayy, [Vaya/X]. By Proposition 58, 4, [x_1 /x0] [Wa /i,

[Vlllz/x—l] ~alay, [Valz/x]'
Given FV (t,,) =0and FV (ty,) = FV (t4,,) UFV (ts,,), we have FV (v,,,) =
FV(t,,) =0.

144

B.2. Equivalence of ISWIM and Suspended ISWIM

Given x_; #Zx; forany i=1,2,....n, x_1 ¢ FV(w,,) forany i =1,2,....n
and FV (v,,,) =0, by Proposition 53, we have 4, [x_1/x0] [wai/x,-]?:1 Vay, /X-1] ~a
I ——a—) I ——a—)
Taymn [x—l /XO] [Valz/x—l] [Wai/xi]izl ~a layy [Valz/xo] [Wai/xi]izl'
- .
Then, Taym [vaIZ/'xO] [Wai /xi]izl ~olay [valz/x]' By (subst-sim), Tay [vaIZ/‘xO]
I ——a——) T h
[Wai/xi]izl = 1pyy [xo = Vanxi = Wbi]i:l' Then, 14, [Valz/x] = Iy [xO =

—_—
Vblz] [xi = Wbi]i:] .

Case 3. (lam-sim). This case is vacuous.
Case 4. (num-sim). This case is vacuous.

Case 5. (plus-sim). Let #,, = t4,, +14,, and 1, =13, +1p,, Where t,,, ~1,,,, and t,,, >~ 1,,. We proceed by

cases on fy, — tq,.

Casei. (plusL). Lett,,, — 14, andt,, =14, +1,,. By the induction hypothesis, t,,, —* 13,
and 74, >~ tp,,. Then, t,,, +1p,, —" tp,, +1p,, and by (plus-sim) t,,, +14,, ~ th,, +1p,,-
Caseii. (plusR). Lett,,, = va,,s ta, — tay, and t,, = vg,, +14,,. Given vy, >~ 1p,,, by Lemma
246, tp,, —" vp,, and v,,, =~ vp,,. By the induction hypothesis, #,,, —* 1;,,, and
tay, ~tpy,. Then, ty, +tp, —" vp,, +1tp,, —" Vp,, +1p,, and by (plus-sim) v, +74,, =
Vo T 1hyy-
Caseiii. (plus). Let t,,, = ny, t4, = ny, and t,, = n where n = n; +n. Given n; ~ 1, ,, by
Lemma 246, t,,, —* v, and ny >~ v, . Given np >~ 1ty,,, by Lemma 246, t,,, —"* vp,
and ny ~ vp,,,. We proceed by cases onny ~ vy, .
Case a. (num-sim). Let v, = n;. We proceed by cases on ny >~ vp,,.
Case 1. (num-sim). Let vy, = ny. Then, 1, +t,, —" ny +1t, —~
ni +np, — n where n = ny +n,. By (num-sim), we get n >~ n.
Case 2. (subst-sim). This case is vacuous by Lemma 242.

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 6. (subst-sim). Let t,, = t4,,[Wa,, /x] and 1, = tp, [x := wp, | Where t,,, >~ 1, and wg,, ~ wp,,. Given
ta, >y, [x == wp,,], by Lemma 244, 1;, | [x := wy,,,| —** 53, and t,, =~ s,,. Then, sp,, <*15,,. If
ta, — ta,, by the induction hypothesis, s;,, —* 15, and t,, >~ 1,,. We have t;,, —" sp,, —" 1,.

By Propositions 59 and 84, we know FV (t,,) =0 and FV (1;,) = 0. O

Remark 252. In the last case of the proof, given t,, ~ 1, t,, =~ sp,, and sp,, <* 1, if t,, — 1,,, by the

induction hypothesis, sp,,, — 1, and t4, >~ 1, .

Lemma 253 (Explicit substitution reduction preserves simulation relation.). Ift,, ~t, andt,, —*t;,, then

lq, X 1p,.

145

B.2. Equivalence of ISWIM and Suspended ISWIM

Proof. We proceed by structural induction on #,, ~ ;. Since t,, —* 1;,,, only (subst-sim) applies. Let

tay = tay [Way, /%1] and 1, = tp,, [x1 := wp,,| Where 1,, ~ 1, and wg,, >~ w;,,. We proceed by cases on

Ip, —X Ip,.

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

(var-eq-subst). Let #5,, = x1. We have x;[x; := wp,,] —* wyp,,. We proceed by cases on f,,, ~ xj.

The only case is (var-sim), thus we get z,,, = x1. Then, xj[wy,, /X1] = wq,, and wy,, >~ wy,, .

(var-df-subst). Let 7, = x> and x, # x;. We have x[x; := wy,,] —* x2. We proceed by cases on

ta;, = x2. The only case is (var-sim), thus we get 75, = x2. Then, x2[wg,, /x1] = x2 and xp =~ x5.

(num-subst). Let #,,, = n. We have n[x; := wp,] —* n. We proceed by cases on t,,, ~ n. The

only case is (num-sim), thus we get t,, = n. Then, n[w,,, /x1] =n and n ~ n.

(app-subst). Let Iy = oy hypn- We have (thlll thnz)[xl = Whn] —* (thm [xl = Whn]) (tbnz[xl =
wp,,]). We proceed by cases on t,,, >~ 1y, tp,,,- The only case is (app-sim), thus we get t,,, =
Lay Lanns tayy = Ty, and layy = by, Then, (tam tallz)[wall/xl] = (ttlm [wall/xl]) (ta112[wa11/x1])
and by (subst-sim) and (app-sim) (tam [Wan/xl]) (tallz[wall/xl]) = (tbm [X1 = Wbll]) (tbllz[xl =
an])'

(plus-subst). Let 5, = tp,,, +p,,- We have (tp,,, +1p,,,)[X1 = Wp,,| — tp,,,[xX1 1= wp,] +
tp,,, [X1 := wp,,]. We proceed by cases on t,,, ~ fp,,, +1,,- The only case is (plus-sim), thus we
get fay = lay, +layys layy by, and)y, > 1,,,. Then, (tam +t0112)[wall/‘xl] = lay, [Wall/xl] +
tay 1, Way, /%1] and by (subst-sim) and (plus-sim) t,,,, [Wa,, /X1] +tay 1, Way, /X1] 22 thy,, [X1 1= Wi, | +

tbllz[xl = Wbll]‘

(subst-subst). Let t,,, = tp,,, [x2 := wp,,]. We have (1, [x2 1= wp,]) [x1 1= wp,, | — 1y, [¥1 :=
wp,, | where t,,,, [x2 := wp,,] —* 15,,,. By the induction hypothesis, #,,, =~ #5,,,. Then, by (subst-

sim) Zq,, [Wan /xl] = lpyy [xl = Wbll]'

O]

Lemma 254 (Simulation: (Substitutional) ISWIM simulates Suspended ISWIM.). Ift,, ~t, andt, —tp,
where FV (t,,) =0 and FV (tp,) = 0, then t,, —* t,, and t,, ~t,,, where FV (t,,) =0 and FV (t,,) = 0.

Proof. We proceed by induction on the structure of z,, >~ #;,.

Case 1.

Case 2.

(var-sim). This case is vacuous.

(app-sim). Lett,, =14, t4,, and t, =13, tp,, Where t,,, ~1,,, and t,,, >~ 15, ,. We proceed by cases
onfy, — Ip,.

Casei. (appL). Let t,, — t;,, and t;, =13, 15,,. By the induction hypothesis, #,,, —" t,,,
and t4,, >~ tp,,. Then, t,,, t4,, —" tay, ta), and by (app-sim) t,,, ta,, ~ tp,, tp,,-

146

B.2. Equivalence of ISWIM and Suspended ISWIM

Caseii. (appR).Letty,, =vp,,, tp,, — th,, and tp, =V, tp,,. Givent,,, ~vp,,, by Lemma 245,
ta,, —" Va,, and v, > vp,,. By the induction hypothesis, #,,, —" t4,, and t4,, > 1p,,,.

Then, t4,, tyy, —" Vay, tay, —" Vay, tay, and by (app-sim) vy, tay, = Vi, 1, -

I —) I E———
Caseiii. (app). Letty,, = (Ax.ty,,,)[Xi 1= Wp,);_1» b1, = Vbyos and 1y, =13, [X 1=V,] [xi 1= wp, |,y

Givent,,, >~ (Ax.tp,,,)m:;, by Lemma 242, 1,,, = (Ax.1,,,,)m:l:l layy, =
tp,,, and wy, >~ wy, foranyi=1,2,...,n. Givent,, ~ v ,, by Lemma 245, t,,, —" v,
and vy, ~Vvp,,.

We know (Ax.ta,,,) War /Xy ~a AX_1-tayy, 61 /] [Wa, /%], Where x| & FV (Ax.ty,,)U
(Ui (FV (wa,) U{x:})). Then, (Ax.ta,,,) Was /Xi]iey Vary ~ot AX 1 tayy, D61 /X Way [X 1 Ve
We have (lx_l.tam[x_]/x]m?:l) Vay, — tay, [x_l/x]m?ﬂ[valz/x_]}. By
Proposition 58, (Ax.1,,,,)m:l:l Vay, — b, and ty,,, [x,l/x]m?zl Vay, /X-1] ~a
tay-

Given FV (t;,) =0 and FV (t,,) = FV (t4,,) UFV (t4,,), we know FV (t,,,) = 0. Given

ta,, —" Va,,, by Proposition 59, FV (v,,,) = 0.

Givenx_; #Zx;foranyi=1,2,...n,x_1 ¢ FV(w,,) foranyi=1,2,...,nand FV (v,,,) =

0, by Proposition 53, we have t,,,, [x_1 /x]mlr;l Vay, /X=1] ~a tay,, [X=1/%] [valz/x_l]m?zl
~a lay, [Valz/x]m?:l' Then, 7, [Vanz/x]m?:l ~alay:

By (subst-sim), 7, ,, [valz/x]myzl i, X = vblz]mlr;l. Then, t,, ~1p,,, [x0 :=

e —(
Vb]z][xi = WbiL‘:l'

Case 3. (lam-sim). This case is vacuous.
Case 4. (num-sim). This case is vacuous.

Case 5. (plus-sim). Let #,, = t4,, +14,, and 1, = 1p,,, +1p,, Where t,,, ~1,,,, and t,,, ~ 1;,,. We proceed by

cases on ty,, — tp,.

Casei. (plusL). Lett,,, — 13, and t,, = 13, +15,,. By the induction hypothesis, #,,, —" #4,,
and 14, >~ tp,,. Then, t,,, +14,, —" tay, +1a,, and by (plus-sim) t,,, +14,, ~ th,, +1p,,-

Caseii. (plusR). Lett,,, = vy, tp,, — tp,, and t, = vp,, +15,,. Givent,,, >~ vp,,, by Lemma
245, ty,, —" vq,, and v, ~ vp,,. By the induction hypothesis, #,, —* t,,, and
tay, = tp,,. Then, ty, +t4, —" Va,, +ta;, —" Va,, +1a,, and by (plus-sim) v, +14,, >
Vo, F by,

Caseiii. (plus). Let tp,, = ny, tp,, = ny, and 1, = n where n = n; +ny. Given #,,, ~ ny, by
Lemma 245, t,,, —" v4,, and v,,, >~ n;. Givent,,, ~ny, by Lemma 245, t,,, —" vy,
and v,,, >~ ny. We proceed by cases on v,,, ~ nj. The only case is (num-sim), so let
Va,, = n1. We proceed by cases on v,,, > ny. The only case is (num-sim), so let
Va,, = n2. Then, t,,, +1t4, —" ny 414, —* ny +ny — n where n = n; +ny. By

(num-sim), we get n =~ n.

147

B.2. Equivalence of ISWIM and Suspended ISWIM

Case 6. (subst-sim). Let t,, =t,,,[Wq,, /x| and t, =13, [x :=wp,,] Where t,,, >~ 1p,,, and w,,, >~ wp,,. Given
ta, 1y, [X :=wp,,], by Lemma 244, 1;, | [x := wp,, | —** sp,, and 1,, =~ s;,,,. We proceed by cases

on whether or not #,, [x := wp,,] is in the substitution normal form.

Casei. Let 1y, [x := wp,,] be not in the substitution normal form. Since s;,, is in substitution
normal form, we shall have 7, [x := wp,,| —* t,, —** sp,,. By Lemma 253, 1,, ~

tp,,. We also have t,, —™ 1,,.

Caseii. Let tp,[x := wp,,] be in the substitution normal form. Then, sp,, =t [x := wp,,] =
7+n . .
(Axo.tp,,,) [xi == wp,],_, where x, = x and w;, = wy,,. This case is vacuous because

Iy, 7L>

By Propositions 59 and 84, we know FV (t,,) =@ and FV (t,,) = 0. O

B.2.7 Soundness and Completeness

We demonstrate the soundness and completeness of Suspended ISWIM with respect to (Substitutional)
ISWIM.

Theorem 255 (Soundness of Suspended ISWIM w.r.t. (Substitutional) ISWIM). Ift,, ~1t,, andt, —" v,
in (Substitutional) ISWIM where FV (t,,) = 0 and FV (t,) = 0, then t,, —"* vp,, in Suspended ISWIM and
Va, > vp, where FV (vq,) =0 and FV (vp,) = 0.

Proof. We proceed by induction on the length of z,, —" v, .

Case 1. (0). Lett, =v,. By Lemma 246, t,, —" v}, and v,, ~ vp,. By Propositions 59 and 84, we
know FV (vg,) =0 and FV (vp,) = 0.

Case2. (n+1). Lett, — 1,4, — () Vq,. Givent,, ~t,, andt,, — t,,, by Lemma 251, t,, —* 15, and
tay = tp,. Given t,, = 1, and t,, —") v,,, by the induction hypothesis, #,, —* v, and v, = vy,.
We have 1,, —* 1, —"* vp, and v,, >~ vj,. By Propositions 59 and 84, we know FV (v,,) =0
and FV(vp,) = 0.

O

Theorem 256 (Completeness of Suspended ISWIM w.r.t. (Substitutional) ISWIM). Ift, ~t, andt, —*
Vi, in Suspended ISWIM where FV (t,,) = 0 and FV (t,) = 0, then t,, —" v,, in (Substitutional) ISWIM
and vq, >~ vy, where FV (vy,) =0 and FV (vp,) = 0.

Proof. We proceed by induction on the length of #,, —* vy, .

Case 1. (0). Lett,, =vp,. By Lemma 245, t,, € VALUEg. Letv,, =1t,. We have t,, —™ v,, and
Va, 2 Vp,. By Propositions 59 and 84, we know FV (v,,) =0 and FV (vp,) = 0.

148

B.2. Equivalence of ISWIM and Suspended ISWIM

Case2. (n+1). Letty, — 1, —m) vp,. Given t, ~ 1, and t,, — t,,, by Lemma 254, t,, —* 1,4,
and t,, ~ 1,,. Given t,, ~ 15, and 13, —() Vvp,, by the induction hypothesis, #,, —* v,4, and
Va, = vp,. We have t,, —* v, and v,, > vp,. By Propositions 59 and 84, we know FV (v,,) =0
and FV (vp,) =0.

B.2.8 Kleene Equality of Evaluators
We prove the Kleene equality of evaluators evaliswim:subsos (f) and evaliswim:sussos (7)-

Theorem 257 (Kleene Equality of Evaluators). For anyt € PRGMiswim, evaliswim:subsos () is Kleene equal

to evaliswim:sussos (7).

Proof. We first show if evaliswim:subsos (l‘) = a where a € ANSiswim, then evaliswim:sussos (t) =a.

Case 1. If evaliswin:subsos (f) = function, then t —* Ax.t’. By Theorem 255, ¢t —* V' and Ax.r’ ~V'.

Proceed by induction on Ax.t' ~ V.

Casei. (lam-sim). Then V' = Ax.t” and ¢’ ~1". We have evaliswim:sussos (f) = function.

.. . _— '
Case ii. (subst-sim). Then V' = Ax.t"[x; :==w;] . We have evaliswim:sussos (f) = function.

Case 2. If evaliswim:subsos () = n, then t —* n. By Theorem 255, t —* V' and n ~ /. Proceed by

induction on 1 ~ V',

Casei. (num-sim). Then V' = n. We have evaliswim:sussos () = n.

.. : —t . —t
Caseii. (subst-sim). ThenV' = Ax.t”[x; :=wy,| . Givenn ~ Ax.t"[x; ;== wy,| , by Lemma 242,
—_—t . . .
n= (Axt")|wg/x;] ,t" ~1" and w,, ~ wy, for any i. This case is vacuous because
—t
n= (Axa")[wgs/x;] does not hold.

We then show if evaliswim:SussOs (Z) = a where a € ANSiswim, then evaliswim:subsos (l‘) =a.

Case 1. 1If evaliswim:sussos (f) = function, then t —* Ax.t’. By Theorem 256, 1 —* v/ and v/ ~ Ax.t’.
Proceed by induction on v/ ~ Ax.t’. The only case is (lam-sim). Then v/ = Ax.f"” and " ~¢'. We

have evaliswiM:subsos (t) = function.

Case 2. 1If evahswim:sussos(f) = n, then t —* n. By Theorem 256, t —* v/ and v/ ~ n. Proceed by

induction on v/ ~ n. The only case is (num-sim). Then v/ = n. We have evaliswiv.subsos () = 7.
y

We observe that evaliswim:subsos (f) is undefined if and only if evaliswim:sussos (?) is undefined. Therefore,

evaliswiM:SubSOS (t) is Kleene equal to evaliswiM:SussOs (l)]

149

B.3. Equivalence of ISWIM and Environmental ISWIM

B.3 Equivalence of ISWIM and Environmental ISWIM

We demonstrate the equivalence of the substitutional structural operational semantics of ISWIM and the
structural operational semantics of Environmental ISWIM. We use subscripts “s,p”" and “eny” to differentiate
the syntax of (Substitutional) ISWIM from the syntax of Environmental ISWIM.

B.3.1 Unload Function

We define U(c) to unload an Environmental ISWIM configuration ¢ to a (Substitutional) ISWIM term.

Definition 258 (Unload Function). Define the unload function U to be a total function from the set of

configurations in Environmental ISWIM to the set of terms in (Substitutional) ISWIM.

U : CONFeny — TERMgyp
Un) = n
U(<Ax.t, pr) = U({(Ax.t, p))
Ulcicz) = Uler)U(cr)
U(Cl+62) = U(Cl)+U(Cz)
U({r, {Ge,wh), (2, w2), s (o win) }) - = t{U(w1) /xi][U (W2) /x2].. [U (W) /x2]

B.3.2 Bisimulation Relation

We introduce a bisimulation relation that relates (Substitutional) ISWIM terms to Environmental ISWIM

configurations.

Definition 259 (Bisimulation Relation). Define the bisimulation relation ~ to be a binary relation up to
alpha equivalence between the set of terms in (Substitutional) ISWIM and the set of configurations in En-
vironmental ISWIM.

~ C TERMgyp X CONFepy

t ~cif and only if t = U(c)

B.3.3 Canonisation

If a term and a configuration are relationed and one of them is a value, then the other one is a value or

multi-steps to a value. We have the following two lemmas.
Lemma 260 (Canonisation of (Substitutional) ISWIM). Ift,, ~ vy, thent,, € VALUEgyp.

Proof. We proceed by cases on v;, € VALUEyy.

Case 1. (vp, =<Ax.tp,,, p>). Thent,, =U(<Ax.ty,,, pr) =U((Ax.tp,,, p)). Suppose p = {(x1,w1), (x2,w2), ...,
We have lg, = (A,x.l‘b”)[U(Wl)/xl] [U(Wz)/XQ]...[U(Wn)/)Cn] € VALUEgyp.
Case?2. (vp, =n). Thent, =U(n) =nandn € VALUEgp.

150

(xnawn)}~

B.3. Equivalence of ISWIM and Environmental ISWIM

Lemma 261 (Canonisation of Environmental ISWIM). If v,, >~ cp,, then cp, —" vy, and vq, ~ vp,.

Proof. We proceed by cases on v,, € VALUEg,;, and by cases on ¢, € CONFepy. The only possible cases are

the following ones.
Case 1. (vq = Axty,,).

Casei. (cp, =<Axq.tp,,, p>where FV (Axg.tp,,) C dom(p)). Then <Axq.tp,,, P> € VALUEepy.

Caseii. (cp, = (x0, p) where FV (xo) C dom(p)). Given Ax.ty,, =~ (xo, p), we have Ax.t,,, =
U((xo, p)) =x0[U (wi)/xi] = U(wp) where xo = x,. Then by (var-env), (xo, p) — wp

where p(x9) = wp. We have Ax.1,,, ~ wy.

Case iii. (cp, = (Axo.tp,,, p) Wwhere FV (Axo.tp,,) C dom(p)). Then by (clos-env), (Axq.tp,,, p) —
AAxo.tp,,, p> and <Axg.tp,,, P> € VALUEepy.

Case?2. (vq =n).

Casei. (cp, =n). Then ¢, € VALUEgy,.

Caseii. (cp, = (x0, p) Where FV (xg) C dom(p)). Givenn =~ (xo, p), we have n =U ((xo, p)) =
x0[U(w;)/xi] = U(wp) where xo = xp. Then by (var-env), (xo, p) — wp where
p(x0) = wp. We have n >~ wp,.

Case iii. (cp, = (ng, p)). Given n =~ (ng, p), we have n = U ((nog, p)) = nolU (wi)/xi] = no.
Then by (num-env), (ng, p) — ng. We have n >~ ny.

B.3.4 Bisimulation

We demonstrate (Substitutional) ISWIM bisimulates Environmental ISWIM. Intuitively, if a term relates to

a configuration and one of them single-steps, then the other one multi-steps, and their results are related. .

Lemma 262 (Simulation: (Substitutional) ISWIM simulates Environmental ISWIM.). If t,, ~ ¢}, and
cp, — ¢p, where FV (t,,) =0 and FV(cp,) = 0, then t,, —* t,, and t,, =~ cp, where FV (t,,) = 0 and
FV(Cbz) =0.

Proof. We proceed by induction on the structure of ¢, € CONFepy.

Case 1. (cp, = vp,). This case is vacuous because cp, #—.

Case 2. (cp, =cCp,, Cb,)- Thent, =t4, t,, Wheret,, =U(cp,,) and t,,, = U(cp,,). We proceed by cases

on ¢p, — Cp,-

151

B.3. Equivalence of ISWIM and Environmental ISWIM

Case 3.

Case 4.

Casei. (appL). Then ¢y, cp,, — Cpy, Cp,, Where ¢, — cp,,. By the induction hypothesis,
ta, — " tay, and tq, 2 cp, . Then ty,, ta,, —" tay, ta, and tay, ta,, = Cpy, Chy,-

Caseii. (appR). Then cp,, = vp,, and vy, ¢, —> Vi, Cp,, Where ¢p, — Cp,,. By Lemma
260, t4,, = Vq,,- By the induction hypothesis, t,,, —" t4,, and t,,, ~ ¢p,,. Then
Vay, tay, =" Vay, tay, a0d Vg, ta;, 2 Vp,, Choy-

Case iii. (app). Then cp,, = <Ax.tp,,, P>, Cp, = Vb, and <Ax.tp,,, P> Vp, — (tp,,, P[x —
Vb,]). Suppose p = {(x1,w1), (x2,w2),..., (Xn,wn) }. We havet,,, =U(<Ax.tp,,, p>) =
U((Ax.ty,,, p) = (Ax.ty,)[U (wi) /2]y and (A,)[U (w3) [xiliy ~a Axo-tiy, o /2][U (wi) /3],y
where xo ¢ FV (Ax.tp,,)U(U;(FV(U(w;))Ux;)). By Lemma 260, we know 5, = vq4,,.
Then we have (Axo.tp,, [¥0/X][U (W) /%] 1—1) Var, — to,, [%0/x][U (W) /%] [Vay /%0).-
Given FV(t,,) = 0, we know FV(t,,) = FV(Axo.tp,, [XO/X]W?:Q =0 and
FV(ta,) = FV(va,,) = 0. By Proposition 53, t,, [x0/x][U (W) /%] [Var, /%0] ~a
to [ars /210 () /5l - Then U (1o, PP v])) =, [U (v1,) (AU (i) [y =
thy, Vay, /X] [U(w,-)/x,-]?zl. Hence t,,, [Va,, /X] [U(w,-)/xi}?zl =~ (ty,,, Plx Vb))

(cp, = cpy, +Cbyy)- Then t,, =14, +1q,, Where t,,, = U(cp,,) and t,,, = U(cp,,). We proceed by

cases on cp, — Cp, .

Casei. (plusL). Then cp,, +cp,, — Cp,, + Cp,, Where ¢, — ¢p,,. By the induction hypo-
thesis, t,,, —" t4,, and t,,, ~ cp,,. Then 14, + 14, —" t4,, + 14y, and 14, +14, ~
Chyy T Chyy-

Caseii. (plusR). Then c;,, = vy, and vy, +cp,, — Vp,, +Cpy, Where ¢, — p,,. By Lemma
260, t4,, = vq,,.- By the induction hypothesis, #,, —"* t,,, and t4,, >~ cp,,. Then
Vay Flay, =" Vay Flay, a0d Vayy +1ay, = Vi, + Coyy.

Caseiii. (plus). Then cp,, = ny, ¢p,, = ny, and ny +ny — n where n = n; +n>. We have
tay, = Ul(cp,,) = mi, ta, = U(cp,,) = n2, and ny +ny — n where n = n; +ny. Then

n>x~n.

(cp, = (tp,, p) where FV (tp,) C dom(p)). Suppose p = {(x1,w1),(x2,w2), ..., (X4, wn)}. Then
ta, = tp, [U(w;)/x;]. We proceed by cases on ¢, — ¢p, .

Casei. (clos-env). Thencp, = ((Ax.tp,,), p) and cp, = <(Ax.tp,,), p>. Wehavet,, =U (((Ax.tp,,), p))
and t,, = U(<2(Ax.tp,,), p>) = U(((Ax.tp,,), p)). Thus t,, —* t,, and t,, =~ cp,.

Case ii. (var-env). Then c,, = (x, p) and ¢,, = w where p(x) =w. We have t,, =U((x, p)) =
x[U(w;)/xi] = U(w) and t,, = U(w). Thus t,, —* 1, and t,, =~ c;,,.

Case iii. (num-env). Then ¢;, = (n, p) and ¢, =n. We have t,, =U((n, p)) =n and t,, =
U(n) =n. Thus t,, —* 4, and t,, >~ cp,.

Case iv. (app-env). Thenc,, = ((t1), p) and ¢y, = (11, p) (2, p). Wehavet,, =U({(t: 12), p)) =

(1)U (wi) /i = (1 [U (wi) /i]) (2 [U(wi) xi]) = U ({0, p)) U ({2, p)) = U (11, p) (12,) =
ta,. Thus t,, —" t,, and t,, >~ cp,.

152

B.3. Equivalence of ISWIM and Environmental ISWIM

Case v. (plus-env). Then ¢, = ((t; +12), p) and c;, = (t1, p) +(t2, p). Wehaver,, =U ({(t; +
1), p)) = (+0)[U(wi) /xi] = (0 [U(wi) /x]) + (@[U (wi) /xi]) = U ({1, p)) +U (12,) =
U((t1, p) +(t2, p)) =ta,. Thus t,, —>* t,, and t,, =~ cp,.

By Propositions 59 and 94, we know FV (t,,) = 0 and FV (1;,) = 0. O

Lemma 263 (Simulation: Environmental ISWIM simulates (Substitutional) ISWIM.). If t,, ~ ¢}, and
tay — ta, where FV (t5,) = 0 and FV(cp,) = 0, then cp,, —* cp, and t,, =~ cp, where FV (t,,) = 0 and
FV(cp,) =0.

Proof. We proceed by induction on the structure of #,, € TERMgyp.

Case 1. (t;, = x). This case is vacuous because x +—.

Case?2. (ty =tq, tay,). Let cp, = Cpy, Cppys tay, = Ul(cp,,) and t,,, = U(cp,,). We proceed by cases on
lyy — la,-

Casei. (appL). Then t,,, t4,, — tu,, ta;, Where t,, — t,4,,. By the induction hypothesis,

Cb,, — Chy, and t4,, = cp,,. Then cp,, Cp, — Cpy, Cpy, AN 14y, 4, 22 Chyy Chyy-

Caseii. (appR). Then t,,, = v,, and vy, t4;, — Va4, ta,, Where t,,, — 14,,. By Lemma
261, c¢p,, —" vp,,. By the induction hypothesis, ¢, — ¢p,, and t,,, >~ c,,. Then

* ~Y
Chyy Cbyy 7" Vbyy Cbyy ? Vb1 Chyy and Tayy Lay = Chyy Chy,-

Caseiii. (app). Then t,, = Ax.tq,,, tay, = Va,, and (Ax.ta,,) Vay, — tayy, [Vay,/X]. Given
Ax.ty,,, = cp,,, by Lemma 261, ¢, —* vp,, and Ax.t,,,, > vp,,. Given vy, =~ cp,,, by
Lemma 261, ¢, —* vp,, and v,,, > v;,,. We proceed by cases on vp,, in Ax.t,,,, =~
vp,,- The only possible case is vp,, = <Ax¢.tp,,,, p> where FV (Axo.tp,,,) € dom(p)
and U (<Axo.tp,,,, P>) = Ax.tyy,, .

We have <Axg.1p,,,, P> Vb, — (th,,,> P[X0 > Vb,]) and we need to show 4, [Va,, /X] =~
{to111> Px0 > Vi,])-

Suppose p = {(x1,w1), (x2,w2), ..., (Xn,wn) }. Given Ax.ty,,, == <Axg.lp,,,, P>,

we have U(aAxo.tp,,,, p>) = U((Axo.tp,,,, P)) = (Axo.tp,,)[U(wi) /X1y = AXotay,,.

Then we get,,, [x_1/x0] [U(w,»)/xi]:-t:] Vay, /X—1] =tay,, [Vay, /%] where x_y ¢ FV (Axo.tp,,,)U
(Ui(FV (U (wi)) Uxi)).

Given FV (t;,) = 0, we know FV (t4,,) = Ax.tg,,, =0 and FV (t5,,) = FV(vq,) = 0.

By Proposition 53, t4,,, [x_1 /x0][U (1) /3]y [Vays /X—1] ~a 11, [Vay, /%0 [U (w3) /1],
Then t,,,[U (v, /0] [U () /iy =t s /0] [0) /iy

Hence, 14,,,[Vay, /X] == (tp,,,5 P[X0 > Vi,])-

Case 3. (t;, = Ax.1y,,). This case is vacuous because Ax.t,,, #—.

Case 4. (t, = n). This case is vacuous because n /—.

153

B.3. Equivalence of ISWIM and Environmental ISWIM

Case 5. (ty, =tq,, +1a,,). Let cp, = cp,, +Cpyys tay, = U(cp,,) and t4,, = U(cp,,). We proceed by cases on
ta, — lay.

Casei. (appL). Thent,,, +1t4, — tay, +1a), Where t,, — 14,,. By the induction hypothesis,
Ch;, — Cby, and ty,, >~ cp,,. Then cp,, +cp,, — Cpy, +Cpy, aNd 14y, +14,, = Cpy, +Cpyy -

Caseii. (appR). Thent,, =v,,, and v, +1t4, — Va,, +14,, Where t,,, —> 14,,. By Lemma
261, cp,, —" vp,,. By the induction hypothesis, c,,, — ¢p,, and t4,, >~ cp,,. Then
Vb F Coiy = Vo, + Coyy aNd Ly A Tay, & Cpyy A+ Ciyy.-

Caseiii. (plus). Thent,,, =ni,t,, = no and ny +ny — n where n = ny +ny. Given ny ~ ¢,
by Lemma 261, ¢;,, —" v, and ny >~ v, ,. Given np ~ cp,,,, by Lemma 261, ¢;, —*
Vp,, and ny >~ vp,,. We proceed by cases on vy, in ny >~ v, and on vy, in ny ~ vj,.
The only case is v,,, = n; and v, = np. Then ny +ny — n where n = n; +n; and

n>~n.

By Propositions 59 and 94, we know FV (t,,) = 0 and FV (1;,) = 0. O

B.3.5 Soundness and Completeness

We demonstrate the soundness and completeness of Environmental ISWIM with respect to (Substitutional)
ISWIM.

Theorem 264 (Soundness of Environmental ISWIM w.r.t. (Substitutional) ISWIM). Ift,, ~cp, andt,, —*
Va, in (Substitutional) ISWIM where FV (t,,) = 0 and FV (cp,) = 0, then c,, —* vy, in Environmental
ISWIM and v, ~ v, where FV (vq,) =0 and FV (vy,) = 0.

Proof. We proceed by induction on the length of #,, —" v, .

Case 1. (0). Lett,, =v,,. By Lemma 261, ¢;, —* vp, and v,, ~ vp,,. By Propositions 59 and 94, we
know FV (vy,) =0 and FV (vp,) = 0.

Case2. (n+1). Letty — t,, —" v,,. Given t,, ~ cp, and t,, —> t,,, by Lemma 263, ¢c;, —"* ¢,
and 4, >~ cp,. Given t,, ~ cp, and 1,, — () Va,, by the induction hypothesis, ¢;, —* v;, and
Va, ™ Vp,. We have ¢, —* ¢p, —" vp, and v,, >~ vp,. By Propositions 59 and 94, we know
FV(vq,) =0 and FV (vp,) = 0.

O]

Remark 265. The parenthesised superscripted number 7 in — () denotes the number of single step is n.

Theorem 266 (Completeness of Environmental ISWIM w.r.t. (Substitutional) ISWIM). If t,, ~ cp, and
cp, —" Vi, in Environmental ISWIM where FV (t,,) = 0 and FV (cp,) = 0, then t,, —* v, in (Substitu-
tional) ISWIM and v, ~ vy, where FV (v,,) =0 and FV (vp,) = 0.

Proof. We proceed by induction on the length of ¢, —" vy,.

154

B.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental ISWIM

Case 1. (0). Let ¢, = vp,. By Lemma 260, t,, € VALUEg. Let t,, =v,,. We have t,, —" v,, and
Va, 2 Vp,. By Propositions 59 and 94, we know FV (v,,) =0 and FV (vp,) = 0.

Case?2. (n+1). Let cp, — cp, —" vy,. Given t,, =~ cp, and ¢, — cp,, by Lemma 262, t,, —* 1,
and 14, >~ cp,. Given t,, ~ cp, and cp, SN Vp,, by the induction hypothesis, t,, —* v,, and
Va, = vp,. We have t,, —* v,, and v,, >~ vp,. By Propositions 59 and 94, we know FV (v,,) =0
and FV (vp,) = 0.

B.3.6 Kleene Equality of Evaluators
We prove the Kleene equality of evaluators evaliswim:subsos (f) and evaliswiv:envsos (7).

Theorem 267 (Kleene Equality of Evaluators). For any t € PRGMswimM, evaliswim:subsos (¢) is Kleene equal

to evaliswiM:Envsos ()-

Proof. We first show if evaliswim:subsos (l) = a where a € ANSiswim, then evaliswim:Envsos (l) =a.

Case 1. 1If evaliswim:subsos (f) = function, thent —* Ax.t". By Theorem 264, (¢, 0) —* V' and Ax.t’ ~
V. Proceed by cases on V' in Ax.t’ ~V/. The only case is V' = <Axo.t”, p>and U (<Axg.t", pr) =

Ax.t'. We have evaliswiM:EnvsOs (t) = function.

Case 2. If evaliswin:subsos (f) = n, then t —* n. By Theorem 264, (¢, @) —* V' and n ~V'. Proceed by
casesonV inn =~V The only case is v/ = ng and ny = U (ng) = n. We have evaliswim:Envsos (£) =

n.
‘We then show if evaliswiM:EnvsOs (l‘) = a where a € ANSiswim, then evaliswim:subsos (l‘) =a.

Case 1. If evaliswim:Envsos (f) = function, then (¢, @) —* <Ax.t’, p>. By Theorem 266, 1 —* V' and
V' ~ <Ax.t’, p>. Proceed by cases on V' in v/ ~ <aAx.t’, pr. The only case is v = Ax.t” and

U(<dx.t', pr) = Ax.t”. We have evaliswim:subsos (f) = function.

Case 2. If evaliswim:Envsos (f) = n, then (¢, @) —* n. By Theorem 266, 1 —* V' and V' ~ n. Proceed by
cases on V' in V' ~ n. The only case is v = ng and ng = U (ny) = n. We have evaliswimv:subsos (£) =

n.

We observe that evaliswim:subsos (f) is undefined if and only if evaliswim:Envsos (?) is undefined. Therefore,

evaliswim:subsos (t) is Kleene equal to evaliswim:Envsos (f). O

B.4 Equivalence of Structural Operational Semantics and Reduction

Semantics of Environmental ISWIM

We demonstrate the equivalence of the structural operational semantics of Environmental ISWIM and re-

duction semantics of Environmental ISWIM.

155

B.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental ISWIM

Lemma 268. [f c; — ¢ and E € ECXT, then E|c{] — E|c2].

Proof. Suppose ¢; —» ¢ and E € ECXT. We show that there exists some Ey € ECXT such that E[c;| =
Ep[co1] and E[cy] = Ey[coz] where cgp — cop. We proceed by induction on the structure of the derivation of
c1 — C).

Case 1. (appL). Let c; = c11 c12, c2 = c¢21 c12 and ¢y —> ¢21. Let Ep = E[D Clz]. By the induction
hypothesis, Eo[cu] — E()[Cz]]. Thus E[Cll 012] — E[Czl C]z].

Case 2. (appR). Let ¢; = vi; c12, ¢2 = vi1 ¢22 and c12 — ¢2. Let Ey = E[vy; O]. By the induction
hypOthCSiS, E()[C]Q] — E()[ng]. Thus E[V]] C]z] — E[V]] sz].

Case 3. (app). Let ¢; = <(Ax.t11), p> vi2 and ¢, = (t11, p[x — vi2). We have E[c|] — E|c,] because
c1 Z .

Case 4. (plusL).Letc) =cii+cip,co=ca1+crpandcyy —> 1. Let Eg = E[D +C12]- By the induction
hypothesis, Eo[cu] — E()[CQ]]. Thus E[CU +C12] — E[Czl + 6‘12].

Case 5. (plusR). Letc; =vi1+ci2, ¢ =vi1 + ¢ and ¢y —> ¢p2. Let Eg = E vy +]. By the induction
hypothesis, Eg[ci2] — Eo[caz]. Thus E[vi; +c12] — E[vi1 + ¢22].

Case 6. (plus). Let ¢; = nj +ny, c; =n and n = n; + ny. We have E[c;] — E|[c2] because ¢; Z c;.
Case 7. (clos-env). Let c; = ((Ax.t), p) and ¢ = <(Ax.t), p>. We have E|c;] — E|[c;] because ¢; Z c;.
Case 8. (var-env). Let ¢c; = (x, p), c; = w and p(x) = w. We have E[c|| — E|[cy] because ¢ Z c;.
Case9. (num-env). Let ¢; = (n, p) and ¢ = n. We have E[c;| — E|[c;] because c| Z c».

Case 10. (app-env). Letcy = ((t1 t2), p) and c2 = (11, p) (t2, p). We have E[c|| — E|c,] because ¢| Z ¢».

Case 11. (plus-env). Let ¢; = ((t; +12), p) and ¢, = (t;, p) + (t2, p). We have E[c|| — E|[c,] because

c1 % cs.
O
Corollary 269. If ci — ca, then ¢y — 3.
Proof. Suppose ¢; — ¢;. Let E = [0 in Lemma 268. We get O[c;| — O[c]. Hence ¢; — c5. O

Lemma 270. [f c; — ¢z and E € ECXT, then E|[c1] — E[c2].

Proof. Suppose c; —+ ¢ and E € ECXT. We proceed by induction on the structure of the derivation of
E € EcXT.

Case 1. (E =0). Observe that ¢; = O[c;] and ¢; = O[c]. We have O[c;] — Olea).

156

B.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental ISWIM

Case2. (E =Ep|dco)). By (appL), c; co — ¢z co. By the induction hypothesis, Ey[c; co] — Eplcz co).
‘We have Ey [D Co] [Cl] — Eo[D C()] [Cz].

Case 3. (E = Ey[vo d]). By (appR), vo 1 —> vg ¢2. By the induction hypothesis, Eg[vo ¢1] — Ep[vo ¢2].
We have Ey[vo O][c1] — Eo[vo O][c2)-

Case 4. (E = Ep[d+ co)). By (appL), ¢1 + co —> ¢2 + ¢o. By the induction hypothesis, Ey[c; + co] —
Ey [62 + Co] . We have E [D + Co] [Cl] — Ey [D + C()] [Cz] .

Case 5. (E = Ey[vo+0]). By (appR), vo +c; — vo + ¢2. By the induction hypothesis, Ey[vy + 1] —
Ey [VO + CQ] . We have E [VQ + D] [C]] — Ey [V() + D] [CQ] .

Corollary 271. If c; — ¢, then ¢y — c¢».

Proof. Suppose c; — c3. We know ¢; = Ey [COI]’ c=E [C()z] and cg1 Z cpp. Observe that co; Z cop
implies co; — coa. Let E = Ey in Lemma 270, we get Eo[co1] — Eo[coz]. Hence ¢ — ca. d

Theorem 272. ¢; — ¢; if and only if c; — c¢;.
Proof. The theorem is implied by Corollaries 269 and 271. O

We demonstrate the soundness and completeness of the reduction semantics with respect to the structural

operational semantics of Environmental ISWIM.

Theorem 273 (Soundness and Completeness of Reduction Semantics w.r.t Structural Operational Semantics

of Environmental ISWIM). ¢; —* ¢; if and only if c; —* c».

Proof. We first show that if c; —* ¢, then ¢; —" ¢. Suppose ¢ — () ca. We proceed by induction on

n.

Case 1. Whenn =0, c; =cp. We have ¢; —* ¢, immediately.

Case?2. Letcy — c3 — () c.
Given ¢; — c3, by Corollary 269, ¢; — ¢3. Given c3 — " ¢5, by the induction hypothesis,
c3 —* ¢p. We get c; — ¢3 —™ ¢p, that is ¢; —™ ¢5.

Now we show that if ¢; —* ¢, then ¢; —* ¢;. Suppose ¢ —() ¢y, We proceed by induction on n.

Case 1. Whenn =0, c; =c,. We have c; —* ¢, immediately.

Case?2. Letci—c3 —s(n) c.
Given c¢; — c3, by Corollary 271, ¢; — ¢3. Given ¢3 —s () ¢, by the induction hypothesis,
c3 —* ¢p. We get c; —> ¢z —> ™ ¢p, thatis c; —* ¢».

Therefore, c; —* ¢ if and only if ¢; —* ¢;. O]

157

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

We prove the Kleene equality of evaluators evaliswim:Envsos (f) and evaliswim:Envred (?)-

Theorem 274 (Kleene Equality of Evaluators). For any t € PRGMswim, evaliswiv:Envsos (¢) is Kleene equal

to evaliswim:EnvRed (1)

Proof. We first show if evaliswim:Envsos (I) = a where a € ANSiswim, then evaliswim:EnvRed (l‘) =a.

Case 1. If evaljswiv:Envsos () = function, then (¢, 0) —* <Ax.t’, p>. By Theorem 273, (¢, 0) —*
AAdx.t’, p>. We have evaliswiv:EnvRed(f) = function.

Case 2. If evaliswim:Envsos () = n, then (¢, 0) —* n. By Theorem 273, (¢, @) —* n. We have evaliswim:EnvRed () =

n.
We then show if evaliswiM:EnvRed (l) = a where a € ANSiswiMm, then evaliswiM:EnvsOs (I) =a.

Case 1. If evaliswiv:EnvRed () = function, then (¢, 0) —* <Ax.t’, pr. By Theorem 273, (¢, 0) —*
AAx.t’, p>. We have evaliswim:Envsos () = function.

Case?2. If evalISWIM;Eaned(t) =n, then <t, 0> —* n. By Theorem 273, <t, ®> —*n. We have evalilswiM-Envsos (t) =

n.

We observe that evaliswim:Envsos (7) is undefined if and only if evaliswim:Envred(?) is undefined. Therefore,

evaliswiM:EnvSOS (l‘) is Kleene equal to evaliswim:EnvRed (l‘)]

B.5 Equivalence of Reduction Semantics and Abstract Machine (CEK
Machine) of Environmental ISWIM

We demonstrate the equivalence of the structural operational semantics of Environmental ISWIM and the

abstract machine (CEK machine) of Environmental ISWIM.
Lemma 275. (E, v)s—7, (E, V).

cek

Proof. We proceed by induction on the structure of the derivation of v € VALUE.

Case 1. (<Ax.t;, p> € VALUE). We immediately have (E, <Ax.t;, pr)f —cek (E, <AX.t1, p>)p.

Case2. (n € VALUE). We immediately have (E, n)f —cek (E, n)p.

Lemma 276. If c; Z c3, then (E, ci); %y (E, c1)r —cek (E, €2)r.
Proof. We proceed by cases on ¢| Z c;.

Case 1. (app). Letc; = <(Ax.t11), p> vip and ¢; = (f11, plx — vi2]). We have:

158

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

(),xtll) p> V12>f

E DV12] (/lx l]]) pl>)f
Dvlz] (ﬂ,xtll) pl>>
(kxtn) p> O], vio)s

7 cek
——>cek

*
cek

ek (E, (1)6!11 P>V12)r

E, (ti1, plx—vi2]))t

(E,

(

(
ek (E

(

(
ek (

Case 2. (plus). Let c; =nj +ny and ¢ = n where n = ny +n,. We have:

(E, n1+na)¢
ek (E[O+n2], ni)¢
ek (E[O4n2], ni)y
ek (E[n1+0], n2)¢
ek (E[n1+0], na)y
rcek (E, n1+no):
ek (E, n)s where n = n; +np

Case 3. (other cases). Let ¢; = (t11, p) and (t11, p) Z c,. We have:

<E7 <t11> p>>f
——>cek <E7 <t117 p>>r
ek (E, C2)f

Lemma 277. If ¢ = E\[c1] and c¢| % ¢, then (E, c)f — %y (EE1, ci)t.

Proof. Suppose ¢ = Ej[ci] and ¢; Z c;. We want to show (E, ¢)f —%, (EE1, c1)r. We proceed by
induction on the structure of the derivation of Ej.

Case 1. (E] D) We know <E C>f— <E C1>f and <E Cl>f'—> <E, C1>f.

cek

Case 2. (E1 :EU C]l). We know <E, C>f: (E, E1 [C1]>f: <E, (E]l Cll)[C1]>f. We have:

(E, (Evi cin)[er])s
ek (E[Ocni], Eniler])r

Since Ey; is a component of Ej, by the induction hypothesis, we have (E[c11], Evi[ci])s — ke
(E[E1 cu1], c1)r.

Case 3. (E1 =11 E]l). We know <E, C>f = (E, E1 [C1]>f = <E, (Vll Ell)[C1]>f. We have:

159

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

(E, (vit En)[c1])s
ek (E[DEn[e1]], vins
. (E[OE[ci]], vi1)p by Lemma 275
ek (E[vir O], Erle1])s

Since Ej; is a component of E, by the induction hypothesis, we have (E[vi; O], Eji[ci])s —5
(Elvi1 Eni], c1)r.

Case 4. (E; =E1+c11). Weknow (E, ¢)¢ = (E, Ei[c1])t = (E, (E11 +c11)[c1])s. We have:

(E, (Eni+cu)lai])e
ek (E[O4cn], Enler])s

Since E|; is a component of E|, by the induction hypothesis, we have (E[O4c11], Eii[c1])s— ke
(E[Ei +cul, ci)r-

Case5. (E; =vi1+E). Weknow (E, c)f = (E, Ei[c1])s = (E, (vi1 + E11)[c1])s. We have:

(E, vi1+En)lci])s
ek (E[OA4Enfer]], vin)e
>ty (E[O+E[c1]], vii)p by Lemma 275
ek (E[vir+0], Enler])r

Since E|; is a component of E|, by the induction hypothesis, we have (E[vi; +0], Ejj[ci])s—
(Evi1 +En], ci)r-

Lemma 278. If Ey[co] = Ei[c1] and E\[c1] — Ei[c2] where ¢c1 X ca, then (Ey, co)t — 5y (E1, C2)f.

cek

Proof. If ¢ is inside cq (or the same as cg), E1 extends Ey (or is the same as Ey). Otherwise, because ¢y is

not reduced, it must be a value.

Case 1. Suppose c; is inside ¢g (or the same as cg). Let co = Ex[c1]. Then E| = EgE>. We have (Ey, co)f =
(Eo, Ex[c1])s. By Lemma 277, (Ey, Ex[c1])f — %y (EoE2, c1)f. Given ¢1 Z ¢, by Lemma 276,

(EoEa, c1)f — ek (EoE2, 1)r m—cek (E0E2, C2)t-

Case 2. Otherwise, c) € VALUE. By Lemma 275, (Ey, co)f — . (Eo, co)b. We prove the following

cek
statement by induction on the structure of the derivation of Ey € ECXT.
Statement: If Ey[co] = Ei[c1] where ¢o € VALUE and E|[ci] — E|[c2] where ¢; Z c,, then
(Eo, co)b =% (E1, C2)f

cek

Casei. (Ep=0). This case is vacuous.

160

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

Case ii.

Case iii.

Case iv.

(Ep = E»[0 ¢22]). We have:

(Eo, co)v
= (E2[0 e22], co)o
ek (Ealco O, c22)¢

Case a. 1If cop X c23, then ¢ = ¢2p and ¢ = ¢23.
By Lemma 276, (Ex[co O], c20)f — ey (E2[co O], c2)f.
Case b. 1f cyp # and ¢y € VALUE, we have:
(Ea[co O], c22)¢
ek (E2[co O], c22)p
ek (E2, €0 €22)r
Then ¢ = ¢ ¢22- By Lemma 276, (Ey, co c22)r —cek (E2, €2)5-
Casec. If cpp /2 and cyy & VALUE, then ¢y = E3[c]. Hence E; = E;[co E3]. We

have:
(Ez[co O], c2)t
= (Ex[co O], Eslc1])s
ek (E2[co B3], c1)t by Lemma 277
ek (E2[co B3], c2)r by Lemma 276

(Ep = E[v2; O]). We have:

(Eo, co)b
= (E2[v21 O], co)p
ek (E2, V21 €O)r

Then C1 = V31 Cop. By Lemma 276, <E2, V21 C0>r —>cek <E2, C2>f.

(Eo = E2[0+ ¢22]). We have:

(Eo, co)b
= (E2[O+ ¢22], codb
ek (Ealco+0], c2)f

Case a. 1If cop X ca3, then ¢ = ¢2p and ¢ = ¢23.
By Lemma 276, (E>[co+ 0], c22)f 5 (E2[co+0], c2)r.
Case b. 1If cyy 2 and ¢y € VALUE, we have:
(Ex[co+0], c22)r
ek (E2[co+0], c22)b
ek (E2, co+c22)r
Then ¢; = co+ ¢22. By Lemma 276, (E», co+ ¢22)r —cek (E2, €2)f-
Case c. Ifcy # and ¢y & VALUE, then ¢ = E3[c;|. Hence E| = Ex[co + E3). We

have:

161

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

(Exco+00], caa)s
= (Ex[co+0], Eslc1])
ek (E2[co+Es], c1)t by Lemma 277
ek (E2lco+E3], o)t by Lemma 276

Casev. (Ey = Ex[v2; +0]). We have:

(Eo, co)b
= <E2 [VQl + D], CO)b
ek (E2, Va1 +€0)r

Then ¢; = vy1 4+ co. By Lemma 276, (E>, va1 4 co)r —cek (E2, €2)5-

Lemma 279. Ifv = E[c|, then (E, c), —} V.

Proof. Suppose v = E[c|. We know ¢ € VALUE. We proceed by induction on the structure of the derivation
of E € ECXT. O

Case 1. (E =0). Then v =c. We have (J, v)p —>mek V.

Case2. (E=E;[dcpz]). Thenv = E[cc12]. We know ¢ € VALUE and cj, € VALUE. We have:

(Er[0 ez, oo
ek (Ei[c O],)¢
2 (EilcO], ci2)p by Lemma 275
—cek <E1, C C12>f
ek (E1, ccia)p by Lemma 275

Since E| is a component of E, by the induction hypothesis, we have (E|, ¢ c12)b T V-

Case3. (E = E;[vi; O]). Thenv = E{[v|; c]. We know ¢ € VALUE'. We have:

(Er[vin O], ¢)b
ek (E1, Vi1 O)f
ek (E1s Vil ©)p by Lemma 275

Since E; is a component of E, by the induction hypothesis, we have (Ei, vi1 ¢)p — 5y V.

Case 4. (E=E;[0+c2]). Thenv=Ej[c+ci2]. We know ¢ € VALUE and ¢}, € VALUE. We have:

<E1 [D + C12] C>b
ek (Erle+0], cio)r
ek (E1lc+0], ci2)p by Lemma 275
> cek <E c+ 012>
ek (E1, ¢ cia)p by Lemma 275

162

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

Since E| is a component of E, by the induction hypothesis, we have (Ej, ¢+ ci2)p — 5y V-

Case 5. (E = Ei[vi; +0)]). Thenv = E;[v1; +c|. We know ¢ € VALUE'. We have:

(Eylvii+0],)b
ek (E1, vii+0)f
i (EL vii)b by Lemma 275

Since E| is a component of E, by the induction hypothesis, we have (Ej, vi; +¢)p >tk V-

Lemma 280. If v = E|[c|, then (E, c)f —}y V.

Proof. Suppose v = E[c]. Then ¢ € VALUE. By Lemma 275, (E, ¢)f — (E, ¢)p. By Lemma 279,
(E, c)p —>cek v. Hence (E, ¢)f—0, V- O

Lemma 281. If E[ci] —" vy, then (E, c1)t —%y V2.

NG

cek V2- We proceed by induction on 7.

Proof. Suppose E[ci] —

Case 1. Whenn=0, v, =E[c;]. By Lemma 280, (E, c1)f—}y V2

Case2. LetE[c|]|— E|[c3] —s(n)vz where E[c1] =Ei[ci1] and c11 Z ¢;. By Lemma 278, (E, c1)f 5

(Ey, c2)¢. Given E|[c) 5, by the induction hypothesis, (Ey, c2)f —5, va2. Hence we have

cek

<E C1>f l—)cek V.
]

We demonstrate the soundness of the CEK machine with respect to the reduction semantics of Environ-
mental ISWIM.

Theorem 282 (Soundness of CEK Machine w.r.t. Reduction Semantics of Environmental ISWIM). For any
n e PRGMISWIM, if(l‘], @> — vy, then <D, <l‘17 @>>f '—>cek

Proof. Suppose O[(t1, 0)] —* v, by Lemma 281, ({J, (t1, 0))f —% V2. O

Any machine configuration in the CEK machine can be translated to its corresponding representation as

a configuration in Environmental ISWIM.

Definition 283 (Translator). Define the translator Zzex_seny t0 be a total function from the set of machine

configurations CFG to the set of configurations CONF.

Teek—env . CFG — CONF
cek%env(v) 1%
Zek—wnv((C>r) = E[C]
%ek%env((E, C>f) = E[C]
Teek—env((E, €)p) = Elc]

163

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

Lemma 284. If C| ——cx Cy, then Teek—env (Cl) " Teek—seny (CZ)

Proof. We proceed by cases on C; —¢ex Co. O]

Case 1. Reduce rules: Let C; = (E, ¢;); and C; = (E, ¢3)¢. Then E[c;| — E|[c;] where ¢| Z c,. Hence
%ek%env (Cl) —* %ek%env (CZ) .

Case 2. Focusrules: LetC; = (Ey, c1)fand C; = (E», ¢2)9. Then E|[c1] = Ex[c2]. Hence Ziek—eny (C1) —*
<?cek%env (CZ) .

Case 3. Build rules:

Casei. (b-val). Let C; = (O, v)p and C; = v. Then O[v] = v. Hence Ziek—seny(C1) —*
Teek—senv(C2)-

Caseii. (other rules). Let C; = (E), c¢1)p and C; = (E3, ¢2)9. Then Ej[c;] = Ex[cz]. Hence
Teek—env(C1) " Teeksenv(C2).

Lemma 285. IfC1 — C», then %ek_wnv(cl) —* t%ek_}env (Cz).

cek

(n)

cek

Proof. Suppose C; —__; C>. We proceed by induction on n.

Case 1. (0). Then C; = C>. Then Fek—eny (Cl) = Teek—senv (CZ) We have Jek—eny (Cl) " Teek—env (CZ)
immediately.

Case2. (m+1). LetC; ——cex C3 »—>(n) C.

cek
Given C| —¢ek C3, by Lemma 284, f%ek—wnv (Cl) —* %ek—)env (C3)-
(n)

Given C3 —

C», by the induction hypothesis, Teek—senv(C3) —* Teek—env (C2)-
Hence Teek—seny(C1) —" Teck—env(C2).

O

We demonstrate the completeness of the CEK machine with respect to the reduction semantics of En-
vironmental ISWIM.

Theorem 286 (Completeness of CEK Machine w.r.t. Reduction Semantics of Environmental ISWIM). For
any t; € PRGMiswiwm, if (00, (t, 0))r —2. va, then (t, 0) —* vy,

Proof. If (J, (¢, 0))¢—7., v2, by Lemma 285, Teek—senv ((, (, 0))f) —* Teck—env(v2). We have (¢, 0) —*
V). O

We prove the Kleene equality of evaluators evaliswiM:Envred () and evaliswin:cex ().

Theorem 287 (Kleene Equality of Evaluators). For anyt € PRGMiswimM, evaliswiv:Envred (?) is Kleene equal

to evaliswim:cex ().

Proof. We first show if evaliswim:EnvRed (t) = a where a € ANSiswim, then EVGZISWIM;CEK(Z‘) =a.

164

B.5. Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

Case 1. If evaliswiM:EnvRed (f) = function, then (f,) —* <Ax.t’, pr. By Theorem 282, (00, (¢, 0))f — 5y
<17Lx.t’, p>. We have evalISWIM:CEK(t) = function.

Case 2. If evaliswim:Envred (f) = 1, then (f, 0) —* n. By Theorem 282, (O, (t, 0)); —%, n. We have

evaliswiM:CEk (t) = n.
We then show if evalISWIM;CEK(z‘) = a where a € ANSiswim, then evalISWIM;EnVRed(t) =a.

Case 1. If evaliswim:cek (f) = function, then (OJ, (¢, 0))f—7, <Ax.t’, p>. By Theorem 286, (¢, 0) —*

AAx.t’', p>. We have evaliswiM:Envred (f) = function.

Case 2. 1If evaliswiv:cek (t) = n, then (O, (¢, 0))f —>, n. By Theorem 286, (¢, 0) —* n. We have

evaliswim:EnvRed (1) = 1.

We observe that evaliswim:Envred (?) is undefined if and only if evaliswim:cek (¢) is undefined. Therefore,

evalISWIM;EHVRed(l‘) is Kleene equal to evaliswiv:cex (t)]

165

Appendix C

Proofs of Chapter 4

C.1 Equivalence of Substitutional Structural Operational Semantics and
Substitutional Reduction Semantics of MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the

substitutional reduction semantics of Environmental MetaML.
Lemma 288. [fti —'t} and E € EXCT' ™/, then E™/[ti] —J E/[]].

Proof. Suppose that t{ —i té and E € EXCT /. We show there exists some Ey € ECXT* ™/ and to1,to2 €
TERM* such that E//[t]] = Ey /[t] and E/[t}] = Ey*/[1k,] where t§, —* 1£,. We proceed by induction

on the structure of the derivation of t{ —i tz.

Case 1. (lambda-(i+1)). Let £t = Ax.eit! d = Axaf and T — 14570 Let E(()iH)_oj = ED—i[Ax.0].
By the induction hypothesis, E(()’H)%J [t1] —s E(()’H)%J [t+1). Thus ECFD=I[Ax.rit1]

EG+)=i[Axsit).

Case 2. (appL-i). Let t{ =t th, th =1t t,,and t};, —'15,. Let E(i)_Oj = E™/[0+#,]. By the induction
hypothesis, Ey */[t},] —7 Ep "/[t},]. Thus E/[r}| 11,] 7 EFI[d, 11,].

Case 3. (appR-i). Let ti =it th =V tyand 1l — 1k, Let By) = E//[yi, OJ]. By the induction
hypothesis, Ey ' [ti,] —/ Ej “/[t},]. Thus E*I [V}, £1,] —J EF2I[vi |],

Case 4. (app-0). Let#? = (Ax.t%) 10 and £) = 1O /x]. We have EO—/[1{] —/ EO=/[t] because 1 %2°1).
Case 5. (run-0). Let £ =!(v!) and £ = v!. We have EO~/[t)] —/ EO—/[t)] because 1) %° 1.

140j

Case 6. (run-i). Lett] =!¢{,, 1l =15, and 1}, —'#},. Let E, */ = E"/[I0J]. By the induction hypothesis,
E} i] EyT (6. Thus EFo0[d] —sd B2 (1]

Case7. (code-i). Let tf = (fii'). 15 = (") and ffj" —"1 47!, Let E(()+ V™I — gi=i[(d)]. By the
induction hypothesis, E(g’+1)_°] (1] EO(’H)_O’ [t71]. Thus E =7 [(¢i1)] s/ ETT (1),
Case 8. (splice-1). Let#] = ~(v!) and #J = v'. We have E'~/[t]] —/ E'=/[t]] because 1] %' 1).

Case 9. (splice-(i+1)). Let tit! = Ntll, £ = ~ti, and i, — 1. Let E(i)_oj = EWD=j[~[]. By the
induction hypothesis, Ey ~/[t],] —7 Eg /[t},]. Thus ECD =i [~orl |] —d EGCED=0[~gh],

166

C.1. Equivalence of Substitutional Structural Operational Semantics and Substitutional Reduction Semantics of MetaML

Case 10. (plusL-i). Let#i =11 +t12, =1t 4+, and i, —' . Let Ej) = EF°/[0+1,]. By the

induction hypothesis, Ey [t}] —/ Ej /[t},]. Thus E“>I [t} +1i,] 7 B[t +1l,].

Case 11. (plusR-i). Let#i =i, —H{Z, =i, 1, and £, —' 1}, Let Ej */ = E//[vi, +O]. By the

induction hypothesis, E' el] —s EH] [£5,]. Thus E/I vt +11,] —7 ET°IVE |+ 1]

Case 12. (plus-0). Let) = ny +n, and £ = n where n = ny +n,. We have EO=/[19] —J EO=/[t)] because

0 g0 40
SZAR

Therefore, if # — ¢} and E € EXCT' ™/, then E//[ti] —/ EFJ[tl]. O]

Corollary 289. Ift} —' 1, thenti —' 1.

Proof. Supposeti —'1}. Let E =1 in Lemma 288. We get "/ [r}] —' O /[#4]. Hence t}; —'1). [

Lemma 290. [fti —' 1} and E € ECXT"/, then E™I[t]] —J E™J[1}).

Proof. Suppose ti —' ¢} and E € ECXT' /. We proceed by induction on the structure of the derivation

E € EcXT' /.
Case 1. (E =00). Observe that t{ = 0" [ri] and £} = O[¢}]. We have O /[¢}] —' O'[ti]
Case?2. (E =E, '[04]). By (appL-i), #i i —' # 1i. By the induction hypothesis, Ey [t} 3] —/
Eo [t} t}]. Thus Eq /[0 4§][5}] — Ey /[0 4] [13].
Case3. (E=Ey Vi 0)). By (appR-i), v}, #i —' v, £,. By the induction hypothesis, Ej */ [V} #i] —s/
Eqy ! [vj 5], Thus Eg /v O)[r{] —7 Ey /(v O [e3).
Case 4. (E=ES"V™/[Ax.0)). By (lambda-(i+1)), Ax.ti+ —+1 it
By the induction hypothesis, E(U] s E(’Jrl I Axi. ThusE (=i e O[] —
ES V™ D).
Case5. (E= E(i)%j[<)]). By (code-i), (#i*1) —7 (£/*1). By the induction hypothesis, E [(t{“)] —
Ey [(#5™)]. Thus Eg ~[(O)][rf™'] — By (O[],
Case 6. (E=E"V™/[~0]). By (splice-(i+1)), ~t] —*! ~¢i. By the induction hypothesis, E\' ™/ [~ri] —sJ
. =Ey - By (spli s~ 15~ By the induction hypothesis, £ [~t] —
ESTV ™). Thus D™ [0 [1]] —7 By [~O 1),
Case7. (E = Ej; */[!00)). By (run-i), !t/ —1z}. By the induction hypothesis, Ej, */[1ti] —/ E}, “/[11}].
Thus E, ~/[10][r] —/ Ey~/[1O][).
Case8. (E = Eiﬂjj [O+#]). By (plusL-i), #; +#) —' i +1t,. By the induction hypothesis, Eéﬁj [t +
1] —7 Ey [tk +4]. Thus Ey 7 [O+][] —7 Ej /[0 44 [£3).
Case9. (E=E, i~ v+ 0O)). By (plusR-i), v, +11 —' vl +1}. By the induction hypothesis, E(i)_oj Vi +

1] —J B [vi +4]. Thus B4/ [vi, + O[] —7 ES/[vi) + O[]

167

C.1. Equivalence of Substitutional Structural Operational Semantics and Substitutional Reduction Semantics of MetaML

Therefore, if t{ —') and E € ECXT ™/, then E//[t]] —J EJ[t}]. O
Corollary 291. Ift} —' 15, thenti —' 1.

Proof. Suppose f '—>".t§'.' Letti = EJ ™[t],], b = Eéw'i [téz] and tél.z%ij féz- Observe that 1}, %/ 1, implies
13, —’ t},. Let E = E} """ in Lemma 290. We get E] "'[t},] —' EJ"'[t},]. Hence t; —' 5. O

Theorem 292. | —' 1 if and only if t| —' t}.

Proof. This theorem follows Corollaries 289 and 291 directly. O
Theorem 293. | —* ¢} if and only if t} —™ 1.

Proof. We first show that if #{ — ¢} then 1} ——" £5. Suppose ; —") ¢}, We proceed by induction on 7.
Case 1. Whenn=0, t{ = té'. We have t{ — té immediately.

Case2. Lett, —'t} —i) th.
Given t; —' té, by Corollary 289, 1} —' té.
Given t; —(" ¢ by the induction hypothesis, #; —*).
We get 1] —' t; —"" 15. Hence 1] —"" 1;.

Now we show that if 7} —* £} then 1] — }. Suppose i —(") ¢}, We proceed by induction on n.
Case 1. Whenn =0, =t,. We have #{ —™ 1} immediately.

Case2. Letti—'t} — i) th.
Given t{ i té, by Corollary 291, t{ — té.
Given #§ (") 1 by the induction hypothesis, #; —*).
We get] —' 5 —* 1. Hence | —™ 1L

Therefore, 1 —™ ¢} if and only if 1} —™ 5. O

Theorem 294 (Kleene Equality of Evaluators). For any t € PRGMpeaML, €ValyetaML:Subsos (7) is Kleene

equal to evalyetaML:SubRed (1)-

Proof. We first show if evalyfeamr:subsos (l‘) = a where a € ANSpetaML, then evalyjetami - SubRed (l) =a.

Case 1. If evalyieiam:subsos (t) = function, then t —0* Ax.t”. By Theorem 293, t —%* Axt”.

We have evalyeramr:subred () = function.

Case2. If evalyeramr subsos (t) = code, then t —%* (v!). By Theorem 293, 1 —%* (y!).

We have evalyetaML:SubRed (t) = code.

Case 3. If evalyeramr -subsos (t) = n, then t —%* n. By Theorem 293, t ——"* n.

We have evalyjeamr:SubRed (1) = 7.

168

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

We then show if evalyetamr:subred (f) = @ Where a € ANSpeamL, then evalyetamr:subsos (1) = a.

Case 1. If evalyieramr subred () = function, then ¢ —* Axt”. By Theorem 293, t —0* Axt”.

We have evalyetaML:SubSOS (l‘) = function.

Case 2. 1If evalyeaamL:subred () = code, then t —0* (v1). By Theorem 293, t —%* (v1).
We have evalyeramr:subsos (f) = code.

Case 3. If evalytetamL:subRed (t) = 1, then t —%* n. By Theorem 293, t —% n

We have evalyeramr:subsos (1) = n.

We observe that evalyeramr:subsos () is undefined if and only if evalyeamr:subred () is undefined. Therefore,

evalyeraML:subsos (1) is Kleene equal to evalyetamr:SubRed (7)- O

C.2 Equivalence of Substitutional Reduction Semantics and Substitutional
Abstract Machine (MK Machine) of MetaML

We demonstrate the equivalence of the substitutional reduction semantics of MetaML and the substitutional

abstract machine (the MK machine) of Environmental MetaML.

Lemma 295. (i, E0 vi)gr—* (i, E0, Vi),

Proof. We proceed by induction on the structure of the derivation of v/ € VALUE'.

Case 1. (x € VALUE'™!). We immediately have (i+ 1, ECtD=0 x)¢ s 1 (i, EGTFD=0)

Case 2. (v’+1 i1 e VALUE™™!). We have:

(i+1, D=0 it ivly,
—mk (i1, ECD=0[04H, l+1)f
i (i1, ECGD=0OLEH] yih by the induction hypothesis
S mk <i+1, E(i+1)w0[vt+1] 1>f
e (i1, B0 O] ’“) by the induction hypothesis
—mk (41, EiH1)—0 v’i“ v§+l>

Case 3. ()Lx.t? € VALUE"). We immediately have (0, EO—0, lx.t?>f —rmk (0, E00, lx.t?)b.

Case 4. (Ax.i™' € VALUE!). We have:

(i+1, EGD=0 2y pithy,
bk (i1, ECFD=0 0], v
i (i1, EGFD=00x 0], Vi), by the induction hypothesis
bk (i1, EGFD=0 0 2 yithyy

169

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Case 5. (('!) € VALUE'). We have:

(i 0 ()
—mk <l+1 Elﬂo[(>]7 l+1>
i (i1, EFOUD)], viT), by the induction hypothesis
— >k <17 EtwO < z+1>>b
Case 6. (~V"' € VALUE'™?). We have:
(i+2, EHD=0 iy,
— Sk <l+ 1’ E(i+2)wO[NDL vll+l>f
e (i1, EG2=0[), v by the induction hypothesis
ok (i42, B0 LyitTy

Case7. (W™ € VALUE™™). We have:

(i+1, E(i+1)w0’ 'Vli+l>f
—mk <i+1, E(i—i—l)—oo[”:]]7 zl—|-1>f
i (i1, EGFD=0n0] vty by the induction hypothesis
— K <i+1, E(H—l)—oO 'vtl+l>

Case 8. (n € VALUE'). We immediately have (i, E0, n)¢ i (i, E—0, n)y.

Lemma 296. [t} %' t}, then (i, E™0, ti)¢—* (i, E0, 1) s (i, ET0,)y
Proof. We proceed by cases ont} %' t}.

Case 1. (app-0). Leti= 0,1 = (Ax.t?) 9, and 1) = 19, W), /x]. We have:

(0, EO0, (Ax.tfy) Vi)
—mk (0, EO00W),], Axtd))e
—mk (0, 90000, Axtd))y
—rmk (0, E“ () O], W)
(0, EO0[(Ax.£9)) O), W,)p by Lemma 295
(0, E0, (Ax.tf)) Vo)
(

0, E®0, 17, [v), /x])s

*

mk
——"mk
——mk

Case?2. (run-0). Leti=0,) =!(v},) and 19 = v},. We have:

170

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

(0 EO_OO» !<V}1>>f
—rmk (0, ECO0], (viy))r
k(1 EOOOI (O, vip)e
st (1, EOONO(D)], vl)y by Lemma 295
—mk (0, ECO0O, (v
e (0, EC0 1)
—mk (0, EO0 vl

Case 3. (splice-1). Leti= 1,1/ = ~(vl,) and tJ = v},. We have:

(;
k{0, ES0[~O], (vip))e
—rmk (1, ESO[~OJ[O)], viy)e
st (1, EO0~O)(D)], vl)p by Lemma 295
—rmk (0, ES0[~O], (vig))e
k(1 EO0 ~ (o))
e (1, 970 vl e

Case 4. (plus-0). Leti=0, t? =n;+ny and tg = n where n = n| +ny. We have:

(0, EO_°0 ny+na)s
—mk (0, EO%O[D+n2], ni)¢
—mk (0, EO [0+ no], ny)y
—mk (0, E9O[ny +00], na)¢
—>mk < Eowo[n]-i-D] >b
—rmk (0, EO0 ny 4-ny),
—mk (0, E90) n)¢ where n = ny +np

Lemma 297. If1' = E] “'[t]] and t] % 1}, then (i, E=°, !¢ %, (j, ETCE] ™ /).

Proof. Suppose t' = E/'[t]] and t] %/ t]. We want to show (i, E0, EJ[t]])s —%, (j, OB/ ™ t]).

We proceed by induction on the structure of the derivation of £ { -
Case 1. (Ei™" =0")). We know (i, E"™0 ¢} = (i, E0, ti)s and (i, E™0, #i)s—* (i, =0 i)y

Case2. (E/ ™" =EJ/ " 11)). We know (i, E™0,)¢ = (i, E=0 E{[t/])s = (i, E=°, (EJ"" ¢l)[t]])s.
We have:

(6, 70, (B 1)]
k(G B0 B)

171

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Since E { l_oi is a component of E { ', by the induction hypothesis, we have (i, E-*0[0¢], E f 1_0’ t] =
(i, EVOEN T))

Case3. (E/ ™ =i, EI[™). Weknow (i, E=0,)¢ = (i, E=0, E{"[t/])s = (i, E™°, (v} E{;"D)[t]])s.

We have:
(i, E=0, (v, E{T”)[t]>
——mk <lv EI_OO[D E{?I[IJ]L vlll>f
—x (i, EZOOE! 1)), Vi) by Lemma 295
——mk <i, El_oo[v 11 D}v E{l_w[tfbf

Since E{; " is a component of £ 7! by the induction hypothesis, we have (i, E0[vi O], E/ " [t]])s—%
G, B, B, 1

Case 4. (B = Ax.E/°0TY) We know (i+ 1, EG+D=0 ¢i+1y = (j4 1 giri=0 pi=(FD[)y —
(i+1, EAD=0 (ax.EI VD) [H]);. We have:

(i+1, E(+D—0, (lx.E{l_("(iH.))[t{']}f
sk (i1, ECD=02x.0], BV,
Since E { f(iﬂ) , by the induction hypothesis,
we have (i+ 1, ECD=04x 0], E/ OV 6]y —x (i1, ECD=0 BT 0] 4y

is a component of E{ —(+1)

Case 5. (EJ" = (EI ")) We know (i, B0, 1) = (i, E=0, EI™[t))); = (i, E0, (EI"UTD)[e])y.

We have:
R (it)y r
(i B0 (B e
—smc (i EZOUO), BV
Since E f fo(iH) is a component of E{ — by the induction hypothesis,

. i—ol Jj—o(i+1)r,Jj * . i—o j—o(i+1 j
we have (i, E0((C)], E{, "V o G ETOUET),)

Case 6. (E{_O(i+l> — ~E/). We know:

<l+1, E(H—l)—OO’ ti+1>f
= <i+1’ E(i+1)w0’ E{—O(i“)wa
= (i+1, B0 k] P r]))

We have:

(i+1, ECD=0 B =[]
k(i 1, ECD=0[0], B]y

172

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Since E { r’i is a component of E{ %(iﬂ), by the induction hypothesis,

we have (i+ 1, ECHD=0[~00), E{ [ty e —, (i+1, ECD0[~ET T ¢,

Case7. (EI™ =\EJ™). Weknow (i, E=0, t')s = (i, E=0, EI™'[t]])s = (i, =, \EJ"[t]])+. We have:

(i B0 B D
—rmi (i B0, B D

Since E{; " is a component of £ 7! by the induction hypothesis, we have (i, E/0[\0], E{, *'[t]])¢—7,
<i7 Ei_oo[!Efl_Ol]v t{>f~

Case 8. (EI"=E{ "'+t). Weknow (i, E=, t')s = (i, E0, E/"[]])s = (i, E=0, (EJ," +£i) [t]])r.
‘We have:

G B (B) D
sk (i B0+, ELDr

Since E{, " isa component of £y 7! by the induction hypothesis, we have (i, E0[0+1!,], EJ " [t]])s —%,
(i, EZOIE] 7 4],)

Case9. (E/ ™ =vi +E/). Weknow (i, E=0, ¢\ = (i, E0, EI[t/])s = (i, E=°, (vi, +EJ")[t]))r.
We have:

(i, B0, (v} +E{)]s
—mk <i7 ElﬂO[D—FElJrn[ﬂH? vlll>f
(i, E—0|0 +E{f” [rl]], vi)b by Lemma 295
(V)

—" 1
i, EZOWh, 400, Ef)

mk

——"mk
Since E/ " is a component of £ 7! by the induction hypothesis, we have (i, E-°i | + 0], E{; ' [t]])s—%,
(i, ETOD L, o)
O

Lemma 298. If E-C[i] = E{"[t/] and EI°[t]] — E{°[t]] where t] %7 t], then (i, E;0, tf); —%
G B)

Proof. 1f t{ is inside té (or the same as té), E{ ~0 extends E(")”O (or is the same as E(")ﬁ’o). Otherwise, because

t} is not reduced, it must be a value.

Case 1. Suppose #] is inside #, (or the same as 7). Let r, = EJ*'[t]]. Then E{ ™" = Ei~0EJ ™. We have
(i, ES0, 1i)e = (i) Ei°, Ef“”'[zf]}f. By Lemma 297, (i, EH_O EH)t U Eif’OEg*", t)s.
By Lemma 296, (j, E;CE] ™", t])s %, (j, EiCE] ™, t])r —mk (J, BSOS, t))r.

173

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Case 2. Otherwise, #) € VALUE'. By Lemma 295, (i, E;™, t})¢ —7%, (i, E;™°, 15),. We prove the
following statement by induction on the structure of the derivation of E; 0 € EcxT .
Statement: If E;0[¢i] = E/%[¢]] where i € VALUE and E{°[t)] — E{ ™[] where t] %7 1],
then (i, Ej 0, 1) i (s E{ 0, t)r.

Case i. (EO”O [09—0). This case is vacuous.
Caseii. (Ey~0=E°01¢,]). We have:
(i, Ey ™, 1)
= (i, Eéﬂo[m 152]7 t(i)>b
k(5 B0l O,)
Casea. Ifth, Z'thy, thenti =1, and 1h =ths.
By Lemma 296, (i, ES0[f O], t5,)¢ —%y (i, E50[tl O, 1)y
Caseb. 1ft), /Z'andt;, € VALUE"
Casel. Iftp € VALUE". We have:
(0, B3ty O], 135)¢
—rmk (0, B30l O], 13)s
ik (0, B3, 10 150)r
Then ¢ =13 #9,. By Lemma 296, (0, E9=0, 10 £3,); —mk
(0, ES™0, 19)s.
Case2. 1f), € VALUE'"!. We have:
(i1, B O, s

st (i1, ESTUTOE O] Y, by Lemma 295
. i+1)—0
i (41, E) RARNAa S
We know t6+1 t;z’] € VALUE'!. Since Ez(iH)%O is a component

of E(giH)_OO, by the induction hypothesis, (i+1, EéiH)_OO

<.17 E{) t£>f-
Case c. Tfty, #'andt}, ¢ VALUE', thents, = E{ '[t]]. Hence E{ " = Ei [E{ ™).

i+1 4i+1 *
fo' ty)bk

We have:
(i+1, ESTV=0p O, ity
(i, Ey~lty O], 155)¢
= (i, B5 0l O0), B4 ' [t{])s
i (s ESOl1 Eﬁ”] f>f by Lemma 297
i Uy ESOl B, 1) by Lemma 296

Case iii. (E}~0 = EI=W,, O)).
Case a. Ifty e VALUE". We have:
(0, E5~°, 1)
= 0, ngo[vﬂ O, 90
—mk (0, 30, V3, 10):

174

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Then £ =19, #§. By Lemma 296, (0, E9™0, v9, 10} —mi (0, E9™0, 1)y
Case b. 1Ifty € VALUE'"!. We have:
: ((+1)—0 _i+1
(i+1, E, to)b
= i+, BT [vaﬁl al,)y
—mk (i1, E“*” VT

z+1) —0 . (i+1)—0

We know v’;lrl t(’)+1 € VALUE"!. Since Eé is a component of E; ,

by the induction hypothesis, (i+ 1, EéiH)_oO, VL e G BT)

Case iv. (Eéiﬂ)ﬂO = Eéiﬂ)%o [Ax.]). We have:

1—00

(i1, ESTD70 4ty
= (it EOHHO[/I O, £+,
—mk ((+ 1, Eé’“ “’0, 7Lx.t(’)“>b
We know Ax.£it! € VALUE'!. Since D70
induction hypothesis, (i+ 1, Ez(wl)ﬂao7 lx.té“) s (j, B t2>

Casev. (ES™V™" = Ei~0[(0)]). We have:

(i+1)—0

is a component of E; , by the

(i+1, E§TO™0 ety
= (i+1, EXOUD)], 5

—mk {1, ES0, (1571,

We know (¢ ‘H) € VALUE'. Since E’_"O is a component of E('H)%O, by the induction
hypothesis, (i, 50, (t5""))p iy Uy E{ ",).
Case vi. (Ej0= Eéiﬂ)%o [~O)).

Case a. Ifty € VALUE". We have:
(0, B9, 19
= (0, E;~°[~0J, 10)v
—mk (1, EA70 ~t0),
Then tll = ~t8. By Lemma 296, (1, Ezl%’o, ~t8>r —rmk (1, E2140, t21>f.
Case b. 1Ifty € VALUE'"!. We have:
(i1, EJTD=0 vy,
- (i+1, Eﬁw[~0), £y,

. i12)—o
e (42, ESTITO ity
We know ~;*! € VALUE™™. Since E, (i+2)=0 i3 a component of E, (iH)_OO,
by the induction hypothesis, (i+2, E, (’H) t(i)+1>b —* EJﬂO t5>f-

Case vii. (E5~0 = EI=°)100)).
Case a. If ty € VALUE®. We have:
(0, Eg %, 10)v
= (0, E3°10], 1o
—mk (0, ES™0, 110),

175

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Then ¢ =!#). By Lemma 296, (0, E9~0, 1), —mk (0, E9™0, 19)y.
Case b. 1Ifty e VALUE'"!. We have:
(i+1, E, AR
— (i+1, E(’HHO['D] iy
e (i1, ESTUTO iy,

(i+1)—o0

We know 7! € VALUE'*!. Since Eélﬂ)ﬂo is a component of E(glﬂ)ﬂo,

by the induction hypothesis, (i +1, Eéiﬂ)%o, ey s (G B0)y

Case viii. (Ej~" = Ei°[0+14,]). We have:

<i7 E(gﬂo’ t6>b
= <i’ Eé._oo[[H_téz]’ t(i)>b
k(i By Oty + 0], 155)¢

Casea. Ifthy #'thy, thenti =1, and rh = ths.
By Lemma 296, (i, E5O[f + 0], thy)s —%, (i, EX0l + 0],)y
Case b. 1Ifth, /¢ andtl, € VALUE'.

Case 1. TIfty, € VALUE". We have:
(0, B3l +00], 1)
ik (0, B30y + 0],)
—rmk (0, EYT0, 10+ 1))
Then 0 = 1) +19,. By Lemma 296, (0, E9™0, 10 +19,); —mk
(0, E9=0, 19)s.
Case 2. Ifty € VALUE™!. We have:
i+ 1, By 00)
st (i1 ESTUTOE 0] 44, by Lemma 295
vk (i1, ESTUTO gt gy
We know té“ + tg] € VALUE'"!. Since Eéiﬂ)%o is a compon-
ent of Eéi+1)_°0, by the induction hypothesis, (i+1, E§i+1)_00 IARRE
153 0 e U BT)
Casec. Ift, /7' andti, ¢ VALUE, then ti, = E{ “'[/]. Hence E] " = Ei [t +
E]']. We have:

G+ 1, ESTU O 0, g

iy E5 O+ 0], thy)r
= (i, EI%O[IO-FD] E]_Ol[]>f
—in (s E5Ol +Eﬁ”] ll> by Lemma 297
k(U E5 0ty + E]_Ol] t2> by Lemma 296

Case ix. (EF0=E—0ni 4+).
0 2 21

Case a. TIf ty € VALUE®. We have:

176

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

(0, ES™0, 10,
- (0, E3°D8, + 00, 9)v
—rmk (0, B30 00, +10)s
Thent? =v9, +1J. By Lemma 296, (0, ™% V9, +10); —mk (0, ES™0, 19)s.
Case b. Ifty € VALUE'™!. We have:
N L

- a+hé””ww“+m1ﬁw
e (i1, ESTUTO il ity

We know vit!+#"1 € VALUE'™!. Since Ez()%O is a component of Eéi+1)_°o,
by the induction hypothesis, (i+1, Ez(’H)%O, LA L P R 2 X e 1S

Lemma 299. [fV° = E/=Vt], then (i, E0, t)), —%, V0.

Proof. Suppose V0 = E/™9[t]. We know ¢ € VALUE'. We proceed by induction on the structure of the
derivation of E0 € EcxT ", O

Case 1.

Case 2.

Case 3.

(E9—0 = [0°=9)_Then 1° = 1°. We have (0, (190, 19}, s 1°.

(ET0 = E{[O+,)). Then* = E{C[t' ¢},]. We know ¢ € VALUE', #{, € VALUE' and i > 1.
Let’s use i + 1 instead of i. We have:

()
(i+1, B0 O], g
(i Ef‘:“)*o 0], £51), by Lemma 295
<i+ 1, Efl-—l-l)—oo’ fitl ti+1>

(i+1, EVTD™0 4144y by Lemma 295
Since E I(HI)A’O is a component of E(t1)~0 by the induction hypothesis,
we have (i+1, EYH)%O, A Y s W0,

(E0 = EI=%lyi, O)). Then? = Ei0vi,]. We know #' € VALUE' and i > 1. Let’s use i + 1

instead of i. We have:

(i+1, E(iH)_OO[vﬁl O, £+

——>mk <l+1 E(l+1) lﬁ_l ti+1>f
— e i+ El('+1) AR Ly by Lemma 295

Since El(iﬂ)_o0 is a component of E(*1)~0 by the induction hypothesis,
we have (i+1, E](ZH)H)O, Vi D e 0,

177

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Case 4.

Case 5.

Case 6.

Case .

Case 8.

(E(HD—0 — EYH)H}O[),)C.D]). Then V0 = EI(HI)%O[?Lx.t"H]. We know ¢+ € VALUE'"!. We
have:

(+1, B0), 41y,
——>mk <i+ 1, El(erl)wO’),x.ti+1>b
Since E I(HI)%O is a component of £ (i+1)—0, by the induction hypothesis,
we have (i+1, EV V™0 Axsitlyy x40,

(EWHD=0 = EI=0[()]). Then v* = E{~O[(t"*1)]. We know " € VALUE'*!. We have:

(i+1, E{O[O)], 1)y
—>mk <i7 E{_O()? <ti+l>>b

Since Ei~0 is a component of E(+1)=0 by the induction hypothesis,
we have (i, EI0 (#7H1)), — 10,

(E—0 = EEiJﬁl)ﬂO[ND]). Then 0 = Efiﬂ)ﬂo[wt"]. We know ¢/ € VALUE' and i > 1. Let use
i+ 1 instead of i and i + 2 instead of i + 1. We have:

(i+1, E7000), £ithy,
—>mk <l+2a El(hLZ)H)Ov Nti+1>b

i+1)

Since E l(i+2)_°0 is a component of E(1)~0 by the induction hypothesis,

. i+2)—0 i
we have (i + 2, EI(Hr)=0, ~t T s 30

(E0 = EI=0110]). Then v* = Ei~Y[!#/]. We know ¢’ € VALUE' and i > 1. Let use i + | instead
of i. We have:

(i+1, EFTO=000), e+,

i (i1, VDT ity

Since E I(HI)A’O is a component of E(

we have (i+1, EYH)H)O, 1y —r 00,

i+1)=0 by the induction hypothesis,

(E0 =Ei=00++,]). Then? = EI~0¢ +#i,]. We know t € VALUE', #, € VALUE' and i > 1.
Let’s use i + 1 instead of i. We have:

. i+1)—0 1 P
i+1, B[V 0+41"), 64,
i+1, EFVO O, iy,

()
——>mk <)
st (i1, EFTTOR0) 4h by Lemma 295
——mk <l+ 17 Efile)ﬂOa ti+] +tiJ2rl>f
st (i 1, EVTUTO ity by Lemma 295

178

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Since E Yﬂ)ﬂo is a component of E(+1)=0_ by the induction hypothesis, we have (i+1,E fiﬂ)%o, 4

i+1 * 0
3)b V-

Case9. (E0=EOi +0)). Then* = Ei~O[vi, ++]. We know #' € VALUE' and i > 1. Let’s use
i+ 1 instead of i. We have:

(i+1, VD™ [vﬁ‘ +0), £+,

ok (i1, ETUTO gl iy
— e i+, E(’+1> A LAY by Lemma 295
Since E l(iﬂ)ﬂo is a component of £ (i+1)—0, by the induction hypothesis, we have (i+ 1, E EHI)%O, v’f{l +

ti+1>b '—>;knk VO.

Lemma 300. 1) = E—O[ti], then (i, E=°, ti)¢ —* 1Y,

Proof. Suppose V0 = E“0[t]. Then #' € VALUE'. By Lemma 295, (i, E/0,)¢ —* (i, E"0, t');. By
Lemma 299, (i, E™™, t!), i 0. Hence (i, E™0,)¢ —% 0. O

Lemma 301. [fE™ [t]] —* VY, then (i, E™0, t1)¢ —%, 19
Proof. Suppose E[ri] —(" 9. We proceed by induction on 7.
Case 1. Whenn =0, = E"%[¢i]. By Lemma 300, (i, E™0, i), 19.

Case2. Let E™lt}] — E{~"[t3] "4, where E"°[1]] = E{ [t} and 1], %/ z{
By Lemma 298, (i, E=0, ¢i)¢ —* (j, EI ™,). Given E/ °[t]] —) 19, by the induction

hypothesis, (j, E{ ", t)s —s* 0. Hence we have (i, E™0, 1) —* 19,

O]

Theorem 302 (Soundness of Substitutional Abstract Machine w.r.t. Substitutional Reduction Semantics).
For any t; € PRGMpetaML, ift? —* vg, then (0, (100, t?>f ik Vo

Proof. Suppose (0[] —* 19, by Lemma 301, (0, (070, #9)¢ —* 9. O

Any machine configuration in the MK machine can be translated to its corresponding representation as
a term in (Substitutional) MetaML at level 0.

Definition 303 (Translator). Define the translator Jx_eup to be a total function from the set of machine
configurations CFG to the set of level 0 terms TERM'.

Frkssub © CFG — TERM"
ymk%sub« El_oo tl>f) = Ei_oo[ti]
ymk—mub((Elw0> l)b) = Ei%o[vi]
ymk%sub« Ez—007 tl>) = Ei_oo[ti]

mk—>sub(V) =W

179

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Lemma 304. IfC; —nk Ca, then Tk —sub(C1) — Tk ssub(C2).

Proof. We proceed by cases on C; — i Co. O

Case 1. Reducerules: Let Cy = (i, E0, ti), and C, = (i, E"™, t})s. Then E/~°[t;] —0 E'=0[t,] where
l‘i 74 l‘é. Hence ymk—mub (C]) —0 ymk—mub(CZ)-

Case 2. Focus rules: Let C; = (i, E™, #i)rand C, = (i, E7™, #}}». Then E"%[1] = EO[t,].
Hence Tk sub(C1) % Tk ssub(C2).

Case 3. Build rules:

Casei. (b-value-0). LetC; = (0, 0, V%), and C; =v°. Then O[»°] =1°. Hence Tk _sup (C1) —*
Tmk—sub(C2)-

Caseii. (other rules). Let C; = (i, E™, #i), and G, = (i, E"™°, #})5. Then E/'[t)] =
E™t]. Hence Tk sub(C1) " Tk sub(C2).

Lemma 305. IfC1 '_>r*nk Cz, then fmk_}wb(cl) i—>0* ymk—mub (Cz).

Proof. Suppose C; r—)f:flz C,. We proceed by induction on #.

Case 1. Whenn= 0, C1 = Cz. Then ﬂmk_,sub(cl) = ymk—mub(CZ)' We have ymk—mub (C]) '—>0* 9mk—>sub (Cz)

immediately.

Case2. Let C; —m C3 —" C,.

Given C| —mx C3, by Lemma 304, Zissub (C1) % Tk ssub (C3).
Given C3 —s C>, by the induction hypothesis, Tk sub(C3) — Tk ssub(C2).

mk
Hence Zk_ssub(C1) % Tk ssub(C2).

O]

Theorem 306 (Completeness of Substitutional Abstract Machine w.r.t. Substitutional Reduction Semantics).
For any 1 € PRGMyewamr, if (0, O, 1))¢ —* V3, then 1) —0 1.

Proof. 1f (0, O,)¢ —7, 19, by Lemma 305, Jik—ssub((0, O, £9)¢) % Tk ssub(v9). We have 19 —0*
0
Vs. O]

Theorem 307 (Kleene Equality of Evaluators). For any t € PRGMmeML, €ValyetaMmi:SubRed (f) is Kleene

equal to evalyetamL:MK (1)

Proof. We first show if evalMetaML:SubRed(t) = a where a € ANSMetaML, then evalyetamL:- MK (l‘) =a.

Case 1. If evalyemr:subed(t) = function, then r —0* Axt”. By Theorem 302, (0, O,)f —"

0
Ax.t"”. We have evalyieramr:Mk () = function.

180

C.2. Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

Case?2. If evalyjeaML:subRed(t) = code, then t —0* (v!). By Theorem 302, (0, OJ, t); — (). We

have evalMetaML;MK(t) = code.

Case 3. If evalyeramr:SubRed () = 7, then t —%* n. By Theorem 302, (0, O, t)¢ ' n. We have

evalyeamL:Mk () = n.
We then show if evalyerami:Mk () = a where a € ANSpetamL, then evalyieamr:subRed () = a.

Case 1. 1If evalyjeramr-mk (f) = function, then (0, [, £)f —* Axt”. By Theorem 306, ¢ —%* Axt”.
mk

We have evalyeramr:subred () = function.

Case 2. If evalyeami:vk (t) = code, then (0, O, £)f —7, (v!). By Theorem 306, —% (v!). We have

evalMetaML:SubRed(t) = code.

Case 3. 1If evalyieami:vk () = n, then (0, O, 1), n. By Theorem 306, +——0* n. We have evalyietamL:subRed (1) =

n.

We observe that evalyerami:subred (?) is undefined if and only if evalyenmr:mk () is undefined. Therefore,

evalyetaMlL:SubRed (l) is Kleene equal to evalMetaML;MK(I). OJ

181

Appendix D

Proofs of Chapter 5

D.1 Equivalence of MetaML and Explicit MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the
structural operational semantics of Explicit MetaML. We use subscripts “su,” and “exp” to differentiate the
syntax of (Substitutional) MetaML from the syntax of Explicit MetaML..

D.1.1 Bisimulation Relation

Definition 308 (Bisimulation Relation). Define the bisimulation relation ~ to be a binary relation up to
alpha equivalence on the set of terms in (Substitutional) MetaML and the set of runtime terms in Explicit
MetaML.

~ C TERMY, X RTERM,,
i ~ I~ i~ 4l
. fay tb' fa = tbz (app-sim) fa =1} (lam-sim)
y=x (var-sim) ;;11 o~ 1 (Axdl) =~ (Ax.t})
tONtb (1 .) tH—l t}l)—‘rl (o) tl ~ z (i .)
amu-sim ———— (code-sim b splice-sim
(Ax.t2) ~ (Ax.t)) (1) o (i ~th o]
tzN,z (: tj”:t;,l t;2~tb2 ol im)
: run-sim : . : plus-sim
I~ = num-sim i i~
It~ 1t} nmn () ty, +1a, = thI —|—th
Lyt we>=wp)
; ; (subst-sim)
1 wa/x] =t [x := wp]

Remark 309. The bisimulation relation ~ is up to alpha equivalence. We immediately have: (1) if #,, >~ 1,

and t,, ~q t4, thent,, ~ 15, and (2) if t, >~ 1, and 1}, ~¢ 1}, thent, >~ 13,,.

D.1.2 Unload Function

Definition 310 (Unload Function). Let i € N. Define the unload function U to be a total function from the
set of Explicit MetaML runtime terms RTERM., p to the set of Substitutional MetaML terms TERM. ;.

182

D.1. Equivalence of MetaML and Explicit MetaML

U : RTERMY,, — TERMY,
Ux) = x
Uthn) = Ul)U(n)
UAxt) = Ax.U(t)
UAxt) = Ax.U(t)
u({) = U@)
U(~t) = ~U(1)
Uu(lt) = W0(1)
Un) = n
Uti+n) = Ul)+U(n)
Ultlx:=w]) = U@)[U(w)/x]

Lemma 311 (Equality of Related Terms w.r.t. Unload Function). If, ~ 1!, thent, = U(t}).

Proof. We proceed by structural induction on ¢, ~ t;;.
Case 1. (var-sim). Let r;, = 1} = x. We immediately get x = U (x).

Case 2. (app-sim). Let#, =1}, 1, andtj, =1] 1; wherer} ~1 andz, ~1j . By the induction hypothesis,

ay tay
1= U(tl’;l) and 7}, = U(tgz). Hence U(tl’;I t;',z) = U(tl’;l) U(t,iQ) =1 1.

Case 3. (lam-sim). Let ¢\ = Ax.tfll and t} =)Lx.tlil where tél o~ tl’;l. By the induction hypothesis, tfll =
U(tl’;1). Hence U(kx.tél) = Ax.U(tl’;l) = Ax.l .

Case 4. (lamu-sim). Let ¢ = lx.tgl and tl’; = &x.tgl where tgl o~ tl?l' By the induction hypothesis, tgl =
U(t,(,)1). Hence U(&x.t[?l) =).x.U(t,g)]) = Axt).

Case 5. (code-sim). Letr, = (ti™!) and 1}, = <t,’:|’1> where £ ~ t,’;Tl. By the induction hypothesis, 75 =
U(tl’n“). Hence, U(<t1’71“>) = (U(t,’;lrl» = (11,

Case 6. (splice-sim). Let rit! = th;l and t}fl = Ntél where tfll ~ tél. By the induction hypothesis,
ty, = U(t},). Hence, U(~t),) = ~U (1)) = ~1,.

Case7. (run-sim). Let#, = !z, and 1} = !t,il where 1}, ~ tél. By the induction hypothesis, #, = U(t,i1)
Hence, U(1t),) =1U (1) = !r},.

Case 8. (num-sim). Let #;, =t} = n. We immediately get U (n) = n.

Case9. (plus-sim). Let t, =1, +1}, and tj =1; +1} where r, ~1, andr, ~1 . By the induction
hypothesis, ,, = U(t;,) and t,, =U(z;,). Hence U(t, +1,) =U(t,) +U(t},) =15, +14,

Case 10. (subst-sim). Lett, = tfll [Weq, /x] and 1, = tél [x := wp, | where t(il ~ tl’;l and w,, >~ wy,. By the induc-
tion hypothesis, 7, = U(t},) and wa, = U (wy,). Hence U (t], [x := wy,]) = U(t},)[U (wp,) /x] =
Ly [Way /x].

O

183

D.1. Equivalence of MetaML and Explicit MetaML

D.1.3 Substitution Normal Form

Definition 312 (Substitution Normal Form). A term t € RTERM"'3Xp is in substitution normal form if and
only if ## /=X,

Remark 313. We use s with or without any subscript or superscript as a metavariable to range over the
runtime terms of Explicit MetaML in substitution normal form.

Remark 314. An Explicit MetaML runtime term in substitution normal is not necessarily in the normal form
with respect to the single-step relation —. For example, (Ax.t) v is in substitution normal form but is not

in the normal form with respect to the single-step relation —.
Lemma 315. [ft, ~1; [x:=wy], thenty —*" s} , s, [x:=wp | —"" s, andt, ~ s, .

Proof. We proceed by structural induction on #j, ~; [x:= wy,]. Only (subst-sim) applies. Let, = ., [wa, /x|

and we have

[) ~
tal ~ l‘bl Wq, = Wp,

t, [Wa, /x] ~ t[’)1 [x == wp,].
We proceed by cases on tfl1 € TERMéub.

Case 1. (t} =x). We have

Xt Wa W

X[Wa, /x] = tl’;l [x :=wp, .

Then, x[wq, /x| = wa,. We proceed by cases on x ~ 1} .

Casei. (var-sim). Let#, = x. Then, x —** x, x[x 1= wp, | —* wy, and w,, =~ wy,.

Caseii. (subst-sim). Let #; =1} [x1:=wp,]. Given x >t [x| := wy,], by the induction

l

: i Xi* i — Xk (i ~ ol
hypothesis, we get#;, —**s; s [x1:=wp,] —*"s, andx=~s, . We proceed
by cases on x o~ s, . The only case is (var-sim), so let s, = x. Then, t;, —*"* x,
bi» b1 by

xpxi=wy,] —X wp, and wy, =~ wy, .

Case 2. (tc’;1 = x and xo Z x). We have

Xg ~ tlln Wa, 2 Wp,

X0[Wa, /X] = tl’;l [x:=wp,].

Then, xo[w, /X] = xo. We proceed by cases on xo =1, .

Casei. (var-sim). Let#j, = xo. Then, xo —** xo, xo[x := wp,] —*' xo and xo =~ x.

184

D.1. Equivalence of MetaML and Explicit MetaML

Case ii.

(subst-sim). Let tl’;I = t;;” [x1 := wp,,]. Given xp =~ tl’;“ [X1 := wp,,], by the induction

hypothesis, we have t;,” —p X s;)”, s}m (X1 := wp, | —* sﬁm and xoy ~ sjm. We
~ . o i

proceed by cases on xg ~ Shyy The only case is (var-sim), so let Sy, = X0- Then,

tlin —X x0, xo[x := wp,] —* xo and by (var-sim) xo = xo.

Case3. (1} = (1}, 1..)). We have

apy a2

i i ~ ~
(ta” ta]z) - tbl wal - wbl

(tﬂilll tcillz)[wlll/x] = tliyl [x = Wbl]-

Then, (¢}, 1;.)Wa, /x] = (&}, [Wa, /x]) (¢},,[Wa, /x]). We proceed by cases on (t} 1t})~ tl’;l.

apy a2

Case 1.

Case ii.

ary apy a2

~ i (4 i o i
(app-sim). Let#, = (t, 1,) wheret, ~1; andf,

~ i i xix
- ~t,,- Wehave (t, 1)—

12
(t;;“ tl"m) and (tl’;“ tzlz)[x = wpy| —X (t;;” [x :=wp,]) (tl’;n[x := wp,]). By (subst-sim)

and (app-sim), we get (tf, [y /4]) (4, v /4]) = (8], [v:= wi]) (6 b=).

(subst-sim). Lett, =1, [x1:=wp,]. Given (t;, t;,) =1, [x1:=ws,], by the induc-

: : i Xik o i . Xik ol i i ~
tion hypothesis, we have #;, —*" s, s, [x1 :=wp,] —*" s, ,and (1, 1,,) ~

Sp,- We proceed by cases on (ta,, tay,) = Sp,- The only case is (app-sim), so let

P (i P i P oo i Xix (40 4i
Sp, = (tl7121 tbm) where f;, ~ tho, and 1, , ~ Ty Then, ty, — (tb121 tbm) and

(t;;m tl’;m)[x = wp, | —X (lli?m [x :=wp,]) (t;;m [x := wp,]|). By (subst-sim) and (app-
i

sim), we get (fg,, [Way /x]) (t4,, Wa, /2]) = (6, [x 1= wi,]) (5, [x := wi,]).

Case 4. (tc’;] = Axo.t.). We have

ar

i ~ ~
(Axo-tay,) =1, Way =2 Wp,

(Axo.t},) wa, /x] ~ tl’;l [x :=wp, .

Then, (Axo.th)[Wa, /x| = Ax1.t, [x1/x0][wa, /x] Where x| & FV (Axo.t))UFV(w,)U{x}. We

proceed by cases on (Axo.r}) ~ t,il.

Casei.

Case ii.

(lam-sim). Let t;;l = /lxo.tl’;“ where t;” ~ tl’;“. We have lxo.t;;” i /lxo.té“ and
(Axo.ty,)x:=wp] —X Axa.ty, [0 :=X2][x :=wp, | where xo & FV (Axo.t;, JUFV (wp,)U
{x}

Let x3 & FV (Axo.ty,)UFV (wq,) UFV (Axo.t,)UFV(wp,)U{x}, then by the defin-
ition of a-equivalence, we get Axy.t} [x1/x0)[Wa, /x| ~a Axz.t] [x3/x0][Wa, /x] and
),xz.tl’;“ [X0 1= x2][x :=wp,] ~a lxg.tén [x0 := x3][x := wp, .

By (lam-sim) and (subst-sim), we get Ax3.1;,, [x3/x0][Wa, /x] = Ax3.t}, [x0 := x3][x :=

wp,|. Hence we have Ax;.r} [x1 /xo)[wa, /x] ~ lxz.tl’;“ [X0 1= x2][x := wp,].

(lamu-sim). Let 7} = Axo.t0 and th = &xo-t;(,)” where 10 zt[?”. We have &xo.tl?” —yXix

11 ary
ixo.t,?” and (&xo.tg“ Y i=wpy] —X &xQ.tgll [X0 :=x2][x := wp, | Where x, ¢ FV(&XOJ},)H U

FV(wp,) U{x}.

185

D.1. Equivalence of MetaML and Explicit MetaML

Case iii.

Let x3 ¢ FV(Axo.19,) UFV (wa) UFV (Axo.ty)UFV (wp,) U {x}, then by the defin-
ition of a-equivalence, we get Axy.t0 [x1/x0][Wa, /x] ~a Ax3.20 [x3/x0][Wa, /x] and
&xz.tgll [X0 := x2][x 1= wp, | ~¢ &xg.tgll [x0 := x3][x := wp, |.

By (lam-sim) and (subst-sim), we get Ax3.1, [x3/x0] [wa, /x] ~ &x3.t£” [x0 1= x3][x :=
wp, . Hence we have Ax;.60 [x1/xo][wa, /x] ~ &xz.tgu [x0 := x2][x 1= wp, |.

(subst-sim). Let tél = tl’;“ [x1 :=wp,,]. Given (Axo.th) ~ téll [x1 := wp,,], by the induc-

. : i Xik oI i . Xik o i ~
tion hypothesis, we have #;, —** s, s [x1 :=wp,] — "5, and (Axo.,,,) ~

i i~
5p,,- We proceed by cases on (Axo.tg,) > s}, .

- i i i i i Xik i
Case a. (lam-sim). Let s}, —lxo.tbm wheret, ~1; . Wehavet;, — lxo.tbm

and (Axo.ty) [xi=wp,] —* Axaty [xo :=x2][x:=wp, | where xa ¢ FV (Axo.tj, | JU

FV (wp,) U{x}.
Letxs ¢ FV(Axo.ty)UFV (wa,) UFV (Axo.t),)UFV (wp,)U{x}, then by

ary

the definition of a-equivalence, Ax; .t} [x1/x0)[Wa, /x] ~q Ax3.2}, [x3/%0][Wa, /x]

and Axp.tf, | [x0 := x2][x := Wy,] ~o Axstf, X0 = x3][x == wy, . By (lam-
sim) and (subst-sim), we get Ax3.7;, [x3/x0][Wa, /x] ~ AX3.t2m [x0 :=x3][x:=
wp, |. Hence we have Axy.t;, [x1 /0] [wa, /x] = Axa.1j, | [x0 := x2][x 1= wp,].

9

: i _ i 0 0 ~40
Case b. (lamu-sim). Let #, = Axo.t,, and S, = &xo.tbm where 7, ~1, . We

ary
have tl’;l X &Xo-l,?lz] and (&Xo-lgm)= wp,] —X &xz.tgm [x0 :=x2][x:=
wp, | where x, ¢ FV(&xo.z‘glz] YUFV (wp,) U{x}.

Letxs & FV(Ax0.0 YUFV (wy,) UFV(&xO.tgm YUFV (wp,) U{x}, then by

ary

the definition of a-equivalence, Ax1.10 [x1 /x0][Wa, /x] ~q Ax3.10 [x3/%0] [Wa, /]

and &xz.tl?m [x0 := xo][x :=wp,| ~a &x}tgm [X0 := x3][x := wy, |. By (lamu-
sim) and (subst-sim), we get Ax3.10. [x3/x0] [wa, /x] = &X3.t212] [x0 :=x3][x:=
wp, . Hence we have Aux;.10, [x1 /xo][wa, /x] ~ &xz.tl?m [x0 := x2][x := wp, |.

Case5. (ti = (tt1)). We have

ary

Then, (¢!

arl

Casei.

Case ii.

<ti+1

~Y i ~
ar > - tbl W“I - Wbl

(tagy!) way /] 22 1y, [o= i]

)[Way /x] = (t551[wa, /x]). We proceed by cases on (ti71) ~1} .

(code-sim). Let tll;l = <t}’;’|1> where #i+1 ~ t,’:l’]l. We have (t,’jl1> — X (t,’;t1>, <t,’;l’]1>[x =

arn
W,] == (1, e i= we,]) and (e [wa, /x]) == (7 o o= w]).

l‘i+1

(subst-sim). Let 7y =1} [x1 :=wy,]. Given (t"1) ~1] [x :=wy,], by the induction

: i Xi* o i . XDk o 1\ ~ o
hypothesis, we have 1, —**s; s, [x1:=wp,] — s, and (1) =5}, . We
1y o i : - i it
proceed by cases on (t,/") ~s;, . The only case is (code-sim), so let 5, , = (t;")

where 7.1 ~ t}’);]l Then, tlin —y X <t,’;l;> and <t,’;1;>[x = wp,| —X (t,’j]'zlI [x :=wp,]).

ar
By (subst-sim) and (code-sim), we get (13" [w,, /x]) ~ (t,’;lrz} [x :=wp,]).

186

D.1. Equivalence of MetaML and Explicit MetaML

Case 6. (tit! = ~1}). We have

i~ it ~
Nl‘a1I _l‘b1 Wa, = Wp,

(~ 14y,) Way /] = 7 = w).

Then, (~t},,)i, /x] = ~(t], [way /x]). We proceed by cases on ~1), = 1i7".

:) i+l i i~y ot x(i+1)% i
Casei. (splice-sim). Let Ly =~ where 7, =~ Uy, We have Ty — T, and

i — i+1 i My ' ~ ol Ty
(~thy Ve i= wi, | =X ~(r] [xi= wi,]) and ~ (8, [way /]) = ~(t},, [x = we,).
.. . i+1 i+1 . . i it L .
Caseii. (subst-sim). Let ;"' =1;" '[x; := wy,,]. Given ~r} 1 "[x; :=wp,], by the in-
duction hypothesis, we have 77! —X(FU* gib ity =y] 3D g+ and
i il i] - o
~lg,, s, - We proceed by cases on ~1, =~ s, . The only case is (splice-sim),

il i Y i+1 x(i+1)% o 4i o -
so let 537 = z‘blz’1 where 7, ~1, . Thent,” — (th,,, and (t'bm)[x =
wp, | —*+D ~(ty,, [x:=wp,]). By (subst-sim) and (splice-sim), we get ~(t, , [wa, /x]) ~

N(té121 [x :=wp,]).

Case7. (th, =t}). We have

I~ gl ~
05, =1, Wa W,

(g,) Way /2] = £, [ic:= wp, .

Then, (7},)[wa, /x] = (t}, [wa, /x]). We proceed by cases on !z} ~ tl’;l.

: T i 14 [) (P Xi* |4l (P o
Casei. (run-sim). Let#;, =l wheret, ~1t, . Wehavelt, —**1s and (!t)[x:=

. Given ¢!

wp, | —X !(tlim [x :=wp,]) and !(t"'m [Wa, /x]) =~ !(tli;l. [x :=wp,]).
] ar

Caseii. (subst-sim). Letr, =1 [x1 :=wp, ~ 1} [x1 :=wp,], by the induction

Xi sZ and 7!
12

: i Xik oI i — ~ o
hypothesis, we have #;, —*" s 5, [x1:=wp,] — an = S, We

o o~ o . ;o iy
proceed by cases on 7, ~ s, . The only case is (splice-sim), so let s, =1l

where 7, ~1; . Thenr, —* 1 —and (1t} px:=wp] —* 11 [x:=wp]).

By (subst-sim) and (run-sim), we get (¢} [wq, /x]) ~ !(t;;m [x :=wp,]).

Case 8. (tj;l =n). We have

~ ¢l ~
Nt Wa ™ W,

n[wg, /x| =~ tél [x :=wp,].

Then, nw,, /x| = n. We proceed by cases on n ~ tl’;l.

Casei. (num-sim). Let tlil =n. We have n —** n, n[x := wp,] —* nand n ~n.

187

D.1. Equivalence of MetaML and Explicit MetaML

Caseii. (subst-sim). Then tli:l = téll [x1 :=wp,,]. Givenn ~ t,i” [x1 :=wp,,], by the induction hy-
. i Xik oI i P Xikx I ~ ol
pothesis, we have 7, —*" s, s [x1:=wp,| —*"s, andn~s, . We proceed
by cases on n = s, . The only case is (num-sim), so let sj, = n. Then 7;, —*" n,
nfx:=wp,] —* nand n~n.
Case9. (t, = (i} +1l

ai a2

)). We have

a2

(th 1) Wa, /x] ~ tl’;l [x :=wp,].

~ ¢l ~
) - tb] Wal - wbl

Then, (¢}, +1},)[Wa, /x] = (], [Wa, /x]) + (£}, [Wa, /x]). We proceed by cases on (z} +1.) :tl’;l.

Casei. (plus-sim). Let tlin = (1}, +t1’;12) where 7, ~ t;;” and 1, ~1, . We have (tlim +
t)=, 4, Jand (t; +1 Vci=wip] —N (1) [xi=wp,)+ (1, [xi=wy,]).
By (subst-sim) and (plus-sim), we get (¢}, [wa, /x]) + (1}, [Wa, /x]) = (¢}, [x:=wp,]) +
(t,‘;lz[x =wp,]).

Caseii. (subst-sim). Lett, =1, [x1:=wp,]. Given (t,, +1,,

) =1, [x1 := wp, |, by the
: ; : i Xi* oI i — Xi* I i
induction hypothesis, we have 1, —*"s}, .5, [x1 = wp,,| — Sp,,» and (ty,, +

th,,) =~ s}, . We proceed by cases on (¢, +1;,,) ~ s, . The only case is (plus-sim), so

az ar az
i (4 i i i i i i xix (4i i
lets, = (1, +1,,) wheret, ~t, —andt, ~t, . Then, t, —** (1, +1t,)

and (i, +1) pci=wp] —2 (1) [x:=wy,])+ (1], [x:=wp,]). By (subst-sim) and

(plus-sim), we get (¢4, [Wa, /x]) + (1}, Wa, /X]) = (¢} [x:= wp,]) + (tf [:= wi,]).

O
D.1.4 Canonisation
Lemma 316 (Canonisation of (Substitutional) MetaML). If tfl | le, then tt’;l S VALUEéub.
Proof. We proceed by structural induction on 7. | vgl.
Case 1. (var-sim). Let téfl = v;rl =x. We have x € VALUE;}:.
Case 2. (app-sim). Let i =it ¢! and vﬁjfl = VZTII vﬁjfz] where 71 ~ VZTII and 1}t ~ vzrz]. By the
induction hypothesis, ;" ! € VALUEL! and #7'! € VALUEL!. Then #;/1 #i*1 € VALUEL!).

Case 3. (lam-sim). We proceed by cases on i.

; 0 — 2y s
Casei. (0). Lett, = Axt,,
0 0
Ax.ty ¢ VALUE

exp*

and vgl = lx.tgn where tgl | tg”. This case is vacuous because

Caseii. (i+1). Let £l = Ax.sit! and viT! = Axvit! where 77! ~ vit!. By the induction
ai by by b1y y

ai an
hypothesis, #37! € VALUEL. Then Ax.zit! € VALUEL).

188

D.1. Equivalence of MetaML and Explicit MetaML

Case 4. (lamu-sim). Let) = Ax.r

airy
i
VALUE ;.

i 0 0 ~ 40 0 0
and v, = Ax.t, where t; ~1, . Then Ax.t, € VALUEg, C

Case 5. (code-sim). Let ¢, = (ti'1) and vzl = <v;rll> where 111 ~ v;;l’l]. By the induction hypothesis,

titl € VALUELY). Then (r}/!) € VALUEL.
i i+2 i+l i+2 _ it i1 it : : :
Case 6. (splice-sim). Let 7,7~ = ~1, 7" and v, © = ~v, =" where 7,7* ~ v, "". By the induction hypothesis,

i+1 i+1 i+1 i+2
ta;, € VALUE(. Then ~1," € VALUE .

; i+1 _ i+l i+l il i+1 o qjit] . : .
Case7. (run-sim). Letf,” =lr;7" and v, = lv,°" where 7,/ " ~ v, ". By the induction hypothesis,

by ar
tifl € VALUEL!). Then !it! € VALUEL)

apy sub *

Case 8. (num-sim). Letz), =vj =n. We have n € VALUE,,.

i i1 il it i+l il i i+l it i1 it
Case9. (plus-sim). Letz," =1,/ "+, and v, =v, " +v, wheret; " ~ v, “and 1, ' ~v, " By the

ary a2 ary az
induction hypothesis, 7! € VALUEL! and ! € VALUEL!!. Then £}t 44t € VALUEL!).

Case 10. (subst-sim). This case is vacuous.

Lemma 317 (Canonisation of Explicit MetaML). If v}, ~1}, , thent; —" v, and v} ~vj .

Proof. We proceed by structural induction on vgl ~ t,il.

Case 1. (var-sim). Let vi! =7, = x. Then x —("1)* x, x € VALUEL]) and x ~ x.

. i+l il it i+ _ it] it i+1 o 4it] i+1 o 4it]

Case2. (app-sim). Let v, =v, ' v, and s~ =1, "1, ° where v, "~ =" and v, ~1, " By the
: : : i+1 (1) il il il il (i+1)% it1 i+1 it
induction hypothesis, we have , " — Vi Var, = Vi sty — Vy,, and vyt vt

i+1 it (i+1)% i1 Lit] (i+1)% i+ i+l i1 it i+1 o
Then 7, " 1, " — Vi thy, — Vi, Vi, and vy v e VALUE By (app-sim),

12 exp*
i1 il o il i
Vay, Vay, = Vby Vb,

Case 3. (lam-sim). We proceed by cases on i.

Casei. (0). Letvy = Axi) ands) = Axz) wheres) ~1) . Then Ax.e) —°Axz) and

0 ~ &x.tl?”.

exp- BY (lamu-sim), Ax.t?

11

Ax.t) € VALUE

Caseii. (i+1). Let vif' = x4t and t}’;l’l = lx.t;;’ll where Vil ~ 1’;]:1 By the induction
hypothesis, we have /7! —* yitland vt ~ it Then Ax.rit! — (1 Ay yit!
b bay an bay b bay

i+1 i+1 : i+l i+1
and Ax.v " € VALUEg,. By (lam-sim), Ax.vg >~ Ax.vy .

and £ = Ax.t® where 1 ~ 9 . Then Ax.t0 —™* Axt? |
by =y by =y =2byy

Case 4. (lamu-sim). Let vi, = Ax.r) a1

ar
0 i 0 ~ 4y /0
Ax.t, € VALUEq, and Ax.t;, ~ Ax.y .

Case’5. (code-sim). Let vi, = (vif!) and #j = (1;"!) where vifl ~ "1, By the induction hypothesis, we

ar ar
i+1 i+1)x it i1 it i+1 i i+l i+1 i
have 1, — (D) v oand vl b vt Then (1, 7) —™ (v, ') and (v, ") € VALUE,. By

(code-sim), <VZT11> = <V§;T11>'

189

D.1. Equivalence of MetaML and Explicit MetaML

Case 6.

Case 7.

Case 8.

Case 9.

Case 10.

(splice-sim). Let vi2 = Nvéjl”ll and t’+2 ,’fl where vt ~ t’+1 By the induction hypothesis,
we have 7! —>(’“) vl and vifll ~ it Then ~r) ! —>(‘+2) ~viland ~vitl € VALUEL.

1+1 ~ o~ i+1
By (splice- 51m) we get ~v Vi, -

(run-sim). Let vgf = ‘v’+1 and t’+1 = ‘t’+1 where v;ﬂ o~ ’+1 . By the induction hypothesis, we
have t”rl —— (D L and yikl ~ il Then trit! —>(’+1)*'v‘+1 and 'v”rl € VALUEL!. By
by aipy by b1y by exp*

(run—51m), we get Wil ~ !v’bJ;l.

(num-sim). Let vi, =1} =n. Then n —™ n, n € VALUE(, and n ~ n.

(plus-sim). Let vt =i 4 yitl and t’H =t —H’“ where vit! ~ 21*11 and vit! ~ ;7+1 By the

ap apn b1y ary ap
l+1 (H—l) i+1 z+1N i+1 i+1 (i+1)x H—l i+l ~ i+1
induction hypothesis, we have ;" " — Vi Vay, =V oty — Vi, and vy vt
Thentt+l+tt+1 (i+1)* g}l_i_tlt?;l — (i)« t+1+v1+1 and vt+1_|_vz+1 EVALUE;{; By (plus-
i ~ il it
sim), vy 1+ vy, v v

(subst-sim). Let v, =1} [wq, /x] and ty, =y, [x :==wp,] where 1~ ty,, and wq, ~wp,. By
Lemma 315, 1, [x:=w, | —*" s, andt, [we /x]~s), . We then proceed by structural induc-

tion on £}, [wa, /x| = s, .

Casei. (var-sim). Let tif![w,, /x] = s;fl = xo. Then xo —D* xo. xo € VALUELH! and

ary exp
X0 = Xp.
tH : i+1 _ i1 i+l i+1 _ i+l i+l i+1 ~ i+1
Case ii. (app-sim). Let 5 [wy, /x] =V vo, and s, " =10 ;" where v,/ ~ 1, and
i1 it] H—l (D% il il A it
Van, = 1,,- By the induction hypothesis, we get 7, — Vo Yan = Vo,
il (D) il gndq pitl ~ i+l Thep tz+1[x = W),] NGRILag ey o (i41)x
b1 (bl; anz — “hixn’ 1 bia1 “bin
i+1 L i+1 i+1 i+1 i+l i+1 i+l i+1 i+1 1+1 ~
Vb tb122 Vbisi Vbis and Vbisi Vbix € VALUECXP By (app-sim), Vai Vaj, =
i+1 i+1
Vars Vays,:

Case iii. (lam-sim). We proceed by cases on i.

Case a. (0). LettQ [wq, /x] = Axo.t0, and sglz = lxo.tgm where 10 =~ tgm Then

0 . 0% 0 0

tb”[x = wp,| — lxo.tbm — &xo.tbm and &xo.tb12 € VALUEexp By
0

(lamu-sim), Axo.t° o, _&xo.tbm.

; i+1 _ i+1 t+1 t+1 i+1 ~ i+1
Case b. (i+1). Lett, [wa, /x] = Axo.vgy,, and s, = Axo.t," where v, ~1," .

By the induction hypothesis, we get t’+1 —>(’+1) vﬁ;rl and Vil ~ v;’}]l

Then t’“[x = wp,] — % Axg t”rl ——H+D* 2 x. v’+1 and Axo.vzzll €

VALUEQ& By (lam-sim), Axo.viH! ~ lxo.v;::].

Caseiv. (lamu-sim). Let] [wq, /x] = Axo.10

o i* 0
tbu[x =wp,| — &xo.tbm, &xo.tb € VALUE.

i 0 0 ~ 40
and s, = Axo.t) where 1, ~t, . Then

and lxo 19

i N&X()me.

exp

Casev. (code-sim). Let 1, [wq, /x] = (vifl) and s, = (#}"1) where vifl ~#*1. By the induc-

alll ar T
t+1 (1) | it1 i+1 ~ it - i
— Vi and v, >~ v, . Then t [x =wp,] —

(tyrhy —™ (V1) and (v ’H) € VALUE., .. By (code-31m), (Virly = (v,

tion hypothesm we get 1,

exp* ain

190

D.1. Equivalence of MetaML and Explicit MetaML

Case vi. (splice-sim). Let #:t2[w,, /x] = ~vi"l and s”r2 = Nth

ary ar

t+1

induction hypothesis, we get 7;*! —— (i) Vi and v
wp, | — [+ Nt;:rzll — (2 ;:1 and v”rl € VALUE’+2

i+1
Vo -

t+1

l+l _ |tl+1
alll

Case vii. (run-sim). Let ;' ![wq, /x] = and s,

hypothesis, we get t”rl —>(l+1) me and Vo, =

PR bl 'v;fl and 'v”rl € VALUEL ! By (run-sim), V!

bi2 exp -

Case viii. (num-sim). Let] [wq, /x] = sb =n. Then n —* n, n € VALUE

; i i+1 i+1 i+1 i+l
Case ix. (plus-sim). Let #,/ [wa, /x] = vii, + V!, and 5,7 =

and vit! ~ tb1 +l By the induction hypothesis, we get t

arp

-t —= D=y and Vil ~ it Then 1t e = wy, | —>("+1)

bin b132 ain
L (i)k il TR i+1
Vb1 +tb122 Vbisi + Vbi3 and Vb1 + Vb € VALUE
i+1 ~ ,it+1 i+1
Vay, = Vay TVan:

Case x. (subst-sim). This case is vacuous.

D.1.5 Explicit Substitution Descendant Relation

By (splice-sim), ~v

where V!

i+1 ~ i+1
Vbisi®

By (plus-sim), v

. By the
Then tl’)f [x =

i+1 ~
ai

. By the induction
. Then t;l’ll [x:=wp,] —HD*

i+1

tbl2l
i+1 o i +1
Y - bz’

_>(i+l)*

l—H
61111

Definition 318 (Explicit Substitution Descendant Relation). For any #1,#; € RTERMeyp, 11 <* 1 if and only

if , —* ;. We call <* the explicit substitution descendant relation.

Definition 319 (Weight Function). Define the weight function W to be a total function from the set of

Explicit MetaML runtime terms to the set of natural numbers.

W : RTERMgxp — N

Wkx) = 1
W(tit) = Wn)+W()+1
W(Axt) = 1
W(Axt) = 1
W) = Wie)+1
W(~t) = W()+1
W(lt) = W()+1
W(n) = 1
W(ti+n) = W(H)+W(n)+1
W(thx:=w]) = W) (W(w)+1)

Remark 320. Observe that W () > 0 for any 1 € RTERMexp.

Lemma 321. For any t|,t) € RTERMeyp, if t; —* 1o, then W (t2) < W(t1).

191

D.1. Equivalence of MetaML and Explicit MetaML

Proof. We proceed by structural induction on t; —* 1.

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

Case .

Case 8.

Case 9.

Case 10.

Case 11.

(var-eq-subst). We have #; = x[x := w] and £, = w. Then, W (x[x :=w]) =W (x)- (W(w)+1) =
W(w)+1, and W(w) < W(w) + 1.

(var-dif-subst). We have t; = x; [x, := w| and t, = x| where x; Z x2. Then, W (x;) = 1, W (x[x2 :=
w))=W(x)- Ww)+1)=W(w)+1,and 1 <W(w)+1.

(num-subst). We have #; = n[x :=w] andt, =n. Then, W (n) = 1, W(n[x:=w]) =W (n)- (W (w)+
)=WWw)+1,and I <W(w)+1.

(app-subst). We have 11 = (¢ t2)[x := w] and 1, = (#;[x := w]) (t2[x := w]). Then, W((t;[x :=

w]) (fe:=w])) =W(nlxi=w) +W(nl=w) +1=W ((W) + 1) +W(r2)-(W(w)+1)+

L= W(n)+W(n) W)+ 1)+ 1L W((nn)k: —WD Wt n))- (Ww)+1) = (W(n) +

W(2) +1) - (Ww) + 1) = (W(n) +W(2)) - (W(w) + W(W) +1, and (W(n) +W(n))-
)

(w
W)+ 1) +1< (W) +W () - (Ww)+1)+W(w)

(plus-subst). We have 11 = (1) + 1) [x := w] and 1, = (¢; [x :== w]) + (£2[x := w]). Then, W ((#;[x :=
w) =+ (2fe:=w)) = W(nx:=w]) +W(afx:=w)) +1=W(u) - (WWw)+ 1)+ W(n) - (W(w) +
D+1=Wt)+W(n) Ww) +1)+ 1L, W({(h+n)x=w)=W((ti +1))- (Ww)+1) =
W(t) +W() +1) - (W) + 1) = (W(n) + W(z)) - (W(w) + 1) + W(w) + 1, and (W(n) +
W) Ww)+1)+1 < (W(t)+W()) Ww)+1)+W(w)+1.

(lam-eq-subst). We have r; = (Ax.t11)[x:=w] and t, = Ax.t;. Then, W (Ax.t1;) = 1, W((Ax.t1y)[x:=
w])) =W(Ax.t11) - (W(w)+1)=W(w)+1,and 1 <W(w)+1.

(lamu-eq-subst). We have | = (Ax.t,)[x:=w] and t, = Ax.t?,. Then, W (Ax.t0,) = 1, W ((Ax.t?))[x :=
w)) =W(Axt)) - (Ww)+1)=W(w)+1,and 1 <W(w)+1

(lam-df-subst). We have t; = (Ax).t11)[x2 :=w| and t, = Axy.t11[x] :=xy][x2 := w] where x| Z x»
andxy ¢ FV (Ax1.t11)UFV (w)U{x2}. Then, W (Axy.t11[x1 :=xn][x2 :=w]) = 1, W((Ax1.111) [x2 1=
w))=W(Axy.t11)- Ww)+1)=W(w)+1,and 1 <W(w)+1.

(lamu-df-subst). We have t; = (Ax;.111)[x2 :=w] and t, = Axy .11 [x] := xy][x2 := w] where x; #

X2 andegéFV()Lxl l‘11>UFV)U{Xz} Then, W(XXN t11[X1 —XNH 2::w]) = I,W((&xl.ln)[XQ =

W]) (&xl tll) (W()+1) W()+1 and1<W()+1

(code-subst). We have f; = (t11)[x := w| and f, = (f11[x := w]). Then, W({t1;[x := w]))
W(tne=wh)+1=W(t)-(Ww)+ 1) +1, W) o= w]) =W((01)) - (W(w) +1) = (W (1) +
- Ww)+1)=W(t11)- Ww)+1)+Ww)+1,and W (t11)- (W(w)+1)+1 <W(t;1) - (W(w)
1) +W(w)+1.

+‘-/||

(run-subst). We have t; = (!t1)[x :=w] and 1, =t [x := w]. Then, W (!t [x :=w]) =W (t1[x :=
wl)+1=W(n1)- (Ww)+ 1) + 1, W((ln)[x == w]) = W(lt) - (W(w) +1) = (W(n)

l’

D.1. Equivalence of MetaML and Explicit MetaML

(Ww)+1)=W(t)- Ww)+1)+Ww)+1,and W(t11)- W(w)+ 1)+ 1 <W(t11)- (W(w)+
+W(w)+1

Case 12. (splice-subst). We have t; = (~ 111)[x := w| and 1o =~ t1[x := w]. Then, W(~111[x :=w]) =
Wtnx:=w)+1=W(t) - Ww)+1)+1, W({(~t)x:=w])) =W(~t)- (Ww)+1) =
W(tin)+1)-Ww)+1)=W(t) - Ww)+1)+W(w)+1, and W(t11)- Ww)+1)+1 <
W(ti) - (W(w)+1)+W(w)+1.

Case 13. (subst-subst). We have t; =111 [x] := w][x2 :=wa] and £, = tp [x2 := wa] where #11 [x] := w;] —*
t71. By the induction hypothesis, W (tp1) < W (#11[x1 := wy]). Then, W (t1[x2 := wa]) = W(t21) -
(W(w2)+1), W(t11[x1 :=wi][x2:=wa]) =W (t11[x1 :=wi])- (W(wa)+ 1), and W (221) - (W (w2) +
1) <W(t1[x; :=wi]) - (W(wa) + 1).

O

Lemma 322 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation <* is well-founded.

Proof. Lemma 321 has proved that if t{ —* 15, then W(t,) < W (z;), for any #,.to € TERMcyp. For any
t € TERMeyp, the length of the descending chain with respect to <* starting from ¢ is bound by W (¢). Hence,
the explicit substitution descendant relation <* is well-founded. O

D.1.6 Bisimulation

Lemma 323 (Simulation: Explicit MetaML simulates (Substitutional) MetaML.). If tél ~ tl’;l and t’ —! t[lz,
thent, —" 1, and 1, ~1j .

Proof. We proceed by simultaneous induction on the structure of . |~ tl’;l and on the explicit substitution

descendant relation <* tiin)

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Lett =t and tb —tb]1 tb where ¢! Ntb and ¢! ly,

~ g
ar Lan an t,,- We proceed by cases

2
i i i
ont, —'tl .

Casei. (appL-i). Lett! —¢ and t’ =t ti . By the induction hypothesis, t;'” — tlim

u1| azy az “apn’
and fém o~ tb Then tb u tb —>’* tb . tb and by (app sim) t, ty, 1, 1, .

Caseii. (appR-i). Let ¢, a“ = va“, t;n — t}m and t’ ﬁm - Given Vau o~ tl’;“, by Lemma

317, th — vb and vu11 o~ vb] By the induction hypothesis, t,; —>i* t,’;zz and

I ~o 4l % % ~ 1l i
Loy, 21, - Thentb tbl — vb11 tblzﬁ vbltb and by (app- s1m)vall an Vo, Uy

Caseiii. (app-0). Let) =Axu) 1) =10 and) =) [V) /x]. Given Ax.r thll,

apr? “apn arz ar apn

0% .0 0 ~,0 0 ~
by Lemma 317, tb1 —" v, and Axa, ~vy . Given v, tblz’ by Lemma
0 0% 0 ~ 0 ~ 0
317, 1, —" v, and va12 Vy,- We proceed by cases on Ax.t2 Loy, = Vp,- The

193

D.1. Equivalence of MetaML and Explicit MetaML

Case 3.

Case 4.

Case 5.

Case 6.

Case 7.

Case 8.

: = 0 _ 0 0 ~ ;0 0 .0 0%

only case is (lamu-sim), so let v, = &x.tb111 and 1, ~t, . Thenty 1, —
0 0 0% 0 0 0.0 0 : 0 [0 ~
(Axty,)ty —" (Axty, vy, — 1, [x:=vy] By (subst-sim), #; [vg,, /] ~

tgm [x = vglz]'

: i+l _ i+1 i+1 _ i+1 i1~ it]
(lam-sim). Let 7, = Ax.t;|" and by =)Lx.tb” where 7,/ ~ 1, ". We proceed by cases on

tifl —1 %1 The only case is (lambda-(i+1)). Then rit! —"+1 4 and ¢/ = Ax.sit1. By
the induction hypothesis, £i! —FD* (1 ang ritl ~ 1 Then Ax.rit! — D% A x 1 and
bu bay ai by bu by
: i+1 ~ i+1
by (lam-sim) Ax.t;} " ~ 7Lx.tb2I .

(lamu-sim). We proceed by cases on i.

Casei. (0). Let1) = Ax.tQ
Axtd #—0

Caseii. (i+1). Letryi! =Ax) and ;"' = Axi) wheretd, ~1) . GivenAx.1) € VALUE

i+1 0 i+1 : :
VALUE, , we get Ax.t; #—""". This case is vacuous as well.

, and tl(J)l = &x.tgll where tgl - tgn. This case is vacuous because

- i it i (it i1 i+l il it
(code-sim). Letz, = (1, ") and#; = (") wheret,/ ' ~1,;"". We proceed by cases ont, —

ti1. The only case that applies is (code-i). Then rif! —*1 it and 1f = (sit!). By the

- : co it i+1)x 4it1 i1 it i+1 i (it
induction hypothesis, 7, — () ty, and 17"~ 1,7 5. Then (1, ") —" (#,') and by (code-

' : a
sim) (t[’l;l> ~ <t117;1>~

(splice-sim). Let 75! = ~r} and ;7" =~ ~where 1}, ~ 1} . We proceed by cases on
i+l it il
(il gL

Casei. (splice-(i+1)). Let tfm —>it¢’;2] and tf;z“] = Ntflz]. By the induction hypothesis, tl’;11 i

ty, andtg, ~1, . Then~r, — 1,,, and by (splice-sim) ~t;, =~ ~1, .
- : 0 _ ul iyl 11 1 _ 1 : 1y~ 40
Caseii. (splice-1). Letty, = (v4,)5 ~(Vg,) = Vg, @nd 1, = v, . Given (v,) ~1t,
1 0 0 0% .0 1y a0
and (v,) € VALUEg,,, by Lemma 317, r;, —" v, ~and (v,) ~v, . We then

1y a0 : : 0 _ (!
proceed by cases on (v,) ~ v, . The only case is (code-sim), so let vy, = (v,)
1yl 0 1 (o] 1
where v, ~v, . Then ~t) —" ~(v,) —> vy .

. iy iy i gl i i
(run-sim). Lett, =17, andf, =Ilr, wheret, =1, . We proceed by casesont, —'fg,.

Casei. (run-i). Let tc",“ — tﬁm and tc"lz = !téﬂ. By the induction hypothesis, tlim —ix t{m and

i~ 141 [E P Qi 14~ 14D
lay 13, - Then, lt,, —" 1, and by (run-sim) !¢}~ 1,

azy asy
P 0 _ /! 0 _ 1yl 1 0,1 0 _ 1 -
Caseii. (run-0). Lett) = (v,)ty = (o) "Vay,) —" Vay,, and t;, = v, . Given
1y 40 1 0 0 0% 1,0 1y o0
(Vay,) =1p,, and (v) € VALUEG,,, by Lemma 317, 7 —"" v, and (v,, ,) =~V .

We proceed by cases on (v}lm> ~ vgzl . The only case that applies is (code-sim), so let
1 1

0 _ 1 ~ 1l 140 (O] 0,1
Vp, = <vb2“) where v, | ~v, . Thenlt) — .(vh2”> — vy

(num-sim). This case is vacuous.

194

aig sub =

D.1. Equivalence of MetaML and Explicit MetaML

Case 9. (plus-sim). Let tj;l =t +1

i i i i g iAoy
an tla, and 1y, =1, +1, wherer, ~1 andz, ~1, . We proceed by

arl a2

cases on 7, —'1l .

Casei. (plusL-i). Let tﬁm — téﬂ and tflz = tzizzl —i—tfm.

~ i i i ik i i ‘) £l i
~1, . Thenr, +1, —"1 +1, andby (plus-sim)z,, +1,,

By the induction hypothesis, 7, ; e

i i ~ i
1, and 7, >0, +

i
lblz'
- : iy i i i i : i g
Caseii. (plusR-i). Letr, =vg .1, — 1, andt, =v, +1,,. Givenv, ~r, ,byLemma
317, 1, —" v, and v, ~v, . By the induction hypothesis, ;, —" 1, ~and
i g i i i i i i i i i
lyy, =1, Thent, +1, —"v, 41, —"v, 41, andby (plus-sim) v, +

I ol i
lay, = Vb, +tb22'

Case iii. (plus-0). Let tc(l)u =ny, tglz = nyp, and t(?z = n where n = ny +ny. Given nj >~ t[?”, by
Lemma 317,72 —%9 andny ~v0 . Givennp ~ 10 | by Lemma 317, P
by by b1y b1z bia

0 ~ 0 0 . o
v, and ny >~ v, . We proceed by cases on nj ~ v, . The only case is (num-sim), so

let vgn = n;. We proceed by cases on np ~ vglz. The only case is (num-sim), so let

vglz =ny. Then t,?n +t£]2 —0 +t,9]2 —% 4+ ny — n where n = n; +ny. By
(num-sim), n ~ n.
Case 10. (subst-sim). Let 7, =1} [wg,, /x] and tél =1}, [x:=wp,| wherer) tén and wg,, > wyp,,. Given
i o [y iy xix i i~ i x4
ta =ty [x:=wp,], by Lemma 315, 7, [x:=w;, | —** s, andt, ~s; . Thens, <*7, . If

i —'

. . . i ix 40 i 4l i i* I i
a,» by the induction hypothesis, s, —" 7, and 1, ~1, . We have s, —"s, —

fh.
O

: R N i X i i i
Remark 324. In the last case of the proof, given 7, ~1, , 1, ~s, ands, <*1, . ift, —"'1,, by the
- : o i i i i g
induction hypothesis, sj, —" 1, andt,, ~1, .

Lemma 325 (Single-step explicit substitution reduction preserves bisimulation relation.). Ift. s tl’;l, tlil —x

i i o
Ty then t}, X

Proof. We proceed by structural induction on tcin o~ tél. Since tl’;l —X téz, only (subst-sim) applies. Let

th, = thy, Way, /1] and t; =t} [x1 := wy,] where ¢, ~1} ~and wg, =~ wp,. We proceed by cases on

i XI 4l
tb, — tbz'

Case 1. (var-eq-subst). Let t;;” = x1. We have xi [x; := wy,,] —* wj,,,. We proceed by cases onz) ~x;.

The only case is (var-sim), thus we get £, = xj. Then x| [wg,, /1] = Wq,, and wg,, = wyp,,.

11

Case 2. (var-df-subst). Let tfm = xp and x| #Z x;. We have x;[x; := wb“] —X x5 We proceed by cases

on tjm ~ x;. The only case is (var-sim), thus we get tfm = x2. Then x2[wg,, /x1] = x2 and x; ~ x5.

Case 3. (num-subst). Let tl’;” = n. We have n[x; := wp,,] —*' n. We proceed by cases on té“ ~n. The

only case is (num-sim), thus we get #;, = n. Then n|w,,, /x1] =n and n ~ n.

195

D.1. Equivalence of MetaML and Explicit MetaML

Case 4.

Case 5.

Case 6.

Case .

Case 8.

Case 9.

Case 10.

i 4l] j i [Xi 41 P i Py
(app-subst). Lett, =1, t, . Wehave (1, 1)x1=wp,|—"1 [xi=w,lt [x:=

wp,]. We proceed by cases on #,, ~1; #; . The only case is (app-sim), thus we get 7,

an n -

th i wherer) :t;;m andr) :tlimz' Then (£} th)Way /x1] =15 [Way, /1] 25 [Way, /x1]
and by (subst-sim) and (app-sim) #,, [Way, /1] 1, , [Way, /1] = 1, [x1 = wp,, | 1, [xX1:= wp,, .

i 4l] i i R Xi 40 P
(plus-subst). Lett, =1, +1, . Wehave (1, +1, Jxi:=wp,] —"1 [x1:=w]|+

th,, (X1 :=wp,,|. We proceed by casesont,, ~1; +t, . Theonly caseis (plus-sim), thus we get

fon) = toy, Ty, Where ty ~1f and#f o~ . Then (f, 45,)Way, /x1] =14, [Way, /x1] +

ar arn ane arn a2 ar

th.,[Wa,, /x1] and by (subst-sim) and (plus-sim) 7}, [wa,, /x1]+1,

aiz a“z[wan/xl} 2[11;111[)61 ::Wb11]+

téllz [.XI = Wh]l]'

(lam-eq-subst). Let7, = lxl.tl’;m. We have (lxl.téll])[xl = wp,, | —X lxl.tém. We proceed

by cases on 7}, ~ Axi.t, . The only case is (lam-subst), thus we get #;, = Ax;.f;, , where
tay, =1y, Then (Axi.t,) Way, /x1] = Axi.t,, and Axy.ty, >~ Axiy, .

i 0 0 — ‘ 0
(lamu-eq-subst). Let#;, = Ax; 1, - We have (Ax .tbm)[x] = wp,,] —* Axy 1, - We proceed
- 0 . . i 0
by cases on 7, =~ Axy Ty The only case is (lamu-sim), thus we get 7, = Axy.t] . where

111
10~ tgm. Then (Ax1.10,) Wa,, /x1] = Axy.20

0
an and Ax; .1,

~ 0
_&Xl.tbm.

111 111

(lam-df-subst). Let t,in = /lxz.tl’;m and x; # x». We have (sz.tl’;m)[xl = wp,, | —" 7Lx3.t};m [xp:=
x3][x1 := wp,,| where x3 & FV(?sz.tl’;m) UFV(wp,,)U{x1}. We proceed by cases on) =~

ar

i : : i i i g
Axy.ty . The only case is (lam-sim), thus we get 7, = Ax.f,, where #;, ~1, . Then

(Axa.th, Vway, /x1] = Axa.tl, | [xs/x2][wa,, /x1] Where x4 & FV (Axp.th YUFV(wg,)U{x1}.
Let xs & FV(Axa.tf, YUFV(wp,) UFV(Axaty, JUFV(wg,)U{xi}. We have Axz.z [x2 :=
x3][x1 == wp,, | ~a 7Lx5.t£’;m 2 :=xs)[x1 :=wp,,] and Axg.tl | [xa/x2)[Way, /1]~ Axs 2l (x5 /x0) [way, /x1]-
By (subst-sim) and (lam-sim), we get Axs.t},, [xs/x2][wa,, /1] =~ Axs.ty [x2 := xs][x1 == wp,].

Hence, Axy.t} [x4/%2][Way, /1] ~ /’Lm.tém [x2 1= x3][x1 := wp,,]

(lamu-df-subst). Let t}m :&xz.tgm and x; Z x,. We have (&Xz-lf;m)[xl =wp,, | —X &x}t}jm [x2:=
x3][x1 := wp, | where x3 & FV(Axa.ty JUFV(wp,) U{x;}. We proceed by cases on f;, =~
Axp.t, . The only case is (lamu-sim), thus we get ;= Axy.f,, where 1, ~~1, . Then
(Axa.th Vway, /x1] = Axa.tl, | [xs/x2][wa,, /x1] Where x4 & FV (Axp.th YUFV(wa,)U{x1}.

Let xs & FV(Axa.tf, YUFV(wp,) UFV(Axaty, JUFV(wg,)U{xi}. We have Axz.f) [xp :=

x3][x1 == wp,, | ~a &xw‘ém [x2 :=xs][x1 == wp,, | and Axg.tl, | [xs/x2][wa,, /x1] ~a Axs gl | [xs/x2][wa,, /x1].
By (subst-sim) and (lamu-sim), we get Axs.1;,, [xs/x2][Way, /x1] = Axs.tj, | [x2 := x5][x1 := wy,,].

Hence, A,X4.t[ilm [X4/XZ] [wa”/xl] ~ &)@.l‘ém [XZ = X3] [x1 = Wb“].

(code-subst). Let tl’;“ = (t,’;]rlll) We have (téﬂ)[xl = wp,, | —X <t;;l’]11 [x1 :=wp,,]). We proceed

by cases on #, ~ (1;*!). The only case is (code-sim), thus we get £ = (tif!) where 7! ~
t,’;]rlll Then (1.t 1) [wa,, /x1] = (t5] !} [Wa,, /x1]) and by (subst-sim) and (code-sim) (r}"! [wq,, /x1]) ~
<tllzl+111 [xl = an])'

196

D.1. Equivalence of MetaML and Explicit MetaML

Case 11. (run-subst). Let t;; :!tl’;l . We have (!té Dl =wp,,] —>""!(tl’;l [x1 :=wp,,]). We proceed by

I~y 140 i ~ #l
cases onf, ~!r, . The only case is (run-sim), thus we get 7, | tam where 7, ~1, . Then
(s [Way, /x1] =!(t}, | [Way, /x1]) and by (subst-sim) and (run-sim) !(}, [wa,, /x1]) ~N(tg, =
Wbll])'
. | . ‘ . . .
Case 12. (splice-subst). Let t’+ tb1 .- We have (~t,)[x1 = wp,] —x(+1) ~(t, 1 = wp,).
We proceed by cases on tjll*ll ~ Ntbm. The only case is (splice-sim), thus we get t}ll*ll =~tl .

where t!, =~ tl’;m. Then (~1},,)[Wa,, /x1] = ~(t},,, [Wa,, /x1]) and by (subst-sim) and (splice-sim)

apn arn

N(tém [Wan/xl]> = N(tliym [X1 = an])‘

Case 13. (subst-subst). Letz, =1} [x2:=wp,|. We have (r [x;:= wblz])[x =wpy,] 1 o=
wp,,] where t;;m [x2 i= wp,,] —X tj, .- By the induction hypothesis, 7}, | =~ tém. Then by (subst-

sim) 7}, way, /xi1] > 1) [x1 == wp,].
O

Lemma 326 (Simulation: (Substitutional) MetaML simulates Explicit MetaML.). Ift;, ~1, andt), —'1; ,
then tél — téz and tflz ~ téz.

Proof. We proceed by induction on the structure of tj“ o~ tl’;l.

Case 1. (var-sim). This case is vacuous.

: i 4l i I gl 4l i
Case2. (app-sim). Lett, =1, t, andf, =1, 1, wheret,

~ ¢l I~ gl
ar lap an, 1y, and 1, ty,,- We proceed by cases

an =
i i i

onf, —'1,.

Casei. (appL-i). Let tl’; —! tl’; and tl’;z = tliJ21 tli By the induction hypothes1s, an i tjm

i~ i i ik o0 ~
and), ty,,- Thent, 1, —" 1, t, andby (app-sim)1, 1, = tb21 tblz'

Caseii. (appR-i). Letr) =vj , t,‘7I2 —'t_andr, =v, 1 . Givenry ~ vﬁm, by Lemma

apr —
i I ~ i [Ea
316, 1, — va11 and Va,, = Vp,,- By the 1nduct10n hypothesis, ¢! an — ta22 and
I~ i I* i i ~ i
ta22 tbzz Then tall a2 vall z“112 vall 022 and by (app Slm) Va“ (l22 vbll th22'

. 0 . . 0 ~
Case iii. (app-0). Let tb Axtbm tb12 vp,, and tbz tbm[x vb]. Givenr, ~ Ax. tblll

by Lemma 316, 1 ¢ VALUE u- Given tO o~ vg , by Lemma 316, ¥ 6 VALUESub

> fan ’ alZ
Let 10 = va1 and 10 =10 . We proceed by cases on v ~ Ax. tb . The only

ap 1 a2 ap”
case is (lamu-sim), so let v = Ax.r) ~where) =~ tbm Then (Ax. tgm)) —0
b

am[alz/x] By (subst-sim), am[alz/x] ztbm[x =y,
Case 3. (lam-sim). We proceed by cases on i.

Casei. (0). Let) = Ax.i) and tl?l = lx.tgl where 10~ tgn‘ We proceed by cases on

0 . 0 0 0 _ 0
t, —0 tb The only case is (lambda-0), so let Ax. tb11 — &x.tb” and t;, = &x.tb”

Then Ax.t0 —% Ax.t% and by (lamu-sim) Ax.t0 ~ &x.t,?“

ary ary all

197

D.1. Equivalence of MetaML and Explicit MetaML

Case 4.

Case 5.

Case 6.

Case 7.

Case 8.

Case 9.

Caseii. (i+1). Let £it! = Ax.uit! and t,";lrl =)Lx.t[’;tl where ¢! ~ tl’:’ll. We proceed by

aip aip
i+1 i+1

cases on f, —itl téjl. The only case is (lambda-(i+1)), so let T,

i+l _ i+1 - : fo i+l (i+1)x i+l i+1 o 4it]
and 1, = lx.tbﬂ . By the induction hypothesis, 7,/ * — lyy, and 1" > 1"

Then Ax.zif! — D% 2x.12 1 and by (lam-sim) Ax.rif! ~ Ax.tl.

S i+ tll;+l
21

(lamu-sim). Letzf = Ax.r0 and th = &x.tl?” where 10~ tl?“. This case is vacuous because

ap ar
0 i
&x.tb” S

: i (it i (it i+1 it i1 it
(code-sim). Letz, = (1, ") and 1z, = (") wheret, /' ~=1,;"". We proceed by caseson?, " —

i+1 e : i+1 i+1 i+l i it
1, - The only case that applies is (code-1), so let 7, "" —'" 1, " and 1, = <tb21). By the

; ; g git] i+ 1)% it i+1 o it i+1 (gt

induction hypothesis, 7, — (1) tay, and z;7 "~ 1,75 Then (1,/") —" (t,1") and by (code-
: i1y o (it

sim) (to)) =~ (1, °)-

(splice-sim). Let t"flrl = Nt(in and t,’;lrl = Nt;;“ where tfm o~ t;;”. We proceed by cases on
i+1 i+1 it1
o "

Casei. (splice-(i+1)). Let tl’;” —>"tl’;21 and t;;z’] = Ntll;zl. By the induction hypothesis, tén i

i i gl i i+1)% g el ot~
ly, and ty, ~1, . Then ~it; — (D) 13,, and by (splice-sim) ~t;, =~ ~r1, .

p : 0 — (yl oyl 11 1l : 0 ~ [yl
Caseii. (splice-1). Lett, = (v,), ~(v,)—> v, andz, =v, . Givent, =~ (v,)

1 0 0 0% 1,0 0~ [yl
and (v,) € VALUEg,, by Lemma 316, 7, —"" v, and vy, =~ (v,). We then
proceed by cases on v221 o~ <vém). The only case is (code-sim), so let vgzl = (v}ml)

1oyl 0 1% 1 1,1
where v, >~ v, . Then ~tg — ~(vg,) — Vg,

: i i iy i g i i
(run-sim). Let?, =17, andf, =lr, wherer, =1, . Weproceedby casesont, —'fp,.

: : i i i iy : : fo g i i
Casei. (run-i). Lets, —'t, andr, =l . By the induction hypothesis, 7, —" 1, and

o~ tézl. Then !tén — 14 and by (run-sim) !t/ o~ !tl’;ﬂ.

as ar as)
I 0 _ /1 0 _ 1/, 1 0.1 0 _ .1 :
Caseii. (run-0). Lett, = (v,). t, =N v,), W,)—"v, andt, =v, . Given
0 /1 1 0 0 0% 0 0 /1
tay, == (vy,,,) and (v,) € VALUEg,, by Lemma 316, 1, —"" vy, and vy, ~(v,).
We proceed by cases on 0.~ (v!). The only case that applies is (code-sim), so let
p y) bi1i y PP
0 _ /1 I~ 1 140 0% y/,,1 0,1
Vay, = (Vay,,) Where vy, - >~v, . Then lt, —" Ny,) —" v, .

(num-sim). This case is vacuous.

i i i i g iy
andr, =1, +1, wherer, ~n -andt, ~1, . Weproceed by

(plus-sim). Let tél =t 41

ary ap
casesont —'tl .
by by

: : i i i i i i : : fo i i*
Casei. (plusL-i). Lets, —'r, andf, =1, +1, .By theinduction hypothesis, 7, —
lo, andt, ~1t, . Thent, +1, —"1, +1, +1,

i
~
az] as) ap aipp aszy ap ap — tb21 +

and by (plus-sim) ¢/

21
i
l‘blz.
P : i i i i i i : i oy
Caseii. (plusR-i). Let oy = Vouo oy " by and By = Vb, Tl Given Loy = Vi, by

Lemma 316, £ —™ v and v/

~ i ; ; io fl i
s Ty,) an = Vp,,- By the induction hypothesis, 1, , —

198

D.1. Equivalence of MetaML and Explicit MetaML

tfm and tfm ~ tli,zz. Then téll +t(§12 —ix v;“ —H‘élz i vﬁm +t§;22 and by (app-sim)
i i~y i
Vay Tlay, = Vb, T1,,-

0o _ 0o _ 0 _ o . 0 ~
Case iii. (plus-0). Let ty, =M1, I, =2 and lp, ="n where n = ny + ny. Given loy, = N1, by
tglz ~ ny, by Lemma 316, tglz —0x

~ pn;. The only case is (num-sim), so

Lemma 316, tgll —0x vgll and Vgu ~ n;. Given
0 0

0 ~
Va,, and v, - =~ ny. We proceed by cases on v,
0

0 _
let v, , = n;. We proceed by cases on v, |

ary
W =n,. Thent® +¢°

a2 ar a2

~ ny. The only case is (num-sim), so let
—0x ni +t212 —0x ny+np —0 5 where n = ny+ny. By
(num-sim), n >~ n.

Case 10. (subst-sim). Let, =1} [wa, /x| andt; =1, [x:=wy, | wherer, ~1; andwg, ~wp, . Given
il [y A X i i~ i ~ iy
ta, =1y, [X:=wp,], by Lemma 315, 1, [x:=wp,| —*" s, andt; ~s, . Sincet, [x:=wp,]
is not in substitution normal form but s, is in substitution normal form, #, [x:=wy,,] —*

i Xix (i i g i P4 g i* i i~
lpy — Sy, - By Lemma 325,17, ~1, . Thents, —'t, .1, —" 1, andt, ~1, .

D.1.7 Soundness and Completeness

Theorem 327 (Soundness of Explicit MetaML w.r.t. (Substitutional) MetaML). If til ~ tlil and té | —fF véz
in (Substitutional) MetaML, then tl’;l —i* vzz in Explicit MetaML and vzz ~ VZZ.

Proof. We proceed by induction on the length of tél i szz .
Case 1. (0). Let tfll = véz. By Lemma 317, tl’;I — i vsz and véz o~ vZZ.

i i i i(n) i - i~ i i i i 4i
Case2. (n+1). Lett, —'1,, —it) Vg,- Givent, ~1, andt, —'r, , by Lemma 323,17, —" 1,
and 7, ~1, . Given 1, ~1, andt, —iln) Vg,» by the induction hypothesis, 7, —" vj and

iy i i* i i* i i i
Vo, 2 vy, Wehaver, —" 1 —" v, and vy, ~v) .
O

Theorem 328 (Completeness of Explicit MetaML w.r.t. (Substitutional) MetaML). Ifz}, ~ t;;l and tl’;l — i

VZZ in Explicit MetaML, then tfl] —i* vilz in (Substitutional) MetaML and vilz o~ vzz.

Proof. We proceed by induction on the length of tll;l i vzz.

Casel. (0). Let tél = vsz. By Lemma 316, tfll € VALUEéub. Let véz = tél. We have tél i vflz and
Vo, = Vp,-

Case2. (n+1). Let tlil — tl’;z —in) vﬁ;z. Given t(i] o~ tél and tél — tl’;z, by Lemma 326, tc’;l —i* té2
and 7, ~ 1, . Given 1, ~1, and 1, —i) Vp,» by the induction hypothesis, 7,, —"* v;,, and

i

Va

i i i* i i i
, Vv, Wehaver, —" v, and v, ~vp .

199

D.1. Equivalence of MetaML and Explicit MetaML

D.1.7.1 An alternative proof.

We demonstrate a different proof of Theorem 328 which does not use Lemma 326. We start with two

lemmas. Their proofs are omitted.

Lemma 329. If1} ~ tliu’ t,i] — t,iz and to, % ty,, thenty, —'t} .

Remark 330. Lemma 329 does not imply whether or not tc’;z o~ tl’;z.

Lemma 331. If1, ~1, and 1, — 1,

i it 4i i gl
ay thenty, —"" 1, andt,, ~1, .

Remark 332. Lemma 331 is stronger than Lemma 323. In other words, Lemma 331 implies Lemma 323.

Theorem 333 (Completeness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). If t(i s tl’;l and tll;l —f viz
in Explicit MetaML, then t,] — i vilz in Substitutional MetaML and vilz ~ vzz.

Proof. We proceed by induction on the length of t,il — sz‘

Case 1.

Case 2.

(0). Let tél = vzz. By Lemma 316, tfll € VALUEg,. Let véz = tél. We have tj;] —# i and

a
i

Va

~ 1l
2 _vbz'

(n+1). Let) —'1;, —i) v,,- We proceed by cases on 7, ~1; , in particular on whether it

is (subst-sim) or not.

Casei. (subst-sim). Let) =1} [wq /x] and tél = t,i“ [x := wp,] where 7!

~ ¢t ~
ar an 1, and wg, =~

wp,. By Lemma 315, 7, —*" s} . Observe that j, is not in substitution normal form
but 522 is in substitution normal form. By the determinism of the small-step semantics,
,;;1 i tliz —_yxi(p) s;;z —ilg) sz and p + g = n where p,q > 0. By Lemma 325,
1y, ~ 1, . By the induction hypothesis

i i i i~y
sl " vy, and vy, > vy .

Case ii. (other cases). We proceed by cases on whether t(il o~ tl’;z.
Case a. (tfll ~ t,iz). Then by the induction hypothesis, 7. . o viz and véz ~ véz.
Case b. (1, #1,). By Lemma 329, 7, — 1,. By Lemma 331, 7, —t I,
and 7,, ~ 1, . By the determinism of the small-step semantics, 1, —'
o, i) 4 —i@) v, and p+¢q = n where p,q > 0. By the induction

hypothesis, #;,, —"* v;,, and v, >~ v} .

O

Theorem 334 (Kleene Equality of Evaluators). For any t € PRGMyetamr, €ValyetaML:subsos (?) is Kleene

equal to evalyeaML:Expsos (1)-

Proof. We first show that if evalyietamr:subsos (l‘) = a where a € ANSpetaMmL, then evalMetaML;Expsos (t) =a.

Case 1.

If evalytetamy:subsos (t) = function, then ¢ —0 Ax.t” in (Substitutional) MetaML. Observe
that r ~ t. By Theorem 327, t —% v in Explicit MetaML and Axt" ~v. We proceed by
cases on Ax.t" ~v. The only case is (lamu-sim), thus v = Ax.t” and 1" ~+". We have

evalyetaML:ExpSOS (t) = function.

200

D.2. Equivalence of MetaML and Suspended MetaML

Case 2.

Case 3.

If evalyjeramL:subsos (t) = code, then t —%* (v/ 1> in (Substitutional) MetaML. Observe that t ~ .
By Theorem 327, t —%* v in Explicit MetaML and (v} ~ v. We proceed by cases on (/') ~ v.

. . . 1 1 1
The only case is (splice-sim), thus v = (v) and v’ ~v"". We have evalyeamiExpsos () = code.

If evalyeamr:subsos (t) = 1, then ¢ —%* n in (Substitutional) MetaML. Observe that ¢ ~ ¢. By
Theorem 327, t —%* v in Explicit MetaML and n ~ v. We proceed by cases on 7 ~ v. The only

case is (num-sim), thus v = n. We have evalyietamr:Expsos (1) = 7.

We then show that if evalMetaML;Expsos (l‘) = a where a € ANSyetaML, then evalyietamr - SubSOS (I) =a.

Case 1.

Case 2.

Case 3.

If evalyietamiExpsos (t) = function, then ¢ —0x &x.t’o in Explicit MetaML. Observe that ¢t ~
t. By Theorem 328, t —* v in (Substitutional) MetaML and v ~ &x.t’o. We proceed by
cases on v ~ Ax.t". The only case is (lamu-sim), thus v = Ax.t” and " ~". We have

evalyetaM1.-SubSOS (t) = function.

If evalyerami:Expsos () = code, then ¢ —0x l) in Explicit MetaML. Observe that 7 ~ . By
Theorem 328, t —% v in (Substitutional) MetaML and v ~ (/ I). We proceed by cases on v ~
v l). The only case is (splice-sim), thus v = (v 1) and v"' ~ 1", We have evalyfeaMI :SubSOS (1) =

code.

If evalyietamr:Expsos () = n, then ¢ —% 5 in Explicit MetaML. Observe that ¢ ~ t. By Theorem
328, t —* v in (Substitutional) MetaML and v ~ n. We proceed by cases on v ~ n. The only

case is (num-sim), thus v = n. We have evalyeramr:subsos (f) = n.

We observe that evalyierami.:subsos (f) is undefined if and only if evalyeramr:Expsos (7) is undefined. Therefore,

evalMetaML;subsos (l) is Kleene equal to evalMetaML;Expsos (I) Il

D.2 Equivalence of MetaML and Suspended MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the

structural operational semantics of Suspended MetaML. We use subscripts “s,p”" and “gs” to differentiate
the syntax of (Substitutional) MetaML from the syntax of Suspended MetaML.

D.2.1 Well-boundness Judgement

Definition 335 (Well-boundness Judgement). Let the well-boundness judgement - wb be a ternary relation

on the power set of variables, the power set of variables and the set of runtime terms.

201

D.2. Equivalence of MetaML and Suspended MetaML

F wb C Z(VAR) x Z(VAR) X RTERM

m where x € %

U, VEnwb U,V +-twb
02/;7/Ft1t2wb

U J{x}; YV Erwb
U,V & Ax.twb

where x ¢ ¥

U U{x};V Etwb
U,V & Ax.t wb

where x ¢ ¥

U U{x}; vV U{x}Ftwb
UV - Ax.t wh

where x ¢ ¥V
UV Etwb
UV = (t)y wb

UV Etwb
UV =~ t wb

UV Etwb
UVt wb

UV Fnwb

U, VEnwb U,V +-twb
UVt +1wb

UV Ewwb U U{x};V Ftwb
UV Ftx:=w|wb

where x ¢ ¥

Lemma 336. [f % ;Y 1t wb, then FV (1) C % .

Proof. We proceed by structural induction on % ;¥ -t wb.

Casel. U,V Fxwb where x € %.

We immediately have FV (x) = {x} C % sincex € % .

U VEtuwb U,V Etwb
Case 2. UV =1t tho wh .
By the induction hypothesis, FV (t;) C % and FV(t;) C% . Then, FV (t11,) CFV(t;)UFV(t;) C
v .
U \U{x} Y Etwb
Case3. U;V I Axtwb
By the induction hypothesis, FV (1) C % U{x}. Then, FV (Ax.t) = FV (t)\{x} C (Z U{x})\{x} =
U\{x} % .

where x ¢ ¥V

202

D.2. Equivalence of MetaML and Suspended MetaML

U J{x};V Etwb
Cased. U,V Axtwb
This is analogous to the case of % ;% + Ax.t wb.

U U{xh vV U{x}Ftwb

where x ¢ ¥V

~ where x ¢ ¥V
Case 5. UV Ax.twb .
By the induction hypothesis, FV (t) C % U{x}. Then, FV (Ax.t) = FV (1)\{x} C (% U{x})\{x} =
U\{x} CU .
UV Etwb

Case 6. U,V & (t) wh.
By the induction hypothesis, FV (t) C % . Then, FV ({(t)) =FV(t) C%.
U,V +-twb
Case71. U,V bF~twb.
This is analogous to the case of % ;7 - ~t wb.

UV =t whb
Case 8. UV 't wh.

This is analogous to the case of % ;7 - ~t wb.

Case9. %,V Fnwb.
We immediately have FV(n) =0 C % .

UV Etuwb U,V Etwb
Case 10. UVt +1wb
This is analogous to the case of ;¥ -t t, wb.

UV Ewwb % U{x};V Ftwb
Case 11. UV =tx:=w|wb
By the induction hypothesis, FV (w) C % and FV (1) C % U{x}. Then, FV (t[x:=w]) =FV(w)U
(FV(O\{x}) €% (7 V{x})\{x}) =% .

where x ¢ ¥V

O
Lemma 337. If % ;Y -t wb, then % UW ;¥ bt wh.
Proof. By induction on the structure of % ;7 +t wb. O
Lemma 338. [f % ;Y b twband xy ¢ % UV UVar(t), then % U{xy}; ¥V U{xy} Ft wh.
Proof. By induction on the structure of %/ ;% Ft wb. O
Lemma 339. If % U{x}; ¥ U{x} - vt wb, then % U{x}; 7 \{x} Fvi* wb.
Proof. By induction on the structure of % U {x}; ¥ U {x} Fv*1wb. O

Lemma 340. If%;V bty wb, VAR() C X,V CU C X and UV, X 1l —™ 1], then U ; V' + 1 wh.

203

D.2. Equivalence of MetaML and Suspended MetaML

Proof. We proceed by induction on the structure of % ;7 + té wb and the structure of ;¥ ; 2+ té ik t(')i .

Casel. ;7 Fxwb where x € %.

This case is vacuous because % ;7; 2" F x /—.

UV Etuwb U,V Etwb
Case 2. UV 1t wb
In this case, tp =t t>.

We proceed by cases on %73 2+) —™ 1]l
UV X 1 —'t
Casei. U;V; 2 Ftty—'tih.
By induction hypothesis, % ;¥ + t{ wb. Then % ;¥ &t t, wb.
UV, Xty —'th
Caseii. U;V; 2 Fvitp —'vit)

This case is analogous to the previous case.

Caseiii. U;V; 2 F (Axot%)[x1 = wil...[xn := wa] V0 —010[x0 := V0] [x1 := wy]... [1= wia).
Then t; = (Ax.t)[x1 := wi]...[x, := w,] and 1, =1".
Given % ;7 F (Axo.t°)[x1 := wi]...[x, := wy] wh, the following holds:
Q) %,V Fw, wb,

2) U U{xn}3V Fwy_1 wh,

(m) % U{xn,%p—1,...;00}; ¥ = wi wh,

(M+1) % U{xp, X0 1,..,%2,X1,%0 }; ¥ 10 wb,

(0+2) {x1,x2,...,x,} NY =0, and

+3) xo ¢ 7.

We also have

(n+4) %V VO wb.

To show % ;¥ = t%xg := V0] [x1 := wy]...[x, := w,] wh, it is sufficient to show that
D ;7Y Fw, wh,

() % U{xn};V = w1 wh,

(m) % U{xp,%p—1,...;2}; ¥ = wi wh,

(M+1) % U{xp, X0 1,.,%0,X1 137 =0 wh,

(M+2) % U{Xp,X0_1,...,%2,X1,%0}; ¥ Ft° wh, and
(+3) {x0,x1,%2,....,x,} NV = 0.

All of (1)-(n+3) above hold.

204

D.2. Equivalence of MetaML and Suspended MetaML

U J{x};V Etwb
Case3. UV F Axtwb
In this case, f) = Ax.t. We proceed by cases on % ;¥ 2" 1ty — 1.

where x ¢ ¥V

Casei. UV, 2+ Axt — Ax.t.
Given % ;¥ + Ax.t wb, we immediately have % ;¥ Ax.t wb.
where 1+! ¢ VALUE™ ! and xy ¢ 2

Caseii. UV ;% b Axt —it dxy.tx = x]
To show % ;¥ ixN.t[x :=xy] wb, it is sufficient to show that
e xy ¢V, and
o % U{xy};¥ U{xn}F t[x :=xy] wb, which can be shown by
- x¢ vV U{xw},
- U JU{xn} YV U{xn} F xy wh, and
- U U{xn,x} Y U{xny} Bt wb.
We show the above all hold as follows.
e Givenxy ¢ 2 and ¥V C %, we getxy ¢ V.
e Givenx ¢ ¥ and x # xy, we getx ¢ ¥ U {xy}.
e Givenxy € Z U{xn}, we get Z U{xn}; ¥ U{xy} F xy wb.
e Given 7 U{x}; ¥ Ftwband xy ¢ (% U{x})U% UVar(t) , by Lemma 338, we
get 7 U{x}U{xn}; 7 U{xy} 1t wb.

U \U{x} YV Etwb
Cased. U;VF Axtwb

This case is vacuous because % ;¥ ; 2"+ Ax.t /—.

U U{x} vV U{x}Etwb
Case 5. UV Ax.t wb

In this case, ty = Ax.t. We proceed by cases on ;7 ; 2+ tg — t(’).

where x ¢ ¥V

where x ¢ ¥

U U{x}; Y U{xy 2 e —ity
Case i. WA X F dxt —H dxt!
To show % ;¥ b Ax.t’ wh, it is sufficient to show that
e x¢ ¥, and
o % U{x};V U{x}E1t wb.
Given % ;¥ b Ax.t wb, we have % U{x}; ¥ U{x} - wb and x ¢ ¥. By the induction
hypothesis, we have 2 U {x}; ¥ U{x} -t wb.

Caseii. U | Axvtl —H1 gy | fxait!
In this case, t = Vi1,

To show % ;¥ + Ax.vit! wh, it is sufficient to show that

205

D.2. Equivalence of MetaML and Suspended MetaML

e x¢ ¥, and
o % U{x}y;V vt wh.
Given % ;¥ - Ax.v wb, we have x ¢ ¥ and % U {x};¥ U{x} F vV*! wb. By Lemma
339, we get Z U {x}; 7\ {x} - vT! wb. Since x ¢ ¥, we get % U {x}; ¥ Fvi*! wb.
U,V Etwb
Case 6. «;V F (t)wh.
In this case, fo = (). We proceed by cases on % ;43 2" -ty — 1.
UV, Xt —y
Casei. UV 2 F{t) — ()
By induction hypothesis, ;¥ 1t wb. Then % ;¥ + (t') wb.

UVt wb
Casel. U;V & ~twb.

This case is analogous to the previous case.

UV Etwb
Case 8. U ;¥ Fltwb.

This case is analogous to the previous case.
UV Etuwb U,V Etwb

Case 9. UV 1+t wh
This case is analogous to the % ;¥ - t| t, wb case.

Case 10. % ;¥ +nwb.
This case is vacuous because n /.

UV Ewwb UU{x},V Etwb
Case 11. UV =tx:=w|wb
In this case, t) = t[x := w].

where x ¢ V'

We proceed by cases on % ;¥ 2+ tg — .

Casei. UV 2 F (Ax1t)x; = wilfx :=w] —° (Ax1.)) [x; := w][x := w).
In this case, # = (Ax1.£))[x; := w)].
Given % ;7 = (Ax1.t))[x; := w] [x := w] wb, we immediately have % ; ¥ - (Ax; 1)) [x; := wj][x 1=
w] wb.
Caseii. U;V; 2 Ftlx:=w] —Xt.
We then proceed by induction on the structure of %;7; 2" F t[x := w] —*¢'.

Casea. U;V; % Fnlx:=w| —Xn.

In this case, t = n.

We immediately have % ;¥ F n wb.
Caseb. U;V; X Fxlx:=w] —Xw

In this case, t = x. We have ;7 F w wb.

206

D.2. Equivalence of MetaML and Suspended MetaML

Case c.

Case d.

Case e.

Case f.

Case g.

— where x| £ x
UV 2 Fxifxi=w —¥ x|

In this case, t = x;.
Since % U{x}; ¥ + x1, we know x| € Z U{x}. Asx; Zx,x; € Z. Then
UV = x1 wh.
UV X ()= w] —X (1 [x = w]) (2fx = w))
In this case, t =11 ;.
To show % ;¥ F (t1[x :==w]) (t2[x := w]) wb, it is sufficient to show % ; ¥
ti[x :== w] wb for i = 1,2, which can be shown by
o UV Fwwb,
o % U{x};¥V Ft;wbfori=1,2, and
e x¢ V.
All the above hold.
UV, 2 F (t+10)xi=w] —X (t[x = w]) + (a]x ;== w])

This is analogous to the previous case.

UV X F Axyy) e = w] —XED Ay [y = x| = w] where xy ¢

In this case, t = Ax;.1;.
Given 7 U{x}; ¥ Ax1.ty wb, we have % U{x,x1 }; ¥ Ftywbandx; ¢ V.
To show % ;¥ Axy.ti[x) := xn][x := w] wb, it is sufficient to show
e xy ¢V, and
o U U{xy}; ¥V Ftifx; :=xn][x:=w] wb, the latter of which can be shown
by
-x¢,
- % U{xn};V Fwwb, and
- U JU{xn,x}; Y = t1]x1 := xy] wb, the last of which can be shown by
x x1 &Y,
x U U{xn,x}; V' Fxy wh,
x U U{xn,x,x1}; ¥V 1 wh.
We show the above all hold as follows.
We already know x ¢ ¥ and x; ¢ 7.
Givenxy ¢ 2 and ¥ C 2", we getxy ¢ V.
Since xy € 2 U {xy,x}, we have Z U{xn,x}; 7 F xy wb.
Given % ;¥ + w wb, by Lemma 337, 2 U{xy};V Fwwb. % U
{xn,x,x1}; 7 F t; wb holds analogously.

UV, 2 () [x=w] —X (t[x = w)])
In this case, t = (t1).
Given % U{x}; ¥ F (t1) wb, we have Z U{x}; ¥ 1, wb.

207

D.2. Equivalence of MetaML and Suspended MetaML

To show % ;¥ F (t1[x := w]) wb, it is sufficient to show % ;7 F t1[x :=
w] wb, which can be shown by
e x¢ Y,
o UV wwb, and
o U U{x}V Ft wh.
All the above hold.
Caseh. U;V; 2+ (\t)x:=w] —X 1t [x :=w]
This case is analogous to the previous case.
Casei. U;V; X+ (~t)[x:=w] —X~tx:=w]
This case is analogous to the previous case.
U IxH V5 X Fhxgi=w] —Yn
Casej. UV X Ftix1 = wi]fx:i=w] —X tx:=w]

In this case, t = 1[x] := w].
Given % U{x};¥ F t1[x| := w] wb, by induction hypothesis, we get Z U
{x}; ¥ t, wb. Together with x ¢ ¥ and % ;¥ + w wb, we get % ;¥ +

tr[x := w]| wb.

D.2.2 Unload Function

Definition 341 (Unload Function). Let i € N. Define the unload function U to be a total function from the
set of Suspended MetaML runtime terms RTERM_. to the set of Substitutional MetaML terms TERM!

sus sub*

U : 2(VAR) x RTERML — TERM. ,
UZ|x) = x
UZ | hn) = UZ|nUZ)
U(Z | Axi®) = AxU(Z |19
U(Z | Axtth) = AxnU(ZU{xn} |t xi=xy))
where 11 ¢ VALUEL[! xy¢ &
U(Z | Axvth = AxU(Z | v
U(Z | Axd) = AxU(Z|1)
U(Z | Axt) = AxU(Z|1)
uZ @) = UZ|1))
U(Z |~t) = ~UZ 1)
UZ 1) = W(Z|0)
UZ|n) = n
U(Z | h+0) = UZ|0)+U(Z |n)
U(Z |tlxo:=wollii=wi]) = U(Z | t[wo/xo][xi :=wi])

Remark 342. U(Z | t) may be omitted to U(¢) if 2 is clear by the context.

208

D.2. Equivalence of MetaML and Suspended MetaML

Proposition 343. U (2 |1) =

Proposition 344. U(Z |t{w;/x;))) =U(Z |)[U(Z | wi)/xi].

D.2.3 Bisimulation Relation

Definition 345 (Bisimulation Relation). Define the bisimulation relation ~ to be a binary relation between

the set of terms in (Substitutional) MetaML and the set of runtime terms in Suspended MetaML.

~ C TERM., x RTERM.,

ti ~¢ ifand only if #f = U(Z |t) where VAR(#)) C 2

D.2.4 Explicit Substitution Descendant Relation

Definition 346 (Explicit Substitution Descendant Relation). For any #;,f; € RTERMgy, ¢t <* £, if and only
it %V, & Ft, —* t;. We call <* the explicit substitution descendant relation.

Proposition 347 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation <* is well-founded.

The proof is analogous to the proof of Lemma 322.

D.2.5 Canonisation
Lemma 348 (Canonisation of Substitutional MetaML). If), ~ vb , thent), € VALUEL .

Proof. We proceed by induction on the structure of Vb € VALUEL,.

Case 1. (v’“ =x). Then#i'! = U(x) = x and x € VALUEL!.

sub

i+1 i+l it z+1 i+1 i+l i+1 i+1 t+1 i+1 4i+1
Case2. (v Vo Vo,). Thent,” =U(v, " v,7) =UWv,) U(v,). Lettg " =157 15" We have

ar apy °
t}m ~ vbll and) | ~ vﬁm By the induction hypothesis, 7! € VALUE’;;b1 and 11 € VALUE' L.
i+1 i+l i+1
Then 7, " 1,/ € VALUE .

Case 3. (v”rl Ax. v’+1) Then 15! = U(Ax. v’+1) Ax.U(v H'1) Letz! = Axayf!. We haver), ~vj .

ayy
.15+l € VALUELH!. Then Ax.sit! € VALUE’SE.

By the induction hypothesis

Case 4. (vﬁ;l = (&x.tl?”)[xi :=wj]). Thenr, =U(Z | (&x.tgll)[xi =w])=U(Z| (&x.tl?)[wi/xi]). Let
xy & 2. Wehaver, = U((&x.tgn)[w,-/x,-]) = U(&xN.tl?“ [xn /x][wi/xi]) = QLJCN.U(I,‘b]1 [xn /x][wi/xi]) €
VALUEY, C VALUESub

Case5. (v, = <v;:]1>) Then 7, = U((le’11>) = <U(v§7+l)> Lettf = (tit1). We have rif! ~ v’+1 By the

ar ary

induction hypothesis, t‘“ € VALUEL). Then (rif1) € VALUEbub
Case 6. (v’+2 = Nv’+1) This case is analogous to the (vb = < i+1)) case.

Case 7. (v‘+1 ’H) This case is analogous to the (vb = (v ‘H)) case.

209

D.2. Equivalence of MetaML and Suspended MetaML

Case 8. (vi71 =n). Thent}, =U(n) =nand n € VALUEL.

Case 9. (v’+l = vzrll + v’b“) This case is analogous to the (v’+1 = vj;lrl Vb. +1y case.

O]

Lemma 349 (Canonisation of Suspended MetaML). If v, ~ tél, UV tl’;l wb, VAR(tl’;l) CAZandV C
Y C X, and either tlin is in substitution normal form and FV(I}’;I) CY¥Y =%, or tiin is not in substitution
normal form and FV(t;;l) CU, then %,V Z + tlin —ix VZZ and vi, ~ VZZ.
Proof. We proceed by simultaneous induction on the structure of le € VALUEiub and on the explicit sub-

stitution descendant relation <* t,il .

1_ +1 i+1
Case 1. (v”r = x). We proceed by cases on?;" " € RTERMy .

Casei. (f;"' =x). Then x € VALUE.
Case ii. (t;:rl = xo[x1 := wi]...[xm := wp]). We proceed by cases on m.

Case a. (m=1). Given x ~ xg[x; := w;], we have:

x
= U(xo[x; :=w1])
)
= U(w) where xo = x;
or = U(xp) where xo Z x|

We have x ~ w; or x >~ xg.
Then by (var-eq-subst) or (var-df-subst) and (subst-subst), we have:
UV, X F xolx) :=w]
—X w1 where xy = x;
or —X X0 where xg Z x|

_ - _ i+1
Case 1. (xo=x;1). Wehavex~w;. Then w; =x. We have x € VALUE,; .

Case?2. (xo%x;). We have x ~ xo. Then xg = x. We have x € VALUE'!!

sus *

Case b. (m > 1). Given x ~ xp[x] := wy]...[x := wy,|, we have:

= Ulxolx) :=wi][xa :=wal...[xm = wp))
= U(xo[wi/x1][x2 :=wa...[xm := wp])
= U(wi[xz :=wol...[xm :=wy) where xo = x;
or = Ul(xo[x2:=wal...[xm :=wy)) where xp Z x|
[x

We have x >~ wy[x := wa]...[xn 1= wy] Or X = x0[x2 1= wal...[xm 1= Wy
Then by (var-eq-subst) or (var-df-subst) and (subst-subst), we have:
UV, 2 xolxr :=wi][x = wal... [i = wy]
—X wilxa i = wa].. X 1= Wi where xo = x;

or —X Xo[x2 1= wal...[xm 1= W] where xo # x|

210

D.2. Equivalence of MetaML and Suspended MetaML

Case 1. (xo =x1). We have x ~ wi[xp 1= wp|...[x := wy,] and w[x; 1=
wal.. [1= wi] <X xo[x1 = w2 i= wal. L = .
By Lemma 340, % ; ¥ b wy [x2 := wa]... [:= Wy] wb. By Lemma
336, FV(wilxz :=wo]...[xm :=wp]|) C % .
By the induction hypothesis, we have % ; ¥'; 2" F wy [xp :=wa]...[x ==
W] —* vgl and x ~ vzl.
Case 2. (xo # x1). It is analogous to the previous case.
Case?2. (vi' =Viflvirl). We proceed by cases on 77" € RTERM{.
. i1 il il i1 bl o it it .
Casei. (1, =1, 1, °). Givenvy " v, ~1, ' 1,00, we have:
i+1 it
lel leZ
_ i+1 i+l
o U(tbll tblz)
i+1 i+1
U(tllm) U(tblz)
i+1 ~ i+l i+1 ~ i+l
Then v, " ~1, " and v, ~1,°".

We have % ; V' I—téll wb, UV I—tl"712 wb, FV(tL'“) cv, FV(tl’;lz) CY¥and?V =%.

By the induction hypothesis, % ;% ;2 F i1 —* yitl it ~ it Dgy oy 97
bui by 2 Tan bay
i1y il i+1 i1 it
VAR(v,, ') 0 —> v and v vyt
e AN RS R S s | i1 il ikl it
Hence ;7 2 -, 1, " — v v and v v v v
- TS TS RS I o i+l iy o -
Caseii. (t,7 = (t,/ 1, ") [x1 := wi]...[xn 1= wy| where (57 £,)[x1 := wil...[xn 1= wy] is

well formed.). Given vi ! vl ~ (tli:rll tl’:rzl)[xl :=w1]...[Xm := wp], we have:
i

= U((tl’;lrl1 tl’ntl)[xl = wilo X = W)

= U((t;;l1 téle)[wl/xl]...[wm/xm])

= U((t;rll[wl/xl]...[wm/xm})(t;;lrzl[wl/xl]...[wm/xm]))

= Ut twr/x).[wan foxn]) U (1, w1 /21 [/)

= U(tl’;lrl1 [x1 = wi]...[xm = wp)) U(t;j‘l';l [x1 == wil... [= wn))
Then vil ~ tl’:’ll [x1 == wi]...[xm == W] and Vil ~ tl’:;l [x1 = wileofxm = wil.

We have %;”f/l—tﬁll [x1 :=w1]... [:= Wi wh, %;”f/l—t,’;lz x1 := Wi [X 1= W] wh,

Fv(tli:] [x1 :=wi]...[xn ;== wy]) C % and FV(tl’;12 (X1 == wil...[xm i =wp]) C%.

By the induction hypothesis, % ;¥ ; 2" + t1’71+1l [x1 :=wi]... X = wp] —F vgll, vjlrll ~
i1 .. i+ 1 17,) i+1 j i+ 1

vgl UV I UVAR(V;;;) F tl’;l; X1 = wi...[xm = wp] —7 v;;; and viH! ~ vgz .

Hence %,V 2 + (t;)J]rll t,’jlrzl)[xl = Wi X = W] —* vgll vgzl and Vit vitl ~
i1 it

Vo Voo, -

Case3. (0 =)Lx.tgll). We proceed by cases on t,?l € RTERMY,..
Case i. (tgl = (&xo.tgll)[xl := wi]...[xm := wp]). Then (&Xo-ll(,)“)[xl = Wil = wi €
VALUE!

sus*

211

D.2. Equivalence of MetaML and Suspended MetaML

Case ii.

Case iil.

Case 4. (vif'' = Axit). We proceed by cases on t;lrl € RTERM]

Casei.

Case ii.

Case iii.

(tl?l = (/lxo.tl?“)[xl i=wil...[tm := w)). Given Ax.t) ~ (lxo.tgll)[xl =wilo =

Wp, we have:

Axitd

= U((?LXO.t[?“)[Xl IZWI]'u[xm::Wm])
= U((Axo.p,)[x1 = wil...[vm 1= wi])

Then Ax.r), ~ (&xo.tgn)[xl =Wl X = Wi
By (lambda-0) we have:

UV, X (Axo.t,?“)[xl =wile o =W — (&xo.tgn)[xl = Wil X = Wi
(tlg1 = xo[x1 := w1]...[xn := wp]). This is analogous to the (t;:rl =xo[x1 :=wi]...[xp =

i+1

u, = X) case.

wp]) subcase of the (v

aly sus *

i+l _ i+1 i+1 i+1
(ty = Axo.v,,). Then Axo.v, = € VALUEG .

sus
Letxy ¢ 2 UVAR(v,). Then Ax.vitl g Axyvif iy /x].

We have %,V ; 2 + lxo.tl’:’ll — ixN.tliJlrll [x0 := xn].

By Lemma 340, %; ¥ + ixN.tl’:rll [xo := xy] wh. By Lemma 336, FV(ixN.tél*ll [x0 :=
)V =%.

Then Z U{xy}; 7 U{xy}F t,i:rll [X0 :=xn|wh,xy &V, FV(I;;TII [xo :=xn]) C ¥V U{xn}
and V' =% .

We have:

i1 _ i+1 i+1 i+1
(ty, —lxo.tb“ where 7 ¢ VALUEL).

Axy Vit [xy /x]

= U(Z] lxo.t,’:]:])
= Axy.U(Z U{xn} | t,ifll [x0 := xn])
Then vi| ! xy /x] ~ tl’;lrll [x0 := xn].
By the induction hypothesis, we have Z U {xy}; 7 U {xy}; Z U{xn} F t,i:rll[xo =

* I+1 i+1 o 0
xy| —" vy and vl vy

12"
LA 2 i+1 o * i+1 i+1 ~ i+1
Hence ;v ; Z AxN.tb” [x0 :=xn] —)LxN.vb12 and Axy Vi [x /x] ~ 7LxN.vh]2)
i+1 5 . i+l . i+1 ~o 9 4 it .
(ty " = Ax.y ") Given Ax.v, >~ Ax.ty *, we have:
i+1
Ax.vg
2\ gt
U(Axty ")
_ i+1
= lx.U(tbll)

i1~ 4it]
Then vy " ~1, "

We have % U{x}; 7 U{x} b o, wh,x ¢ ¥, FV(i;") C 7 U{x} and ¥ = %.

212

D.2. Equivalence of MetaML and Suspended MetaML

By the induction hypothesis, we have % U {x}; 7 U{x}; Z I t[’:r]] —* V;;T; and
i+1 j

Va“ zvb

12°

Hence % ;V; 2" +),xN.tl’;lrll — lxN.v;,Tzl and lx.vzrll ~)LxN.vZTzl.

Case iv. (t,?1 = (&xo.t,(j“)[xl ‘= wi]...[xm := wy]). Then (&xo.t,(,)”)[xl = Wil = wy| €
VALUE? . C VALUE'!!

sus — sus °
Case v. (1,‘;';1rl =xo[x] :=wi]...[xm :=wp]). This is analogous to the (t;:rl

i+1
a

=xo[x1 :=wi ... [=

wn]) subcase of the (v, = x) case.

Case Vi. (tl’;Tl = (lxo.tzrll)[xl ‘=W]...[Xm :=wp)). Given lx.vzrll ~ (Axo.tl’;fll)[xl =W =

W], we have:

Ax. Vi
= U2 (Axo.tl’;ll)[xl = wilo X = W)
= U(Z] (),xo.t}’)tl)[wl/xl][xg = wol. [= wi))
= U(Z U{xn}| ()LxN.t;;l*ll [xw /x0] w1 /x1]) 2 := wal... [== wi)) where xy ¢ 2
(

= UZ U{xn}| (lxN.t,’;I:] [x0 := xn][x1 := wi]) [x2 1= wal...[xm i= wi])

Then Ax.vif! ~ (lxN.t,flrll [x0 1= xn][x1 := wi])[x2 1= wa]...[xm 1= Wi

By (lam-subst) and (subst-subst) we have:

UV X+ (lxo.t}i:l)[xl = wi|[x2 = wal. X 1= wy

—X (lxN.tl’;l*ll[xo = xy][x1 = wi])[x2 ;= walo X = wp] where xy ¢ 2

By Lemma 340, % ; V' (lxN.tZrll [X0 :=xn][x1 :=w1])[x2 := wa)]...[xm := Wy wb. By

Lemma 336, FV ((Axy.t;" [xo := xw][x1 := wi]) 2 1= wa)...[x := wi]) € %.

Since (lxN.tl’:lrll [X0 :=xn][x1 :=wi]) [:=wa].. X 1= W) <X (lxo.tl’;’;l)[xl =wilr =

wa]...[%m := wp), by the induction hypothesis, we have %; ¥; 2" U{xn } F (kxN.tl’;l*ll [x0 :=
it i+1

an]fxr = wil) 2 i= wal. [= wi] —* v and Axvi = vt

Case5. (v, = (vitl)). We proceed by cases on 7; € RTERM,

aj al sus*

Casei. (1, = (t;'1). Given (vifl) ~ (;*1), we have:

(Var,)

= U
(UCARY

Then vi\ 1 ~ 7.
11 . .
We have %;V/I—t;rll wb and FV(’;:I) CYV =Y.
By the induction hypothesis, % ;7 ; 2 - tl’:ll —* vgll and vt ~ vgll.
e i+1 i+1 1\ o (it
Hence ;7 2+ (1, ') —" (v,) and (v ') 2= (v,).

arl

213

D.2. Equivalence of MetaML and Suspended MetaML

Case ii. (tbl <tl’;]rll)[X1 :=wi]...[X = wy)). Given (vif 1) ~ <tl’7:’|1>[X1 = Wi X 1= Wy, We

have:

i+1
AN

= U((tl’jl'll)[= wilo o = wi)
= (U e = wil e[= wia)))

We have vi! ~ tl’jl'll [x1 = wi]ew X = W)

By (code-subst) and (subst-subst), we have:

UV, A <tl’?+l>[x1 =Wl Xm 1= W]

— X <t1’,“[x1 =wi]...[on = wp])
We have % ;7 + t}’;lrll [x1 :=wi]...[xm :=wp| wband FV (¢ ’+1[=wilefxm = wy]) C
U .
By the induction hypothesis, %;7; 2" F ’+][= Wi Xm 1= Wy —7 vgll and
i+1 ~ itl
vall - vbz[

Hence (t;;tl)[xl = wi]efon 1= w] — (v ;,“> and (vir!) ~ (vgll>.

Caseiii. (V) = (v}) and tb = xo[x1 := wi]...[xm := wy]). This is analogous to the (z"+1 =

Xo[x1 :=wi]...[xm := wy]) subcase of the (v”rl = X) case.
i+2 _ i+l - . i (yit]
Case 6. (v,= = ~v,""). This case is analogous to the (v, = (v, ')) case.
1yl - - ' i+1
Case7. (v, =!v,). This case is analogous to the (v, = (v,;')) case.

Case8. (V| , = n). We proceed by cases on tb € RTERM. . where tl‘;l is in substitution normal form.

sus

Case i. (tbl =n). Then n € VALUEL.

Case ii. (tb1 = xo[x1 :=w1]...[xm := wy]). This is analogous to the (t,ifl =xo[x1 :=wi]...[xp =

wm]) subcase of the (vi'! = x) case.
Case iii. (tb1 = no[x1 :=wi]...[xm 1= wi)). Given n ~ ng[x; := wy]...[x := wy,|, we have:
n

U(nolxy :=wi]...[oom := wy])

= no

Then n >~ ny.

By (num-subst) and (subst-subst), we have:

nolx1 == wil...[xXm := wp]

HX* nO

Case 9. (v”rl = vﬁjlrll + v;"lrzl) This case is analogous to the (v’+1 VZTII ;"1’21) case.

214

D.2. Equivalence of MetaML and Suspended MetaML

D.2.6 Bisimulation

Lemma 350 (Simulation: Suspended MetaML simulates (Substitutional) MetaML.). If tfl] o~ tél, tél —t tf,z,

UV = tl’;l wh, VAR(I;;I) CX, Vv CU CX, and either t;;l is in substitution normal form and FV(tlil) C
vV =9, or t,il is not in substitution normal form and FV(tél) C U, then U,V ;2 F tl’;I —i* téz and

[
foy 215,

Proof. We proceed by simultaneous induction on the structure of 7, € TERM. , and on the explicit substi-

tution descendant relation <* tél .

l' o . .
Case 1. (t;, = x). This case is vacuous because x /—.

Case 2. (tj;l =1t 1!). We proceed by cases on tél € RTERM. .

ap a2

Casei. Suppose #; is in substitution normal form. Let#; =1 1}
We have ! ~t 1 ~t V-t wb, UV -t wh, VAR(t,) C 2,
bn b1 bn b1z bn

ar ap
VAR(1,) C 2, FV(t, SV, FV(t,)V and ¥ =U.

We proceed by cases on £/ L téz.
Case a. (appL-i). Let t;“ tfm — tﬁm télz where t;“ — t221.

By the induction hypothesis, % ;7 ; 2 - tén —* téﬂ and ¢!

i
~Y
a — tb;. .

L. i 4 K g0 4l [T
Hence %V % 1, 1, —" 1, 1, and ity o =1t 1 .

Case b. (appR-i). Lett) =vi andvi ¢ —=vi t wheret! — 1t

11 ary ap a2 apy “ax az an:
By Lemma 349, % ;V; Z + t,‘ol1 —* vjm.
Then %V 2 Fe ¢t —*yi ¢l |

bi “bia bii “bin) _ _
By the induction hypothesis, %;7; 2 UVAR(v),)1, —*1, and
layy 21y, -
g i i x4
Then %V 2" UVAR(v),) vy, 1, — v, 4 .
e i x i i T N A

Hence %,V 2 1, 1, —" vy, 1, and ty 15, ~v, 1 .

0 _ 2,40 40 _.0 0 0 0 [0
Casec. (app-0). Lett, =Axt,, ,t,, =Vy,and Axt) v, —>t, [ve, /x].

Given Ax.t) | ~1) ,byLemma349, % ;¥ ;2 1) —*v) andAxi) =~

0 e 0 40 £ 0 40
Vp,- Then %V 2 by 1, —" vy 1, .
Given V), ~1) , by Lemma 349, %;¥; 2 UVAR(W)) F 1) —*v)
and v) | ~ vglz. Then %,V & UVAR(vgll) F v2“ tl?lz —* vgll v212.
We have %; 7 2 F) 1) —*v9 49 .

11 12 11 12
By Lemma 340, % ; V' + vgu wb, U ;Y vglz wb. By Lemma 336, FV(Vgu) -
¥ and FV(vglz) cv.
0 0

. 0 ~ . .
We proceed by cases on v, ~in Ax.ty =~ Vp,,- The only possible case is
0

Vp, = (&xo.tgm)[xl = wile X = Wi
Letxy ¢ 2" UVAR(tg, 10,) UVAR(V) V)).

We have lx.tgm ~a lxN.tgm [xy/x] and (&xo.tgm Vs = wileeom = wi] ~a

(lxN.tgm v /x0]) [x1 := wil.. [xm == Wi
We have:

215

D.2. Equivalence of MetaML and Suspended MetaML

Case ii.

Axy.t am[xN/x]
= ((&xo.tblll)[xl = wile o = wi)
= U((&xN.tgm [xn/x0]) [x1 := wil...[xm == wi])
= U, o)) o x]])
= U(lan-ty,, [ov/xo][wi /x1]- [Win /%]
= A U(ry, bov/xol[wi /x1]...[Win /%))

Then 10 [xy/x] ~ tl?m [xn /xo0][wi/x1]... [Win/Xm)-

Observe that
Axy. tz(z)lll [)CN/X] Va, — tglll [xN/x] [VSIZ/XN]
and
L4t UVAR(V%“ V212) - (ixo'tl(z)m)[xl = Wl]...[xm = Wm] V212
— tl?l]l [xo = vglz][x1 = Wl]"-[x}n — Wm] .

Since FV((&xo.tgm)[xl = Wil 1= Wi vglz) C ¥, we have
FV(vy)C V.

Since % ;Y + (),xo.tgm)[xl = wi]...[xm := wy| wh, we have x; ¢ V.
Hence x; ¢ FV(vglz).

We have:
U(tl?m[xo 21 J[x1 == wi]. o = wi))
= Ul b, ol) o)
= Uty v /%ol), /xn][wi /1] [Win /m])
= Uy, b /o] [wi /x1].[win /] [V, /%n])
= Uty) ow/%ol[U(w1) /x1]...[U (W) /2] [U (V)) /%]
= U(fbm ben /0] [wi /1] [Wan f 2]) U (V),,) /2]
= 19, v /X0, /xw)
We get:
tgm [xn/x] [vglz/xN] ~ tgm [x0 := vglz][xl = wiee X 1= W]

Suppose tb is not in substitution normal form. Let tb (tb“ tblz)[xl =wile g =

Win.

We have % ; ”I/l—tb [x1 :=wi]eo[xm == wi] tb [x1 :=wi ... [:= wi| wh, VAR(tb [x] :=
Wil o = w1 [x1i=wi] = w]) © 2 and FV (), [x1i=wil. o = wa] 1, [x1:=
Wil [Xm :=wn]) C%.

By (app-subst) and (subst-subst), we have %72 & (1,))[x1 := wi]...[x, :=

W] —* t,’;“ [x1 == wi]..[xm = wp] tlim[xl = wile o = Wi

Thent}’;1I [x1 :=wi]... [x = W] tli.z[xl = wile [=] <X (t;;” tlim)[xl =wil. =
Win.

Giventy, 1, =~ (th 1, Vi :=wi]...[vn = wn], we have £, 1, [x1 = wi]...[x, :=

D.2. Equivalence of MetaML and Suspended MetaML

W] and ¢!

Suppose t! 1l —— 1!

apy “aiz a’

W] tli;u [x1

apn

~ t,ilz[xl = Wil [Xm 1= Why.
by the induction hypothesis, %5 ¥'; 2 1}, [x1 :=wi]...[xn 1=

= wilo o = wy| —F tl’;z and 1, ~ tj;z.

Case 3. (tiF' = Ax.aif1). We proceed by cases on 57! — #2+1. The only case is (lambda-(i+1)).
Let%;”f/ktl’;l+1 wb. Let VAR(I,",I“) CXX. lLetv Cu CX.

We proceed by cases on#, " € RTERM:H!

Casei.

i+1
sus *

Suppose t;;lrl is in substitution normal form. We have ;¥ + tlinH wb, VAR(tl‘;Jlrl) C
2 FV(r) SV and ¥ =%

Case a.

Case b.

i+1 __ i+1
Let t;)l —)L)Co.l‘;“ o
Letxy ¢ 2 UVAR(riT).
We have Ax.rit ~g Axy 1l [xy /x]. We also have % ;7/; 2+)LXO-I;;JIFII —

N] ar
)LXN.I;:]] [)C() =)CN].
By Lemma 340, we have % ;¥ + ixN.téJlrll [xo := xn] wb. By Lemma 336,
FV()ALxN.t,’;’]l [x0 :=xn]) C V.
We have % U{xn}; 7 U{xn} t;lrll [x0 :=xn| wh, xy & ¥, FV(z‘l";lrl1 [x0 :=
xy]) CY U{xy}and ¥ =% .
We have:
Axy i oy /x]

_ i+1

= U(Z | Axoty) |

= AxnyU(Z U{xn}| t}’;l’ll [X0 :=xn])
Then 75! [xN/x] ~ t}’;’ll [x0 := xn]. | | |
Suppose Axy.t5t ! xy /x] — Axy.rit! where 157 [y /x] — 1511 .
By the indpction hypothesis, U I{xn bV U{xn s Z7U{xn} tlljlrll [xo 1=
xy] —* o, and £} ~ t;;rll. o | o
Henc.e v, ”f/; 3&” H lxN.tl’;lrll —* lxN.t[’;l and AxN.tézl ~ lxN.t;;rll.
Let tl’;l’l =),x.t;;’ll. We have:

i+1
Ax.ty!

— 2y sl
= U(kx.tl’ml)
_ i+
- — AxU(E)
Then 751! ~ tl‘;lrll.
We have 2 U {x}; ¥ U{x} 1, wh,x ¢ ¥, FV(5;7!) C ¥ U{x} and ¥ =
v .

i+1 i+1 i+1 i+1
Suppose Ax.t, " — Ax.t,) " where t,[" — ;7" | |
By the induction hypothesis, % U {x}; 7 U {x}; Z tl’71+11 —* tgll and
i1 ~ 4it+]
ttm _[lm : R _ ~ _ . _
Hence %V ; 2 F Axtit! —* Axtitland Ax.rit! ~ Ax.sit1.
by 2231 az by

Caseii. Suppose t,’:r] is in not substitution normal form. We have %/ ; ¥ t,’;lr] wb, VAR(t,’;TI) C
X FV(eih cu.
1

217

D.2. Equivalence of MetaML and Suspended MetaML

Case a. Let tl’:’] = (lxo.t[’;tl)x1 == wi][x2 :=wa]...[xn := wy]. We proceed by cases

on m.

Case 1. (m=1). Letxy,,xy, ¢ 2 UVAR(t;") and xy, # xy,.
We have Ax.rit! ~g Axy, 25t Hxy, /x]. We also have % ;7 2+
(Axo.tl’;fll)[xl =w] —* lle.tl’;lrll [Xo :=xn,|[x1:=wi]and % ;¥ U
{XN] } F AXN] .llel [X() ZZXNI][)Cl = Wl] —X lxNz.l;;Tll [X() ZZXNI][)Cl =
willxn, = xn,).
By Lemma 340, % ;7 + /UNZ-%TII [x0 1= xn,] [x1 := wi][xn, =
xy,| wb. By Lemma 336, ixNzl;i:l
xNz} g v .
We have % U{xn, }; 7/U.{xN2} - t;;lrl] [x0 :=xn, | [x1 == wi][xn, =
xn,| wh, xn, &V, FV(I;TI1 [x0 := xn,][x1 == wi][xw, = X))
% U {XNZ}.
We have:

[x0 1= xn, |[x1 == wi][xn, =

N

Axn, 15t [xn, /]
= U(Z | (lxo.t};:l)[xl =wi])
= U(Z | (Axo.t,) wi/x1])
= U(Z U{xn,} | Axy, .tl’;]rll [xn, /Xo][w1/x1])
Axn, U(Z U{xn, ,xn, } | t;;l*ll [xn, /x0] w1 /x1][xn, == xn,])

lxNz‘U(*%/ U {le 7xN2} ’ t[i;tl [)C() = le][xl = Wl][le ::xNz])

Then 73! v, /x] = 1,7 [x0 == xw, 1 := wi][:= xwv,).

Suppose lxNth’:rl] [xn, /x] — lxNz.té;rll where tc’:“ll [xn, /x] —

ritl
By the induction hypothesis, % U{xy, }; ¥ U{xn, }; Z U{xn,,xn, }
tl’:rll [x0 := xn, | [x1 := wi][x0 := xn,] —* tll;;l and 7,11 ~ tl’;l.

Hence % ;7' 2 U{xn,,xn, }).xNz.tl’;l’l] [X0 :=xn, | [x1 :=w1][x0:=
xn,] —* ixNz.tl’;;l and Axy, .t ~ ﬁxNz.tz;zl.
Case2. (m>1).Letxy ¢ 2.
We have ;v ; 2 (kxo.t;:’ll Vxr i=wi] [= wa. [1= wi) —*
(lxN.t;;lrll [X0 1= xn][x1 := wi])[x2 1= wa]... [1= Wi
By Lemma 340, ;¥ + (lxN.tétl[xo =y x1 = wi])[xe =
wa)...[%m := W] wb. By Lemma 336, (Z,xN.tl’;TII [x0 := xn][x1 :=
wi]) 2 == wol. o = wi] S X .
Then (lxN.t;rll [Xo := xn][x1 == wi])[x2 1= wa]...[xm 1= wy] <*
(/lxo.tl’;fll)[xl = wi|[x2 = wal.[xm 1= Wi
Provably we have Ax.rif! = U((lxo.tl’:’ll)[xl =wilo o i =w]) =
U((?LxN.tl’;Tll [x0 1= xn][x1 := wi])[x2 := wal... [1= wi]).
Given Ax.tit! — Ax.1it 1, by the induction hypothesis, %;%; 2 U

a

218

D.2. Equivalence of MetaML and Suspended MetaML

{xn}F (lxN.t[’:I”]] [x0 :=xn][x1 :=w1]) [x2 :=wo]... [i = Wi —*
t ! and Ax.ait !~ ot

Case 4. (t}, =n). This case is vacuous because n /—".

Case 5. (tfllzt" +1

an T la,)- This case is analogous to the (tjz1 =t t)case.

ap “ap

C i
Case 6. (1, = (t;')). We proceed by cases on #;,, — t,,. The only case is (code-i).

Then (r;t1) — (ti11) where £t 1 — #2141,

Let %;¥ &1, wh.Let VAR(t)) C 2. Let ¥V C% C 2.
We proceed by cases on t,’;I € RTERM!

sus*

Casei. Suppose tlil is in substitution normal form. We have % ;% I tl’;l wh, VAR(tl’;l) C 2,
FV(tzia,) CYVand?V =%.
i ikl
Casea. Letty =(1,'").
1 gitl

Then 7,/ ~1, " . 4

We have % ;7 + tl’71+11 wb, FV(t;rll) CYand ¥V =%.

By the induction hypothesis, ;7 ; 2 - tﬁll —* té‘; and 7} 1 ~ tzi;l~

- i1 « ikl i i1
Hence %V, Z <tl’71+1) — <tl’;1r1) and (rit1) ~ <tl’;2rl).

Case ii. Suppose tél is in not substitution normal form. We have %/ ;¥ + tl’;l wb, VAR(téI S

and FV (1,) C%.

Case a. Let t,’;lrl = (t}’;j'l1>[x1 = wile [= Wi
We have % ; V' + tl‘;lrll [x1 :=w1]...[xm :=wy,] wb and FV(tl‘:rl1 X1 :=wi].fx, =
wml) CU.
By (code-subst) and (subst-subst), we have % ; 7} 2"+ <tl’;l+11 Y i=wa]e o
W] —* (tzrll[xl = Wil X = W)
Then (t;;lrll[xl =W e o 1= w]) <X <tl’;l+11>[x1 = wi e X 1= Wi
Provably we have (11') = U ((t;") [x1 := wi ... [t := wi]) = U ({17 1 =
Wi [Xm i= wi))).
Given (tf') — (ti1!), by the induction hypothesis, %;¥'; 2 F (1, [x1 :=

Wi [Xom 1= Wpy]) —* tl"72 and (t11) ~ tl’;2.

Case7. (tiF! =~}). This case is analogous to the (7}, = (t51)) case.

Case 8. (ti =t}). This case is analogous to the (7, = (ti1)) case.

O

Lemma 351 (Simulation: (Substitutional) MetaML simulates Suspended MetaML.). If tfll ~ t[")l, UV, 2+
tlin i t,iz, UV t,‘;] wb, VAR(I;;]) CZ, VvV CU CX, and either tlin is in substitution normal form and
FV(t;;l) CV =%, or tlin is not in substitution normal form and FV(t;;l) CU, thent, —™ 1. andt) ~ t1’;2.

219

D.2. Equivalence of MetaML and Suspended MetaML

i

Proof. We proceed by induction on the structure of t};l € RTERM,.

i : : i i
Case 1. (tb1 = x). This case is vacuous because I, S

i i i i i iy iy
Case2. (1, =1, 1,). Lett, =1, t,,. Wehaver, ~n andt, =~1, .

We also have %Y b1, wb, %;V b1, wb,FV(,)V, FV(t,)C ¥V and ¥V =%.
We proceed by cases on % ;¥ 2"+ ttin — tli’Z'

Casei. (appL-i). LetZ;V;Z + tén z‘l’;12 — IZZI t{m where %V, Z + tén — té'Z].
By the induction hypothesis, 7, —"1,, and1, ~1, .
We have 1, 1, —" 15, 1o, and f, 1, ~1, 1 .

Caseii. (appR-i). Let t,in = vﬁm and %V, X + vZ“ t;;n — vfm t,’;zz where %V % +
e
By Lemma 348,17, =v,, .
By the induction hypothesis, 7, , —* 15, and t},,, ~1}, .
We have vy, | 1, —>" vy g, and vy 1y vy 1.

Case iii. (app). Let tl(o)n = (&x.t}?m Ve = wi] xm = wa, tl(a)u = vgn and %V, X+ (&x.t[?”)[xl =
Wi [Xm 1= Wai) vgu — tgn [x:= vglz][xl = wile X = Wi

By Lemma 348, we know tglz = vglz.
Let xy ¢ 2 . We have (&x.tgm)[xl = Wil X = Wi ~a (&XN-I;(,)]” [xn/x0])[x1 :=
Wi [Xm 1= W)
We have:
tgll

= U((&x.tgm)[xl =Wl [Xm = wi))
U((&x.tgm)[wl/xl]...[wm/xm])
U(&xN.tl?m [xn /xo0][wi /x1].- Wi /Xm])
lxN.U(tgm [xn /xo0][wi/x1]...[Wm/Xm])
= A U, w20l [UG91) /1] (U ())

Observe that

AU e,)/ 5o)[U Ow1) /1] [U) fin]) ¥
U)o/ 50l [U 01) /51U)] 4,]

and

UV, 2+ (&x.tgm)[xl =Wl X = Wi vglz

— tl(7)111 [x0 := vglz][xl = wile X = W]
Since % ;V (&x.tgm)[xl == wi]...[xm 1= wi| wh, we have x; ¢ V.
Hence x; ¢ FV(vglz).
We have:

220

D.2. Equivalence of MetaML and Suspended MetaML

Case 3.

Case 4.

Case 5.

Case 6.

Case 7.

U

~

|
i~

”[xo 21 1 == wil. o = wi))
3,/ %ol [wi /1] [Win / Xm])

Len /x0] Vg, /) W /X1 [Win / Xim])
v /xol wi /x] [win /xm] [V), /)
ty) /x0][U (wi) /x1]-. [U (Wi) /%]
)b /o] [U (wr) /x1]...[U (win) /%]

Il
-

I
-

~ =~
o So SToSToSso

Il
-

(
(
(
(
([U(,)/xn]
= U()0, /xw]

We get:

U (th,,)l /xo][U (w1) /x1]-..[U (W) /5] V2, /2]

tgm [xo := vglz}[)q = wi]ew o 1= Wi

~

i1y git] 1)y it
(t, " =Axay). Letty = Ax.t,! .

apn

Letxy ¢ 2 UVAR(ri). We have Ax.rit! ~g Axy. tjlrll [xN/x].

We also have Axy. fl+11[XN/X] (/’Lx.tl’:rll) = AU (1, U i=xw)).

Then 7! oy /x] ~ 1,7 [x := x]. | |

We proceed by cases on % ;¥ ; 2"+ t,’flr] — t,’;zrl. The only case is (lambda-(i+1)-t).
Let% V., Z F lx.tl’;lﬁl — ixN.tli]Tll [x:=xn].

We have Axy 5 xy /x] —* Axy.ti oy /x] and Aoy g5 oy /] ~ Axy. t;l’;[= xn].

@y = Axy™h. Let it = Ax.rif!. We have 71 ~ 1.
by ap by

We also have 7% U {x}; 7 U{x} I—t’Jrl whb,x¢ V,FV(t ‘H) CyU{xtand ¥ =%.
We proceed by cases on % ;¥ ; Z° I— tl’jlrl — t;,“.

Casei. (lambda-(i+1)-r). Let ;7 2 + ix.tl’:l — ix.t,itl where 7 U{x}; 7 U{x}; Z F

i+1 i+1
"1, Ty -
H—l i+1 i+1 ~ i+1
By the induction hypothesis, 7,/ " —" 7,7 " and 7, " ~1,"".
We have Ax.rif ! —* Ax.tff! and Ax.gif! ~ Ax. t’+1

Case ii. (lambda-(i+1)-v). Let t;flrl = v;’“ and %V X+ lx.vfjlrll — lx.v;rll.
We have Ax.rit! —s* Axit! and Axpit! ~ Axitl,
aip aip ary by

i i i : : i 4
(tb1 =1, —1—tb12). This case is analogous to the (tb1 =1, tblz) case.

(tbl (téj:])) Letr! = <f;1r.l> We have t;lrll ~ t}’;lrll
We also have % ; ”I/Ftl’)“ wh, FV(;,") C ¥, and ¥V = % .
We proceed by cases on % ;¥ - tb — t;; The only case is (code-i).

Let % 2 b (t,1) — (4, 71) where %7, 2 67t — 1t

By the induction hypothesis, 7;f ! —* #Zt! and £;1! ~ tl’)’]zl
i+1 i+1 i+1 i+1
We have (t,") —" (t,/,) and ;) ~ {#;").
(t”rl = ~1;). This case is analogous to the (t;, = (1 ‘+1>) case.

221

D.2. Equivalence of MetaML and Suspended MetaML

) i ; i it
Case 8. (1, =!1,). This case is analogous to the (7, = (tb”)) case.

Case 9. (t[i)l = tli;” [x1 :=wi]...[x2 := wa)).
We proceed by cases on %;¥'; 2" 1, — 1, . The only case is (inj-subst) in which %/; 7, 2"+
ty, —" 1.
Itis provable that #, =1, =U(1;,) =U(t,,). We havet, —"t, and 1, ~1; .

D.2.7 Soundness and Completeness

Theorem 352 (Soundness of Suspended MetaML w.r.t. (Substitutional) MetaML). If t(?l ~ tgl, 0,0+ tl(a)l wb,
F V(tl(v)l) =0 and tgl —030 “in Substitutional MetaML, then tl?l —* vgz in Suspended MetaML and

a;
0 ~ .0
Va, XV,

Proof. We proceed by induction on the length of tgl —0 vgz .

Case 1. (0). Lets) =19 . By Lemma 349, 0;0; VAR(tgl) F tl?l —0 vgz and V), ~ vgz. We have > t[?1 —

0
Vbz.

Case2. (n+1). Letz) —070 —00 0
We have 0;0 - t,?l wb and FV(tl())]) =0.

No matter whether tgl is in substitution normal form, by Lemma 350, we have Q;Q;VAR(ISI) H
t,?l — 0 t,?z and tgz o~ tgz. Then > t,?l — t,g)z.

By Lemma 340, 0;0 - t192 wb. By Lemma 336, FV(tl?z) = 0.

By the induction hypothesis, > t}())z —* v22 and ng ~ ng'

We have > 10 —* 0
by by
O

Theorem 353 (Completeness of Suspended MetaML w.r.t. (Substitutional) MetaML). If tgl ~ tgl, 0;0+
tl?l wb, F V(tgl) = 0 and > tl?l — vgz in Suspended MetaML, then tgl —0% vgz in Substitutional MetaML

0 ~ 0
and vy, > vy, .

Proof. We proceed by induction on the length of > tl?l —* ng'

Case1l. (0). Let t,?l = "22' By Lemma 348, tgl € VALUEY . Let v22 = tgl. We have tgl —0+ vgz and
0 ~ 0
Va, = Vp,-

Case2. (n+1). Let>) — 1) —) |
We have (Z);(Z);VAR(tSl) = tl?l —0 tl?z, 0;0+ ti())l wb and FV(tgl) =0.
No matter whether tgl is in substitution normal form, by Lemma 351, tgl —0 tgz and tgz o~ t,?z.
By Lemma 340, 0;0 + t[?z wb. By Lemma 336, FV(t,?z) =0.
By the induction hypothesis, z32 —0 vgz and v(a)2 o~ vgz.
We have 1) —% v .

222

D.3. Equivalence of MetaML and Environmental MetaML

O]

Theorem 354 (Kleene Equality of Evaluators). For any t € PRGMpMetaML, €ValyetaML:Subsos (f) is Kleene

equal to evalyieamr:sussos (1)

Proof. We first show that if evalyjeramr:subsos (f) = @ where a € ANSpeamL, then evalyetamr:sussos (1) = a.

Case 1. If evalyieamr:subsos (t) = function, then ¢ —* Ax.t" in Substitutional MetaML. Observe
that + ~ ¢t. By Theorem 352, >t —* v in Suspended MetaML and Axt” ~v. Then v =

(Axo-t"Vxi == wi] and U ((Axo.t"") [x; := wi]) = Ax.t" . We have evalyieramr :sussos (1) = function.

Case?2. If evalyeamr subsos(t) = code, then t —% (y!) in Substitutional MetaML. Observe that ¢ ~
t. By Theorem 352, > ¢ —* v/ in Suspended MetaML and (v') ~ /. Then v/ = (v''') and
U((v”1)) = (v!). We have evalyjeamr:sussos (t) = code.

Case 3. If evalyieamr-subsos (t) = n, then t —%* 5 in Substitutional MetaML. Observe that t ~ ¢. By The-
orem 352, >¢ —* v in Suspended MetaML and n ~ v. Then v = n. We have evalyeramr:sussos (1) =

n.
We then show that if evalyetamr.-Sussos (l) = a where a € ANSpetaML, then evalyietamr:SubsOS (t) =a.

Case 1. If evalyerami:sussos () = function, then >t —* (&x.t’o)[xi := w;] in Suspended MetaML. Ob-
serve that f ~ ¢. By Theorem 353, 1 —%* v in Substitutional MetaML and v ~ (&x.t’o) [x; :=wi].
Thenv = U((&x.t’o) [xi :=wi]) = lx.U(t'O) [U (w;)/xi]. We have evalyjeramr:subsos (f) = function.

Case?2. If evalyeramr -sussos () = code, then >t —* (v!') in Suspended MetaML. Observe that t ~ ¢.
By Theorem 353, 1 —%* V/ in Substitutional MetaML and v/ ~ (v!). Then v/ = ('} and v/ =
U(<V1>) We have evalMemML:Subsos (l) = code.

Case 3. If evalyjeramr:sussos () = n, then >t —™* n in Suspended MetaML. Observe that r ~ ¢. By The-
orem 353, t —% v in Substitutional MetaML and v ~ n. Then v = n. We have evalyietamr -subsos (1) =

n.

We observe that evalyeramr:subsos (¢) is undefined if and only if evalyietamr:sussos (7) is undefined. Therefore,

evalMetaML:Subsos (l‘) is Kleene equal to evalMetaML;sussos (t) Il

D.3 Equivalence of MetaML and Environmental MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the
structural operational semantics of Environmental MetaML. We use subscripts “sp”° and “e,” to differentiate

the syntax of (Substitutional) MetaML from the syntax of Environmental MetaML.

223

D.3. Equivalence of MetaML and Environmental MetaML

D.3.1 Well-boundness Judgement

Definition 355 (Well-boundness Judgement). Let the well-boundness judgement - wb be a ternary relation
on the power set of variables, the power set of variables and the set of configurations.
Fwb C Z(VAR) x #(VAR) X CONF

m where x € %

UV cywb U,V Ecywb
U,V e cywb

U U{x}; ¥ Fcwb
UV Ax.c® wb

wherex ¢ ¥

U U{x}; ¥ Fcwb
UV Axv T wb

where x ¢ ¥

U U{x}; ¥V U{x}Fcwb
UV Ax.c' T wb

where ¢'*! ¢ VALUE™! and x ¢ ¥

U,V Etwb
UV = (t) wb

UV Etwb
UV E~t wh

U,V Etwb
UV Ht wh

UV Fnwb

U, VEunwb U,V Etwb
U,V 1 +twb

UV +twb
U,V Edat, € P»wb

where VAR(¢ 7, p;' D) C dom(p;) for any p;,

pi(yj) =yj forany p;and y; € ¥,
and x,,, € FV (¢ t, (p7" " 's€) »).

UV & pu(Xm) Wb U U {1V e, (P 5€) D wb
U,V Eat, (pie) pwb

U,V e, pi pwb
U,V EQt, pi Dwb

Lemma 356. If % ;7\~ c wb, then FV (¢) C % .
Proof. By structural induction on % ;¥ F ¢ wb. O
Lemma 357. If V',V & ¢l wb, VAR(c)) C 2,V C 2 and V; 2+ ¢l —™ ¢, then V',V = c{i wb.

Proof. We proceed by induction on the structure of #; % t ¢f wb and the structure of ¥; 2" I ¢y —™ c{i.

224

D.3. Equivalence of MetaML and Environmental MetaML

Case 1.

Case 2.

VAV xwh where x € ¥/

This case is vacuous because ¥'; 2" F x /—.

V.V bEciwb Vi,V Ecowhb
V.V Fcicowb

In this case, ¢y = ¢; 3.

We proceed by cases on ¥'; 2" F ¢ —™* ¢[.
V2 Fe—i ¢
Casei. V2 Fcico—'c)c.
By induction hypothesis, ¥'; ¥ F ¢ wb. Then ¥; ¥ + ¢} ¢, wb.
VX ey —t)
Caseii. V% Fvica—'vch.

This case is analogous to the previous case.

Caseiii. V; 2 Fq Axo.t°, (p1;...0n€) D0 —0 1%, (p1[xo = V)., pus € D.

Then ¢; = q Ax0.t°, (p1;...0n5€) D and ¢ =10,

Given 7; 7 1= Axo.t°, (p1;...pn;€) D wh, the following holds:
Q) 757 F pu(xy,) wh,
@) VU{x 1 E pua1 (K(u-1y,) wh,

(M) ¥ U{%, X1y, %2, 13V 1= pi(x1,) wb,

m+1) ¥V U{Xn, X(u_1); - X2, X1, %0 13 ¥ 10 whb, and

(n+2) xo & 7.

We also have

(m+3) 7% 0 wb, which implies FV () C 7.

(n+4) p;(y;j) =yjforanyy; € 7.

To show #; 7 €%, (p1[xo — v°];..., pu; € D wh, it is sufficient to show that

Q) %V & pu(xn,) wband % ;¥ = FV (vo) wh,

(2) % U YUFV (v0); V' = pp1(X(n—1),) whb and % U{x,; }UFV (v); 7 = FV (vo) wb,

M) % U{X, X1, %2, UFV (v0); ¥ F p1(x1,) wb and % U{Xn,, X(u-1),, -0 X2, 1 U
FV(vo);V vy wb,

(0+2) U UL, X(u_1);s X2, X1, X0 Y UFV (v0); ¥+ 10 wh,

(n+3) xp ¢ ¥, and

(n+4) p;(yj) =yjforanyy; € 7.

All of (1)-(n+4) above hold.

225

D.3. Equivalence of MetaML and Environmental MetaML

Y U{x}; Y Fewb
Case 3. ViV = Ax.c wb
This case is vacuous because ¥'; 2" F Ax.c /—.

Y U{x} Y U{x} it wh
Case 4. V.V Ax.c T wb
In this case, co = Ax.c. We proceed by cases on ¥; 2"+ co — cy,.

where ¢ € CONF? or ¢ € VALUE™ ! and x ¢ ¥

where ¢! ¢ VALUE™ ! and x ¢ ¥

VU X e
Casei. V.2 F Ax.c —T1 Ax.d
To show ¥; ¥ - Ax.c’ wb, it is sufficient to show that

e x¢ ¥, and

o YU{x} Y U{x}F wh.
Given 7; 7 = Ax.c wb, we have ¥ U{x}; 7 U{x} - cwb and x ¢ #. By the induction
hypothesis, we have ¥ U {x}; ¥ U{x} FV wb.

V.V cwb
Case 5. V57 (c) wb.
In this case, co = (). We proceed by cases on ¥'; 2"+ cop — .

V. X Ee—ith
Casei. V; 2 F(c) —' ()
By induction hypothesis, ¥; ¥ ¢ wb. Then ¥; ¥ + (¢’) wb.

V.V Ecwb
Case 6. V.V ~cwb.

This case is analogous to the previous case.

V.V Ecwb
Casel. V7 Flcwb.

This case is analogous to the previous case.

V.V Eciwb V.V Ecowh
Case 8. V.V Ecr+crwb

This case is analogous to the #; ¥ I ¢; ¢, wb case.

Case9. V:¥ Fnwb.

This case is vacuous because n /—.

V.V Etwb
Case 10. V7V - d&t, edwb

In this case, co = € ¢, € D. We proceed by cases on ¥; 2" F co — .

) — (den-env)
Casei. V,Z FHaqw, ep—'w

In this case, t = w. Given ¥; % = q w, € pwb, we get V; ¥ = w wb.

226

D.3. Equivalence of MetaML and Environmental MetaML

Case ii. The other (*-env) cases are trivial.

ViV pmlom) WbV ULED:Y €, (B se) pwp Where VARWL D' 9) C dom(py) for any p,
Case 11. ViV, (pif'ie) pwb pi(yj) =yj forany p;and y; € ¥,
and x,,, € FV(¢t, (/7 "5€) »).

In this case, co = € 1, (pi];€) D
We proceed by cases on ¥'; 2" F co — cj.

. 5 e — where xy ¢ 2
Case 1. V2 QAT (pite) B — T Aoy 6L (py [x e v oy =] pibov = xn] s €) D

Given ;¥ ¢ Ax.t'™L, (pi]';€) » wh, the following holds:
Q) 75V F pul(xm,) wh,
2 7vu {m}, YV Pu—1 (x(mfl)k) wb,

(m) Y U{Xn, Xm—1)s - %2, 13 ¥ = p1(x1,) wh,
(m+1) V' U{x,, X (m_l)k,...,xzk,xlk,x},”//l—z"Jrl wb,
(m+2) x¢ ¥, and
(m+3) pi(x;) =x; forany x; € 7.
To show ¥; ¥ F Axn.€ £, (p1[x — xn][xn — xn]: pifxn — xn]y :€) D wh, it is suffi-
cient to show that
e xy ¢V, and
o VU{n Y U{xn} ™t (pr[x— xn][xy %xN];mrzﬂ;s) D wb, which
can be shown by
D) YU{an Y U{xn}E pm(xm,) wband ¥ U{xy}; ¥ U{xy} b xn wh,
2) 7 U{an} U{Xn 1Y U{aw -1 (Xgn—1),) wb and ¥ U {xy } U{Xp }; 7 U
{xn} F xy wb,

(m) 7 U{xn} UL{Xn, Xn—1)p X2, 13 Y U{aw) = pi(x,) wb and 7 U {xy} U
{Xoms Xm0 -+ X2 13 V U {aw } 1= xw w,
m+1) ¥ U{an} U{Zn, X 1) - X2 X151 ¥ U{aw e wb,
(m+2) x¢ ¥, and
(m+3) pi(x;) =x; forany x; € ¥ U{xy}.
All above hold.

Caseii. V2 Fax, (pif:€) »—" € pi1(x), (PA:€) D
Givenn 7 ;¥ ¢ Ax.t't!, (pi'; €) D wb, the following holds:

@ ViV pm(xmk) wb,
2 7vu {)CTW},’V H pm,l(x(m_l)k) wb,

227

D.3. Equivalence of MetaML and Environmental MetaML

(m) v U {m,X(m,l)k, 7)672/(}’% [pl(xlk) wb,

(M+1) P U{Xe, Xn—1),» > X2, %1, 13 ¥ x wb, which means x € ¥ U{ X, , Xpn—1)5 -+ X2, X1, }»
and

(m+2) p;(x;) =x;foranyx; € 7.

To show 7,7 = € p1(x), (pi5s€) D wb, it is sufficient to show that

o 7V E pm(xmk) wb,
(2) y 40! {m},’y/ H pmfl(X(m_l)k) Wb,

(m) 7 U{Xo, Xm—1) > X2, 13V 1= pi1(x) wh,
(m+1) pi(x;) =x; forany x; € 7.
All above hold.

Case iii. The other (*-env) cases are trivial.

Remark 358. The above proof uses the following two properties.
1. f%;V Ftwb,then 2 UW ',V =t wb.

2. %V Ftwbandxy ¢ 2 UV UVar(t), then 2 U{xn}; ¥ U{xn} 1 wb.

D.3.2 Unload Function

Definition 359 (Unload Function). Let i € N. Define the unload function U to be a total function from the
union of the set of runtime terms and the set of configurations in Environmental MetaML to the set of terms
in (Substitutional) MetaML.

228

D.3. Equivalence of MetaML and Environmental MetaML

U : 2(VAR) x (RTERM., U CONF!

env env

) — TERM.

sub

UZ|x) = x
UZ|n) = n
U(Z | Ax.cth) = AxU(Z |t
U dd) = U U]
U(Z [t = (U2])
U(Nﬁf | Ci+1) — NU(f'f | Ci+1)
Uz |\d) = WwZ|d)
U 4e) = U)1 u(Z |
Uixt) = Ax.U(t)
UGid) = UG U)
u(eth)) = (u@th)
U(NtHl) — NU(tHl)
u(lty = Wt
U +d) = UE)+U)

UZ |t ey) = UZ|t
U(Z | €Axt™ (p1ip3) 9) = U(ZU{xn} | Aay. €11 (pix = xn] (p2lxn = xn])*)
where xy ¢ &
UZ |, (p1:p3)d) = U(Z | wi/xil, p3»)
U(Z|qAxt% p*D) = U(Z|€A1xt° p*)

Remark 360. U(Z |t) may be omitted to U (¢t) if 2 is clear by the context.
Proposition 361. U (2 |t)) =1..

Proposition 362. U(Z |t{w;/xi]) =U(Z | 1)[U(Z | wi)/xi].

D.3.3 Bisimulation Relation

Definition 363 (Bisimulation Relation). Define the bisimulation relation ~ to be a binary relation between

the set of terms in (Substitutional) MetaML and the set of configurations in Environmental MetaML.

~ C TERM., x CONF.

env

t' ~ctif and only if # = U(Z | ¢') where VAR(c!) C &

D.3.4 Closure Descendant Relation

Definition 364 (Closure Descendant Relation). For any cj,c; € CONFepy, ¢; <* ¢ if and only if c; — ¢

is an instance of rule (*-env). We call <* the closure descendant relation.

229

D.3. Equivalence of MetaML and Environmental MetaML

Proposition 365 (Well-foundedness of Closure Descendant Relation). The closure descendant relation <*
is well-founded.

The proof is analogous to the proof of Lemma 322.

D.3.5 Canonisation

Lemma 366 (Canonisation of (Substitutional) MetaML). If 7, to~ vb , then t’ S VALUEbub

Proof. We proceed by structural induction on vb € VALUEL,,.

Case 1. (v’+1 =x). Then ¢! = U(x) = x and x € VALUEL!.

Case 2. (v’+1 = vZTll vbl). Then ri! = U(VZTII v;jlrzl) U(v’bH) U(v;fl). Let 7it! =i+ 1 4t1 By the
induction hypothesis, 7! € VALUE'"! and #/t! € VALUE'!!. Then rit! #it1 € VALUE'!.

> han sub ap sub * app Cap sub

Case3. (v,7' = Axvj' D). Then it = U(Ax.vi[!) = Ax.U(v;"!). Let i = Ax.tif!. By the induction

hypothesis, t";]rll € VALUE’SE Then Ax.tif! € VALUEL].

Case4. (V) =0 Axt) , (P1,p2,--Pm) D). Thenzy =U(Q Ax.ty , (P1,P2,---Pm) D) =U (€ Ax.ty , (p1,p2,--

We have tt(l)l =)LX.U(ISH) [U(wli)/xu] [U(Wzi)/x2i]...[U(Wm,‘)/xmi] € VALUE(S)ub.

Case5. (vl = (vj'1). Thenzi =U((v;T!)) = (U(V1)). Letz, = (zif!). By the induction hypothesis,
il e VALUE’+1 Then (tit1) € VALUEL,,.

Case 6. (v’+2 ’“) This case is analogous to the (vb = (v '“)) case.

Case 7. (v’+1 'Vbul) This case is analogous to the (vbl = <VLT11)) case.
Case8. (v =n). Thent, =U(n)=nandn € VALUE],.

Case 9. (v’+1 = v;rll + v’“) This case is analogous to the (v’+1 = vjjlrll vjjlrzl) case.

O]

Lemma 367 (Canonisation of Environmental MetaML). If v/ | = cfj], ViV tiin wb, F V(t,’;l) cv, VAR(t,’;]) C
X andV C X, then V', Z + ch i v};z and Vin ~ VZZ'

Proof. We proceed by simultaneous induction on the structure of v}, € VALUEL , and on the closure des-

cendant relation <* C;n'

Case 1. (v’“ = x). We proceed by cases on c’+1 € ConFif L

Case i. (c”rl =x). Then x —* x and x ~ x.

—-+m

Case ii. (c”rl =4 xp, i D). We proceed by cases on m.

Casea. (m=1). Given x ~ € xg, p1 D, we have:

230

Pm) D).

D.3. Equivalence of MetaML and Environmental MetaML

Case?2. (v, ’“

Case 1.

Case ii.

=

= U(€xo, p1 D)

= Ut xo[wii/x1i], € D)
(
(

U (xo[wii/x11])
Wip) where xo = x1p

|
i~

We have x >~ wyp.
Then by (var-env), we have:
VX Cxo, p1 D
— Wip where pi(xo) = wip

i+1

Since x ~ wyp, we have wy, = x. We have x € VALUE, .

Case b. (m>1). Given x ~ € xq, (p1;02;-..;Pm) D, we have:
x
= U(txo, (P1:P2;--:Pm) D)
U (€ xo[wii/x1i], (P2:--3Pm) D)
U« wip,, (P23--3Pm) D) where xo = x1p,
We have x >~ € wip,, (P2;-.:Pm) D

Then by (var-env), we have:

V2 E xo0, (P13P253Pm) D
— A wip,, (p2;..;pm) B where pi(x0) = wip,
Then € wip,, (P2;..;pm) B <* €x0, (P15P25-.3Pm) D
By Lemma 357, 7; V' & @ wip,, (P2;-.-Pm) D wh.
By Lemma 356, FV (€ wip,, (P2;..;Pm) D) C 7.
By the induction hypothesis, we have ;2" = € wip,, (p2;-.;0m) b —

i+1 it
Vi andx_vbz.

= viF 1 Vi), We proceed by cases on c’H € ConFifl,
i+1 i+1 i+1 : i+1 i—HN i+1 i+1 .
(cp,” =Cpy, Cpy,)- Glven vy v eyt ¢, we have:
i+1 it
Vai, Vai
_ i+1 i+l
- U(Cbll Cblz)
i+1 i+1
U(Cbll) U(cblz)
i+1 ~ i+1 i+1 ~ i+1
Then v " ~ ¢, " and vy ~cp "

We have 7; ”//|—ch wh, V¥V el wb,FV(c,)V andFV(c,)C V.
By the induction hypothesis, 7; %”l—c”rl —* v;;l yitl Nv?’ll Vi, & UVAR(v '+1) +

ary

i+1 i+1 i+1 ~ i+1
Chyy — Vi, and vy v o

i+1 i+1 i+1 . i+1 i+1 1+1N i+1 i+1
Hence V; 2) "¢ — vyt vy band v v 22 vyt v

i+1 i+1 i+l . i+1 i+l ~ i+1 i+l .
(c,, =1, "1, (P1:025 -3 pm) D). Given vt vl ~ ¢ tyr Th s (P1:P25 -3 Pm) D,

we have:

231

D.3. Equivalence of MetaML and Environmental MetaML

i+1
ary

— U (pripsiipa) D)

i+1

v an

V

= Ui o Dwie/xi] Wi /X))

= U((tli”*ll[Wl,-/xli]...[wmi/xmi})(t;:rzl[wli/xli]...[wm,-/xmi]))
= U(tl";lrll[wu/xl,-]...[wm,-/xm,-])U(t;;lrzl[wl,-/xli]...[wmi/xm,-])
= U (pripaieipm) M) UL (P1:p2: - pm) D)

Then vif! ~ ¢ t;”lrll, (P13P2;-;Pm) B and Vil ~ ¢ t,ﬂltl, (P1:P2; -3 Pm) D.

We have 7,7 F ¢ t;;r]], (P1:P25-3Pm) DWh, V7 ¢ t}:’zl, (P15P2; -3 Pm) D Wh,
FV(aith, (p13p2;-:0m) B) C ¥ and FV (€47, (P15p2;-:0m) D) C 7.

By the induction hypothesis, ¥; 2" I ¢ tzrll, (P1;:P25 -3 Pm) D —* v;’]l, Vil ~ VZZI’
V2 U {vgll} - q t;;lrzl, (P1:P2; 3 Pm) D —* vgzl and Vi1 ~ vgzl.

. i+1 it o - « ikl it i1 il ikl it
Hence V; 2" €ty 1,70, (P13025--3Pm) D —>" v " vy and vyl T v v v

Case 3. (vgl = Ax.tgn). We proceed by cases on cgl € CONFY,,.

Case i. (02] =(lxo.tgn, (p1:P25---3Pm) D). Then ¢ Axo.t,(?)”, (P1:P2;.-.;pm) D € VALUEL .

Case ii. (02] =dq),xo.t}())“, (p1:P2;---3Pm) D). Given lx.t(?” ~ ¢),xo.t,?”, (P1:P2;5--3Pm) D, We
have:

0
Ax.tg,

= U(d lxo't;(f”, (P1:p2;--3Pm) D)
= U(0 Axo.ty , (P1302;--3Pm) D)

Then Ax.tgll ~ }on'[l?u’ (p1:P25 -3 Pm) D-

By (lam-0-env) we have:
q }on‘tl?lﬂ (pl;pz;...;pm) » —(AX().lgll, (pl;pz;...;pm) D

Case iii. (621 =4qq lxo.tl?“, (P1:P2;--3P1) Dy (Prs1s-+esPm) D).
Given lx.tgu ~q(lxo.t[?”, (p1:P25--3P1) Dy (Pis1,--sPm) D, We have:

0
Axty

= U3 Axo.8) 5 (P1:p2:-3P1) Dy (P41, Pm) D)
= U(C lxo-f;(,)l], (P15:P25 -3 P13 PL415 -5 Pm) D)

Then Ax.tgn ~ ()on‘tl(a)n’ (P13P25 -3 P13 Pl 1y -+, Pm) D-

By (clov-0-env) we have:

€O Axoty , (P13P23-301) Dy (Prs1s e Pm) D —

4 Axo-ty 5 (P13P25 300501115+ Pm) D
Case iv. (021 =4 x0, (P1:P2;5---;Pm) ®) This is analogous to the (CZTl = ¢ x0, p; ™ D) subcase
of the (vi! = x) case.

232

D.3. Equivalence of MetaML and Environmental MetaML

Case 4.

(i = Ax.vith). We proceed by cases on c;rl € Conrif!

Casei.

Case ii.

Case iii.

Case iv.

Case v.

ap env *

i+l _ i+1 i+1 i+1
(¢, =Axvy). Then Ax.vj" " € VALUE,.

i1 _ i+1 i+l iy il i+l :
(¢, =Ax.c, " where ¢;’ " ¢ VALUEq). Given Ax.v, ' ~ Ax.cj ", we have:

Ax Vi
— i+1
= U(Ax.c,)
_ i1
= AxU(c,)
Then vif! ~ ¢
. i+l i+1
We have 7" U {x}; ¥ U{x} k¢, " and FV(c,") C ”Vg{x}. . |
By the induction hypothesis, we have » U {x}; 2"+ cglrll — v;;;zl and Vil ~ v;)Tzl.

Hence ¥; 2+ Ax.c)f! —* Ax.v)! and Axif! ~ Axjfl.

(c;‘;lrl =q Axo.tl?“, (P1:P25--:pm) D). Then @ Axo.tl‘}“, (P1:P2:-.:Pm) D € VALUELEL.

(' = CAxo.i !, (P13 P2 pm) D).
Letxy ¢ 27 UVAR(v"). Then Axvif! ~a Aoy vt ! [a/x].

ar ary

By (lam-(i+1)-env) we have:

Vi 2 Chxoty !, (P1spas i pm) D — Axn. 1L (p1[xo = xn s palxy =

XN o3 PN > XN]) D

By Lemma 357, ¥; 7'+ Axy.€ tl’:'ll, (p1[xo = xn]s p2lxn = xn 5o Pmlxn — xn]) D whb.
By Lemma 356, FV (Axy.¢ tl’;l*ll, (p1]x0 = xn]; P2y = XN)5 --os Pl = xn]) D) S V.
Then ¥ U{xy}; 7 U{xn} I ¢ tl’;:l, (p1[xo — xn]; Palxn = xn]s-.s Pmlxn — xn]) D Wb
and FV (1,71, (p1[x0 = xn; p2[ow = xn s . Pmlxn — xy])) © ¥ U{an).
We have:
Axy Vi /x]
= U(Z [« Axo4)"", (p1ipas-iPm) D)
= AxnyU(Z U{xn}| ¢ t}’:’ll, (p1[xo = xn; P2y — XN 5o Py > xn]) D) where xy & 2

Then vi xy /x] ~ € tl’;:l, (p1[x0 = xn]; P2lxn > XN 5 - Pmlxy — xn]) D
By the induction hypothesis, we have ¢ t}':’ll, (P1]x0 = xn]; P2y — xn]s s Pm[Xn —

« itl i1 it
xn]) » —" v, and vt vt

Hence ¥'; 2" ¢ ﬂ,xo.tl’;tl, (P1:P2;--3Pm) D —> kxN.v;er and AxN.vZT]I [xn/x] =~ lxN.v;:zl.

(ch ' = €0 Axo.tf) |, (P13P23--301) Dy (Prs1seoesPm) D)-

Given Ax.viil ~ € Axo.t ', (P13p25-3P1) D, (Pr41, -, Pm) D, We have:
Ax Vi

= U(€d Axo.ty 5 (P13P25-300) Dy (Prs1s-sPm) D)
= U(0 Axo.ty , (13023300 P1115 5 Pm) D)

233

D.3. Equivalence of MetaML and Environmental MetaML

Then)Lx.vijlrl] ~(lxo.tgll, (P1:P25--3P1 PI4+15 -3 Pm) D
By (clov-0-env) we have:

COAx0.1) 5 (P1302-3P1) Dy (Prsts e Pm) D —
a lxo-t;(,)”, (P15P25 -3 P13 PI41 -3 Pm) D

Case Vi. (c’+1 =4 x0, (P1:P25---3Pm) D). This is analogous to the (c’+1 =4 xo, p; ™ ») subcase
of the (v”rl = X) case.

Case5. (v, = (vitl)). We proceed by cases on ¢}, € CONFLy,.

all

Case i. (c;)1 = <C;}Tl>). Given (vif!) ~ <C;;H> we have:

(Var)

= U({e))
(U(ch))

Then vi ! o= citl.
11

We have 737 1, wband FV(1,71) C 7.

By the induction hypothesis, ¥; 2" I c’+1 —* v;)“ and vl ~ vgll

ary
Hence ¥; 2"+ (c l+1> —" <V§:§1> and (v l+l> <VZ;1>'

all

Caseii. (cj =4¢ (t,’;’:) (P1:p2:--3Pm) D). Given (vii1) ~ ¢ <t,’:1’11> (P1:P2; -3 Pm) D, we have:

(Ve

U5,), (p1:p2;5Pm) D)
= (U, (p1:025--50m) D))

i+1 i+1 P
Then VZT] ~ (¢ tll;:_l , (pl,pz,...,pm)]

By (code-env), we have:

V2B), (013025 0m) D
_> < til)—:_ll7 (pl,PZ,- ’pm) '>

We have 7,7 (¢ t,‘;lrll, (p1:P2;---3Pm) D) wb and FV ((¢ lln+11’ (P1:P2;--:Pm) D)) C
V.

By the induction hypothesis, ¥; 2" I ¢ z‘”rl (P1:P25 -3 Pm) B —* v’Jrl and viil ~
v;;rl
21"

Hence 7; 2" F ¢ (t};f1> (P1:p25--3Pm) B —(;,+1> and (Vi) ~ <V;:2r]1>-

aiy
Caseiii. (V) = (v},) and cbl = € x0, (P1;P2;--;Pm) B). This is analogous to the (c”rl =
Cxo, ;7™ D) subcase of the (v = x) case.

2 it ~ : i i+1
Case 6. (v, = = ~v,). This case is analogous to the (v, = (V")) case.

< i+1

CaseT7. (v, ’*1 —'v’“) This case is analogous to the (V! v

=)) case.

234

D.3. Equivalence of MetaML and Environmental MetaML

i
env*

Case 8. (vflI = n). We proceed by cases on CZ] € CONF

Case i. (cﬁ)] =n). Then n —* nand n € VALUE!

env:

Case il. (c;;1 = ng, (P1:Pp2;---3Pm) P). Given n =~ € ng, (p1;p2;-..;Pm) », we have:

n
U(€ng, (p1;02;--30m) D)
Then n >~ ny.
By (num-env), we have:
Cno, (P13P25-.3Pm) D
— Ny

Case iii. (c;'71 = ¢ x0, (P1;P2;...;Pm) D). This is analogous to the (CZTI = ¢ xo, p;"™ D) subcase
of the (Vi1 =x) case.

Case9. (Vit' =vifl 4yt This case is analogous to the (v = vif I vitl) case.

D.3.6 Bisimulation

Lemma 368 (Simulation: (Substitutional) MetaML simulates Environmental MetaML.). If t;'l ~ CZI’ VA% A
czl — CZZ, ViV cél wb, FV(CZ]) Ccv; VAR(CZI) CZ andV C X, then t,i] —* th and t";2 ~ CZZ.

Proof. We proceed by structural induction on cﬁjl € CONF.,,.

i . . i i
Case 1. (c},, = v,). This case is vacuous because c;, S

Case2. (c, =c}, cp) Lett, =1, 1, . Wehavet, ~c, andt,

i
~Y
ap “ap” apy - Cblz'

12

We also have ¥, t=cj, wb, V¥ & ¢, wh,FV(c,)C¥ and FV(cj)C V.
We proceed by cases on ¥'; 2 ch — c;'h.

: : . i i . i i
Casei. (appL-i). Let V; 2 ¢, ¢, —rcp, ¢, where V; 2 Fcy —c .
: : : i * L0 [A | i i * L0 i
By the induction hypothesis, #;, —" 1, andz,, ~c, . Wehavet, 1, —"1; 1,
P I
and lay lay, = by Cbyy-
. : i : i i i i
Caseii. (appR-i). Letc, =v, and V2 v, ¢, —>v, ¢, wherec, —c, . By
i : : S % 4 i
Lemma 366, 7, = vy, . By the induction hypothesis, 7, , —"1;,, and 1, , ~ ¢} . We
i ¥ i i T R
have vy, 1, —" vy tg,, and vy 1, >V c
0 _ 0 Chne - 0 _.0 . 0 chne 0
Caseiii. (app). Letc, =0 Ax.t, , (P13p2;-:pm) Dy, =V and V3 274 Axty o (P13P25-3Pm) DVy)
0 0 1.4y -
5 af (Pl 8T pm) D

By Lemma 366, we know tc?lz = vglz.

235

D.3. Equivalence of MetaML and Environmental MetaML

Let xy ¢ 2. We have ¢ lx.tgll, (P1:P2;--3Pm) D ~g lxN.tgll[xN/x], (p1[xn +—
xn; p2fxn — xnl; ..o Pmlxn — xn]) D.
We have:

0
tan

= U(C lxN.tl?“ [xn/x], (p1]xn — xn]s p2fxn — xn s .. Pmlxn — xn]) D)
U(¢ lxN.tg” [xn/x], (p1]xn — xn]; p2fxn — xn 5. Pmlxn — xn]) D)
U (Aot Lo /) wi fonil [wai /2] (W /]
= U(A'XN'tg.1 bev /] [/xvi] [wai /23] [Wini / Xmi])
= AUt [ov /X i /xai] [wai /] [Wini / Xmi])
= My U,) o X TTown0) Ferd [0 w2 a0 o)]

Observe that

Axn. U (8,) en /x][U (wi) 1] [U (W2i) x2i] o [U (Wni) /%] Vi,
— Uty oo /AU (wia) [x1)[U (w2i) /x2i] . [U (Wini) f2i] [V, /2]

and

A% AN kxN.t,?“[xN/x], (P1:P25 -3 Pm) Dvg12
— a1y Pov/x], (prfev = V) 3P Pm) D

Since ¥ ;¥ - (lx.tgll, (p1:P2; .3 Pm) D wh, we have
AV (q)Lx.tgn, (P13P25--3Pm) D)NY =0.

Hence AV ((Ax.tgn, (P1:P25+3Pm) D) ﬂFV(vglz) =0.
We have:

U€1) [xn/x], (1w = vy, 1302; -3 0m) D)
= U(tb“[XN/X][Vblz/xN][Wll/xlt][w2l/x21] Wi/ Xmi])
Uty [xn/xolwii/xui][wai /xai] . [Wani [%mi] V), /2N])
(
(ry

Utbm)[xN/xOH (wii) /x1i][U (wai) /x2i]--[U (W) 2] [U (v,) /38]
ty ew /%0l [U (i) /x1)[U (w2i) /x2]. - [U (Wini) /2] [V, /X8

= U

We get:

U (5,)b /%0l [U (wi) /x1i] [U (wai) fxai]-[U (wii) [5mi] [V, /%]
~ (tl(a)n[xN/x]’ (p1[xn — vglz};pz;...;pm))

Case 3. (c’“ Ax. cﬁj’l) Letti! = Ax.tit!. We have £t ~ c;:ll

We also have ¥ U{x}; ¥ U{x} b ¢; wb, x ¢ ¥ and FV(c}!) € 7 U {x}.
We proceed by cases on c”rl — cb 1 The only case is (lambda-(i+1)).
Let ;2 Ax.c)t!l — 7Lx ¢yl where ¥ U{x}; 27 F¢;! — ¢} By the induction hypothesis,

fitl __yx z‘”rl and t”’l ~ 1 We have Ax.tit! —* Axrit! and Axrit! ~ Ax.cit!,
ap b1 ap ap aipp b1

i i i . : i
Case 4. (cbl =Cp,, +Cb12)‘ This case is analogous to the (cbl =0}, Cb12) case.

236

D.3. Equivalence of MetaML and Environmental MetaML

Case 5.

Case 6.

Case .

Case 8.

(cj, = (c

ary ar

"Tll)). Let sl = (rit!). We have 1}t ~ czrll.

We also have #;7 ¢, whand FV (¢t 1) C 7.
We proceed by cases on ¥'; 2" ch — csz. The only case is (code-i).
Let 73 2 (i 1) — (i) where ;.27 1 cit! — cif .

11 12 11 12

i+1

i - is fit1 i+1 i+1 A
By the induction hypothesis, 7,/ " — 1, and 7, ~ ¢} .
i+1 i+1 i1y ~ (ait]
We have (t,") — (t,),) and (t;7,") ~ (¢}).

i+1
(Cbl

a2

i+1

= ~cj,). This case is analogous to the (¢}, = <cb11)) case.

i+1

iy : : i
(¢}, =!cp,,)- This case is analogous to the (¢}, = (cb”)) case.

(Cf,l =4 tll;l, (P1;p25---3pm) D). We proceed by cases on #; 2" F cé)l — CZZ. The cases are

(lam-0-env), (lam-(i+1)-env), (clov-env), (den-env), (var-env), (num-env), (app-env), (code-env),

(run-env), (splice-env). Itis provable that 7}, =i =U <C§71) =U (czz) holds for each of the above

cases. We have 7, —* 1}, and 1}, ~cj .

O]

Lemma 369 (Simulation: Environmental MetaML simulates (Substitutional) MetaML.). Iftj, ~c}, , 1, —
tflz, ViV C;n wb, FV(CZI) cv, VAR(CZI) CZandV C X, then vV, Z F ch —* cZz and téz ~ CZZ.

Proof. We proceed by simultaneous induction on the structure of ;€ TERM.,, and on the closure descend-

ant relation <* CZ.'

Case 1.

Case 2.

(tjZ , = x). This case is vacuous because x e

(ty, =15, 1a,,)- We proceed by cases on ¢j, € CONFy,.
: R R Y B P i (e
Casei. Letc, =c, ¢, .1, =U(c,)andt,, =U(c,).
U N) i) i i
We have t, ~cj, ., 1y, =), V.V €y, Wh, V.V Chy, Wh, VAR(cb”) cCZ,

VAR(cj,) C 2, FV(cj,) C ¥ and FV(c,) C V.

We proceed by cases on £/ L téz.
Case a. (appL-i). Lets) 1, —tl, 1 wherer) — 1 .

By the induction hypothesis, ¥; 2" ¢, —" ¢, andi,, ~cj .

) i £ 0 i [O B
Hence V; 2t ¢, ¢, —" ¢, ¢, and 1y, 1, ~c, ¢ .
: i i i i i
Case b. (appR-i). Lets, =v, andv, 1, — v, 1, wheret, —1, .
By Lemma 367, 7, 2"t ¢, —" v, .
. i w0 i
Then ¥; 2" + Chiy oy~ Viy, Chyy-

By the induction hypothesis, ¥; 2" UVAR(vj,)t ¢} —* ¢}, andz},

i
Chyy-

) i i * i
Then ¥'; 2"UVAR(v),) vy, ¢, —" v, ¢,

) i w0 i A R R
Hence V; 2t ¢, ¢, —" v, ¢, and 1, ~v, ¢ .

237

D.3. Equivalence of MetaML and Environmental MetaML

Casec. (app-0). Letz) =Ax.t? 19 =9 and Ax. — 10 v 212/x]

6111 apr? "apn ap apnl 1112 apnl

Given Ax.t0 Ncgl by Lemma 367, 7, E&”I—cb —* vb and Ax.t0 o~

apn alll
0 0 0
Vp,,- Then 73 2" = cb11 Chy —" Vbu Chyy-
Given V), ~ cb12 by Lemma 367, ¥; Z + cb12 — vb1 and 1)~ vglz.
Then 7; 2" U {vb“} F cb12 —* vbu.
We have V; 2 Fc)) —*v) W0
11 12 11 12

By Lemma 357, ¥; ¥ + vgll wb, V¥V - vglz wb. By Lemma 356, FV(vgn) -
¥ and FV(vglz) cv.
We proceed by cases on vg in Ax. tgu |~ vgll. The only possible case is
Vgn =)’xo't](g)“]’ (PlaPZ, 7pm)
Letxy ¢ 2 UVAR(tSll f0,) UVAR(Y) V)).

We have Ax. tam a lxN.tum [xn/x] and Q),xo.t,?m, (P1,P25-,Pm) D ~a
d A‘XN'tbm [XN/X()], (p1 [XN — XN],pz[XN — XN], ...,pm[xN — XN]) D.

We have:

Axy .19 to, v /x]
= U(C ;LXN'[l())m [xn/x0], (P1]xn = xn], P2[xn — XN], ooy PmlXn — xn]) D)
= U(d lxN.t}?m [xn/xo0], (p1]xn — xn], P2[xn = xN]s ooy Py — xn]) D)
= U((Axy.ty, [ew/xo]) Wi/ xidl wai /%] .- [Wini /mi])
= U(lxN.tgm [xn /X0l [Wii/x1i][Wai /x2i] . [Wini Xmi])
= AxnU (1, bew/xolwii/x1][wai /xai] . (Wi [Xomi])
Then 1) [xy/x] ~
U (19, e /o) [wii /xai] e /o] [wai /il e /w9t o) [] -

Observe that

Axy gy, bon /x] va,, — ta,, v /3] VG, /]
and
“//;%UVAR(VSH vglz) F)LxN.tgm[xN/xo], (P1,P25+,Pm) D vglz
— 1) [ew/xol, (pilew = V) 1,025, Pm) D
Since FV(Q lxN.tgm [xv/x0], (P1,P2, s Pm) D vglz) C 7, we have
FV(v))CV.
Since ;¥ + (),xN.t,?m [xn /X0, (P1,P25---, Pm) D wh, we have
AV (Q lxN.tl?m [xn/x0], (P1,P2,-,Pm) D)NY =0.

We have:
Uty bov/xol, (pilxw = vy 1,02, 0m) D)
= Uy, ben /o] v, /xw] Wi/ xui] [wai /] . [Wini) Xomi])
= U(tb,“[XN/XO][Wlt/xlt][WZt/XZt] [Wmt/xmt][vglz/xN])
= Ut)lw/xo)[U(wii) [x1][U (wai) [x2i] . [U (Wani) [2i] [U (v,) /28]
= U(tb”,[xN/XOHW i/%1i] [wai /x2].. [W'ni/xmi])[U(V212)/xN]

= 10, b /10, /o]

238

D.3. Equivalence of MetaML and Environmental MetaML

We get:
1 b /211,)
~ an [xn/xol, (Prley =) 1,02, Pm) D
Caseii. Let czl =d (té11 tlinz)’ p*D.
We have 757 =4 (1, 1), p* Dwb, VAR(€ (1}, 1,), p* »)C 2 and FV (4 (1, 1,), p* ») C
V.
By (app-env), we have ¢ (tl’;]I t;'m), prY— t,’;l], [l X t};n, p*).
Thenaz, , p* DAty , p* D" (t 1,), p*D.
Giventy t,, ~ 4 (1, 1,), p* D, wehaver, ~dat, ,p* pandt,, ~at;, ,p*D.
Suppose #;,, t,,, — t5,, by the induction hypothesis, ¥; 2" - a7, , p* D&t , p* P —>"

ap "apr a’
i i
¢y, and 1, ~ ¢y .
Case 3. (ti' = Ax.ti1). We proceed by cases on 757! — #i+1. The only case is (lambda-(i+1)).
i+1 i+1 i+1 i+1
Let Ax.t,| — Ax.ty) where tyl —— i) :
Let V; 7 + chl wb, FV(c’lerl) cv, VAR(CZTI) CZand? C 2.
We proceed by cases on c;’l € ConFifl,
Casei. Let CZH = lx.cZH.
1 11

We have Ax.tif! = U(Ax.cif) = Ax.U(cjf1). Then £ ~ cif!.

Suppose ¢’ | ¢ VALUE(, . Otherwise by Lemma 366, 51! € VALUE'!! which means
1 it
ty A=

We have 7 U {x}; 7 U{x} F ¢}"! wb, x ¢ ¥ and FY(CZTII) Q.“//U {x} |
By the induction hyppthesis, 4. {x}, Y U{x} I— C;;:_ll —yx ?24;1 and 751! ~ C;’erll'
Hence ¥; ¥ - lxo.cZTll —* lxo.cZTll and Ax.rit! ~ Axg.cit!

azy by *
Caseii. Let c;rl = lxo.t;rll, (P1:P2; s Pm) D
Let xy Qé .
We have ¢ lxo.tlijlﬁl, (P1:P25 s Pm) D —> Axy.€ tl’:rll, (p1[x0 = xn]; p2fxn = xn]s oo, Py —
)CN])).

Then Axy.4€ tl’;lrll, (p1[xo— xn]; palxn = xn s oo, Py — xn]) D <* €)on.tl‘:rll, (P1:P25 -, Pm) D
By Lemma 357, ¥; ¥ - Axn .4 t;:’ll, (p1[xo — xn]; P2y = XN] -y Py — xn]) D wh.

By Lemma 356, FV (Axy.¢ tél*ll, (p1[x0 — xn]s p2[xn = xN]; ey PmXn — xN]) D) S V.

Provably we have Ax.r} 1 =U/(4 lxo.téfll, (P1:P25 -, Pm) D) =U(Axn.€ tl';’ll, (p1fxo—

xn);p2lxn — xnlioos Py — xn])) D). Given Ax.tj:“]l — Ax.té;], by the induc-

tion hypothesis, #; 2" U {xn} F Axy.4 tl’:ll, (p1[xo0 — xn]; p2[xn > xN]5 ooy P [XN
xy]) p —* cgl and Ax.ri}! ~ cgl.

Case 4. (¢, = n). This case is vacuous because n #—".

Case 5. (tf”:t" +1

a1, T 1a,,)- This case is analogous to the (t(i1 =t ¢)case.

ap “ap

239

D.3. Equivalence of MetaML and Environmental MetaML

Case 6. (t;'1 = (t}fl'll)). We proceed by cases on tf“ — téz. The only case is (code-i).

i+1 i+1 i+1 i+1
Then (r}t!) — (ti1') where £}t — 1 1.
Let ”I/;”f/l—czl wb, FV(ch) cv, VAR(CZI) CZ and¥v CZ.
We proceed by cases on cj;l € CONF.,,.
: i (it i1 o it

Casei. Letc, =(c,). Then tay, = Cpl |

We have 7,7 - CZT]I wb and FV(c;flll) cv7.

By the induction hypothesis, ¥; .2 - cZTll —* cgll and i1 ~ cgll.

asl
Hence ¥; 2+ <C§,Tll> —" <C§,T11> and (rj}!) =~ <CZ;1>'

Caseii. Let cjjlrl = <tl’;l+11>, (P1:P25 s Pm) D
We have 757 F €4,"', (p1:p23.... pm) Db and FV (€ 1,7, (p1:p2;....0m) 9) S 7.
By (code-env), we have 7'; 2" |- ¢ <tl‘:rll>, (P1:P25 -, Pm) D — (4 tl"”*ll, (P1:P2; s Pm) D).
Then (4 tléJlrll7 (P15P25 -, Pm) D) <* € <t£1+11>7 (P1:P25 -, Pm) D
Provably we have (17!} =U (¢ <tl‘:“11>, (P1:P25 -, Pm) D) =U((€ tl’;tl, (P1:P25 s Pm) D).
Given (tf') — (ti11), by the induction hypothesis, ¥; 2" - (€ 1!, (P13 023 .., Pm) D) —
¢}, and (tit 1) ~ Ch,-

Case7. (tit! =~}). This case is analogous to the (i = (1)) case.

Case 8. (ri =!ri). This case is analogous to the (7} = (t'1)) case.

D.3.7 Soundness and Completeness

Theorem 370 (Soundness of Environmental MetaML w.r.t. (Substitutional) MetaML). If tgl ~ cgl, 0,0+

021 wb, F V(cgl) =0 and tgl —039 in Substitutional MetaML, then 1> cgl —* ng in Environmental

a
MetaML and vgz o~ vgz.

Proof. We proceed by induction on the length of tgl —0 vgz .
Case 1. (0). Let tgl = vgz. By Lemma 367, (D;VAR(cgl) F cgl —0% v22 and v22 o~ vgz. We have > cgl —
0
Vi, -

Case2. (n+1). Let t2] —0 tgz —0() vgz.

We have 0;0 - cgl wb and FV(cgl) =0.

By Lemma 369, 0;VAR(C2|) F cgl —0 c(b)2 and 1) ~ c(b)z. Then > cgl — ng'
By Lemma 357, 0;0 + 022 wb. By Lemma 356, FV(cgz) =0.

By the induction hypothesis, > ng —F vgz and ng ~ v(b)z.

We have > 0 —* 0 |
by by

240

D.3. Equivalence of MetaML and Environmental MetaML

Theorem 371 (Completeness of Environmental MetaML w.r.t. (Substitutional) MetaML). If tgl ~ cgl, 0;0+

cg wb, F V(cg) =0 and > cg —* vg in Environmental MetaML, then tg —0% 0
1 1 1 2 1 ap

MetaML and v22 Y ng‘

in Substitutional

Proof. We proceed by induction on the length of cgl — vgz.

Case 1. (0). Let cgl = vgz. By Lemma 366, 10 € VALUEY . Let V), =10 . We have 10 —% 1) and
0 0

Va, 2 Vp,.

Case2. (n+1). Letp cgl — ng —m) vgz.

We have 0; VAR(c)) ¢) —0¢) [0;0) whband FV(c)) =0.
1 1 2 1 1
0 0 40 0 ~ 0
By Lemma 368, 7, —"" 15, and 7, >~ ¢}, .
By Lemma 357, 0;0 + (:22 wb. By Lemma 356, FV(cgz) =0.
0% 1,0 0
v

By the induction hypothesis, 75, —%* V5, and v, ~} .

We have tgl —0 vgz.

O

Theorem 372 (Kleene Equality of Evaluators). For any t € PRGMpmetaML, €ValyetaML:Subsos (7) is Kleene

equal to evalyietaML:Envs0s (1)-

Proof. We first show that if evalyietamr -subsos (I) = a where a € ANSMetaML, then evalyetaML:EnvsOS (t) =a.

Case 1. If evalyieramr -subsos () = function, then r —0* Ax.t" in Substitutional MetaML. Observe that
t ~t. By Theorem 370, > ¢ ¢, pizﬁR(t)
v =(Axo.t”o, (P15 pm) Dand U((Axo.t”o, (p15-3Pm) D) = Ax.t”. We have evalyieaML:Envsos (1) =

function.

. . 0
» —* v in Environmental MetaML and Ax.t" ~ v. Then

Case 2. If evalyierami:subsos (f) = code, then ¢ —0x <v1) in Substitutional MetaML. Observe that ¢ ~ ¢.

VAR(r)

By Theorem 370, > € ¢, p,i ' » —* V' in Environmental MetaML and (v') ~'. Then v/ =

"y and U((V"")) = (v'). We have evalyeamr Envsos (f) = code.

Case 3. If evalyeamr:sub:— () = n, then ¢ —% 5 in Substitutional MetaML. Observe that ¢ ~ t. By

VAR(?)

Theorem 370,> 4 t, p, .~ » —" vin Environmental MetaML and n ~v. Then v = n. We have

evalyietaML:SusSOS (Z) =n.

We then show that if evalyeramrEnvsos (f) = a where a € ANSperaML, then evalyieramr :subsos () = a.

Case 1. If evalyeamL:Envsos () = function, then > ¢ ¢, pimR(t) P —*¢ lx.t’o, (p15..3Pm) D in Envir-

onmental MetaML. Observe that # ~ . By Theorem 371, 1 —%* v in Substitutional MetaML and
ver g Axt”, (P1;--:Pm) D. Thenv=U(q Axt”, (P1;--3Pm) D) = (lx.U(t’O))[wli/xli]...[wm,-/xm,-].
We have evalyetaMi.:SubSOS (l‘) = function.

Case 2. If evalyetaML:Envsos () = code, then > ¢ ¢, pi?:ﬁR(t) P —* <v1> in Environmental MetaML. Ob-

serve that ¢ ~t. By Theorem 371, t —%* v/ in (Substitutional) MetaML and v/ ~ (v!). Then
V= <V”1> and Vv = U(<V1>) We have evalMetaML;subsos (t) = code.

241

D.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental MetaML

Case 3. 1If evalyeramr:Envsos (1) = n, then > € 7, P;ﬁtR()

t ~t. By Theorem 371, ¢ —0% 3 in (Substitutional) MetaML and v ~ n. Then v = n. We have

D —* nin Environmental MetaML. Observe that

evalyeamr:Subsos (1) = n.

We observe that evalyieamr:subsos (7) is undefined if and only if evalyetamr :Envsos (7) is undefined. Therefore,

evalMetaML:subsos (l‘) is Kleene equal to evalMetaML;Envsos (l‘) Il

D.4 Equivalence of Structural Operational Semantics and Reduction

Semantics of Environmental MetaML

We demonstrate the equivalence of the structural operational semantics of Environmental MetaML and the

reduction semantics of Environmental MetaML.
Lemma373. [f ¥V | 2 F ¢} —'ch and E € EXCT ™/, then &+ EJ[c}] —J EJ[ch).

Proof. Suppose that ¢! — ¢b and E € EXCT' /. We show there exists some Eg € ECXT"/ and cf,,ck, €
CONF* such that EF>/[ci] = Ey */[ck,] and EF>I[ci] = Ey */[ck,] where &, —* ¢k,. We proceed by

induction on the structure of the derivation of ¢; — c}.

Case 1. (lambda-(i+1)). Let ¢/ = Ax.cit!, i = Ax.cii! and 7 U {x} | 2 F ! —F1 il Let
E(()tﬂ)%f = E(#)=J[Ax.00]. By the induction hypothesis, 2~ I—Eélﬂ)ﬂj[R E(glﬂ)ﬂj [,
Thus 2" F EVHD=/[Ax.ct 1] v EGHD=I[Ax.cit .

Case?2. (appL-i). Let ¢l =ci, chy, ch=ch chyand ¥ | 2+t —'ch,. Let By /= E/[Ocl,).
By the induction hypothesis, 2"+ Ey /[c},] —/ Ey /[ch,]. Thus 2 & E°i[cl| ¢t)] —s
E™J]ch) ci).

Case3. (appR-i). Let ¢ =vi ciy, ch=vi chyand ¥ | 2 F ¢, —i ch,. Let Ey) = EFipi, O]
By the induction hypothesis, 2"+ Ej /[c},] —/ Ej /[ch,]. Thus 2 & EF°I[vi| ch)] s

E"™] [Vll 622]-

Case 4. (app-0). Let ¢ = a (Ax.t%), (p,p*) D and ¢ = €%, (p[x =]);p*) ». We have 2"
E*I[cV 7 EOJ[cY)] because 27+ ¢ %0 Y.

(VAR(Z

Case 5. (run-0). Let ¢ =!(v!) and ¢ = ¢ v!, (p 2%*):£) ». We have EO—[c9) —/ EO~/[c0] because

4 }—c(l) A° cg.

Case 6. (run-i). Letci =!ct |, ch =Ich, and ¥ | 2" ¢y —' ;. LetEHDJ E™/[100]. By the induction
hypothesis, %I—EH’[CH] —J EH)][CZI] Thus 2" F E/[Ic}] —7 ETI[1ch,].

Case 7. (code-i). Let ¢} = (cfi"), &b = (c5i") and ¥ | 2 k- el —H1 il Let B = E=I[(00)].
By the induction hypothesis, %I—E(SIH)_OJ [i E(()l+l)_°J [c’ﬂl] Thus 2"+ E/ (1] —7
ETI[(5h)].

242

D.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental MetaML

Case 8.

Case 9.

Case 10.

Case 11.

Case 12.

Case 13.

Case 14.

Case 15.

Case 16.

Case 17.

Case 18.

Case 19.

Case 20.

Case 21.

(splice-1). Let ¢} = ~(v!) and ¢} =v!. We have 2" E!™/[c]] —/ E'™/[c}] because 2" I
cl #'
1 2

(splice-(i+1)). Let /™ = ~ci |, 5™ = ~ch, and ¥ | 27 ¢}, —ch,. Let E(i)_°j = E+D—i[).
i—oj i—oj

By the induction hypothesis, 2" - E, */[c},] —/ Ey/[ch,]. Thus 2" = E0+D=/[~cl] s
E(Hl)_oj[““cél}-

(plusL-i). Let ¢} = ¢y +ct,, ¢ = b, —.kcflz and 7| 5&”- + c’11 —'ch,. Let E(i)_oj =E™/[0+cl,).
By the induction hypothesis, 2"+ E; ~/[c},] —/ Ey /[c};]. Thus 27 F EJ[ch | +ciy] —7
E"™[ch + i)

(plusR-i). Let ¢} =i, +ciy, ¢h=vi +chyand ¥ | 2"+ ¢, —' ch,. Let E(i)ﬁj =E™ii, +0).

. i—oj

By the induction hypothesis, 2 Ej, /[c},] —7 E; /[ch,]. Thus 2+ EFi[vi, +¢i,] —/
E™ vy + eyl
(plus-0). Let ¢ = ny +ny and ¢ = n where n = nj +ny. We have 2" - EO/ ()] —7 EO~J[cY]

because Z c(l) A° cg.

(lam-0-env). Let ¢! = ¢ Ax.t%, p*», & =qAxt?, p*Dand ¥ | 2 F ¥ —0). We have
1 p 2 p 1 2
X+ EYI () —7 EOI[cY] because 2+ ¢ % 9.

(lam-(i+1)-env). Letci™ = @ Ax.tit1) (p;p%) 0, 5 = Axn € 171 (px = xw] [xn = xv]; (P v
xy])*) D where xy ¢ 27, and ¥ | 2 F ¢! —1 Fl We have 27 - EGHD=I i))
EHD=J[ci 1] because 2 F it 7+ ¢t

(clov-env). Let ¢{ = € 0 Ax.t, pf D, p5 D, ¢y = Ax.t, (pf;p3) Dand ¥ | 2+ ¢t —' . We
have 2"+ E'/[c}] —/ E™/[c}] because 2" I ¢} Z').

(den-env). Let ¢! =qw, ed, cb=wand ¥ | 2"+ ¢} —'). We have 2 F E™/[cl] —/
E™J[c}] because 2+ ¢} %' ch,.

(var-env). Let ¢; =€ x, (p;p*) D, ¢, =€ p(x), p* pand ¥ | 2" F ¢} —' 5. We have 2"
E™/[c}] —7 ETI[ch] because 2+ ¢} Z' .

(num-env). Let ¢} = n, (p;p*) 0, ch=nand ¥ | 2"+ ¢| —' ch. We have 27+ E™/[c}] —/
E™J[c}] because 2+ ¢} Z' ch,.

(app-env). Let ¢\ = at1 1y, p* D, b =at1, p* D12, p*Dand ¥ | 2"+ ¢} —' ¢5. We have
X+ E™I[cl] —J ETV (] because 27 ¢} Z' .

(code-env). Let ¢f = € (t"1), p*», ¢ = (€T, p*p) and ¥ | 2" F ¢} —' cb. We have
X ETI)] —) ET0I[ch] because 2 F i Z' ch.

(run-env). Let ¢, = !t', p* 9, ¢y, =1q ¢, p* pand ¥ | 2" F ¢} —' ¢,. Wehave 2" E'™/[c}] —/
E™J[c}] because 2+ ¢} %' ch.

243

D.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental MetaML

Case 22. (splice-env). Let c’+1 =q~t, p*), c’+1 =~qt, p*vand ¥ | 2 F c’frl —it] cé“. We have
= DI) D=7 5] because 27 1= ¢ 221 bl

Therefore, if ¥ | 2" ¢} —' ¢, and E € EXCT ™/, then E/°/[ct] —7 E/T[ch)]. O
Corollary 374. If V' | 2"+ ¢ —' ¢b, then 2 F ¢t —' ¢,

Proof. Suppose ¥ \ Xt —ich. Let E =0 in Lemma 373. We get 2"+ O /[c}] —' O [ch].
Hence 2" I ¢} —' cb. O

Lemma 375. [f V' | 2 ¢} —'ch and E € BCXT ™/, then 2" UVAR(E) - E"/[¢}] —J EI[c}).

Proof. Suppose ¥ | 2"+ ¢ —' ¢ and E € ECXT' /. We proceed by induction on the structure of the
derivation E € ECXT ™/,

Case 1. (E =[0). Observe that ¢; = 0 [c!] and 5 = O '[c}]. We have 2" U VAR(O) F O [c}] —*
O[]

Case?2. (E=E, /[0ch)). By (appL-i), ¥ | 2 UVAR(ch) I ¢} ciy — ch ¢i. By the induction hypo-
thesis, 7| 2 U VAR(c)) U VAR(Eo) - E, ¢} ch] —I By [c} ¢h]. Thus ¥ | 2" U VAR(ch) U
VAR(E) & Ey ™[O cgl[ej] — Eg ™[O cglcd].

Case3. (E=Ey vy 0)). By (appR-i), ¥ | 2 UVAR(V)) I vi) ¢} — Vi ¢b. By the induction hypo-
thesis, ¥ | 2 U VAR(V)) U VAR(Eo) F Ejy /[l ¢i] —7 Ej “/[vi) ¢]. Thus ¥ | 2" U VAR(V)) U
VAR(Eo) - Ey /[viy O]k] —7 ES vl O] [c].

Case4. (E= Eéiﬂ)ﬂj[),x.m]). By (lambda-(i+1)), 7 | 2" U VAR(x) F Ax.cith —71 Ax.cht!
By the induction hypothesis, ¥ | 2" UVAR(x) UVAR(Ep) F E(ng)_oj [Ax.cit] — E(()’H)_oj [Ax.c5].
Thus 7 | 2" UVAR(x) U VAR(Eo) b E\ V™ Ax.0) Y] —7 ES™) 7 [Ax.0)[ci).

Case5. (E = E(i)_oj[<)). By (code-i), 7 | 2" I (c¢!T!) —7 (i), By the induction hypothesis, 7" |
2 UVAR(Eo) - Ey *[(ci™1)] —7 Eg I [(c5)]. Thus ¥ | 2 UVAR(Eo) - Ej /[(O)][c}*!] —
Ey O[]

Case 6. (E = E (i+1) %J[O]). By (splice-(i+1)), ¥ | %I—Nc —itl Nc . By the induction hypothes1s
V| 2 UVAR(Eo) F ES ™)™ [mcl] — ESTV ™[2].Thus“//]%UVAR(EO)I—Eé'H) I~ [cl] —
Ey T] [eh).

Case7. (E = E, /[\00)). By (run-i), ¥ | 2 F!¢i —ilci. By the induction hypothesis, ¥ | 2 U
VAR(Eo) - E, “/[\ci] —7 Ej “/[\ch]. Thus ¥ | 2 UVAR(Eo) F Ey /[\0][ct] —7 Ej/[100][c))].

Case8. (E=E, /[0+ch)). By (plusL-i), ¥ | 2 UVAR(ch) F ¢} + ¢l —i ¢ +¢i. By the induction
hypothesis, ¥ | 2 U VAR(ch) U VAR(Ey) = Ey /[ch + ch] —7 Ey ™/ [c} +ch]. Thus ¥ | 27U
VAR(ch) UVAR(Eo) F Ey [0+ chl[ci] — Ey ™/ [0+ ch][ch].-

244

D.4. Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental MetaML

Case9. (E = E(i)_oj [viy+0)). By (plusR-i), ¥ | 2" U VAR(ch) b vi + ¢} —' vi+ ¢},. By the induction
hypothesis, ¥ | 2 U VAR(c) U VAR(Eo) - Ejy /[vi+ ci] —7 Ej /[vi)+ci]. Thus ¥ | 2 U
VAR(ch) UVAR(Eo) F Ey /[viy+0][c}] —7 Ey ™ [vi + D [ch].

Therefore, if ¥ | 2" ¢} —' ¢}, and E € ECXT' ™/, then ¥ | 2" UVAR(E) F E/[cl] —/ ET[cl]. O

Corollary 376. If 2" & ¢\ —'ch, then V' | 2"+ ¢, —' ¢b.

j—i j—i

Proof. .Suppos-e X i, .Let ¢l = E [cél], c"2. = Ey [céz] and 2+ cél 74 Céz- .Ob.ser.ve that
2+ Cé.l ' ¢}, implies V'; 2"+ c) —/ ¢},. Let E=E; " in Lemma 375. We get ¥; 2"+ E} "'[c},] —'
E}[c),). Hence ¥; 27 F ¢t —' ¢h. O

Theorem 377. ¥V | 2"+ ¢ —' ¢} ifand only if 2+ ¢ —' ¢,

Proof. This theorem follows Corollaries 374 and 376 directly. O
Theorem 378. V' | 2" ¢ —* ¢ if and only if 2 ¢} —™ ¢,

Proof. We first show that if ¥ | 2" F ¢} —% ¢} then 2" F ¢} —% c}. Suppose ¥ | 2" ¢} —1) ¢}, We
proceed by induction on #.

Case 1. Whenn =0, ¢} =cb. We have 2" I ¢! —™ ¢, immediately.

Case2. Let¥ | 2 Fcl —ich —in ¢,
Given V' | 2" c’i —i cé, by Corollary 374, 2"+ c’i —i cé.
Given ¥ | 2" UVAR(c}) F ¢k —i) ¢l by the induction hypothesis, 7 | 2 UVAR(c}) b= ¢ —*
ch.
We get 27 ¢} —' ¢5 —"" 5. Hence 2" F ¢| —" ¢5.

Now we show that if 2 ¢} ' ¢, then ¥ | 2" F ¢} —™ cb. Suppose 2" | ¢} —") ¢}, We proceed

by induction on 7.
Case 1. Whenn=0,c} =c. We have ¥ | 2" I ¢| —™* ¢!, immediately.

Case2. Let 2t cj—'ck i) ch.
Given 2" F ¢! —' ¢, by Corollary 376, ¥ | 2" F ¢} —' cf.
Given 2" UVAR(c}) - ¢5 —") ¢b by the induction hypothesis, 7 | 2°UVAR(c}) - ¢5 —* cb.
Weget? | 2 Fc) —' ¢ —™ ¢ Hence ¥ | 2+ ¢} —™ ¢,

Therefore, ¥ | 2"+ ¢ —™ ¢b if and only if 2+ ¢} —™* cb. O

Theorem 379 (Kleene Equality of Evaluators). For any t € PRGMpetaML, €Va@lMetaML:Envsos (7) is Kleene

equal to evalyetaML:EnvRed (t)

Proof. We first show if evalyetamr:EnvsOS (l) = a where a € ANSpMetaML, then evalyetamr - EnvRed (l) =a.

245

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Case 1. If evalyeamrEnvsos (f) = function, then @ | VAR(t) -t —* @ kx.t’o, p* D. By Theorem 378,
VAR(t) b1 —% q Axt”, p* D.

We have evalyeramr:EnvRed (f) = function.

Case 2. If evalyiemLEnsos(f) = code, then 0 | VAR(t) -t —% (v!). By Theorem 378, VAR(t) I
t 0y,

We have evalyeaMr:EnvRed (f) = code.

Case 3. If evalyteramL:Envsos () = 1, then @ | VAR(t) -t —%* n. By Theorem 378, VAR(z) -t —%* n.

We have evalyeqaMmr:EnvRed (1) = 7.
We then show if evalyjeramr:Envred () = @ where a € ANSyetamL, then evalyeramr:Envsos () = a.

Case 1. If evalyeramL Envked(t) = function, then VAR(t) 1 —0% @ kx.t’o, p* D. By Theorem 378,
0| VAR(t) -1 —% q Ax.t”, p* D.

We have evalyjetamrEnvsos (f) = function.

Case?2. If evalyjeaML-Envred(t) = code, then VAR(¢) - —%* (v!). By Theorem 378, 0 | VAR(z) -t —0*

(vh).

‘We have evalpietaML-EnvSOS (t) = code.

Case 3. If evalyeramr Envred () = 1, then VAR(z) -t —%* n. By Theorem 378, @ | VAR(¢) -t —% n.

We have evalMetaML;Envsos (l) =n.

We observe that evalyeramr :Envsos (f) is undefined if and only if evalyetamr :Envred () is undefined. Therefore,

evalMetaML;Envsos (l) is Kleene equal to evalMetaML;Envked (l) O

D.S Equivalence of Reduction Semantics and Abstract Machine (MEK
Machine) of Environmental MetaML

We demonstrate the equivalence of the reduction semantics of Environmental MetaML and the abstract

machine (the MEK machine) of Environmental MetaML.
Lemma 380. (i, E0 Vi) —* o (i, ET0 i)y,

mek

Proof. We proceed by induction on the structure of the derivation of v/ € VALUE',
Case 1. (x € VALUE™!). We immediately have (i+ 1, EC*D=0) o (i, ECTD=0 x), .

Case2. (vi"' vit! € VALUE™™). We have:

246

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

<l+1’ E(H—l)—oo’ vzlJrl v12+1>f
—mek (i+ 1, ECHD=0[O M, ’+1>f
g (i1, D=0y yith - by the induction hypothesis
ek (iF 1, EGTD—0[irl O] ety
g (i1, D=0 O] ’+1> by the induction hypothesis
— mek <l+ 1’ E(l'“rl)AOO’ VliH vé“)

Case3. (0 Axt), p*De VALUE?). We immediately have (0, E9~C, ¢ Axt), p* D) —>mek (0, EO0, 4 Ax.t?, p* D)y.

Case 4. (Ax.i™' € VALUE™!). We have:

(i+1, EWD=0 Ay yithy,
ek (i—l— 17 E(Hl)%OVLx D] t+1>
g (i1, EFD=0x 0], vty by the induction hypothesis
——>mek <i+ 1, E(Hl)%o QLX.VZ'1+1>b

Case5. ((v'*') € VALUE'). We have:

(i, B0, ()
—mek (i+ 1, ETO[(O)], vit)
ko (i1 ETOND)], vith)y, by the induction hypothesis
—rmek (i, ET0, (v H_1>>b

Case 6. (~vi"' € VALUE"™?). We have:

<l—|—2, E(H—Z)—OO7 Nvi1+1>
S mek <l+1, E(z+2)wO[ND]’ vl]—‘rl)
g (i1, EF2=0[0] ity by the induction hypothesis
> mek <l+2, E(i+2)—007 NV€+1>b

Case7. (W™ € VALUE'™!). We have:

(i+1, (D=0 pyitly,
—rmek (i1, ECFI=0NO] yithy,
g (i1, ECED=0N0) vty by the induction hypothesis
> mek <i—|—1, E(Hl)wO’ yv11+1>b

Case 8. (n € VALUE'). We immediately have (i, E™0, n)¢ —mex (i, E0, n)y.

247

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Lemma 381. If 2"+ ¢! %' ¢} and VAR(E[c]) =

(i, E=0, cb)y.

X, then (i, E—, Ci1>f ko (i, B0, c’i)r — mek

Proof. We proceed by cases on ¢, %' cb.

Case 1.

Case 2.

Case 3.

Case 4.

(app-0). Leti =0,) = q Ax.t9;, (p;p*) DW, and ¢ = € 2}, (p[x+—19,]:p*) ». We have:

F——"mek
F—>mek
F—"mek
’—ﬁnek

F——"mek
——mek

(run-0). Leti =0, ¢ =!(v},) and ¢} = ¢!, (p,

—"mek
——"mek
'_>;knek
——"mek
'_>;knek

——"mek

(0, E°0, q Axt}y, (p:p*) Dy

(0, E°0[0WY,], 0 Axayy, (p3p*) D)
(0, ES=0[0vY,], 0 Axtfy, (psp*) D)o
(0, EO%[q Ax.tyy, (psp*) DO, V)
(0, E*0[a Ax.ay, (p3p*) DO, i)y
(0, 90, a Ax.tfy, (p:p*) D V)

(0, EO0, a1}y, (plx = viy)ip%) W)

»)b by Lemma 380

VAR(%);E) . We have:

init

b by Lemma 380

pIZ::R(E[(Vn)]), €) 0

T~ ~—

(splice-1). Leti =1, ¢} = ~(v1,) and ¢} = v},. We have:

(,
—rmek (0, EO0[~O], (viy))r
—rmek (1, ECO[~O[(O)], vip)s
g (1 EO0~O)[(@)], vi)p by Lemma 380
—rmek (0, EC0[~O, (vip))e
ek (1 EO70 ~ (i)
(

——mek

(plus-0). Leti =0, c? =ny +ny and cg = n where n = ny +n,. We have:

<0 EOQ"O ny —I—n2>
—>mek <0 EO_OO[D —l—l’lz] n1>f
—>mek < EO%O[D +I’l2], n1>b
F—>mek < EO%O[”] +D], I’l2>f
—mek (0, EO%[ny +00], ma)y
——>mek <0 EO—0 , M1 —i—n2>
—mek (0, EO0 n); where n =n; +ns

248

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Case 5. (other cases). Let ¢} = ¢ t},, p* pand 2"+ € i}, p* D Z' ¢},. We have:

<ia Ei_oo’ ‘ t{]? p* .>f
——mek <i7 Eiw07 q l{]y p* ')r
F——"mek <i, Ei_oo) Cé>f

Lemma 382. Ifc¢' = E{_Oi[c{] and c{ R’ cé, then (i, E, c/yp—2 o\ (], E’A’OE{_QI.7 .

Proof. Suppose ¢! = E/"'[c]] and ¢] %/ ¢}. We want to show (i, .E"f’o, E el — o Uy EFOET el
We proceed by induction on the structure of the derivation of E{

Case 1. (E{™"=0")). Weknow (i, E™0, ¢)¢= (i, E0, ¢!)rand (i, E"™°, ¢})% (i, ET0, ¢))p

Case2. (EI™" =E{"'¢\)). Weknow (i, E=0, ¢!}y = (i, E0, E/"[c]])¢ = (i, E™°, (E{* ¢t))[el])s.
We have:

(i, B0 (B e Dlell)s
——mek <i7 ElﬂO[D Clll]a Eljl%)l[C{Df

Since E{; " is a component of E{ ', by the induction hypothesis, we have (i, E=°[C1¢}], E{, " [c]])s —F
(i, EZOLE] ™ el ef)r.

Case3. (E/ ™ =vi E/"). Weknow (i, E=°, ¢!}y = (i, E—0, E] [c]])¢ = (i, E™, (v}, E{;*)[el])s.

We have:
(i, EHO’ (V11 Effw)[c]>
—mek (i, ETO[OE " [el]], Vi e
'—>r*nek (lv EI—OO[DE{;OZ[CJ] 111>b byLemma380
—rmek (i, BTN O, B [l

Since E f l_oi is a component of E f ', by the induction hypothesis, we have (i, E*° Vi, O, E {] Ic 1] ek
(i, B0 Ef L o)

Case 4. (E{ "V = 2B, We know (i+1, ECFD=0, o) = (i4-1, EF#170, g0 [ef)) =
(i+1, ED=0 (x.E/"UD)[cd]))s. We have:

(i+1, B0, Al el
ek (i1, ECD=0 0 00], ES D [ed)y,

—o(i+1)

Since E 1’ f(iH) is a component of Ej by the induction hypothesis,

we have (i+ 1, ECHD=0[1x.0], E]ﬂ(lﬂ)[ek (1, E("“)_"O[?Lx.E{r’(iH)], C{>f.

mek

249

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Case 5. (EJ"=(E{""™)). Weknow (i, E=0, ¢/} = (i, E0, EI " cl])r = (i, E0, (E{"™)[cd))y.

We have:
. o i—o(i+1)\ j
(i B0, (L)
. i—ol j—o(i+1 i
—mek (i E~LO)], Ve
Since E f l_o(iH) is a component of Ej - by the induction hypothesis,

we have (i, EFO(0)], El%(ﬁl)[clbf ek (> EiﬂoKEijl%(iH)”? C{>f'

mek

Case 6. (E/ "0V = EIT"). We know:

<l+1, E*(H»l)ga()7 Ci+1>f
= (i+1, B0 e,
= (i1, ECD=0 ~E] "))

We have:

(i+1, EED=0 B ™[e]])r
—rmek (i+1, ECD=OO, B [ef))e

Since E { f’i is a component of Ej —(+1) , by the induction hypothesis,

we have (i + 1, EG(tD—0[~[]], E{;‘”[cl'pf kg (i1, EGED0[B = ey,

mek

Case7. (E{™" =IE{["). We know (i, E™0, ¢/\¢ = (i, E0, E/"[c]])s = (i, E0, \E/""[¢]])r. We
have:

(i, B0] e e
—mek (6 ETO1O], EfC e

Since E{; "' is a component of E{ ', by the induction hypothesis, we have (i, E"°[\0]], E{[¢]])s —% o
(i, EOES, el
Case8. (E/ ™ = E/" +¢i)). We know (i, ET0, ¢y = (i, E™0, E{ [c]])s = (i, E™0, (EI[" +

Cil])[C{Df. We have:

@Ewwfﬂ+qmmn
—rmek (i ETVO 4], B el

Since E{; " isa component of 7! by the induction hypothesis, we have (i, =[O+,], E{; ' [c]])e—%
(i, ETOE] " ey, e

Case 9. (EJ%" —vll—i-EJH”) We know (i, EFV ¢i)¢ = (i, E0, E{ﬂi[c{]ﬁ: (i, E=0, (vi, —i—E{?”)[c{Df
We have:

250

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

(i, B0, (v +E[el
—tmek (i, ETOO+E] e H Vit
ek (s EHO[DWLE]_OI[111, v ;)b by Lemma 380
ek (i, ETOW 0, E e D)
Since E { l_oi is acomponent of £ { i by the induction hypothesis, we have (i, E/=° Vi, +0, E{ l_oi [c{] M
(i, EZOA + B, e

O]

Lemma 383. If By ()] = E{ [cf] and 2+ E]"[c])— E{ (¢} where 2= ¢] %/ c) and VAR (E\[Ej[cj]]) =
X, then (i, E’_00 ch)e ko (J 7E{—007 §>f

Proof. 1f c{ is inside cf) (or the same as cf)), E { 0 extends Eé_"o (or is the same as Eé_"o). Otherwise, because

ch is not reduced, it must be a value.

Case 1. Suppose ¢/ is inside ¢} (or the same as ci). Let ¢i = EJ *[¢/]. Then E/* = Ei0EI ™"
We have (i, E5, ch)e = (i, E50, EJ'[¢]])r. By Lemma 382, (i, E5, EJ */[¢]])s —% o
(j, ES*OE™ ¢/)e. By Lemma 381, (j, E5E ™ ¢)s —* o (j, ESOEL™" ¢l — mek
(J, Eg°E; ™, ep)r.

mek

Case 2. Otherwise, ¢} € VALUE'. By Lemma 380, 2 (i, E;°, c})s —7% o (i, E5, ci)p. We prove
the following statement by induction on the structure of the derivation of E;0 € EcxT .
Statement: If EHO[i] = E{ ™[] where ci, € VALUEi and 2+ E%[c]] — E{™°[c]] where
2+ c{ I 3, then (i, E;0, ch)y —% o (J, EJ 2>f

Case 1. (Eg_"0 = [190), This case is vacuous.
Caseii. (Ey0=E;°[0c),]). We have:
(i, Ey=°, coh
= (i, HO[D "22} C0>b
——mek < L Eégoo[co D]’ 022>f
Casea. It 2+ céz 74 033, then c"1 = cgz and cé = 033.
By Lemma 381, (i, E50[ci O], ¢by)¢ —*
Caseb. 1f 2 +cb, ' and), € VALUE".

mek <-7 Eéﬁo [CE) DL c§>f'
Case 1. TIf ¢y € VALUE". We have:
<07 ngo[cg D]’ C82>
——mek <O EO_OO[Cg D]’ 682>
—rmek (0, EO”O o cgz)
Then ¢ = ¢ ¢9,. By Lemma 381, (0, E9™°, 3 ¢9,)r = mek
0, E9=0,).

251

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

We know Ax. c”rl € VALUE'T!. Since E(Hl)
induction hypothesis, (i + 1, E£’+1)_°O Ax.ch ™y —E o U

Case c.
Case iii. (E’”0

Case a.

Case b.
Case iv. (Eéiﬂ)wO
Case V. (E (i+1)—0

If ¢3» € VALUET!. We have:
(i1, By e O, e
ek (i1, Ez(’f])%o [c5tt O], 551 by Lemma 380
—mek (i1, Ez(tﬂ)%0 b S5y

Case 2.

—0 .
is a component

We know ¢! cif! € VALUE!. Since E{")
of EO(iH)ﬂO, by the induction hypothesis, (i+1, Eé"“)ﬂ’ov 6+1 i+1
Uy B0,).
If 2 & ch, /' and ¢, ¢ VALUE', then ¢h, = E{ '[¢]]. Hence E{ ™ =
EiYch E{"]. We have:

(i1, ST O,

>b }—>mek

(i, Eé._oo[cf) O], ng)f' .
= (i, B5Cley O, E{[e])r
—tex U ES OGBS,)t by Lemma 382
—te (U ES0lch Egﬂi], Cé>f by Lemma 381

ESOW, O)).

If ¢y € VALUE". We have:
<0 EO—OO 0>b

= (0, EO_OO[Vzl O, ¢ >

—rmek (0, EOH’O v21 08)
Then ¢ =19, 3. By Lemma 381, (0, E970, v9, ¢0); > mek (0, EI™0, 9)y.
If co € VALUE'T!. We have:

+1)—o
(i+1, E(’)= 06+1>b
—~ (i+1, E(’“H‘)[v;l 0, it

(i+1, E(’H) v’zfl c6+1>b
1)—0

——mek

(i+1)—0

We know v ! ci*! € VALUE'™!. Since Ez(is a component of £ ,

by the induction hypothesis, (i+ 1, E 2(i+1)wo

= Eéiﬂ)%o [Ax.0]). We have:

i+1 i+1

» Va1 €o >b '_>mek <J7 EJ 7cé>f'

(i+1, E(’H) c6+l>b
= (i+1, EOHHO[A O, iy,
—mek (1, ESTVT0 2k,

—0 (i+1)—0

is a component of E;

Jj—0 j
E1 s C2>f.

, by the

= EL0[(0)]). We have:

(i+1, E§TD™0 cirly,
= (i+1, ESOLO)], o™
F——"mek <l7 Eé_ooa < é)+1>>b

252

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

We know (ci') € VALUE'. Since E;~0 is a Component of E(()"H)HjO

hypothesis, (i, E50, (c5!))y % (s 0,)t

Case vi. (Ei0=ES")=0~0).

, by the induction

Case a. 1f co € VALUE". We have:
(0, Eg™, cg)o
= (0, By °[~0], ¢
—mek (1, E3 70, ~cd);
Then c} = Ncg. By Lemma 381, (1, E21_°07 ~c8>r —>mek (1, Ezl_"o, Cé)f.
Case b. If ¢y € VALUE'"!. We have:
(i+1, E(iH)_OO, iy,
= L ETROL
ek (i+2, E(l+2) 6+1>b
We know ~cht! € VALUE™". Since E, (i+)_00 is a component of E(giH)_OO,
by the induction hypothesis, (i+2, E(Hz) ~cht Yy 2 Uy Eljwo7 Cé>f.
Case vii. (Ej~0 = E;=°)100)).
Case a. If co € VALUE". We have:
(0, Eg™, cg)o
= {0, EDOL]
—mek (0, ES70, 1c0),
Then ¢? =!c). By Lemma 381, (0, E3™0, 1c3); —mex (0, ES™0, 9)r.
Case b. If ¢y € VALUE'"!. We have:
(i+1, E(l+1) C6+1>b
- L BT
e (i1, E(i+1)ﬂao’ i,
We know 'c’H € VALUE'™!. Since E(D=0 s a component of E(giﬂ)ﬂo,
by the induction hypothesis, (i+1, Ez(’H)_OO, leb Yy —% o (U E{'%O, s

2
Case viii. (E5~" = Ei~[0+ cb,]). We have:

(i, EG, chlo
= (i, Ey [0+ chyl, cp)b
—rmek (i, E5lch+ 0], chy)r
Casea. U2+ 052 74 c§3, then c’i = cé2 and cé = 053
By Lemma 381, (i, ES[c) + O], cb,)¢+—"
Caseb. 1f 2 +cb, #' and c), € VALUE"
Case 1. 1If ¢op € VALUE". We have:
(0, E=lcg+00],)
—rmek (0, ES) +0J],)b
—mek (0, Eg_oov Cg+c(2)2>r

(i, E5Clcy+ 0], ch)r.

mek

253

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Case 2.

Then c(l) = 6‘8 +c(2)2. By Lemma 381, (0, Eg_°0, 68 +ng>r > mek
(0, E9=% ¢H)p.

If ¢3» € VALUET!. We have:

<l+1 E(l+1)*0[l+l+D} er1>f

(i+1, E2(1+1)%>0[SF+0), ¢35y by Lemma 380
1+1 _|_Ct+1>b

*
mek

ek (i1, ESTT0

We know c’H +c‘+1 S VALUE’“ Since E(1)=0

ent ofE(lH)_oo

Nt (s EL,).

is a compon-

, by the induction hypothesis, (i +1, EéiH)_oo, b+

Casec. If 2+ ch, ' and ¢, ¢ VALUE', then ¢, = Eg_c”'[c{], Hence E{_"O =
Ei~%ch +E4"]. We have:
(i+1, E (i+1) —oo[i), iy,
(i, E5[cy+0], chy)sr
= (i, Ey el +01, E{ el
ek > EHO[C()*'EJW] e by Lemma ??
—hec (s ESOleh+ BT, &)y by Lemma 381
Case ix. (Ey°0=EI= W, +0)).
Case a. 1If co € VALUE". We have:
(0, Eg~°, g
= (0, EDS, +001, ch)o
—rmek (0, B0 VY)
Then ¢ =19, +¢cJ. By Lemma 381, (0, E9™%, v9, +¢0)r —>mek (0, E9~0, ¢9)t.
Case b. If ¢y € VALUE'"!. We have:

We know v’+1 +cl+1 € VALUEt!,
pli1) =0

0

, by the induction hypothesis, (i+1, E;

(i1 By 0 e
_ <-+1 E(H‘])—OO[t+l+D] l+1>
—mek (i1, E('H) v’{{l—i-c’“)
Since EZ(ZH) —0
(i+1)—oO

is a component of

1+l _|_Ct+1>b mek

<]7 E{) C%>f-

Lemma 384. If1°

= EY¢f), then (i, E—,

N e V.

Proof. Suppose V0 = EI=[c/]. We know ¢ € VALUE'. We proceed by induction on the structure of the

derivation of E'=0 € EcxTi~0,

Case 1. (EO0=

[19=0). Then v = ¢°. We have (0, (1°=0, 10

O]

>b ——mek V0.

254

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Case2. (E0=E~[0c,]). Then? = Ei~0[c! ¢i,]. We know ¢’ € VALUE, ¢}, € VALUE' and i > 1.

Let’s use i + 1 instead of i. We have:

VOS]

(i+1, E/Y ety
—rmek (i+1, 15’“)”0[ci+1 O, ¢it)
e (i1, E’+1)_°0[#10), ¢y, by Lemma 380
ek (i1, EY U0 Gy,
ek (i1, EIH)HDO ¢t ey, by Lemma 380
Since E l(iH)ﬂo is a component of E(+1)=0 by the induction hypothesis,

(i+1)—0

we have (i+1, E| 0

1 it
€T)b ek V-
Case3. (E™0=E=Wi [0)). Then* = Ei~0[i, ¢f]. We know ¢’ € VALUE' and i > 1. Let’s use i + 1

instead of i. We have:

(i+1, B [v"ﬁ‘ 0], ¢y
ek (i+ 1, E(l+1) i+1 it
(i+1, E(‘+ b q+11 ¢ty by Lemma 380

*
mek

Since E| (D=0 45 o component of E(T)~0 by the induction hypothesis,

(i+1) =0 i1 iyl x .0
we have (i+1, E| SV T e e V-

i+1)

Case 4. (EU+D—0 — Efiﬂ)%o[/lxﬂ]). Then +* = EI(HI)%O[)LX.CH]]. We know ¢*! € VALUE'™!. We

have:
(+1, EFTV 00 d), ety
—rmek (1, EEiH)wO, Ax.c)y
Since E l(iﬂ)%o is a component of £ (i+1)—0 , by the induction hypothesis,

we have (i +1, E(’Jrl)70 Ax.citlyy — kg W
Case 5. (EU1=0 = Ei=0[(0)]). Then v* = Ei~0[(c'*!)]. We know ¢! € VALUE'"!. We have:

(i+1, ETOUO)], ™o
'—>ka <l7 Ei‘*oo7 <Ci+1>>b

Since Ei~0 is a component of E(+1)=0 by the induction hypothesis,
we have (i, EF0 (ciT1)), —x | 10,

Case 6. (E™0 = El([H)%O[ND]). Then 0 = EI(HI)%O[NC"]. We know ¢ € VALUE' and i > 1. Let use
i+ 1 instead of i and i 4 2 instead of i + 1. We have:

255

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

(i+1, B0, et
mek (42, E1(’+2)_°0, Nci+1>b

Since E l(iﬂ)ﬂo is a component of E(+1)=0 by the induction hypothesis,

. (i42)—0 41 0
we have (i+2, E| ;T ek V-

Case7. (E0=E=10)]). Then v’ = Ei~"[!¢/]. We know ¢ € VALUE' and i > 1. Let use i + 1 instead
of i. We have:

(i+1, EFTO=000), ¢+,
—mek <i+ 1, El(H_l)_OO, !Ci+l>b
i+1)

Since E l(iH)_OO is a component of E(*1)~0 by the induction hypothesis,

. i+1)—0 j
we have (i + 1, EI(HF) L

Case8. (E™0=EI™%0+ci,]). Then v’ = Ei~%c' 4 ¢i,]. We know ¢’ € VALUE', ¢}, € VALUE' and
i> 1. Let’suse i + 1 instead of i. We have:

(1, B0, ety
—mek (i+1, E’+1)_°O[c"+1+D] citly
ek (1 E 1)_00[#1410, 3", by Lemma 380
—rmek (i+1, E| ’“HO ety
—rmek (i1 E| l+l)_oo ettty by Lemma 380
Since E l(iﬂ)ﬂo is a component of E(+1)=0_ by the induction hypothesis, we have (i+1,E fiﬂ)%o, ¢t
i+1 0

*
Ci2 >b mek V-

Case9. (E0=Ei~O[i +0)). Then 0 = Ei~[vi | +¢i]. We know ¢ € VALUE' and i > 1. Let’s use
i+ 1 instead of i. We have:

<+1 E(H—l) [z+l+|:|] t+1>b

—mek (41, E(l+1) z+1 F ity

st (i, E(’“) l“ +c*), by Lemma 380
Since E 1(i+1)w0 is acomponent of £ (i+1)—0, by the induction hypothesis, we have (i+ 1, E EHI)%O, v’f{l +
ci+1>b '—>:;16k VO.

Lemma 385. [f1° = E"=Y[c], then (i, E™0, ¢y —* , .

Proof. Suppose) = E"[¢!]. Then ¢! € VALUE'. By Lemma 380, (i, E0, ¢/)¢—* | (i, E™0, ¢')y. By
Lemma 384, (i, E™°, ¢/}, —mex V0. Hence (i, E/=0, c)¢ ek W, O

Lemma 386. [f> EC[c}] —* 1), then (i, E™0, ¢|)r —7 5.

256

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Proof. Suppose > E—0 [cﬂ —s () vg. We proceed by induction on 7.

Case 1. Whenn=0, vz—E’_"O[']. By Lemma 385, (i, E0, ¢) v (2)-

Case2. LetE=[ct]o—s E{[c)]> — 19, where E-0[ct] = E/%[c],] and VAR(E’_"O[CI])I—CUQ?J c.
By Lemma 383, (i, EHO et <], EI° ¢]). Given EI%[c]]> —(19, by the induc-

tion hypothesis, (J, Ef C2>f — % 4 V9. Hence we have (i, E™0, ¢!)¢ —% 19,

mek

O]

Theorem 387 (Soundness of MEK Machine w.r.t. Reduction Semantics of Environmental MetaML) For

. VAR(#) . VAR(#?) |
any 19 € PRGMuewamL, if > € 19, (p; ‘);z-:) D —* 1Y, then (0, 00, € 1), (p,i ' 5€) Mp—r VY

init

0
Proof. Suppose >[1°~9[¢ ¢! (pl\n/ﬁR(t‘), €) D] —*v9, by Lemma 386, (0, 190, ¢ Y, (pl\gﬁR(t).e €) Mr—"

0
v,. O]

Any machine configuration in the MEK machine can be translated to its corresponding representation

as a configuration at level O in Environmental MetaML.

Definition 388 (Translator). Define the translator Z,ex_env to be a total function from the set of machine

configurations CFG to the set of level O configurations CONF,

FTnekseny . CFG — CONFY
c?me:k—>env<<ia Ei%o: cl>f) = Ein[ci]
9mek%env(<i7 Ei—oO’ Vl>b) = Ei_oo[vi]
ymek—)env“. Eiﬂo: l>) = Ein[ci]

mek%env(v) V0

Lemma 389. If Cy —mek Ca, then > gmekﬁenv (C]) — 0% 9mekﬁenv (CQ).

Proof. We proceed by cases on C; — ek Co. O

Case 1. Reduce rules: Let Cy = (i, E™0, ¢}); and C; = (i, E™™, ¢})¢. Then > E=0c|] — E70c,]
where VAR(C)) = ¢} %' ¢b. Hence > Tmek—senv (C1) =0 Timek—senv (C2)-

Case 2. Focus rules: Let Cy = (i, E0, ¢)¢ and C; = (i, ET0, ¢})9. Then E/~[c|] = E/~*[c,]. Hence
> gmek%env (Cl) ’—>O* gmek%env (CZ)-

Case 3. Build rules:
Casei. (b-value-0). Let C; = (0, [J, V%), and C; =v°. Then (O[»°] =1°. Hence > Znek senv(C1) —*
ymek—mnv (C2) .

Caseii. (other rules). Let C; = (i, E™0, ¢!}, and C, = (i, E™, ¢)s. Then E[¢)] =
E—0 [02]- Hence > Jnek—senv (Cl) 0% Tmek—seny (CZ)

257

D.5. Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

Lemma 390. If C| — . Co, then> Tnek—env (Cl) — 0% Tmek—senv (CZ)

mek

(n)

Proof. Suppose C —; C>. We proceed by induction on 7.

Case 1. When n =0, C; = C;. Then Tneksenv(C1) = Timeksenv(C2). We have > Tk seny (C1) —0*
Imek—env(C2) immediately.

Case?2. LetCi—sme C3 —"). Cy.

mek
Given C| ek C3, by Lemma 389, > Fhnek senv (C1) % Thnek senv(C2).
Given G5 b—>r(:2k C, by the induction hypothesis, > Tmek senv (C3) % Thnek senv(C2).

Hence > ek seny (C1) % Tiekseny (C2).

O]

Theorem 391 (Completeness of MEK Machine w.r.t. Reduction Semantics of Environmental MetaML).
. \Y v .
For any 1) € PRGMueramL, if (0, O, € 1), (pmﬁR(), €) M) ek V9, then > ¢ 1), (pmﬁk(D, €) p—*).
V. v
Proof 1£(0, 00, €12, (p ")) pyri—s 12, by Lemma 390, & Finekseny ({0, 01, € 20, (praX()

VAR(#)) .

Frmek—eny (V). We have > € 1), (Piic ' 3€) D 0%y, O

;€) D)p) —*

Theorem 392 (Kleene Equality of Evaluators). For any t € PRGMpetaML, €ValMetaML:EnvRed () is Kleene

equal to evalveamL:MEK (1)

Proof. We first show if evalytetamr -EnvRed ([) = a where a € ANSpMetaML, then evalyietami-MEK (I) =a.

VAR(t),

Case 1. If evalyieramr:EnvRed (f) = function, then> € 1, (p,; ;&) P —"(/lx.t’o, p*D.

By Theorem 387, (0, OJ, ¢ ¢, (pl:ﬁR(), €) M)r—" 4),x.t’o, Pp* D. We have evalyeramL:subabs (1) =
function.
Case 2. If evalyjetami:EnvRed () = code, then > € 7, (pl:ﬁR(), g) pr—* (W),
By Theorem 387, (0, OJ, ¢, (plmR()ie €) M) —k . (W1). We have evalyeamr:mek (1) = code.
Case 3. If evalyetamL:EnvRed () = 1, then > € ¢, (p,:::u), €)p—"n.

VAR()

By Theorem 387, (0, LI, €1, (P, =€) M) —> e 1. We have evalyieamrmex (1) = n.

We then show if evalyetami-MEK (l) = a where a € ANSpMetaML, then evalyjetaML:EnvRed (l‘) =a.

VAR(),

Case 1. If evalyierami:mex () = function, then (0, O, € ¢, (0 3€) D)t — ek @ lx.t’o, p* D.

By Theorem 387, > ¢ 1, (piZﬁR(t);s) p—*(Ax.t’o, Pp* D. We have evalyieraML:EnvRed (f) = function.

Case 2. If evalyeamr:MEk () = code, then (0, OJ, € 1, (pl?l’ﬁR()’ €)M (v .
By Theorem 391, > ¢ ¢, (pl‘n’ﬁR()7) p—* (v!). We have evalyieramr Envred () = code.
VAR(?) ,

Case 3. If evalyeamL:Mex (1) = 1, then (0, O, €1, (0 :€) D) ek 11-

By Theorem 391, > ¢ ¢, (pi}l’ﬁR(t);e) D —* n. We have evalyeramL:EnvRed (1) = 7.

We observe that evalyeamL:Envred (7) is undefined if and only if evalyerami-mex (¢) is undefined. Therefore,

evalyetaML:EnvRed ([) is Kleene equal to evalyietamr:MEK (l‘)]

258

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	General-purpose and Special-purpose Programming
	Specialising a General-purpose Program
	Multi-stage Programming
	Static Analysis of Multi-stage Programs
	Refining Semantics

	Formal Semantics of MetaML
	Staging Annotations
	Formal Semantics of MetaML
	Chapter Summary

	Refining Semantics for ISWIM: Developing the CEK Machine
	ISWIM
	Explicit ISWIM
	Suspended ISWIM
	Environmental ISWIM - Structural Operational Semantics
	Environmental ISWIM - Reduction Semantics
	Environmental ISWIM - CEK Abstract Machine
	Chapter Summary

	Refining Semantics for MetaML: Developing the MK Machine
	MetaML - Substitutional Reduction Semantics
	MetaML - MK Abstract Machine
	Chapter Summary

	Refining Semantics for MetaML: Developing the MEK Machine
	MetaML
	Explicit MetaML
	Suspended MetaML
	Environmental MetaML - Structural Operational Semantics
	Environmental MetaML - Reduction Semantics
	Environmental MetaML - Abstract Machine (MEK Machine)
	Chapter Summary

	Proof Methodology and Related Work
	Proof Methodology
	Related Work

	Conclusion
	Conclusion
	Limitations and Future Work

	Bibliography
	Proofs of Chapter 2
	Equivalence of Substitutional Natural Semantics and Substitutional Structural Operational Semantics of MetaML

	Proofs of Chapter 3
	Equivalence of ISWIM and Explicit ISWIM
	Equivalence of ISWIM and Suspended ISWIM
	Equivalence of ISWIM and Environmental ISWIM
	Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental ISWIM
	Equivalence of Reduction Semantics and Abstract Machine (CEK Machine) of Environmental ISWIM

	Proofs of Chapter 4
	Equivalence of Substitutional Structural Operational Semantics and Substitutional Reduction Semantics of MetaML
	Equivalence of Substitutional Reduction Semantics and Substitutional Abstract Machine (MK Machine) of MetaML

	Proofs of Chapter 5
	Equivalence of MetaML and Explicit MetaML
	Equivalence of MetaML and Suspended MetaML
	Equivalence of MetaML and Environmental MetaML
	Equivalence of Structural Operational Semantics and Reduction Semantics of Environmental MetaML
	Equivalence of Reduction Semantics and Abstract Machine (MEK Machine) of Environmental MetaML

