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Abstract

Multi-stage programming is a programming paradigm that supports runtime code generation and execution.

Though researchers have extended several mainstream programming languages to support it, multi-stage

programming has not been widely recognised or used. The popularisation of multi-stage programming has

been impeded by the lack of development aids such as code refactoring and optimisation, for which the

culprit is the lack of static analysis support.

Van Horn and Might proposed a general-purpose approach to systematically developing static analyses

for a programming language by applying transformations to its formal semantics, an approach we believe is

applicable to multi-stage programming. The approach requires that the initial semantics be specified as an

environmental abstract machine that records the change of control strings, environments and continuations

as a program evaluates. Developing an environmental abstract machine for a multi-stage language is not

straightforward and has not been done so far in the literature.

In the thesis, we study multi-stage programming through a functional language, MetaML. The main

research problem of the thesis is:

Can we refine the pre-existing substitutional natural semantics of MetaML to a correspond-
ing environmental abstract machine and demonstrate their equivalence?

We first develop a substitutional structural operational semantics for MetaML. Then we simplify the re-

search problem along two dimensions—each dimension leads to a less complicated semantics refinement

problem. The first dimension is to refine semantics for a single-stage language rather than a multi-stage

language: we stepwise develop an environmental abstract machine, the CEK machine, for a single-stage

language, ISWIM, based on its substitutional structural operational semantics. The second dimension is

to derive a substitutional abstract machine rather than an environmental abstract machine: we stepwise de-

velop a substitutional abstract machine, the MK machine, for the multi-stage language MetaML, based on its

substitutional structural operational semantics. Finally, utilising the experience of refining semantics along

two dimensions, we stepwise develop an environmental abstract machine, the MEK machine, for MetaML,

based on its substitutional structural operational semantics. Furthermore, we introduce three proof tech-

niques which are used throughout the thesis to prove the equivalence of semantics.
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Chapter 1

Introduction

To motivate the idea of multi-stage programming, we first demonstrate why general-purpose solutions to

programming problems can be easier to implement and more reusable, but run more slowly than special-

purpose solutions. We then discuss how a special-purpose program can be derived from a general-purpose

program. Multi-stage programming exploits this possibility, allowing programmers to systematically trans-

form a general-purpose program into a special-purpose program generator.

1.1 General-purpose and Special-purpose Programming

Consider the problem of computing a positive integer raised to a non-negative integer. Here are two possible

solutions.1

Example 1. power n x returns the nth power of x.

power n x

| n == 0 = 1

| otherwise = x * (power (n - 1) x)

Example 2. power0 x returns the 0th power of x, power1 x returns the 1st power of x, power2 x returns

2nd power of x, and so on.

power0 x = 1

power1 x = x

power2 x = x * x

power3 x = x * x * x

......

power2016 x = x ∗ x ∗ ...∗ x︸ ︷︷ ︸
2016 x's......

As illustrated above, one may abstract the problem into a general problem that computes a positive

integer raised to any non-negative integer. We call the power function a general-purpose program (or

solution).

In contrast, one may split the problem into multiple special problems each of which computes a posit-

ive integer raised to a fixed non-negative integer. We call the functions power0, power1, power2, ...,

power2016, ... special-purpose programs (or solutions).

1The code is presented in a Haskell-like syntax style.
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1.2. Specialising a General-purpose Program

For example, to compute the 2016th power of natural numbers [1..100], we can utilise either the

general-purpose solution, the power function:

map (power 2016) [1..100]

or the special-purpose solution, the power2016 function:

map power2016 [1..100]

As expected, they both produce the same correct result.

Now compare the performance of the general-purpose solution and the special purpose solution.

• Provided that most programmers have knowledge of branching and recursion, the general-purpose

program power is easier to be implemented than the special-purpose program power2016 because

the former requires writing less code than the latter.

• The general-purpose program power is more reusable than the special-purpose program power2016

because the power function is much more adaptable to similar computational tasks than the power2016

function.

• The general-purpose program power runs more slowly than the special-purpose program power2016.

For example, evaluating the power function with arguments 2016 and 100 involves 2016 recurs-

ive calls of the power function before getting the multiplication 100∗100∗ ...∗100︸ ︷︷ ︸
2016 100’s

∗1. In contrast,

executing the special-purpose program power2016 with argument 100 immediately computes the

multiplication 100∗100∗ ...∗100︸ ︷︷ ︸
2016 100’s

without having any recursive calls or branching on an argument.

A special-purpose program does not always run faster than a corresponding general-purpose program.

In an extreme case, if the special-purpose program has an extremely large amount of code, it consumes

a significant amount of time and space to load the code, in which case code explosion may cause the

special-purpose program to have a higher execution cost.

The above presents a representative result of comparing a general-purpose program and a special-purpose

program that solve the same problem. In most cases, a general-purpose program is easier to implement and

more reusable, but less efficient than its special-purpose counterpart.

1.2 Specialising a General-purpose Program

Given a general-purpose program, we may predict the definite results of some of the ensuing computations.

We can replace these computations with their anticipated values, which yields a special-purpose program.

We call this process the specialisation of a general-purpose program. The program generated through spe-

cialisation inherits the advantage of running fast from ordinary special-purpose programs and avoids code

explosion whenever possible.

2



1.3. Multi-stage Programming

Specialisation is a well-known technique in high-performance programming. For example, popular

domain-specific languages for graphics programming such as OpenGL allows writing a general-purpose

program does not reply on a particular underlying GPU architecture. A compiler completes the job of

specialising a general-purpose program to a special program that is tailored to a specific GPU.

As an illustration, consider the problem of specialising the general-purpose power function, if there is

a priori information that we will frequently compute the 2016th power of any given positive integer. We go

through two steps:

1. We define:

power2016' = \x -> (power 2016 x)

2. We unfold the body of the power2016' function so that the function \x -> (power 2016 x) be-

comes

\x -> x∗x∗ ...∗x︸ ︷︷ ︸
2016 x’s

∗1

which eliminates the relatively high runtime overhead associated with the power function that is

mainly caused by repeated recursive calls.

We make two assumptions in order to be able to unfold the body of the power2016' function. The first

assumption is that we can evaluate the body of a function at our convenience. This allows us to go inside a

function and evaluate its body at the time that the function is defined. Under this assumption, when we define

the function power2016', we can evaluate the body power 2016 x of the function \x -> (power 2016

x). The second assumption is that we can evaluate a function with partially known parameters, which is

known as partial evaluation [JGS93]. Although the second parameter x of the power function is unknown,

we can evaluate the partial application power 2016 x based on its first argument 2016. Then power 2016

x is unfolded to the expression x∗x∗ ...∗x︸ ︷︷ ︸
2016 x’s

∗1. As a result under these two assumptions, the function \x ->

(power 2016 x) evaluates to \x -> x∗x∗ ...∗x︸ ︷︷ ︸
2016 x’s

∗1.

As a matter of fact, the essence of these two assumptions is to let programmers customise the order in

which the terms of a program are evaluated. This capability constitutes the foundation for the programming

paradigm of our interest, multi-stage programming (MSP) [TS97, Tah99a, She01, Tah04].

1.3 Multi-stage Programming

Multi-stage programming is a programming paradigm that supports runtime code generation and execution

[Tah04]. Multi-stage programming supports meta-programming in the sense that a multi-stage program can

be executed within a multi-stage program. A multi-stage language serves as both a meta-language and an

object language.

3



1.4. Static Analysis of Multi-stage Programs

Multi-stage programming also supports program specialisation [JGS93]. One can start programming

with a general-purpose program and then specialise it based on the a priori information about partial inputs

of the program. A well-written multi-stage solution to a programming problem is easier to implement and

maintain, more reusable and reliable than a special-purpose solution, and runs faster than a general-purpose

solution.

Multi-stage programming lets programmers control the order in which the terms of a program are eval-

uated in order to optimise the time and space resources consumed by evaluating the program [She98]. One

can start programming with a conventional single-stage program and then specify the evaluation order of its

terms with staging annotations to make the program multi-stage.

There have been developed several multi-stage programming languages and language extensions such

as MetaML [TS97], MetaOCaml [Tah04], MetaHaskell [Mai12] and Mint [WRI+09]. We intensively study

MetaML, a functional multi-stage language that extends ML, in the thesis.

To demonstrate what how a multi-stage program differs from its single-stage counterpart, we annotate

the single-stage power and powerN functions with three staging annotations supported by MetaML: code,

splice and run. Code, denoted by 〈 and 〉, are for delaying a computation. Splice, denoted by ∼, is for

combining delayed computations. Run, denoted by !, is for running a delayed computation.

Example 3. The multi-stage power' and powerN' functions are the single-stage power and powerN func-

tions with staging annotations.

power' n x

| n == 0 = 〈1〉
| otherwise = 〈∼x * ∼(power' (n - 1) x)〉
powerN' n = 〈\x -> ∼(power' n 〈x〉)〉

For example, to compute the 2016th power of 1, 2, ..., 100, we evaluate following two-stage program:

map !(powerN' 2016) [1..100]

At the first stage, !(powerN' 2016) evaluates to the function \x -> x∗x∗ ...∗x︸ ︷︷ ︸
2016 x’s

∗1. At the second stage,

the program proceeds as:

map (\x -> x∗x∗ ...∗x︸ ︷︷ ︸
2016 x's

∗1) [1..100]

The recursive calls to the power' function all happen intensively at the first stage when the run operation

!(powerN' 2016) evaluates. They never happen again at the second stage.

We analyse this example in detail in the next chapter (Chapter 2).

1.4 Static Analysis of Multi-stage Programs

Although researchers have extended many mainstream programming languages to support multi-stage pro-

gramming, multi-stage programming as a programming paradigm has not been widely recognised or used.

4



1.5. Refining Semantics

The popularisation of multi-stage programming has been impeded by the lack of development aids such as

code refactoring and optimisation, for which the culprit is the lack of static analysis support. Our ultimate

goal is to design a sound and decidable static analysis for a multi-stage programming language.

Recently, [VHM12] proposed a general-purpose approach to systematically developing static analyses

for a programming language by applying transformations to its formal semantics. The approach requires

that the initial semantics be specified as an environmental abstract machine that records the change of con-

trol strings, environments and continuations as a program evaluates. The transformations involve using a

traditional store to collect execution information and associate it with the source program. After a num-

ber of transformations, the machine can be abstracted through its address allocation strategy. With this

primary point of abstraction, we get a sound and decidable control flow analysis, where the preciseness of

the analysis is determined by the chosen structure of the addresses used by the address allocator.

To apply the framework to multi-stage programming, we shall develop an environmental abstract ma-

chine for a multi-stage programming language. The abstract machine must be environmental because it uses

environments to archive variable bindings, allowing us to trace the function calls in its history.

1.5 Refining Semantics

Developing an environmental abstract machine for a multi-stage programming language based on a pre-

existing semantics is essentially a semantics refinement problem. A stepwise refinement process may pro-

duce several intermediate semantics before deriving the destination semantics. We briefly introduce four

operational semantics that are usually used in solving a refinement problem.

1.5.1 Operational Semantics

To model the runtime behaviour of programs in a language, we can build an operational semantics for the

language. Operational semantics include big-step semantics and small-step semantics.

• Big-step semantics is also known as natural semantics [Kah87]. It describes how the overall compu-

tation of a program takes place.

For example, in a big-step semantics, the program power 2016 100 big-steps to 1002016.

• Small-step semantics include structural operational semantics [Plo81], reduction semantics [FH92]

and abstract machine semantics [Lan64], ordered from the least practical to the most practical imple-

mentation strategies, all of which define how a single step of computation of a program takes place.

– Structural operational semantics defines how a program computes with respect to the terms of

the program in a syntax-oriented and inductive way.

– Reduction semantics defines where a reduction may happen and what reduction may happen but

does not provide a deterministic strategy for finding a place to perform reduction.

– Abstract machine semantics refines reduction semantics in the sense that it provides a determin-

istic strategy for finding a place to perform reduction.
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For example, in a small-step semantics, the program power 2016 100 small-steps to 100 * (power

2015 100).

We differentiate a substitutional operational semantics from an environmental operational semantics.

• An operational semantics is substitutional if a function call is performed by substituting the function’s

parameters by arguments where substitutions may be modelled implicitly in the meta-language or

explicitly [Ros96] as several steps of computation.

For example, calling the function \x -> x + 1 with the argument x = 1 results in 1 + 1. Then just

looking at 1 + 1 itself does not tell whether a function call has been performed.

• An operational semantics is environmental if it uses an environment to keep track of variable bindings

so that a function call is performed by updating the function’s parameters in the environment to the

function’s arguments.

For example, calling the function \x -> x + 1 with the argument x = 1 results in x + 1 together

with a variable binding that x = 1. Then just looking at x + 1 together with the variable binding that

x = 1 implies that a function call with the argument x = 1 has been performed.

1.5.2 Refining Semantics

Having what an operational semantics is in mind, we now consider how to develop an environmental abstract

machine for a multi-stage programming language.

Main Semantics Refinement Problem. The multi-stage programming language that we study in the thesis

is MetaML. We take the pre-existing substitutional natural semantics defined in [Tah99a] as our reference se-

mantics for MetaML. The main research problem of the thesis which we call the main semantics refinement

problem is:

Can we refine the pre-existing substitutional natural semantics of MetaML to a corresponding

environmental abstract machine and demonstrate their equivalence?

As an environmental abstract machine is a small-step operational semantics, its development is more natural

and convenient to start from a structural operational semantics than a natural semantics. Thus the very

first step to take is to derive a substitutional structural operational semantics for MetaML and show its

equivalence with respect to the substitutional natural semantics. We illustrate this step in Table 1.1 and

discuss it in detail in Chapter 2.

Developing an environmental abstract machine for MetaML is not straightforward and has not been done

so far in the literature. We first attempt the main semantics refinement problem along two dimensions—each

dimension leads to a less complicated semantics refinement problem.
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Stepwise Developing the CEK Machine for ISWIM. Following the first dimension of simplifying the

main semantics refinement problem, we study how to stepwise develop an environmental abstract machine

for a single-stage language ISWIM [Lan66] rather than the multi-stage language MetaML. The problem is

described as follows.

Can we refine the substitutional structural operational semantics of ISWIM to a corresponding

environmental abstract machine, which is known as the CEK machine [FF86], and demonstrate

their equivalence?

We solve the above problem step by step as follows (see Table 1.1 for a summary).

1. ISWIM: Substitutions are defined in the meta-language level. Any instance of substitution in program

immediately replaces every relevant variable as part of a single step of computation. We call this

"inexplicit" in contrast to explicit substitutions, which we discuss next.

We take the (inexplicitly) substitutional structural operational semantics of ISWIM as the starting

point of solving the refinement problem for ISWIM.

2. Explicit ISWIM: Substitutions are defined as explicit object-language constructs. An instance of

substitution replaces every relevant variable step by step by percolating explicit substitutions as several

steps of computation. This provides a manageable step on the way to developing an environmental

semantics.

3. Suspended ISWIM: Substitutions are modelled explicitly as in Explicit ISWIM and are suspended

outside of a lambda abstraction until an application is performed. This step turns the semantics more

environmental and makes the proofs of semantics equivalence tractable.

4. Environmental ISWIM: Environmental ISWIM turns explicit substitutions to environments.

Environmental ISWIM is first derived as a structural operational semantics. We then systematically

transform the semantics from structural operational semantics to reduction semantics and finally to an

abstract machine. The abstract machine is also known as the CEK machine.

The stepwise development of CEK machine for ISWIM is discussed in detail in Chapter 3.

Stepwise Developing the MK Machine for MetaML. Following the second dimension of simplifying

the main semantics refinement problem, we study how to stepwise develop a substitutional abstract ma-

chine rather than an environmental abstract machine for the multi-stage language MetaML. The problem is

described as follows.

Can we refine the substitutional structural operational semantics of MetaML to a corresponding

substitutional abstract machine, which we call the MK machine, and demonstrate their equival-

ence?
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As summarised in Table 1.2, starting from the substitutional structural operational semantics of MetaML,

we first derive a substitutional reduction semantics and then a substitutional abstract machine, which we call

the MK machine. The stepwise development of MK machine for MetaML is discussed in detail in Chapter

4.

Stepwise Developing the MEK Machine for MetaML. Utilising the experience of refining semantics

along two dimensions, we eventually study how to stepwise develop an environmental abstract machine for

the multi-stage language MetaML. The problem is described as follows.

Can we refine the substitutional structural operational semantics of MetaML to a correspond-

ing environmental abstract machine, which we call the MEK machine, and demonstrate their

equivalence?

We attempt the above problem step by step as follows (see Table 1.3 for a summary).

1. MetaML: Substitutions are modelled inexplicitly, analogously to ISWIM.

We take the (inexplicitly) substitutional structural operational semantics of MetaML as the starting

point of refinement.

2. Explicit MetaML: Substitutions are modelled explicitly, analogously to Explicit ISWIM. This provides

a manageable step on the way to developing an environmental semantics.

3. Suspended MetaML: Substitutions are modelled explicitly, analogously to Suspended ISWIM. This

step turns the semantics more environmental and makes the proofs of semantics equivalence tractable.

4. Environmental MetaML: Environmental MetaML turns explicit substitutions to environments.

Environmental MetaML is first derived as a structural operational semantics. We then systematically

transform the semantics from structural operational semantics to reduction semantics and finally to an

abstract machine. We call the abstract machine the MEK machine.

The stepwise development of MEK machine for MetaML is discussed in detail in Chapter 5.

Proving Equivalence of Semantics. We introduce and use throughout the thesis three proof techniques

to prove the equivalence of two structural operational semantics, the equivalence of a structural operational

semantics and a reduction semantics, and the equivalence of a reduction semantics and an abstract machine.

We summarise the proof methodology in detail in Chapter 6.
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No. Language Semantics Substitutional or Environmental Section
1 ISWIM Structural Operational Semantics (Inexplicitly) Substitutional 3.1
2 Explicit ISWIM Structural Operational Semantics Explicitly Substitutional 3.2
3 Suspended ISWIM Structural Operational Semantics Explicitly Substitutional 3.3
4 Environmental ISWIM Structural Operational Semantics Environmental 3.4
5 Environmental ISWIM Reduction Semantics Environmental 3.5
6 Environmental ISWIM CEK Abstract Machine Environmental 3.6

Table 1.1: Summary of semantics used to refine ISWIM’s substitutional structural operational semantics to
the CEK abstract machine.

No. Language Semantics Substitutional or Environmental Section
1 MetaML Structural Operational Semantics (Inexplicitly) Substitutional 2.2
2 MetaML Reduction Semantics (Inexplicitly) Substitutional 4.1
3 MetaML MK Abstract Machine (Inexplicitly) Substitutional 4.2

Table 1.2: Summary of semantics used to refine MetaML’s substitutional structural operational semantics to
the MK abstract machine.

No. Language Semantics Substitutional or Environmental Section
1 MetaML Natural Semantics (Inexplicitly) Substitutional 2.2
2 MetaML Structural Operational Semantics (Inexplicitly) Substitutional 2.2, 5.1
3 Explicit MetaML Structural Operational Semantics Explicitly Substitutional 5.2
4 Suspended MetaML Structural Operational Semantics Explicitly Substitutional 5.3
5 Environmental MetaML Structural Operational Semantics Environmental 5.4
6 Environmental MetaML Reduction Semantics Environmental 5.5
7 Environmental MetaML MEK Abstract Machine Environmental 5.6

Table 1.3: Summary of semantics used to solve the main semantics refinement problem.
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Chapter 2

Formal Semantics of MetaML

This chapter introduces multi-stage programming and the formal semantics of MetaML. We first introduce

the three staging annotations of MetaML and informally discuss how a multi-stage program evaluates using

examples. Then we study the pre-existing substitutional natural semantics of MetaML [Tah99a] and present

our newly developed substitutional structural operational semantics for MetaML. We finally demonstrate

that the substitutional natural semantics and the substitutional structural operational semantics are equival-

ent.

The definitions in Section 2.1 are based on [She98, TS97]. The substitutional natural semantics of

MetaML in Section 2.2 is based on [Tah99a].

2.1 Staging Annotations

MetaML uses staging annotations to explicitly control the evaluation order of terms of a program. Staging

annotations include the code operator, the run operator and the splice operator.

Code Operation. A code operation, consisting of (1) the code operator “〈” “〉” and (2) an operand,

indicates delaying computing the operand. If a code operation evaluates to itself, it is a code value.

Example 4. 3 + 7 evaluates to 10. The code operation 〈3 + 7〉 evaluates to itself because of delaying

computing its operand 3 + 7. Hence the code operation 〈3 + 7〉 is is also a code value.

Run Operation. A Run operation, consisting of (1) the run operator ! and (2) an operand, indicates

executing the delayed computation of the operand. A run operation expects its operand to reduce to a code

operation. A run operation eliminates the code brackets from the result of evaluating its operand.

Example 5. !〈3 + 7〉 evaluates to 10. Its step-by-step reduction is as follows.

1 !〈3 + 7〉
The run operator executes the delayed computation of the operand, 3 + 7.

2 3 + 7

The addition operation 3 + 7 evaluates to 10.

3 10

The natural number 10 is irreducible.
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Splice Operation. An splice operation, consisting of (1) the splice operator “∼” and (2) an operand,

indicates splicing the delayed computation produced by evaluating the operand into the current context. A

splice operation may only appear in a delayed computation, i.e., under code brackets. Only a splice operation

can be reduced under code brackets. A splice operation expects its operand to reduce to a code value. A

splice operation eliminates the code brackets from the result of evaluating its operand.

Example 6. 〈 ∼〈3 + 7〉 * ∼〈3 + 7〉 〉 evaluates to 〈 (3 + 7) * (3 + 7) 〉. Its step-by-step reduc-

tion is as follows.

1 〈 ∼〈3 + 7〉 * ∼〈3 + 7〉 〉
The first escape operator splices the delayed computation of the operand, 3 + 7, into the context

surrounded by code brackets.

2 〈 (3 + 7) * ∼〈3 + 7〉 〉
The second escape operator splices the delayed computation of the operand, 3 + 7, into the context

surrounded by code brackets.

3 〈 (3 + 7) * (3 + 7) 〉
The code operation 〈 (3 + 7) * (3 + 7) 〉 is irreducible.

Level of a Term. To explicitly regulate under what circumstances the run operation eliminates code and

the splice operation combines code, we introduce the concept of levels. The level of a term is the difference

of the number of surrounding brackets and the number of surrounding escapes.

Example 7. (1) 3 in 〈3 + 7〉 is at level 1.

(2) The first 3 in 〈 ∼〈3 + 7〉 * ∼〈3 + 7〉 〉 is at level 2−1 = 1.

(3) The first 3 in 〈 (3 + 7) * (3 + 7) 〉 is at level 1.

(4) 3 in !〈3 + 7〉 is at level 1.

(5) The function \x -> x in !〈 ∼〈3 + 7〉 * ∼((\x -> x) 〈3 + 7〉) 〉 is at level 1−1 = 0.

Roughly speaking, a splice operation ...∼〈t〉... reduces to ...t... only if ∼〈t〉 is at level 1, and a run

operation ...!〈t〉... reduces to ...t... only if !〈t〉 is at level 0, where t is an arbitrarily legal term. Level 0

corresponds to single-stage programming. An function call or an addition only reduces at level 0. For

example, 3 + 7 reduces to 10 at level 0 and is irreducible at other levels.

Example 8. !〈 ∼〈3 + 7〉 * ∼((\x -> x) 〈3 + 7〉) 〉 evaluates to 100. Its step-by-step reduction is as

follows. The reducible term of each step is underlined.

1 !〈
:::
∼〈3

:::
+

:::
7〉 * ∼((\x -> x) 〈3 + 7〉) 〉

In the splice operation∼〈3 + 7〉, the delayed computation of the operand 3 + 7 is spliced into the

context.

2 !〈 (3 + 7) * ∼(
:::
(\x

::::
->

:::
x)

:::
〈3

::
+
:::::
7〉) 〉

The application (\x -> x) 〈3 + 7〉 reduces to 〈3 + 7〉.
3 !〈 (3 + 7) *

::::
∼〈3

::
+
:::
7〉 〉

In the splice operation∼〈3 + 7〉, the delayed computation of the operand 3 + 7 is spliced into the

context.
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4
::
!〈

:::
(3

::
+
::::
7)

::
*

:::
(3

:::
+

:::
7)

::
〉
:

The run operator executes the delayed computation of the operand (3 + 7) * (3 + 7).

5
::
(3

::
+
::::
7) * (3 + 7)

The first operand of the multiplication operation 3 + 7 reduces to 10.

6 10 *
:::
(3

::
+

:::
7)

The second operand of the multiplication operation 3 + 7 reduces to 10.

7
::
10

::
*
::::
10

The multiplication operation 10 * 10 reduces to 100.

8 100

The natural number 100 irreducible.

The code operation introduces a code value, the run operation eliminates a code value, and the splice

operation combines code values. Taking the above evaluation as an example, in the first step, the outermost

code operation generates a code value in which two inner code operations introduce two smaller code values.

In the third step, the splice operation combines code values. In the fourth step, the run operation executes a

code value.

Evaluating a Multi-stage Program. A multi-stage program can be constructed from a conventional

single-stage program by manually adding staging annotations [TS97]. We demonstrate how a multi-stage

program evaluates through Example 3 from Chapter 1, which is re-described below as Example 9.

Example 9. The multi-stage power' and powerN' functions are the single-stage power and powerN func-

tions with staging annotations.

power' n x

| n == 0 = 〈1〉
| otherwise = 〈∼x * ∼(power' (n - 1) x)〉
powerN' n = 〈\x -> ∼(power' n 〈x〉)〉

The power' function is a special-purpose program generator. When the parameter n of the powerN'

function is known, !(powerN n) generates a special-purpose program that computes its parameter raised to

n. For example, to compute the 4th power of an integer, !(powerN' 4) eventually reduces to \x -> (x *

x * x * x * 1). Its step-by-step reduction is as follows. The reducible term of each step is underlined.

1 !(
::::::::
powerN'

::
4)

2 !〈 \x -> ∼(
:::::::
power'

::
4
::::
〈x〉) 〉

3 !〈 \x -> ∼(〈
:::::
∼〈x〉 * ∼(power' 3 〈x〉) 〉) 〉

4 !〈 \x -> ∼(〈 x * ∼(
::::::
power'

:::
3

::::
〈x〉) 〉) 〉

5 !〈 \x -> ∼(〈 x * ∼(〈
::::
∼〈x〉 * ∼(power' 2 〈x〉) 〉) 〉) 〉

6 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(
:::::::
power'

::
2
::::
〈x〉) 〉) 〉) 〉

7 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(〈
::::
∼〈x〉 * ∼(power' 1 〈x〉) 〉) 〉) 〉) 〉

8 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(〈 x * ∼(
:::::::
power'

::
1
::::
〈x〉) 〉) 〉) 〉) 〉
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9 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(〈 x * ∼(〈
:::::
∼〈x〉 * ∼(power' 0 〈x〉) 〉) 〉) 〉) 〉) 〉

10 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(〈 x * ∼(〈 x * ∼(
::::::
power'

:::
0

::::
〈x〉) 〉) 〉) 〉) 〉) 〉

11 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(〈 x * ∼(〈 x *
:::::::
∼(〈1〉) 〉) 〉) 〉) 〉) 〉

12 !〈 \x -> ∼(〈 x * ∼(〈 x * ∼(〈 x *
::::
∼(〈

::
x
:::
*

::::
1〉) 〉) 〉) 〉) 〉

13 !〈 \x -> ∼(〈 x * ∼(〈 x *
::::
∼(〈

::
x
::
*
:::
x

::
*

::
1
:::
〉) 〉) 〉) 〉

14 !〈 \x -> ∼(〈 x *
:::
∼(〈

:::
x

::
*

::
x
::
*
:::
x

::
*
::
1
:::
〉) 〉) 〉

15 !〈 \x ->
::::
∼(〈

::
x
:::
*

::
x

::
*
::
x
:::
*

::
x

::
*
::
1
::::
〉) 〉

16
::
!〈

::::
\x

:::
->

::::
(x

::
*

::
x
::
*
:::
x

::
*
::
x
::
*
::::
1)

::
〉
:

17 \x -> (x * x * x * x * 1)

We make a few observations from the example above. (1) A run operation expects its operand to reduce to a

code operation, as illustrated by Steps 1 to 16. (2) A splice operation expects its operand to reduce to a code

operation, as illustrated by Steps 2 to 15, Steps 4 to 14, Steps 6 to 13, Steps 8 to 12 and Steps 10 to 11. (3)

A run operation eliminates the code brackets of its operand only if the operand is irreducible, as illustrated

by Steps 1 to 16. (4) A splice operation eliminates the code brackets of its operand only if the operand is

irreducible, as illustrated by Steps 2 to 15, Steps 4 to 14, Steps 6 to 13, Steps 8 to 12 and Steps 10 to 11.

Informal Reasoning is Insufficient. Our explanation about how a multi-stage program evaluates is

informal. One may ask: what computation can be performed in the operand of a code operation, a splice

operation or a run operation? When can the body of a function be evaluated? Is our evaluation strategy

deterministic? How do we implement our evaluation strategy?

Furthermore, it is tedious and error-prone to evaluate unintuitive programs such as

!〈λy.∼ ((λx.〈x〉)(λx.〈y〉))0〉5, which was introduced in [Tah99a], through informal reasoning as Example

9. To rigorously explain how a multi-stage program evaluates, we need to define a formal semantics.

2.2 Formal Semantics of MetaML

Previously, we have informally discussed how MetaML works as a multi-stage programming language. In

this section, we explain the formal semantics of MetaML: its syntax, substitutional natural semantics and

substitutional structural operational semantics. For the sake of simplicity and convenience, we make two

minor modifications to the formal specifications of MetaML presented in [Tah99a]: we add natural numbers

and addition to the language, and we discard the fixed point operator from the language as a fixed point

operator can be implemented using the Y combinator.

2.2.1 Syntax

We first define the basic syntax of the language: terms, values and denotable terms. Then we present

some properties implied by the definitions. Finally we define the free variable function and the substitution

function.
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2.2.1.1 Terms

We start with two sets: the set of variables, VAR, and the set of natural numbers, N.

Definition 10 (Terms). Let TERM be the set of terms.

x ∈ VAR, n ∈ N, i ∈ N, t ∈ TERM

t ::= x | t t | λx.t | 〈t〉 | ∼t | !t | n | t + t

The definition tells that a term can be (1) a variable, (2) an application in which both the operator and

the operand are terms, (3) a lambda abstraction whose body is a term, (4) a code operation whose operand

is a term, (5) a splice operation whose operand is a term, (6) a run operation whose operand is a term, (7) a

natural number, or (8) an addition operation whose two operands are terms.

Recall that the level of a term is the difference of the number of surrounding brackets and the number

of surrounding escapes. A term cannot occur at the position of an arbitrary level. For example, a splice

operation cannot occur at a level-0 position because it must be in some code operation. We use levels as

indexes to finely distinguish subclasses of terms.

Definition 11 (Level-indexed Terms). Let TERMi be the set of terms at level i.

x ∈ TERMi

t1 ∈ TERMi t2 ∈ TERMi

t1 t2 ∈ TERMi
t ∈ TERMi

λx.t ∈ TERMi
t ∈ TERMi+1

〈t〉 ∈ TERMi
t ∈ TERMi

∼ t ∈ TERMi+1

t ∈ TERMi

!t ∈ TERMi n ∈ TERMi

t1 ∈ TERMi t2 ∈ TERMi

t1 + t2 ∈ TERMi

The definition tells that (1) a variable can be at an arbitrary level, (2) an application can be at the any

level that its operator and operand share, (3) a lambda abstraction can be at any level that its body can, (4)

a code operation can be at any level that is one level lower than its operand, (5) a splice operation can be at

any level that is one level higher than its operand, (6) a run operation is can be at any level that its operand

can, (7) a natural number can be at an arbitrary level, and (8) an addition can be at any level that its two

operands share.

The definition ensures that a splice operation cannot be a term at level 0. A splice combines a delayed

computation into the context surrounded by code brackets. Hence the context of a splice has to be at some

level higher than 0.

We use t i with or without any subscript or any other superscript as a metavariable to range over TERMi.

We continue to use t with or without any subscript or superscript as a metavariable to range over TERM.

We make two observations about terms and level-indexed terms. (1) The sets TERMi contain strictly

more terms as the level i increases. For example, the term ∼x can be at any level higher than 0 and the

term ∼∼x can be at any level higher than 1. Our syntax lets us write code generators that generates code

generators. (2) Every term has at least one level. To make a conventional single-stage program multi-stage,

we can experiment annotating the program with various combinations of staging annotations as long as the

program is at level 0. We formalise our observations as the following propositions.

Proposition 12. For any i ∈ N, TERMi ⊂ TERMi+1.
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Proposition 13. TERM =
⋃

i∈N
TERMi.

2.2.1.2 Values

A value at level i is a term at level i that represents a result of computation at its indicated level. Thus the

definition of values closely relates to the operational semantics of the language.

Definition 14 (Level-indexed Values). Let VALUEi be the set of values at level i.

x ∈ VALUEi+1

t1 ∈ VALUEi+1 t2 ∈ VALUEi+1

t1 t2 ∈ VALUEi+1
λx.t ∈ VALUE0 where t ∈ TERM0

t ∈ VALUEi+1

λx.t ∈ VALUEi+1
t ∈ VALUEi+1

〈t〉 ∈ VALUEi
t ∈ VALUEi+1

∼ t ∈ VALUEi+2
v ∈ VALUEi+1

!v ∈ VALUEi+1 n ∈ VALUEi

t1 ∈ VALUEi+1 t2 ∈ VALUEi+1

t1 + t2 ∈ VALUEi+1

Recall that in the multi-stage language MetaML, level 0 corresponds to single-stage programming, and

levels higher than zero delay some computation. We briefly explain the intuition behind the above definition.

(1) A variable is not a value at level 0, analogous to the fact that a variable is not a result of computation in

single-stage programming. At higher levels, we delay dereferencing a variable, making the variable a value.

(2) As a lambda abstraction is a value in single-stage programming, it is a value at level 0. At higher levels,

it is a value if its body is a value. (3) For an application or an addition, an interesting reduction may only

happen at level 0. At higher levels, it is a value if its immediate substructures are values. (4) For a code

operation 〈t〉, it is a code value if its operand t is irreducible one level up. (5) For a splice operation and a

run operation, an interesting reduction may only happen at level 1 and level 0 respectively. For any higher

level, a splice/run operation is a value if its operand is a value. (6) A natural number is always a value.

We use vi with or without any subscript or any other superscript as a metavariable to range over VALUEi.

Definition 15 (Values). Let VALUE be the set of values.

VALUE =
⋃

i VALUEi where i ∈ N

We use v with or without any subscript or superscript as a metavariable to range over VALUE.

To demonstrate the relationship between terms and values, we make three observations. (1) There is a

one-to-one correspondence between the subclasses of terms and the subclasses of values. One the one hand,

a value at some level is a term at the next lower level. This justifies the semantics of run: if we have a level-i

value 〈t〉, then t is a level-(i+1) value but not necessarily a level-i value. Removing the brackets makes t a

level-i term and allows us to reduce t at level i. Although running happens only at level 0, this uniformity

makes it clear that we can reason seamlessly about multi-stage programs at levels higher than 0 and 1 in the

same way that you reason about two-stage programs. One the other hand, a term at some level is a value at

the next higher level. We can always delay a computation by putting a pair of brackets around it. (2) A value

at some level represents a result of computation at that level. Hence a value at some level must be a term at

that level. This corresponds to our intuition and later formalisation of evaluating at a level. (3) Terms and

values are represented by the exact same set of syntactic symbols. More importantly, every term is a value
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at some level. It is always possible to turn a term to a value by putting a finite number of brackets around it.

We list our observations as the following propositions.

Proposition 16. For any i ∈ N, VALUEi+1 = TERMi.

Proposition 17. For any i ∈ N, VALUEi ⊂ TERMi.

Proposition 18. TERM = VALUE.

2.2.1.3 Denotable Terms

The denotable terms are terms that are substituted for variables in the semantics.

Definition 19 (Denotable Terms). Let DENOTABLE be the set of denotable terms.

DENOTABLE = VAR∪VALUE0

There are two circumstances that a variable is substituted. If a variable gets renamed, the variable is

substituted by a variable. If a lambda abstraction is applied to a value at level 0, then the lambda bound

variable is substituted by the value. Hence a variable may refer to a variable or a value at level 0. We use w

with or without any subscript or superscript as a metavariable to range over DENOTABLE.

2.2.1.4 Free Variable Function

We define FV (t) to be the set of all variables that occur free in the term t.

Definition 20 (Free Variable Function). Let the free variable function FV be a total function from the set of

terms to the power set of variables.

FV : TERM→P(VAR)

FV (x) = x (1)

FV (t1 t2) = FV (t1)∪FV (t2) (2)

FV (λx.t) = FV (t)\{x} (3)

FV (〈t〉) = FV (t) (4)

FV (!t) = FV (t) (5)

FV (∼t) = FV (t) (6)

FV (n) = /0 (7)

FV (t1 + t2) = FV (t1)∪FV (t2) (8)

Example 21. FV (λx.(x+y)) = FV (x+y)\{x}= (FV (x)∪FV (y))\{x}= ({x}∪{y})\{x}= {x,y}\{x}=
{y}.

Example 22. FV ((λx.x) x) = FV (λx.x)∪FV (x) = (FV (x)\{x})∪{x}= ({x}\{x})∪{x}= /0∪{x}= {x}.

Definition 23 (Closed Terms). A term t is closed if and only if FV (t) = /0.
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2.2.1.5 Substitution Function

We define t[w/x] to be the result of substituting the denotable term w for each free occurrence of the variable

x in the term t.

Definition 24 (Substitution Function). Let the substitution function ·[·/·] be a total function from the 3-tuple

of the set of terms, the set of denotable terms and the set of variables, to the set of terms.

·[·/·] : (TERM×DENOTABLE×VAR)→ TERM

x[w/x] = w (1)

x1[w/x2] = x1 where x1 6≡ x2 (2)

(t1 t2)[w/x] = (t1[w/x]) (t2[w/x]) (3)

(λx1.t0)[w/x2] = λx3.t0[x3/x1][w/x2]

where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (4)

〈t0〉[w/x] = 〈t0[w/x]〉 (5)

(!t0)[w/x] = !t0[w/x] (6)

(∼t0)[w/x] = ∼t0[w/x] (7)

n[w/x] = n (8)

(t1 + t2)[w/x] = (t1[w/x])+(t2[w/x]) (9)

Equation (4) could be replaced by the following two rules:

(λx1.t0)[w/x2] = λx1.t0 where x1 ≡ x2 (4-1)

(λx1.t0)[w/x2] = λx3.t0[x3/x1][w/x2] where x1 6≡ x2 and x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (4-2)

The above two rules do not rename a lambda bound variable when it does not have to. For example, by (4)

we have:

(λx1.x1)[x1/x1] = λx2.x1[x2/x1][x1/x1] = λx2.x2 where x1 6≡ x2

In contrast, by (4-1), we have:

(λx1.x1)[x1/x1] = λx1.x1

For the sake of proof simplicity, we do not replace (4) by (4-1) and (4-2). It can be proved that these two

forms always produce alpha equivalent results. Definition 130 defines the alpha equivalence relation.

Strictly speaking, the definition itself does not define a function. In (4), x3 can be an arbitrary variable

as long as x3 /∈ FV (λx1.t0)∪FV (w)∪{x2}. The definition indeed defines a relation rather than a function.

To make what we have defined become a real function, we can impose a total order on variables, i.e., VAR

is a total order. In (4), let x3 be the least element from VAR such that x3 /∈ FV (λx1.t0)∪FV (w)∪{x2}. As

a result, ·[·/·] truly becomes a function. However, this approach makes the later proofs overcomplicated.

Alternatively, we can equate all terms that only differ in the names of their lambda bound variables,

i.e., we equal all α-equivalent terms. Then, a term is a representative of its α-equivalent class. Recall that

the destination semantics of the main semantics refinement problem is an abstract machine, which is close
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to a practical implementation. We do not use this approach because meta-linguistic equivalence classes of

variables do not map well to a concrete implementation.

At this moment, we are not concerned with how a fresh variable is chosen so we call ·[·/·] the substitution

function.

Example 25. Let x 6≡ y. Then (λx.x+ y)[x/y] = λ z.(x+ y)[z/x][x/y] = λ z.(x[z/x]+ y[z/x])[x/y] = λ z.(z+

y)[x/y] = λ z.(z[x/y]+ y[x/y]) = λ z.z+ x where z 6≡ y.

2.2.2 Substitutional Natural Semantics

We lay out the substitutional natural semantics through a family of level-indexed big-step relations.

Definition 26 (Level-indexed Big-step Relations). For any i ∈ N, define the level-indexed big-step relation

⇓i be a binary relation between the set of terms at level i and the set of values at level i.

⇓i⊆ TERMi×VALUEi

λx.t0 ⇓0 λx.t0 (lambda-0)
t i+1
1 ⇓i+1 vi+1

2

λx.t i+1
1 ⇓i+1 λx.vi+1

2

(lambda-(i+1))

t0
1 ⇓0 λx.t0

11 t0
2 ⇓0 v0

2 t0
11[v

0
2/x] ⇓0 v0

t0
1 t0

2 ⇓0 v0
(app-0)

t i+1
1 ⇓i+1 vi+1

1 t i+1
2 ⇓i+1 vi+1

2

t i+1
1 t i+1

2 ⇓i+1 vi+1
1 vi+1

2

(app-(i+1))

t0
1 ⇓0 〈v1

1〉 v1
1 ⇓0 v0

2

!t0
1 ⇓0 v0

2
(run-0)

t i+1 ⇓i+1 vi+1

!t i+1 ⇓i+1!vi+1 (run-(i+1))

t i+1 ⇓i+1 vi+1

〈t i+1〉 ⇓i 〈vi+1〉
(code-i)

No (splice-0)

t0 ⇓0 〈v1〉
∼t0 ⇓1 v1

(splice-1)
t i+1 ⇓i+1 vi+1

∼t i+1 ⇓i+2 ∼vi+1
(splice-(i+2))

No (ref-0) x ⇓i+1 x
(ref-(i+1))

n ⇓i n
(num-i)

t0
1 ⇓0 n1 t0

2 ⇓0 n2

t0
1 + t0

2 ⇓0 n
where n = n1 +n2 (plus-0)

t i+1
1 ⇓i+1 vi+1

1 t i+1
2 ⇓i+1 vi+1

2

t i+1
1 + t i+1

2 ⇓i+1 vi+1
1 + vi+1

2

(plus-(i+1))

The big-step relation t i
1 ⇓i vi

2 reads as “t1 big-steps to v2 at level i”, meaning that the value v2 is the result

of computing the term t1 at level i.

Recall that a term can be a variable x, an application t1 t2, a lambda abstraction λx.t, a code operation

〈t〉, a splice operation∼t, a run operation !t, a natural number n and an addition operation t1+t2. We explain

how an arbitrary term gets evaluated by the above relation.
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Given a variable x, we may use the (ref-(i+1)) depending on its level. (1) If the variable x is at level 0,

we get stuck because there is no (ref-0) rule. (2) If the variable is at level i+ 1, the variable evaluates to

itself as it is a value at level i+1.

Given an application t1 t2, we may evaluate it using the (app-0) rule or the (app-(i+1)) rule depending

on the current level. (1) If the application is at level 0, we first evaluate its operator t1 at level 0 to a lambda

abstraction λx.t11 and evaluate its operand t2 at level 0 to a value v2. Then we substitute every free occurrence

of the variable x in the term t11 by the value v2, denoted by t11[v2/x]. Finally we evaluate t11[v2/x] at level 0

to a value v, which is the final result of evaluating the application t1 t2 at level 0. Evaluating an application

at level 0 is the same as evaluating an application in a single-stage language. (2) If the application is at level

i+1, we evaluate its operator t1 at level i+1 to a value v1 and evaluate its operand t2 at level i+1 to a value

v2. The application v1 v2 is a value at level i+1, which is the result of evaluating the application t1 t2 at level

i+1. We do not perform any application at levels higher than 0.

Given a lambda abstraction λx.t, we may evaluate it using the (lambda-0) rule or the (lambda-(i+1)) rule

depending on its level. (1) If the lambda abstraction is at level 0, then it evaluates to itself as it is a value

at level 0. (2) If the lambda abstraction is at level i+ 1, we evaluate its body t to at level i+ 1 a value v,

corresponding to the intuition that we may evaluate the body of a function at levels higher than 0. Then the

lambda abstraction λx.v is the result of evaluating the lambda abstraction λx.t at level i+1.

Given a code operation 〈t〉 at level i, we may evaluate it using the (code-i) rule. We evaluate the body

of the code operation at level i+1 to a value v. Then bracketing the value gives the result of evaluating the

code operation at level i.

Given a splice operation ∼t, we may evaluate it using the (splice-1) rule or the (splice-(i+2)) rule de-

pending on the current level. (1) If the splice operation is at level 0, we get stuck because there is no

(splice-0) rule. (2) If the splice operation is at level 1, we evaluate its operand at level 0 to a bracketed

value, corresponding to the intuition that a splice operation expects its operand to be a code operation. The

bracketed value is spliced into the context of the splice operation and its the result of evaluating the splice

operation ∼t. (3) If the splice operation is at level i+2, we evaluate its operand t at level i+1 to a value v.

Then the splice operation ∼v is the result of evaluating the splice operation ∼t at level i+2.

Given a run operation !t, we may evaluate it using the (run-0) rule or the (run-(i+1)) rule depending on

the current level. (1) If the run operation is at level 0, we first evaluate its operand at level 0 to a bracketed

value, corresponding to the intuition that a run operation expects its operand to be a code operation. Then

we evaluate the bracketed value at level 0 (rather than level 1), corresponding to the intuition that a run

operation executes a code operation. What this step returns is the result of evaluating the run operation !t at

level 0. (2) If the run operation is at level i+1, we evaluate its operand t at level i+1 to a value v. Then the

run operation !v is the result of evaluating the run operation !t at level i+1.

Given a natural number n, we may evaluate it using the (num-i). The natural number itself is a value and

evaluates to itself regardless of its level.

Given an addition operation t1 + t2, we may evaluate it using the (plus-0) rule or the (plus-(i+1)) rule

depending on the current level. (1) If the addition is at level 0, we first evaluate its first operand t1 at level 0

to a natural number n1 and evaluate its second operand t2 at level 0 to a natural number n2. Then we compute
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n1 plus n2 and get its result n. The natural number n is the result of evaluating the addition operation t1 + t2
at level 0. Evaluating an addition at level 0 is the same as evaluating an addition in a single-stage language.

(2) If the addition is at level i+1, we evaluate its first operand t1 at level i+1 to a value v1 and evaluate its

second operand t2 at level i+1 to a value v2. The addition operation v1 + v2 is a value at level i+1, which

is the result of evaluating the addition t1 + t2 at level i+1. We do not perform any addition at levels higher

than 0.

Observations. The rules of the big-step relations can be classified into three categories. (1) The rules

(lambda-0), (ref-(i+1)) and (num-i) are value rules where the term being evaluated is a value at its indicated

level. (2) All the rules except the three axiomatic rules are structural rules which define how to evaluate a

term with respect to its sub-terms. (3) The rules (app-0), (run-0), (splice-1) and (plus-0) are reduction rules

which perform a real step of computation.

The big-step relations tell that the language is call-by-value. In (app-0) the variable x is substituted by

the value v0
2 that t0

1 big-steps to.

The rules of the big-step relations cooperate with each other in various ways. As an illustration, let i

in (code-i) be 0. Given a code operation 〈t1〉 at level 0, we first evaluate its operand t1 at level 1. When

a splice operation is encountered, we invoke (splice-1). The operand of the splice operation evaluates to a

code operation whose operand is a value. The value is then spliced to the context of t1 which is surrounded

by code brackets.

Not every term has a corresponding rule. (1) There is no (splice-0) because a splice operation is always

at some level higher than 0. (2) There is no (ref-0). Level 0 of multi-stage programming corresponds to

single-stage programming in which solely evaluating a free variable is disallowed.

Nontermination terms do not big-step. For example, to evaluate (λx.x x) (λx.x x) at level 0, we need

to know what (λx.x x) (λx.x x) big-steps to at level 0. Since this circular reasoning never terminates,

(λx.x x) (λx.x x) does not big-step at level 0.

In (plus-0), the addition operator in the side condition is different from the addition operator in the

bottom of the rule. The addition operation in the side condition happens in the metalanguage, i.e., the

language that defines MetaML. For the sake of simplicity, we do not make clear distinction between natural

numbers in the language and in the metalanguage.

Examples. To get familiar with the big-step relations, consider the following examples. We use the black

triangle N to indicate where an evaluation gets stuck.

Example 27. Evaluate 〈∼〈1〉〉 at level zero using the big-step relations.

We have:

1 ⇓1 1
(num-i)

〈1〉 ⇓0 〈1〉
(code-i)

∼〈1〉 ⇓1 1
(splice-1)

〈∼〈1〉〉 ⇓0 〈1〉
(code-i)
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A code operation big-steps to a code value. A splice operator splices code into its current context.

Example 28. Evaluate 〈λx.x〉 at level zero using the big-step relations.

We have:

x ⇓1 x
(ref-(i+1))

λx.x ⇓1 λx.x
(lambda-(i+1))

〈λx.x〉 ⇓0 〈λx.x〉
(code-i)

A code value big-steps to itself.

Example 29. Evaluate 〈λx.∼〈x〉〉 at level zero using the big-step relations.

We have:

x ⇓1 x
(ref-(i+1))

〈x〉 ⇓0 〈x〉
(code-0)

∼〈x〉 ⇓1 x
(splice-1)

λx.∼〈x〉 ⇓1 λx.x
(lambda-(i+1))

〈λx.∼〈x〉〉 ⇓0 〈λx.x〉
(code-i)

At levels higher than 0, we can go inside a lambda abstraction to evaluate its body.

Example 30. Evaluate 〈λx.∼x〉 at level zero using the big-step relations.

Observe 〈λx.∼x〉 6⇓0 because:

x ⇓0 N

∼x ⇓1
(splice-1)

λx.∼x ⇓1 (lambda-(i+1))

〈λx.∼x〉 ⇓0 (code-i)

〈λx.∼x〉 is a bad program. It is indeed a term, but is not meant to be written. The evaluation gets stuck at

N because to evaluate x at level 0, no rule can apply. The splice operator ∼ expects the operand to evaluate

to code, but x is stuck.

Example 31. Evaluate 〈λx.∼(1+1)〉 at level zero using the big-step relations.

Observe 〈λx.∼(1+1)〉 6⇓0 because

1 ⇓0 1
(num-i)

1 ⇓0 1
(num-i)

1+1 ⇓0 2
(plus-0)

∼(1+1) ⇓1 N
(splice-1)

λx.∼(1+1) ⇓1 (lambda-(i+1))

〈λx.∼(1+1)〉 ⇓0 (code-i)

〈λx.∼(1+1)〉 is a bad program. The evaluation gets stuck at N because the rule (splice-1) expects 1+1

to evaluate to code but 2 is not code. The splice operator ∼ expects the operand to evaluate to code. Unlike

the previous example, the operand 1+1 is not stuck but does not evaluate to code.
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Programs and Answers. We can define an evaluator that takes a program as its input and provides an

answer as its output. We first define the set of programs and the set of answers.

Closed level-0 terms are programs in MetaML

Definition 32 (Programs). Let the set of programs PRGMMetaML be the set of closed terms at level 0.

PRGMMetaML = {t ∈ TERM0 | FV (t) = /0}.

Answers are the observational results of evaluating programs. An answer can be the text function, the

text code or a natural number.

Definition 33 (Answers). Let the set of answers ANSMetaML be the union of the set {function,code} and

the set of natural numbers.

ANSMetaML = {function,code}∪N.

The set of programs PRGMMetaML and answers ANSMetaML are defined for MetaML, not for any partic-

ular semantics of MetaML.

Evaluator. We now define an evaluator in terms of the substitutional natural semantics of MetaML. Given

a program t, the evaluator applies the big-step relations on t at level 0. If the program big-steps to a natural

number, then the evaluator outputs the number. Otherwise, the evaluator indicates the class of value that the

program big-steps to, i.e., either function or code. The evaluator is undefined for programs that get stuck

and programs that do not terminate.

Definition 34 (Evaluator based on Substitutional Natural Semantics). Let the evaluator evalMetaML:SubNat be

a partial function from the set of programs PRGMMetaML to the set of answers ANSMetaML.

evalMetaML:SubNat : PRGMMetaML ⇀ ANSMetaML

evalMetaML:SubNat(t) =


function if t ⇓0 λx.t ′

0

code if t ⇓0 〈v1〉

n if t ⇓0 n

This above evaluator is defined in terms of the substitutional natural semantics. The subscript “MetaML:SubNat”

in evalMetaML:SubNat denotes the substitutional natural semantics of MetaML.

We demonstrate how the evaluator works by evaluating the puzzle program below that was originally

presented in [Tah99a].

!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5

Example 35. We have

evalMetaML:SubNat(!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5) = code
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λx.〈x〉 ⇓0 λx.〈x〉 λx.〈a〉 ⇓0 λx.〈a〉

a ⇓2 a
〈a〉 ⇓1 〈a〉

λx.〈a〉 ⇓1 λx.〈a〉
〈λx.〈a〉〉 ⇓0 〈λx.〈a〉〉

(λx.〈x〉)(λx.〈a〉) ⇓0 〈λx.〈a〉〉
∼ ((λx.〈x〉)(λx.〈a〉)) ⇓1 λx.〈a〉 0 ⇓1 0

∼ ((λx.〈x〉)(λx.〈a〉))0 ⇓1 (λx.〈a〉)0

λa.∼ ((λx.〈x〉)(λx.〈a〉))0 ⇓1 λa.((λx.〈a〉)0)

〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉 ⇓0 〈λa.((λx.〈a〉)0)〉 λa.((λx.〈a〉)0) ⇓0 λa.((λx.〈a〉)0)

!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉 ⇓0 λa.((λx.〈a〉)0) 5 ⇓0 5

λx.〈5〉 ⇓0 λx.〈5〉 0 ⇓0 0
5 ⇓1 5
〈5〉 ⇓0 〈5〉

(λx.〈5〉)0 ⇓0 〈5〉
!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5 ⇓0 〈5〉

Figure 2.1: Evaluation of !〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5 in Substitutional Natural Semantics of MetaML.
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because

!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5 ⇓0 〈5〉

as shown in Figure 2.1 and 〈5〉 ∈ VALUE0.

2.2.3 Substitutional Structural Operational Semantics

Previously, we have studied the substitutional natural semantics of MetaML. The main semantics refinement

problem is to define an environmental abstract machine for MetaML, which we call the MEK machine. The

MEK machine is a small-step operational semantics. As the first step in the process of deriving the MEK

machine, we refine the substitutional natural semantics of MetaML to a substitutional structural operational

semantics.

Natural semantics relates a term to its final result of computation. Structural operational semantics

relates a term to its next small step of computation on the way to its final result. One advantage of the

structural operational semantics is that it allows reasoning about programs that do not terminate such as an

operating system. In contrast, natural semantics is only defined for programs that can produce a final result.

We lay out the substitutional structural operational semantics through a family of level-indexed single-

step relations and a family of level-indexed multi-step relations.

Definition 36 (Level-indexed Single-step Relations). For any i∈N, let the level-indexed single-step relation

−→i be a binary relation between the set of terms at level i and the set of terms at level i.

−→i⊆ TERMi×TERMi

No (lambda-0)

t i+1
1 −→i+1 t i+1

2

λx.t i+1
1 −→i+1 λx.t i+1

2

(lambda-(i+1))

t i
11 −→i t i

12

t i
11 t i

2 −→i t i
12 t i

2
(appL-i)

t i
21 −→i t i

22

vi
1 t i

21 −→i vi
1 t i

22
(appR-i)

(λx.t0) v0 −→0 t0[v0/x]
(app-0)

!〈v1〉 −→0 v1 (run-0)
t i
1 −→i t i

2

!t i
1 −→i!t i

2
(run-i)

t i+1
1 −→i+1 t i+1

2

〈t i+1
1 〉 −→i 〈t i+1

2 〉
(code-i)

No (splice-0) ∼〈v1〉 −→1 v1
(splice-1)

t i
1 −→i t i

2

∼t i
1 −→i+1 ∼t i

2
(splice-(i+1))

No (ref-i)

No (num-i)
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t i
11 −→i t i

12

t i
11 + t i

2 −→i t i
12 + t i

2
(plusL-i)

t i
21 −→i t i

22

vi
1 + t i

21 −→i vi
1 + t i

22
(plusR-i)

n1 +n2 −→0 n
where n = n1 +n2 (plus-0)

The single-step relation t i
1 −→i t i

2 reads as “t1 single-steps to t2 at level i”.

Recall that a term can be a variable x, an application t1 t2, a lambda abstraction λx.t, a code operation

〈t〉, a splice operation∼t, a run operation !t, a natural number n and an addition operation t1+t2. We explain

how an arbitrary term gets evaluated by the above relations.

Given a variable x, we get stuck because there is no (ref-i) rule.

Given an application t1 t2, we may evaluate it using the (appL-i) rule, the (appR-i) rule or the (app-0)

rule depending on the current level and whether its operator/operand is a value. We first repeatedly apply

the (appL-i) rule to evaluate the operator t1 and finally get a value v1. Then we use repeatedly apply the

(appR-i) rule to evaluate the operand t2 and finally get a value v2. If we have been evaluating at level 0, we

expect v1 to be a lambda abstraction and we then perform the application v1 v2 using the (app-0) rule. If we

have been evaluating at level i+1, the resulting application v1 v2 is a value at that level.

Given a lambda abstraction λx.t, we may evaluate it using the (lambda-(i+1)) rule depending on its level

and whether the body t is a value. (1) If the lambda abstraction is at level 0, then we get stuck because there

is no (lambda-0) rule. (2) If the lambda abstraction is at level i+1, we repeatedly apply the (lambda-(i+1))

rule to evaluate its body t at level i+1 and finally get a value v. The resulting application λx.v is a value at

level i+1.

Given a code operation 〈t〉, we may evaluate it using the (code-i) rule depending on whether its operand

is a value. We repeatedly apply the (code-i) rule to evaluate its operand t and finally get a value v. The

resulting code operation 〈v〉 is a value .

Given a splice operation ∼t, we may evaluate it using the (splice-1) rule or the (splice-(i+1)) rule de-

pending on the current level and whether its operand is a value. (1) If the splice operation is at level 0, we

get stuck because there is no (splice-0) rule. (2) If the splice operation is at level i+1, we repeatedly apply

the (splice-(i+1)) rule to evaluate its operand t and finally get a value v. (2.1) If we have been evaluating at

level 1, we expect v to be code operation and we apply (splice-1) to merge the code into the context. (2.2) If

we have been evaluating at level i+2, the resulting splice operation ∼v is a value at that level.

Given a run operation !t, we may evaluate it using the (run-0) rule or the (run-i) rule depending on

the current level and whether its operand is a value. We first repeatedly apply the (run-i) rule to evaluate its

operand t and finally get a value v. (1) If we have been evaluating at level 0, we expect v to be code operation

and we apply (run-0) to execute the code. (2) If we have been evaluating at level i+ 1, the resulting code

operation !v is a value at that level.

Given a natural number n, we get stuck because there is no (num-i) rule.

Given an addition operation t1 + t2, we may evaluate it using the (plusL-i) rule, the (plusR-i) rule or

the (plus-0) rule depending on the current level and whether its first or second operand is a value. We first
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repeatedly apply the (appL-i) rule to evaluate the first operand t1 and finally get a value v1. Then we use

repeatedly apply the (plusR-i) rule to evaluate the second operand t2 and finally get a value v2. If we have

been evaluating at level 0, we expect v1 and v2 to be two natural numbers and we perform the addition v1+v2

using the (plus-0) rule. If we have been evaluating at level i+1, the resulting addition v1 + v2 is a value at

that level.

Observations. The rules of the single-step relations can be classified into two categories. (1) The rules

(app-0), (run-0), (splice-1) and (plus-0) are reduction rules which perform a real step of computation. (2)

The other rules are structural rules which define how to evaluate a term with respect to its sub-terms. There

are no value rules in the single-step relations as opposed to the big-step relations. This is because stepping

always does work and there is no work left to do for values.

The single-step relations tell that the language is call-by-value. The (app-0) rule restricts the operand of

the application to be a value.

The big-step relations do not specify which argument to a two-argument operation, like function ap-

plication or addition, must be evaluated first. The single-step relations, on the other hand, force evaluation

to proceed from left to right, as indicated by (appL-i), (appR-i), (plusL-i) and (plusR-i). We say that the

single-step relations are tailored to leftmost reduction.

The single-step relations have fewer rules than the big-step relations. (1) There are no (lambda-0), (ref-

(i+1)) and (num-i) because values do not reduce in the single-step relations but evaluate to themselves in the

big-step relations. (2) There is no (ref-0), analogous to the fact that evaluating a free variable in a single-

stage programming language is disallowed. (3) There is no (splice-0) because a splice operation is always

at some level higher than 0.

Intuitively, a level-indexed single-step relation −→i defines a single step of computation at level i. To

represent multiple (zero or more) steps of computation at level i, we define the level-indexed multi-step

relation −→∗i.

Definition 37 (Level-indexed Multi-step Relation). Define the level-indexed multi-step relation −→i∗ to be

the reflexive-transitive closure of the level-indexed single-step relation −→i.

−→i∗⊆ TERMi×TERMi

t i
1 −→i∗ t i

2
where t i

1 −→i t i
2 (step)

t i −→i∗ t i (refl)
t i
1 −→i∗ t i

2 t i
2 −→i∗ t i

3

t i
1 −→i∗ t i

3
(trans)

The multi-step relation t i
1 −→i∗ t2 reads as “t1 multi-steps to t2 at level i”. The (step) rule implies that

the multi-step relation respects the single-step relation with the same level index. The (refl) rule implies that

the multi-step relation is reflexive. The (trans) rule implies that the multi-step relation is transitive.

Examples. To get familiar with the substitutional structural operational semantics, consider the following

examples. These examples are the same as the ones in we presented for substitutional natural semantics.
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Example 38. Evaluate 〈∼〈1〉〉 at level 0 using the substitutional structural operational semantics.

We have:

∼〈1〉 −→1 1
(splice-1)

〈∼〈1〉〉 −→0 〈1〉
(code-i)

Observe 〈1〉 6−→0 because:

1−→1 N
〈1〉 −→0 (code-i)

The evaluation gets stuck at N because there is no (num-i) rule. Furthermore, we have 〈1〉 ∈ VALUE0.

By the (step) rule of the multi-step relation, 〈∼〈1〉〉 −→0∗ 〈1〉.

Example 39. Evaluate 〈λx.x〉 at level 0 using the substitutional structural operational semantics.

Observe 〈λx.x〉 6−→0 because

x−→1 N
λx.x−→1 (lambda-(i+1))

〈λx.x〉 −→0 (code-i)

The evaluation gets stuck at N because there is no (ref-i) rule. Furthermore, we have 〈λx.x〉 ∈ VALUE0.

By the (refl) rule of the multi-step relation, 〈λx.x〉 −→0 〈λx.x〉.

Example 40. Evaluate 〈λx.∼〈x〉〉 at level 0 using the substitutional structural operational semantics.

We have:

∼〈x〉 −→1 x
(splice-1)

λx.∼〈x〉 −→1 λx.x
(lambda-(i+1))

〈λx.∼〈x〉〉 −→0 〈λx.x〉
(code-i)

Observe 〈λx.x〉 6−→0 because

x−→1 N
λx.x−→1 (lambda-(i+1))

〈λx.x〉 −→0 (code-i)

The evaluation gets stuck at because there is no (ref-i) rule. Furthermore, we have 〈λx.x〉 ∈ VALUE0.

By the (step) rule of the multi-step relation, 〈λx.∼〈x〉〉 −→0∗ 〈λx.x〉.

Example 41. Evaluate 〈λx.∼x〉 at level 0 using the substitutional structural operational semantics.

Observe 〈λx.∼x〉 6−→0 because:

x−→0 N
∼x−→1

(splice-1)

λx.∼x−→1 (lambda-(i+1))

〈λx.∼x〉 −→0 (code-i)
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The evaluation gets stuck at N because there is no (ref-i) rule. Furthermore, we have 〈λx.∼x〉 6∈ VALUE0

and 〈λx.∼x〉 is a stuck term.

By the (refl) rule of the multi-step relation, 〈λx.∼x〉 −→0∗ 〈λx.∼x〉.

Example 42. Evaluate 〈λx.∼(1+1)〉 at level 0 using the substitutional structural operational semantics.

We have:

1+1−→0 2
(plus-0)

∼(1+1)−→1 ∼2
(splice-1)

λx.∼(1+1)−→1 λx.∼2
(lambda-(i+1))

〈λx.∼(1+1)〉 −→0 〈λx.∼2〉
(code-i)

Observe 〈λx.∼2〉 6−→0 because:

2−→0 N
∼2−→1

(splice-(i+1))

λx.∼2−→1 (lambda-(i+1))

〈λx.∼2〉 −→0 (code-i)

The evaluation gets stuck at N because there is no (num-i) rule. Furthermore, we have 〈λx.∼2〉 6∈
VALUE0 and 〈λx.∼2〉 is a stuck term.

By the (step) rule of the multi-step relation, 〈λx.∼(1+1)〉 −→0∗ 〈λx.∼2〉.

Evaluator. We now define an evaluator in terms of the substitutional natural semantics of MetaML. Given

a program t, the evaluator applies the multi-step relations on t at level 0. If the program multi-steps to a

natural number, then the evaluator outputs the number. Otherwise, the evaluator indicates the class of value

that the program multi-steps to, i.e., either function or code. The evaluator is undefined if the program

gets stuck or does not terminate.

Definition 43 (Evaluator based on Substitutional Structural Operational Semantics). Define the evaluator

evalMetaML:SubSOS to be a partial function from the set of programs PRGMMetaML to the set of answers

ANSMetaML.

evalMetaML:SubSOS : PRGMMetaML ⇀ ANSMetaML

evalMetaML:SubSOS(t) =


function if t −→0∗ λx.t ′

0

code if t −→0∗ 〈v1〉

n if t −→0∗ n

This evaluator is defined in terms of the substitutional structural operational semantics. The subscript

“MetaML:SubSOS” in evalMetaML:SubSOS denotes the substitutional structural operational semantics of MetaML.

We demonstrate how the evaluator works by evaluating the same puzzle program as Example 35.
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(λx.〈x〉)(λx.〈a〉)−→0 〈λx.〈a〉〉
where 〈x〉 ∈ TERM0 and λx.〈a〉 ∈ VALUE0

∼ ((λx.〈x〉)(λx.〈a〉))−→1∼ 〈λx.〈a〉〉
∼ ((λx.〈x〉)(λx.〈a〉))0−→1∼ 〈λx.〈a〉〉 0

λa.∼ ((λx.〈x〉)(λx.〈a〉))0−→1 λa.∼ 〈λx.〈a〉〉 0
〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉 −→0 〈λa.∼ 〈λx.〈a〉〉 0〉
!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉 −→0!〈λa.∼ 〈λx.〈a〉〉 0〉

!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉 5−→0!〈λa.∼ 〈λx.〈a〉〉 0〉 5
(a) Derivation of !〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5−→0!〈λa.∼ 〈λx.〈a〉〉0〉5.

∼ 〈λx.〈a〉〉 −→1 λx.〈a〉
where λx.〈a〉 ∈ VALUE1

∼ 〈λx.〈a〉〉 0−→1 (λx.〈a〉) 0
λa.∼ 〈λx.〈a〉〉 0−→1 λa.(λx.〈a〉) 0
〈λa.∼ 〈λx.〈a〉 0〉 −→0 〈λa.(λx.〈a〉) 0〉
!〈λa.∼ 〈λx.〈a〉 0〉 −→0!〈λa.(λx.〈a〉) 0〉

!〈λa.∼ 〈λx.〈a〉〉 0〉 5−→0!〈λa.(λx.〈a〉) 0〉 5
(b) Derivation of !〈λa.∼ 〈λx.〈a〉〉0〉5−→0!〈λa.(λx.〈a〉)0〉5.

!〈λa.(λx.〈a〉) 0〉 −→0 λa.(λx.〈a〉) 0
where λa.(λx.〈a〉) 0 ∈ VALUE1

!〈λa.(λx.〈a〉) 0〉 5−→0 (λa.(λx.〈a〉) 0) 5
(c) Derivation of !〈λa.(λx.〈a〉) 0〉 5−→0 (λa.(λx.〈a〉) 0) 5.

(λx.〈a〉) 0−→0 〈a〉
where 〈a〉 ∈ TERM0 and 0 ∈ VALUE0

λa.(λx.〈a〉) 0−→0 λa.〈a〉
(λa.(λx.〈a〉) 0) 5−→0 (λa.〈a〉) 5

(d) Derivation of (λa.(λx.〈a〉) 0) 5−→0 (λa.〈a〉) 5.

(λa.〈a〉) 5−→0 〈5〉
where 〈a〉 ∈ TERM0 and 5 ∈ VALUE0

(e) Derivation of (λa.〈a〉) 5−→0 〈5〉.

Figure 2.2: Evaluation of !〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5 in Substitutional Structural Operational Semantics of MetaML.
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Example 44. We have

evalMetaML:SubSOS(!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5) = code

because

!〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5−→0∗ 〈5〉

as shown in Figure 2.2 and 〈5〉 ∈ VALUE0.

Examples 35 and 44 show that two evaluators we have defined so far agree on the evaluation of the

puzzle program !〈λa.∼ ((λx.〈x〉)(λx.〈a〉))0〉5. In fact, these two evaluators agree on all programs.

Theorem 45 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubNat(t) is Kleene equal

to evalMetaML:SubSOS(t).

The above theorem uses Kleene Equality introduced in [Kle52]: for any expressions A and B, A is Kleene

equal to B if and only if (1) both A and B are defined and are equal or (2) both A and B are undefined. We

prove the theorem in the appendices.

2.3 Chapter Summary

We first introduced three staging annotations and informally discussed how a multi-stage program evaluates.

Then we studied the pre-existing substitutional natural semantics of MetaML and derived a substitutional

structural operational semantics for MetaML. We defined evaluators for both semantics and demonstrated

their equivalence.
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Chapter 3

Refining Semantics for ISWIM: Developing
the CEK Machine

Following the first dimension of simplifying the main semantics refinement problem, we study how to

stepwise develop an environmental abstract machine for the single-stage language ISWIM rather than the

multi-stage language MetaML. The problem is restated as follows.

Can we refine the substitutional structural operational semantics of ISWIM to a corresponding

environmental abstract machine, which is known as the CEK machine, and demonstrate their

equivalence?

We tackle this problem progressively in several manageable steps through several intermediate semantics.

3.1 ISWIM

ISWIM, whose acronym stands for “if you see what I mean”, was originally developed by [Lan66]. It

was introduced to understand and design the whole landscape of programming languages [Lan64]. It has

influenced the development of functional programming languages such as ML and Haskell.

We consider a variant of ISWIM that has natural numbers and addition. We sometimes call what is

presented in this section Substitutional ISWIM in order to differentiate it from the subsequent dialects, i.e.,

Explicit ISWIM, Suspended ISWIM and Environmental ISWIM.

3.1.1 Syntax

We first define the basic syntax of the language: terms, values and denotable terms. Then we define the

free variable function, the substitution function and the alpha equivalence relation. We finally present the

commutativity of substitutions.

3.1.1.1 Terms, Values and Denotable Terms

We start with two sets: the set of variables, VAR, and the set of natural numbers, N.

Definition 46 (Terms, Values and Denotable Terms). Let (1) TERM be the set of terms, (2) VALUE be the

set of values, and (3) DENOTABLE be the set of denotable terms.
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3.1. ISWIM

x ∈ VAR, n ∈ N, t ∈ TERM, v ∈ VALUE, w ∈ DENOTABLE

t ::= x | t t | λx.t | n | t + t

v ::= λx.t | n
w ::= x | v

ISWIM can be viewed as a single-stage restricted form of MetaML. Given the syntax of MetaML, if we

remove all terms that contain any staging annotation or is not at level 0, we get ISWIM.

3.1.1.2 Free Variable Function

We define the free variable function as follows.

Definition 47 (Free Variable Function). Define the free variable function FV to be a total function from the

set of terms to the power set of variables.

FV : TERM −→P(VAR)

FV (x) = x (1)

FV (t1 t2) = FV (t1)∪FV (t2) (2)

FV (λx.t) = FV (t)\{x} (3)

FV (n) = /0 (4)

FV (t1 + t2) = FV (t1)∪FV (t2) (5)

The free variable function for ISWIM is the same as for MetaML but restricted to the single-stage part.

Definition 48 (Closed Terms). A term t is closed if and only if FV (t) = /0.

3.1.1.3 Substitution Function

We define the substitution function as follows.

Definition 49 (Substitution Function). Define the substitution function ·[·/·] to be a total function from the

3-tuple of the set of terms, the set of denotable terms and the set of variables, to the set of terms.

·[·/·] : (TERM×DENOTABLE×VAR)−→ TERM

x1[w/x2] = w where x1 ≡ x2 (1)

x1[w/x2] = x1 where x1 6≡ x2 (2)

(t1 t2)[w/x] = (t1[w/x]) (t2[w/x]) (3)

(λx1.t0)[w/x2] = λx3.t0[x3/x1][w/x2]

where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (4)

n[w/x] = n (5)

(t1 + t2)[w/x] = (t1[w/x])+(t2[w/x]) (6)

The substitution function for ISWIM is the same as for MetaML but restricted to the single-stage part.
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3.1.1.4 Alpha Equivalence Relation

Alpha equivalence reflects that the particular choice of the bound variable in a lambda abstraction does not

matter. Two terms are α-equivalent if and only if they are identical except for renaming bound variables.

Definition 50 (Alpha Equivalence Relation). Define the alpha equivalence relation∼α to be a binary relation

between the set of terms and the set of terms.

∼α ⊆ TERM×TERM

x∼α x (var)
t11 ∼α t21 t12 ∼α t22

(t11 t12)∼α (t21 t22)
(app)

t1[x3/x1]∼α t2[x3/x2]

(λx1.t1)∼α (λx2.t2)
where x3 /∈ FV (t1)∪FV (t2) (lam)

t11 ∼α t21 t12 ∼α t22

(t11 + t12)∼α (t21 + t22)
(plus)

n∼α n (num)

We did not introduce the alpha equivalence relation for MetaML in the previous chapter. This is because

it is usually not difficult to demonstrate equivalence of two semantics of the exact same language. However,

in this chapter and later chapters, we need to prove equivalence of semantics of different dialects of ISWIM

or MetaML. It is not uncommon that two semantics evaluate the same term to two syntactically different

values that have the same meaning semantically. Since our evaluators only concern observational results,

such values should be equated. For example, λx.x and λy.y represent the same lambda abstraction. They

are related by the alpha equivalence relation. Furthermore, the alpha equivalence relation makes our proofs

easier. In many cases, we may replace a term by its alpha equivalent term in our proof at our convenience.

Example 51. We have ((λx.x x) (λx.x))∼α ((λy.y y) (λ z.z)). The left-hand side and right-hand side of the

relation represent the lambda abstractions that only differ naming lambda bound variables.

3.1.1.5 Commutativity of Substitutions

We make several observations with respect to the commutativity of substitutions, which are useful in justify-

ing the design of the succeeding semantics. (1) After substituting a variable with a denotable term that does

not contain it, further substitutions for the same variable have no meaningful effect, so they can be dropped.

(2) Two non-clashing substitutions can commute with one another. (3) More generally, two substitutions

that arise in practice during an evaluation commute which involves more work to ensure no clash happens.

Proposition 52. If x /∈ FV (w1), then t[w1/x][w2/x]∼α t[w1/x].

Proposition 53. If x1 6≡ x2, x1 /∈ FV (w2) and x2 /∈ FV (w1), then t[w1/x1][w2/x2]∼α t[w2/x2][w1/x1].

Proposition 54. t[w1/x1][w2/x2]∼α t[x3/x1][w2/x2][w1[w2/x2]/x3] where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2}.
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3.1.2 Substitutional Structural Operational Semantics

We lay out the substitutional structural operational semantics through the single-step relation −→ and the

multi-step relation −→∗.

Definition 55 (Single-step Relation). Let the single-step relation −→ be a binary relation between the set

of terms and the set of terms.

−→⊆ TERM×TERM

t11 −→ t12
t11 t2 −→ t12 t2

(appL) t21 −→ t22
v1 t21 −→ v1 t22

(appR) (λx.t) v−→ t[v/x]
(app)

t11 −→ t12
t11 + t2 −→ t12 + t2

(plusL) t21 −→ t22
v1 + t21 −→ v1 + t22

(plusR) n1 +n2 −→ n where n = n1 +n2 (plus)

The single-step relation t1 −→ t2 reads as “t1 single-steps to t2”.

Definition 56 (Multi-step Relation). Let the multi-step relation −→∗ be the reflexive-transitive closure of

the single-step relation −→.

−→∗ ⊆ TERM×TERM

t1 −→∗ t2
where t1 −→ t2 (step)

t −→∗ t
(refl)

t1 −→∗ t2 t2 −→∗ t3
t1 −→∗ t3

(trans)

The multi-step relation t1 −→∗ t2 reads as “t1 multi-steps to t2”.

The single-step relation and multi-step relation for the substitutional structural operational semantics of

ISWIM are the same as for the substitutional structural operational semantics of MetaML but restricted to

the single-stage part.

Example 57. Consider ((λx1.λx2.x1) 7) 4 where x1 6≡ x2.

By the substitutional structural operational semantics of ISWIM, we have:

((λx1.λx2.x1) 7) 4 (1)

−→ (λx2.x1)[7/x1] 4 (2)

= (λx2.x1[x2/x2][7/x1]) 4 where x2 6≡ x1 (3)

= (λx2.x1[7/x1]) 4 (4)

= (λx2.7) 4 (5)

−→ 7[4/x2] (6)

= 7 (7)

The first single-step is indeed from (1) to (5), including applying the substitution [7/x1] on the lambda

abstraction λx2.x1. The substitution is performed in the meta-language and does not count as any additional

reduction step.
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Properties. We observe the following properties that are useful in proving semantics equivalence. (1) The

single-step relation preserves alpha equivalence. During an evaluation, we may conveniently replace a term

by its alpha equivalent term without changing the observational result of the evaluation. (2) The multi-step

relation preserves the closedness of a term. Evaluating a program never produces the error of evaluating a

free variable. This ensures that the behaviour of a program does not depend on the outside world.

Proposition 58. If ta1 ∼α tb1 and ta1 −→ ta2 , then tb1 −→ tb2 and ta2 ∼α tb2 .

Proposition 59. If FV (t1) = /0 and t1 −→∗ t2, then FV (t2) = /0.

Programs and Answers. To define an evaluator for ISWIM, we first programs and answers.

Closed terms are programs in ISWIM.

Definition 60 (Programs). Let the set of programs PRGMIWSIM be the set of closed terms.

PRGMISWIM = {t ∈ TERM | FV (t) = /0}.

An answers is the text function or a natural number.

Definition 61 (Answers). Let the set of answers ANSISWIM be the union of the set {function} and the set

of natural numbers.

ANSISWIM = {function}∪N.

The set of programs PRGMISWIM and the set of answers ANSISWIM are defined for ISWIM, not for any

particular dialect or semantics of ISWIM.

Evaluator. We now define an evaluator in terms of the substitutional structural operational semantics of

ISWIM.

Definition 62 (Evaluator based on Substitutional ISWIM). Let the evaluator evalISWIM:SubSOS be a partial

function from the set of programs PRGMISWIM to the set of answers ANSISWIM.

evalISWIM:SubSOS : PRGMISWIM ⇀ ANSISWIM

evalISWIM:SubSOS(t) =

function if t −→∗ λx.t ′

n if t −→∗ n

This evaluator is defined in terms of the substitutional structural operational semantics of ISWIM. The

subscript “ISWIM:SubSOS” in evalISWIM:SubSOS denotes the substitutional structural operational semantics of

ISWIM. The evaluator is essentially the same as the single-stage subset of the evaluator defined in terms of

the substitutional structural operational semantics of MetaML.

3.2 Explicit ISWIM

Consider again the (app) rule of the substitutional structural operational semantics of ISWIM.

(λx.t) v−→ t[v/x]
(app)
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Because the substitution function ·[·/·] is defined as equations in the meta-language, the (app) rule says that

in the expression t[v/x] each free occurrence of the variable x is immediately replaced by the value v in

the term t. Evaluating a substitution does not take any additional step regardless of how complicated the

substitution is. It is not evident how to attain our objective of this chapter, i.e., how to develop an environ-

mental abstract machine for ISWIM, based directly on the substitutional structural operational semantics of

ISWIM.

We propose to turn the big gap of what is less clear into several small moves of what is more evident,

each of which leads to an intermediate semantics. As the very first move, we integrate the percolation of

substitutions into the structural operational semantics, leading to explicit substitutions [Cur85, ACCL91].

As a result, the (app) rule becomes

(λx.t) v−→ t[x := v]
(app)

where [x := v] is an explicit substitution. Depending on how complex the term t is, it may take several steps

to percolate the substitution [x := v] through the term t.

We call the resulting dialect Explicit ISWIM and present its structural operational semantics.

3.2.1 Syntax

We first define the basic syntax of Explicit ISWIM: terms, values and denotable terms. Then we define the

free variable function, the substitution function and the alpha equivalence relation.

3.2.1.1 Terms, Values and Denotable Terms

Definition 63 (Terms, Values and Denotable Terms). Let (1) TERM be the set of terms, (2) VALUE be the

set of values, and (3) DENOTABLE be the set of denotable terms.

x ∈ VAR, n ∈ N, t ∈ TERM, v ∈ VALUE, w ∈ DENOTABLE

t := x | t t | λx.t | n | t + t | t[x := w]

v := λx.t | n
w := x | v

The language has been enhanced with a term surrounded by an explicit substitution t[x := w], which

means that each free occurrence of the variable x in the term t needs to be substituted by the denotable

term w. Evaluating an explicit substitution takes steps. In contrast, an implicit substitution t[w/x] used in

Substitutional ISWIM represents the result of substituting the denotable term w for each free occurrence of

the variable x in the term t.

3.2.1.2 Free Variable Function

We define the free variable function by extending Definition 47 to accommodate explicit substitutions.

Definition 64 (Free Variable Function). Let the free variable function FV be a total function from the set of

terms to the power set of variables.
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3.2. Explicit ISWIM

FV : TERM −→P(VAR)

...
...

...
...

FV (t[x := w]) = (FV (t)\{x})∪FV (w) (6)

Equations (1)-(5) are the same as Definition 47 in Substitutional ISWIM. Recall that t[x := w] is intro-

duced to represent what an application (λx.t)w evaluates to. Observe that there is no free variable introduced

or eliminated during the evaluation. We have FV (t[x := w]) = FV ((λx.t) w) = (FV (t)\{x})∪FV (w).

3.2.1.3 Substitution Function

We define the substitution function by extending Definition 49 to accommodate explicit substitutions.

Definition 65 (Substitution Function). Let the substitution function ·[·/·] be a total function from the 3-tuple

of the set of terms, the set of denotable terms and the set of variables, to the set of terms.

·[·/·] : (TERM×DENOTABLE×VAR)−→ TERM

...
...

...
...

(t0[x1 := w1])[w2/x2] = t0[x3/x1][w2/x2][x3 := w1[w2/x2]]

where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (7)

Equations (1)-(6) are the same as Definition 49 in Substitutional ISWIM. Recall that Proposition 54 says

t[w1/x1][w2/x2] ∼α t[x3/x1][w2/x2][w1[w2/x2]/x3] where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2}, corresponding

to Equation (7).

3.2.1.4 Alpha Equivalence Relation

We define the alpha equivalence relation by extending Definition 50 to accommodate explicit substitutions.

Definition 66 (Alpha Equivalence Relation). Define the alpha equivalence relation∼α to be a binary relation

between the set of terms and the set of terms.

∼α ⊆ TERM×TERM

...

w1 ∼α w2 t1[x3/x1]∼α t2[x3/x2]

(t1[x1 := w1])∼α (t2[x2 := w2])
where x3 /∈ FV (t1)∪FV (t2) (sub)

All rules except the (sub) rule are the same as Definition 50 in Substitutional ISWIM. Recall that

t[x := w] is introduced to represent what an application (λx.t) w evaluates to. If we can show

(λx1.t1) w1 ∼α (λx2.t2) w2, then we should be able to show (t1[x1 := w1]) ∼α (t2[x2 := w2]). The premise

of the (sub) rule indeed shows (λx1.t1) w1 ∼α (λx2.t2) w2.
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3.2. Explicit ISWIM

3.2.2 Structural Operational Semantics

We lay out the structural operational semantics through the single-step relation−→, the single-step substitu-

tion reduction relation −→x, the multi-step substitution reduction relation −→x∗ and the multi-step relation

−→∗.

Definition 67 (Single-step Relation). Define the single-step relation−→ to be a binary relation between the

set of terms and the set of terms.

−→⊆ TERM×TERM

t11 −→ t12
t11 t2 −→ t12 t2

(appL) t21 −→ t22
v1 t21 −→ v1 t22

(appR) (λx.t) v−→ t[x := v]
(app)

t11 −→ t12
t11 + t2 −→ t12 + t2

(plusL) t21 −→ t22
v1 + t21 −→ v1 + t22

(plusR) n1 +n2 −→ n where n = n1 +n2 (plus)

...

The only rule that is different from Substitutional ISWIM is (app) which replaces the meta-language

substitution [v/x] with the explicit substitution [x := v]. The definition of the single-step relation is currently

incomplete because how explicit substitutions percolate has not been defined yet.

To specify how explicit substitutions percolate, we define a new relation t[x := w]−→x t. This relation

ensures that explicit substitutions percolate deterministically.

Definition 68 (Single-step Substitution Reduction Relation). Let the single-step substitution reduction rela-

tion −→x be a binary relation between the set of terms and the set of terms.

−→x ⊆ TERM×TERM

x[x := w]−→x w
(var-eq-subst)

x1[x2 := w]−→x x1
where x1 6≡ x2 (var-df-subst)

n[x := w]−→x n
(num-subst)

(t1 t2)[x := w]−→x (t1[x := w]) (t2[x := w])
(app-subst)

(t1 + t2)[x := w]−→x (t1[x := w])+(t2[x := w])
(plus-subst)

(λx1.t)[x2 := w]−→x λx3.t[x1 := x3][x2 := w]
where x3 /∈ FV (λx1.t)∪FV (w)∪{x2} (lam-subst)

t1[x1 := w1]−→x t2
t1[x1 := w1][x2 := w2]−→x t2[x2 := w2]

(subst-subst)

Most of the rules describe how explicit substitutions behave when encountering other terms in the lan-

guage. Rules (var-eq-subst), (var-df-subst), (app-subst), (lam-subst), (num-subst) and (plus-subst) corres-

pond to Equations (1) to (5) of Substitutional ISWIM’s substitution function (Definition 49) respectively.

The (subst-subst) rule implies that only a single-step of substitution reduction may happen underneath an

explicit substitution.
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3.2. Explicit ISWIM

Every single-step substitution reduction counts as a single step of computation. We add the following

rule to the definition of the single-step relation, Definition 67.

t1[x := w]−→ t2
where t1[x := w]−→x t2 (subst)

Definition 69 (Multi-step Substitution Reduction Relation). Define the multi-step substitution reduction

relation −→x∗ to be the reflexive-transitive closure relation on the single-step substitution reduction relation

−→x.

Definition 70 (Multi-step Relation). Define the multi-step relation−→∗ to be the reflexive-transitive closure

relation on the single-step relation −→.

Example 71. Let x1 6≡ x2. We observe that

((λx1.x2) 5)[x2 := 2] 6−→ (x2[x1 := 5])[x2 := 2].

As (λx1.x2) 5 −→ x2[x1 := 5] is merely a single-step computation but not a substitution reduction, it

cannot be performed underneath the explicit substitution [x2 := 2].

The explicit substitution [x2 := 2] has to propagate first. Correctly, we have:

((λx1.x2) 5)[x2 := 2]

−→ (λx1.x2)[x2 := 2] 5[x2 := 2]

−→ (λx1.x2[x1 := x1][x2 := 2]) 5[x2 := 2] where x1 6≡ x2

−→ (λx1.x2[x1 := x1][x2 := 2]) 5

−→ x2[x1 := x1][x2 := 2][x1 := 5]

−→ x2[x2 := 2][x1 := 5]

−→ 2[x1 := 5]

−→ 2

Example 72. Let x1 6≡ x2. By the structural operational semantics of Explicit ISWIM, we have:

(λx1.λx2.x1) 7

−→ (λx2.x1)[x1 := 7]

−→ λx2.x1[x2 := x2][x1 := 7] where x2 6≡ x1

In contrast, by the substitutional structural operational semantics of ISWIM, we have:

(λx1.λx2.x1) 7

−→ (λx2.x1)[7/x1]

= λx2.x1[x2/x2][7/x1] where x2 6≡ x1

= λx2.x1[7/x1]

= λx2.7

Explicit ISWIM takes two single-steps while Substitutional ISWIM completes the execution in one

single-step. Explicit ISWIM terminates at a lambda abstraction where its body is a term surrounded by

explicit substitutions. Explicit ISWIM reduces substitutions in a lazy fashion in the sense that it only pushes

explicit substitutions to the body of a lambda abstraction but does not perform any substitution reduction on

the body of a lambda abstraction.
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Properties. We observe the following properties that are useful in proving semantics equivalence. (1) The

single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of a

term. These are the same properties that Substitutional ISWIM holds.

Proposition 73. If ta1 ∼α tb1 and ta1 −→ ta2 , then tb1 −→ tb2 and ta2 ∼α tb2 .

Proposition 74. If FV (t1) = /0 and t1 −→∗ t2, then FV (t2) = /0.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Explicit ISWIM.

The evaluator is analogous to the one defined in terms of Substitutional ISWIM.

Definition 75 (Evaluator based on Structural Operational Semantics of Explicit ISWIM). Define the eval-

uator evalISWIM:ExpSOS to be a partial function from the set of programs PRGMISWIM to the set of answers

ANSISWIM.

evalISWIM:ExpSOS : PRGMISWIM ⇀ ANSISWIM

evalISWIM:ExpSOS(t) =

function if t −→∗ λx.t ′

n if t −→∗ n

This evaluator is defined in terms of the structural operational semantics of Explicit ISWIM. The sub-

script “ISWIM:ExpSOS” in evalISWIM:ExpSOS denotes the structural operational semantics of Explicit ISWIM.

We claim that the evaluators defined in terms of the Substitutional ISWIM and Explicit ISWIM are

equivalent.

Theorem 76 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene equal

to evalISWIM:ExpSOS(t).

We prove the theorem in the appendices.

3.3 Suspended ISWIM

Explicit ISWIM models how substitutions percolate at the semantical level. However, the integration has

introduced unnecessary or unconventional computation. Consider the (lam-subst) rule of the structural op-

erational semantics of Explicit ISWIM.

(λx1.t)[x2 := w]−→x λx3.t[x1 := x3][x2 := w]
where x3 /∈ FV (λx1.t)∪FV (w)∪{x2} (lam-subst)

Pushing an explicit substitution into a lambda abstraction requires rewriting the body of the lambda ab-

straction. Furthermore, when an explicit substitution is pushed into a lambda abstraction, a new explicit

substitution to rename the lambda bound variable is created, which may get pushed downward.

We propose to delay explicit substitutions outside of any lambda abstraction until the lambda abstraction

is called in an application. The resulting dialect is Suspended ISWIM.
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3.3.1 Syntax

We first define the basic syntax of the Suspended ISWIM: terms, values and denotable terms. Then we

define the free variable function, the substitution function and the alpha equivalence relation.

3.3.1.1 Terms, Values and Denotable Terms

Definition 77 (Terms, Values and Denotable Terms). Let (1) TERM be the set of terms, (2) VALUE be the

set of values, and (3) DENOTABLE be the set of denotable terms.

x ∈ VAR, n ∈ N, t ∈ TERM, v ∈ VALUE, w ∈ DENOTABLE

t ::= x | t t | λx.t | n | t + t | t[x := w]

v ::= (λx.t)[x := w] | n
w ::= x | v

The definition uses (λx.t)[x := w] to represent that the lambda abstraction λx.t is surrounded by zero or

more explicit substitutions [x := w].2 Since we delay explicit substitutions outside of lambda abstractions,

(λx.t)[x := w] is a value in Suspended ISWIM.

A term surrounded by explicit substitutions, t[x1 := w1][x2 := w2]...[xn := wn], truly represents a term

surrounded by explicit substitutions cascadedly, (...((t[x1 := w1])[x2 := w2])...)[xn := wn]. We usually omit

the parentheses for convenience.

3.3.1.2 Free Variable Function, Substitution Function and Alpha Equivalence Relation

The free variable function, substitution function and alpha equivalence relation are the same as Explicit

ISWIM (Section 3.2).

3.3.2 Structural Operational Semantics

We lay out the structural operational semantics through the single-step relation−→, the single-step substitu-

tion reduction relation −→x, the multi-step substitution reduction relation −→x∗ and the multi-step relation

−→∗.

Definition 78 (Single-step Relation). Let the single-step relation −→ be a binary relation between the set

of terms and the set of terms.
2We state several syntactic conventions. (1) [xi := wi] denotes zero or more explicit substitutions. (2) [xi := wi]

n
i=1 denotes either

zero explicit substitutions or n explicit substitutions of the form [x1 := w1][x2 := w2]...[xn := wn]. (3) [xi := wi]
−n
i=−1 denotes either

zero explicit substitutions or n explicit substitutions of the form [x−1 := w−1][x−2 := w−2]...[x−n := w−n]. (4) [xi := wi]
+

denotes
one or more explicit substitutions. [xi := wi]

+−n
i=−1 denotes n explicit substitutions of the form [x−1 := w−1][x−2 := w−2]...[x−n :=

w−n].
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−→⊆ TERM×TERM

t11 −→ t12
t11 t2 −→ t12 t2

(appL) t21 −→ t22
v1 t21 −→ v1 t22

(appR) (λx.t)[xi := wi] v−→ t[x := v][xi := wi]
(app)

t11 −→ t12
t11 + t2 −→ t12 + t2

(plusL) t21 −→ t22
v1 + t21 −→ v1 + t22

(plusR) n1 +n2 −→ n where n = n1 +n2 (plus)

t1[x := w]−→ t2
where t1[x := w]−→x t2 (subst)

The only rule that is different from Explicit ISWIM is the (app) rule.

Someone may attempt to use the following one as the (app) rule.

(λx.t)[xi := wi] v−→ t[xi := wi][x := v]
(app-incorrect)

This rule is incorrect. For example, if (app-incorrect) is used, we have ((λx.x)[x := 9]) 7−→ x[x := 9][x :=

7] −→ 9[x := 7] −→ 9. In contrast, Explicit ISWIM evaluates ((λx.x)[x := 9]) 7 to 7, and Substitutional

ISWIM evaluates ((λx.x)[9/x]) 7 to 7 as well.

Someone may attempt to use the following one as the (app) rule.

(λx.t)[xi := wi] v−→ t[x := x0][xi := wi][x0 := v]
where x0 /∈ FV (λx.t)∪

⋃
i(FV (wi)∪{xi}) (app-optional)

This rule is correct but not ideal. We want to eliminate all renamings in Suspended ISWIM, but (app-

optional) still renames the lambda bound variable.

Keep in mind that this chapter aims to develop an environmental operational semantics for ISWIM. The

(app) rule promotes the substitution for the lambda bound variable to the front, overwriting any existing

explicit substitution for that variable, which is close to the operation of updating an environment. We shall

keep the (app) rule.

To specify how explicit substitutions percolate, we define the single-step substitution reduction relation

−→x.

Definition 79 (Single-step Substitution Reduction Relation). Let the single-step substitution reduction rela-

tion −→x be a binary relation between the set of terms and the set of terms.
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−→x ⊆ TERM×TERM

x[x := w]−→x w
(var-eq-subst)

x1[x2 := w]−→x x1
where x1 6≡ x2 (var-df-subst)

n[x := w]−→x n
(num-subst)

(t1 t2)[x := w]−→x (t1[x := w]) (t2[x := w])
(app-subst)

(t1 + t2)[x := w]−→x (t1[x := w])+(t2[x := w])
(plus-subst)

no (lam-subst)

t1[x1 := w1]−→x t2
t1[x1 := w1][x2 := w2]−→x t2[x2 := w2]

(subst-subst)

All rules are the same as the single-step substitution reduction relation of Explicit ISWIM. The (lam-

subst) rule no longer exists in Suspended ISWIM because a lambda abstraction surrounded by explicit

substitutions is a value.

The above two definitions have fully eliminated variable renamings. The denotable term w in an arbitrary

substitution [x := w] must be a value. As a result, the definition of denotable terms in Definition 77

w := x | v

shall be replaced by

w := v

where w ∈ DENOTABLE, x ∈ VAR and v ∈ VALUE. For convenience, we may use [x := v] or keep using

[x := w] to represent an explicit substitution in Suspended ISWIM.

Definition 80 (Multi-step Substitution Reduction Relation). Define the multi-step substitution reduction

relation −→x∗ to be the reflexive-transitive closure relation on the single-step substitution reduction relation

−→x.

Definition 81 (Multi-step Relation). Define the multi-step relation−→∗ to be the reflexive-transitive closure

relation on the single-step relation −→.

Example 82. Consider ((λx1.λx2.x1) 7) 4 where x1 6≡ x2. By the structural operational semantics of Sus-

pended ISWIM, we have:
((λx1.λx2.x1) 7) 4

−→ ((λx2.x1)[x1 := 7]) 4

−→ x1[x2 := 4][x1 := 7]

−→ x1[x1 := 7]

−→ 7.
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In contrast, by the structural operational semantics of Explicit ISWIM, we have:

((λx1.λx2.x1) 7) 4

−→ ((λx2.x1)[x1 := 7]) 4

−→ (λx2.x1[x2 := x2][x1 := 7]) 4 where x2 6≡ x1

−→ x1[x2 := x2][x1 := 7][x2 := 4]

−→ x1[x1 := 7][x2 := 4]

−→ 7[x2 := 4]

−→ 7

Suspended ISWIM takes two fewer steps than Explicit ISWIM. Given (λx2.x1)[x1 := 7], Suspended

ISWIM does not push the substitution [x1 := 7] into the lambda abstraction λx2.x1. Instead, the substitution

is suspended until the lambda abstraction is called in an application. Given ((λx2.x1)[x1 := 7]) 4, Suspended

ISWIM promotes the substitution for the lambda bound variable to the front, resulting in x1[x2 := 4][x1 := 7].

Properties. We observe the following properties that are useful in proving semantics equivalence. (1)

The single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of

a term. These are the same properties that Substitutional ISWIM and Explicit ISWIM hold.

Proposition 83. If ta1 ∼α tb1 and ta1 −→ ta2 , then tb1 −→ tb2 and ta2 ∼α tb2 .

Proposition 84. If FV (t1) = /0 and t1 −→∗ t2, then FV (t2) = /0.

Evaluator. We now define an evaluator in terms of the substitutional structural operational semantics of

Suspended ISWIM. The evaluator is analogous to be one defined for Explicit ISWIM.

Definition 85 (Evaluator based on Structural Operational Semantics of Suspended ISWIM). Let the eval-

uator evalISWIM:SusSOS be a partial function from the set of programs PRGMISWIM to the set of answers

ANSISWIM.

evalISWIM:SusSOS : PRGMISWIM ⇀ ANSISWIM

evalISWIM:SusSOS(t) =

function if t −→∗ (λx.t ′)[xi := wi]

n if t −→∗ n

This evaluator is defined in terms of the structural operational semantics of Suspended ISWIM. The sub-

script “ISWIM:SusSOS” in evalISWIM:SusSOS denotes the structural operational semantics of Suspended ISWIM.

We claim that the evaluators defined in terms of the Substitutional ISWIM and Suspended ISWIM are

equivalent.

Theorem 86 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene equal

to evalISWIM:SusSOS(t).

We prove the theorem in the appendices.
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3.4 Environmental ISWIM - Structural Operational Semantics

Suspended ISWIM is peculiar in the sense that the top-level structure of a lambda abstraction surrounded

by zero or more explicit substitutions is not immediately recognisable. Consider (λx.t)[xi := wi]
n
i=1 which

truly represents (...(((λx.t)[x1 := w1])[x2 := w2])...)[xn := wn]. To ensure that its top-level structure is a

lambda abstraction, we have to dive down through the cascaded explicit substitutions to search for a lambda

abstraction.

Furthermore, since our evaluator only concerns closed terms, we can safely claim that all denotable terms

substituting variables in cascaded explicit substitutions are closed. Then a cascade of explicit substitutions

can be viewed as a whole when operating on a term and its subterms. For example, consider a cascade of

explicit substitutions operating on a variable, x[xi := wi]
n
i=1. We compare x against xi where i = 1,2, ...,n in

order. There are two possibilities. (1) If none of xi’s refers to x, the cascaded explicit substitutions disappear,

i.e., x[xi := wi]
n
i=1 steps to x. (2) If we find the leftmost xp where 1≤ p≤ n such that xp refers to x, then x is

replaced by wp and the remaining cascaded substitutions [xi := wi]
n
i=p+1 disappear, i.e., x[xi := wi]

n
i=1 steps to

wp where xp is the leftmost xi such that x≡ xp. We make these two observations because the denotable term

wp is closed and remains unchanged when encountering any explicit substitution. After further analysis, we

realise that there will always be a cascade of explicit substitutions that reach a variable in Suspended ISWIM.

It is a natural step to treat a cascade of explicit substitutions as a whole and replace it by an environment,

leading to Environmental ISWIM.

3.4.1 Syntax

We first define the basic syntax of the Environmental ISWIM: terms, values, denotable terms, configurations

and environments. Then we define the free variable function.

3.4.1.1 Terms, Values, Denotable Terms, Configurations and Environments

Definition 87 (Terms, Values, Denotable Terms and Configurations). Let (1) TERM be the set of terms,

(2) VALUE be the set of values, (3) DENOTABLE be the set of denotable terms, (4) CONF be the set of

configurations, and (5) ENV be a finite partial function from the set of variables to the set of denotable

terms.

x ∈ VAR, n ∈N, t ∈ TERM, v ∈ VALUE, w ∈ DENOTABLE, c ∈ CONF, ρ ∈ ENV = VAR
fin
⇀ DENOTABLE

t := x | t t | λx.t | n | t + t

v := n | /λx.t, ρ . where FV (λx.t)⊆ dom(ρ)

w := v

c := v | c c | c+ c | 〈t, ρ〉 where FV (t)⊆ dom(ρ)

A pair of a term and an environment where the former is closed by the latter, i.e., 〈t, ρ〉 where FV (t)⊆
dom(ρ) or /λx.t, ρ. where FV (λx.t)⊆ dom(ρ), is called a closure. A pair of a lambda abstraction and an

environment where the former is closed by the latter, i.e., /λx.t, ρ. where FV (λx.t)⊆ dom(ρ), is called a

closure value.
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A closure makes its top-level structure immediately evident. For example, given a closure 〈λx.t, ρ〉, it is

immediately recognisable that its top-level structure is a lambda abstraction λx.t without having to dive into

the environment ρ . In contrast, in Suspended ISWIM, to check the top-level structure of (λx.t)[x := w], we

have to dive down through the cascaded explicit substitutions [x := w] until reaching the lambda abstraction

λx.t.

Unlike the previous dialects of ISWIM, Environmental ISWIM deems the set of configurations rather

than the set of terms to be the fundamental set on which the operational semantics is defined.

Definition 88 (Environments). An environment ρ ∈ ENV is a finite partial function from the set of variables

to the set of denotable terms. Let dom(ρ) be the domain of the environment ρ and rng(ρ) be the range of

the environment ρ . Let ρ[x 7→ w] be an environment update and ρ(x) be an environment lookup. We have:

ρ[x 7→ w](y) =

w if x≡ y

ρ(y) if x 6≡ y

Suppose an environment ρ maps x1 to w1, x2 to w2, ..., xn to wn, where xi 6≡ x j for any i, j such that i 6= j,

and ρ has no other mapping. The environment ρ can be represented as a finite set {(x1,w1),(x2,w2), ...,(xn,wn)}.
The domain of the environment ρ is dom(ρ) = {x1,x2, ...,xn} and the range of the environment ρ is

rng(ρ) = {w1,w2, ...,wn}.

3.4.1.2 Free Variable Function

We define the free variable function by extending Definition 47 to accommodate configurations.

Definition 89 (Free Variable Function). Let the free variable function FV be a total function from the set of

configurations to the power set of variables.

FV : CONF −→P(VAR)

FV (x) = x (1)

FV (t1 t2) = FV (t1)∪FV (t2) (2)

FV (λx.t) = FV (t)\{x} (3)

FV (n) = /0 (4)

FV (t1 + t2) = FV (t1)∪FV (t2) (5)

FV (〈t, ρ〉) = /0 (6)

FV (/λx.t, ρ.) = FV (〈λx.t, ρ〉) (7)

FV (c1 c2) = FV (c1)∪FV (c2) (8)

FV (c1 + c2) = FV (c1)∪FV (c2) (9)

Equations (1)-(5) are the same as Definition 47 in Substitutional ISWIM. Equations (6) and (7) are based

on the definitions of closures and closure values. Equations (8) and (9) are analogous to Equations (2) and

(5).
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Definition 90 (Closed Configurations). A configuration c is closed if and only if FV (c) = /0.

3.4.2 Structural Operational Semantics

We lay out the structural operational semantics of Environmental ISWIM through the single-step relation

−→ and the multi-step relation −→∗.

Definition 91 (Single-step Relation). Define the single-step relation−→ to be a binary relation between the

set of configurations and the set of configurations.

−→⊆ CONF×CONF

c11 −→ c12
c11 c2 −→ c12 c2

(appL) c21 −→ c22
v1 c21 −→ v1 c22

(appR) /(λx.t), ρ . v−→ 〈t, ρ[x 7→ v]〉
(app)

c11 −→ c12
c11 + c2 −→ c12 + c2

(plusL) c21 −→ c22
v1 + c21 −→ v1 + c22

(plusR)

n1 +n2 −→ n where n = n1 +n2 (plus)

〈(λx.t), ρ〉 −→ /(λx.t), ρ.
(clos-env)

〈x, ρ〉 −→ w
where ρ(x) = w (var-env)

〈n, ρ〉 −→ n
(num-env)

〈(t1 t2), ρ〉 −→ 〈t1, ρ〉 〈t2, ρ〉
(app-env)

〈(t1 + t2), ρ〉 −→ 〈t1, ρ〉+ 〈t2, ρ〉
(plus-env)

The single-step relation c1 −→ c2 reads as “c1 single-steps to c2”. (1) Rules (appL), (appR), (plusL),

(plusR) and (plus) are analogous to the rules of the same names in Suspended ISWIM’s single-step relation.

The only difference is that Suspended ISWIM defined the relation on terms but we now define the relation

on configurations. (2) The (app) rule models performing an application by environment updating, which

completes the unfinished job of Suspended ISWIM’s (app) rule. (3) The other rules discuss how to evaluate

a closure. The (clos-env) rule turns a closure to a closure value. Other (*-env) rules correspond to Suspended

ISWIM’s single-step substitution reduction relation.

Rules of the single-step relation can be categorised into reduction rules and structural rules. Structural

rules are (appL), (appR), (plusL) and (plusR). The others are reduction rules.

Definition 92 (Multi-step Relation). Define the multi-step relation−→∗ to be the reflexive-transitive closure

of the single-step relation −→.

Example. To get familiar with the structural operational semantics, consider the following example.

Example 93. Consider (λx1.λx2.x1) 7) 4 where x1 6≡ x2.
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We first construct a configuration that pairs the above term with an empty environment, i.e., 〈((λx1.λx2.x1) 7) 4, /0〉.
By the structural operational semantics of Environmental ISWIM, we have:

〈((λx1.λx2.x1) 7) 4, /0〉 (1)

−→ 〈(λx1.λx2.x1) 7, /0〉 〈4, /0〉 (2)

−→ (〈(λx1.λx2.x1), /0〉 〈7, /0〉) 〈4, /0〉 (3)

−→ (/(λx1.λx2.x1), /0. 〈7, /0〉) 〈4, /0〉 (4)

−→ (/(λx1.λx2.x1), /0. 7) 〈4, /0〉 (5)

−→ 〈(λx2.x1), {(x1,7)}〉 〈4, /0〉 (6)

−→ /(λx2.x1),{(x1,7)}. 〈4, /0〉 (7)

−→ /(λx2.x1),{(x1,7)}. 4 (8)

−→ 〈x1,{(x2,4),(x1,7)}〉 (9)

−→ 7. (10)

As shown in Line (1), we always evaluate a program with an empty environment.

Property. We observe the following property that is useful in proving semantics equivalence. The multi-

step relation preserves the closedness of a term. This is the same property that Substitutional ISWIM,

Explicit ISWIM and Suspended ISWIM hold.

Proposition 94. If FV (c1) = /0 and c1 −→∗ c2, then FV (c2) = /0.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Environmental

ISWIM. Environmental ISWIM’s multi-step relation is defined on sets of configurations rather than sets of

terms. Given a program t, the evaluator applies the multi-step relation on the configuration 〈t, /0〉 in which

the program is associated with an empty environment. The evalutor is otherwise analogous to the evaluator

defined for Suspended ISWIM.

Definition 95 (Evaluator based on Structural Operational Semantics of Environmental ISWIM). Let the

evaluator evalISWIM:EnvSOS to be a partial function from the set of programs PRGMISWIM to the set of answers

ANSISWIM.

evalISWIM:EnvSOS : PRGMISWIM ⇀ ANSISWIM

evalISWIM:EnvSOS(t) =

function if 〈t, /0〉 −→∗ /(λx.t ′), ρ.

n if 〈t, /0〉 −→∗ n

This evaluator is defined in terms of the structural operational semantics of Environmental ISWIM. The

subscript “ISWIM:EnvSOS” in evalISWIM:EnvSOS denotes the structural operational semantics of Environmental

ISWIM.

We claim that the evaluators defined in terms of Substitutional ISWIM and Environmental ISWIM are

equivalent.
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Theorem 96 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene equal

to evalISWIM:EnvSOS(t).

We prove the theorem in appendices.

3.5 Environmental ISWIM - Reduction Semantics

This chapter aims to develop an environmental abstract machine for ISWIM. Since a reduction semantics

can be viewed as a concise representation of an abstract machine, we develop a reduction semantics for

Environmental ISWIM, based on which we develop an abstract machine in the next section.

3.5.1 Syntax

The definitions of terms, values, denotable terms, configurations and environments are the same as Section

3.4.

3.5.1.1 Evaluation Contexts

We now define evaluation contexts to regulate the only places where an arbitrary reduction may happen.

Definition 97 (Evalutation Contexts: Inside-out). Let ECXT be the set of evaluation contexts.

E ∈ ECXT, c ∈ CONF, v ∈ VALUE

� ∈ ECXT
(ept)

E ∈ ECXT
E[� c] ∈ ECXT

(appL) E ∈ ECXT
E[v�] ∈ ECXT

(appR)

E ∈ ECXT
E[�+ c] ∈ ECXT

(plusL) E ∈ ECXT
E[v+�] ∈ ECXT

(plusR)

The sole hole � in an evaluation context can be filled by a configuration. E[c] is a configuration con-

structed by filling the sole hole of the evaluation context E by the configuration c.

There is a correspondence between evaluation contexts and structural rule of the single-step relation

defined as Definition 91. (1) The evaluation context E[� c] allows reduction at the operator position of an

application, corresponding to the (appL) rule of the semantics. (2) The evaluation context E[v �] allows

reduction at the operand position of an application, corresponding to the (appR) rule of the semantics. (3)

The evaluation context E[�+ c] allows reduction at the first operand position of an addition, corresponding

to the (plusL) rule of the semantics. (4) The evaluation context E[v+�] allows reduction at second operand

position of an addition, corresponding to the (plusR) rule of the semantics. (5) The evaluation context �

allows reduction immediately.

This definition is called inside-out because it makes the innermost structure of an evaluation context the

most evident. An alternative but equivalent definition of evaluation contexts is provided in Definition 106.
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3.5.2 Reduction Semantics

We lay out the reduction semantics of Environmental ISWIM through the notions of reduction R, the re-

duction relation 7−→ and the multi-reduction relation 7−→∗.

Definition 98 (Notions of Reduction). Let the notions of reduction, R, be a binary relation between the set

of configurations and the set of configurations.

R ⊆ CONF×CONF

/(λx.t), ρ . v R 〈t, ρ[x 7→ v]〉 (app)

n1 +n2 R n where n = n1 +n2 (plus)

〈(λx.t), ρ〉 R /(λx.t), ρ. (conf-lam)

〈x, ρ〉 R w where ρ(x) = w (conf-var)

〈n, ρ〉 R n (conf-num)

〈(t1 t2), ρ〉 R 〈t1, ρ〉 〈t2, ρ〉 (conf-app)

〈(t1 + t2), ρ〉 R 〈t1, ρ〉+ 〈t2, ρ〉 (conf-plus)

The notion of reduction c1 R c2 reads as “c1 reduces to c2”. Each notion corresponds to one reduction

rule of the single-step relation defined as Definition 91.

Definition 99. If c1 R c2, then c1 is a redex and c2 is a contractum.

Definition 100 (Reduction Relation). Let the reduction relation 7−→ be a binary relation between the set of

configurations and the set of configurations directly based on the notions of reduction R.

7−→ ⊆ CONF×CONF

c1 R c2

E[c1] 7−→ E[c2]

The reduction relation c1 7−→ c2 reads as “c1 single-reduces to c2”. The above definition states that the

reduction relation respects performing any notion of reduction in an evaluation context.

Intuitively, the reduction relation 7−→ defines a single step of computation. We define 7−→∗ to represent

multiple (zero or more) steps of computation.

Definition 101 (Multi-reduction Relation). Define the multi-reduction relation 7−→∗ to be the reflexive-

transitive closure of the reduction relation 7−→.

The multi-reduction relation c1 7−→∗ c2 reads as “c1 multi-reduces to c2”.

Example 102. Consider (λx1.λx2.x1) 7) 4 where x1 6≡ x2.

We first pair above term with an empty environment, constructing the configuration 〈((λx1.λx2.x1) 7) 4, /0〉.
By the reduction semantics of Environmental ISWIM, we have:

〈((λx1.λx2.x1) 7) 4, /0〉 7−→∗ 7

as demonstrated in Figure 3.1.
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〈((λx1.λx2.x1) 7) 4, /0〉
= �[〈((λx1.λx2.x1) 7) 4, /0〉]
7−→ �[〈(λx1.λx2.x1) 7, /0〉 〈4, /0〉] where 〈((λx1.λx2.x1) 7) 4, /0〉R 〈(λx1.λx2.x1) 7, /0〉 〈4, /0〉
= 〈(λx1.λx2.x1) 7, /0〉 〈4, /0〉
= �[� 〈4, /0〉][〈(λx1.λx2.x1) 7, /0〉]
7−→ �[� 〈4, /0〉][〈(λx1.λx2.x1), /0〉 〈7, /0〉] where 〈(λx1.λx2.x1) 7, /0〉R 〈(λx1.λx2.x1), /0〉 〈7, /0〉
= (〈(λx1.λx2.x1), /0〉 〈7, /0〉) 〈4, /0〉
= �[� 〈4, /0〉][� 〈7, /0〉][〈(λx1.λx2.x1), /0〉]
7−→ �[� 〈4, /0〉][� 〈7, /0〉][/(λx1.λx2.x1), /0.] where 〈(λx1.λx2.x1), /0〉R / (λx1.λx2.x1), /0.
= (/(λx1.λx2.x1), /0. 〈7, /0〉) 〈4, /0〉
= �[� 〈4, /0〉][/(λx1.λx2.x1), /0. �][〈7, /0〉]
7−→ �[� 〈4, /0〉][/(λx1.λx2.x1), /0. �][7] where 〈7, /0〉R 7
= (/(λx1.λx2.x1), /0. 7) 〈4, /0〉
= �[� 〈4, /0〉][/(λx1.λx2.x1), /0. 7]
7−→ �[� 〈4, /0〉][〈(λx2.x1), {(x1,7)}〉] where / (λx1.λx2.x1), /0. 7 R 〈(λx2.x1), /0[x1 7→ 7]〉
= 〈(λx2.x1), {(x1,7)}〉 〈4, /0〉
= �[� 〈4, /0〉][〈(λx2.x1), {(x1,7)}〉]
7−→ �[� 〈4, /0〉][/(λx2.x1), {(x1,7)}.] where 〈(λx2.x1), {(x1,7)}〉R / (λx2.x1), {(x1,7)}.
= /(λx2.x1),{(x1,7)}. 〈4, /0〉
= �[/(λx2.x1),{(x1,7)}. �][〈4, /0〉]
7−→ �[/(λx2.x1),{(x1,7)}. �][4] where 〈4, /0〉R 4
= /(λx2.x1),{(x1,7)}. 4
= �[/(λx2.x1),{(x1,7)}. 4]
7−→ �[〈x1,{(x2,4),(x1,7)}〉] where / (λx2.x1),{(x1,7)}. 4 R 〈x1,{(x1,7)}[x2 7→ 4]〉
= 〈x1,{(x2,4),(x1,7)}〉
= �[〈x1,{(x2,4),(x1,7)}〉]
7−→ �[7] where 〈x1,{(x2,4),(x1,7)}〉R 7
= 7.

Figure 3.1: Evaluation of ((λx1.λx2.x1) 7) 4 in Reduction Semantics of Environmental ISWIM.
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To apply the reduction semantics on a term, follow the following pattern repeatedly until the resulting

term is a value.

1. Break the term into an evaluation context and a redex.

2. Apply a notion of reduction on the redex and get a contractum.

3. Plug the contractum into the evaluation context and get a new term.

However, the reduction semantics does not tell how to break a term into an evaluation context and a redex.

In other words, the reduction semantics does not encode a systematic strategy to search for an evaluation

context and a redex.

Property. We observe the following property that is useful in proving semantics equivalence. The multi-

step relation preserves the closedness of a term. This is the same property that the previos ISWIM dialects

hold.

Proposition 103. If FV (c1) = /0 and c1 7−→∗ c2, then FV (c2) = /0.

Evaluator. We now define an evaluator in terms of the reduction semantics of Environmental ISWIM.

The evalutor is analogous to the evaluator defined in terms of the structural operational semantics of Envir-

onmental ISWIM.

Definition 104 (Evaluator based on Reduction Semantics of Environmental ISWIM). Let the evaluator

evalISWIM:EnvRed be a partial function from the set of programs PRGMISWIM to the set of answers ANSISWIM.

evalISWIM:EnvRed : PRGMISWIM ⇀ ANSISWIM

evalISWIM:EnvRed(t) =

function if 〈t, /0〉 7−→∗ /(λx.t ′), ρ.

n if 〈t, /0〉 7−→∗ n

This evaluator is defined in terms of the reduction semantics of Environmental ISWIM. The subscript

“ISWIM:EnvRed” in evalISWIM:EnvRed denotes the reduction semantics of Environmental ISWIM.

We claim that the evaluators defined in terms of the structural operational semantics and the reduction

semantics of Environmental ISWIM are equivalent.

Theorem 105 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:EnvSOS(t) is Kleene equal

to evalISWIM:EnvRed(t).

We prove the theorem in appendices.
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3.6 Environmental ISWIM - CEK Abstract Machine

Reduction semantics can be viewed as a concise representation of an abstract machine in the sense that it

abstracts away the search for an evaluation context and a redex. In contrast, an abstract machine encodes a

systematic strategy to search for an evaluation context and a redex. We finish refining semantics for ISWIM

by developing an abstract machine for Environmental ISWIM. The environmental abstract machine is also

known as the CEK machine.

3.6.1 Syntax

The definitions of terms, values, denotable terms, configurations and environments are the same as Sections

3.4 and 3.5.

3.6.1.1 Evaluation Contexts

We provide two definitions of evaluation contexts. The first definition is the same as the one used in Section

3.5. The second one is as follows. These two definitions are equivalent and are used interchangeably at our

convenience.

Definition 106 (Evaluation Contexts: Outside-in). Let ECXT be the set of evaluation contexts.

E ∈ ECXT, c ∈ CONF, v ∈ VALUE

� ∈ ECXT
(ept)

E ∈ ECXT
(E c) ∈ ECXT

(appL) E ∈ ECXT
(v E) ∈ ECXT

(appR)

E ∈ ECXT
(E + c) ∈ ECXT

(plusL) E ∈ ECXT
(v+E) ∈ ECXT

(plusR)

This definition is called outside-in because it makes the outermost structure of an evaluation context the

most evident.

3.6.1.2 Machine Configurations

The states of an abstract machine are represented by machine configurations.

Definition 107 (Machine Configurations). Let CFG be the set of machine configurations.

C ∈ CFG, c ∈ CONF, v ∈ VALUE, E ∈ ECXT

C ::= v

| 〈E, c〉r
| 〈E, c〉f
| 〈E, v〉b

The machine operates in four modes: the value mode v, the reduce mode 〈E, c〉r, the focus mode 〈E, c〉f
and the build mode 〈E, v〉b.
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A machine configuration 〈E, c〉? where ? ∈ {r, f,b} unloads to the configuration E[c]. Precisely, the

configuration c in the machine configuration 〈E, c〉r needs to be a redex.

3.6.2 CEK Abstract Machine

We lay out an abstract machine of Environmental ISWIM, which is known as the CEK machine, through

the reduction relation 7−→cek and the multi-reduction relation 7−→∗cek.

Definition 108 (Reduction Relation). Let the reduction relation 7−→cek be a binary relation between the set

of machine configurations and the set of machine configurations.

7−→cek ⊆ CFG×CFG

Reduce rules:

〈E, /(λx.t), ρ . v〉r 7−→cek 〈E, 〈t, ρ[x 7→ v]〉〉f (r-app)

〈E, n1 +n2〉r 7−→cek 〈E, n〉f where n = n1 +n2 (r-plus)

〈E, 〈(λx.t), ρ〉〉r 7−→cek 〈E, /(λx.t), ρ.〉f (r-conf-lam)

〈E, 〈x, ρ〉〉r 7−→cek 〈E, w〉f where ρ(x) = w (r-conf-var)

〈E, 〈n, ρ〉〉f 7−→cek 〈E, n〉f (r-conf-num)

〈E, 〈(t1 t2), ρ〉〉r 7−→cek 〈E, 〈t1, ρ〉 〈t2, ρ〉〉f (r-conf-app)

〈E, 〈(t1 + t2), ρ〉〉r 7−→cek 〈E, 〈t1, ρ〉+ 〈t2, ρ〉〉f (r-conf-plus)

Focus rules:

〈E, 〈t, ρ〉〉f 7−→cek 〈E, 〈t, ρ〉〉r (f-conf)

〈E, c1 c2〉f 7−→cek 〈E[� c2], c1〉f (f-app)

〈E, /(λx.t), ρ.〉f 7−→cek 〈E, /(λx.t), ρ.〉b (f-lam)

〈E, n〉f 7−→cek 〈E, n〉b (f-num)

〈E, c1 + c2〉f 7−→cek 〈E[�+ c2], c1〉f (f-plus)

Build rules:

〈�, v〉b 7−→cek v (b-val)

〈E[� c2], v1〉b 7−→cek 〈E[v1 �], c2〉f (b-appL)

〈E[v1 �], v2〉b 7−→cek 〈E, v1 v2〉r (b-appR)

〈E[�+ c2], v1〉b 7−→cek 〈E[v1 +�], c2〉f (b-plusL)

〈E[v1 +�], v2〉b 7−→cek 〈E, v1 + v2〉r (b-plusR)

The reduction relation C1 7−→cek C2 reads as “C1 single-reduces to C2”.

A machine configuration at the reduce mode, 〈E, c〉r, signifies that a proper notion of reduction can be

applied on the redex c. A machine configuration at the focus mode, 〈E, c〉f, indicates searching downward

into the configuration c for a redex to reduce. A machine configuration at the build mode, 〈E, v〉b, returns

the value v to the current evaluation context E. A machine configuration at the value mode, v, represents

that the value v is the result of executing the machine.
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Intuitively, the reduction relation 7−→cek defines a single step of computation. We define 7−→∗cek to

represent multiple (zero or more) steps of computation.

Definition 109 (Multi-reduction Relation). Let the multi-reduction relation 7−→∗cek be the reflexive-transitive

closure of the reduction relation 7−→cek.

The multi-reduction relation C1 −→∗cek C2 reads as “C1 multi-reduces to C2”.

The abstract machine defined above is also known as the CEK machine. C stands for control, i.e., the

configuration under evaluation, E stands for environment, and K stands for continuation, i.e., the evaluation

context.

Example 110. Consider (λx1.λx2.x1) 7) 4 where x1 6≡ x2.

We first construct a machine configuration that contains the above term with an empty evaluation context

and an empty environment and start running the machine configuration at focus mode.

By the CEK machine, we have

〈�, 〈((λx1.λx2.x1) 7) 4, /0〉〉f 7−→∗cek 7

as demonstrated in Figure 3.2.

Evaluator. We now define an evaluator in terms of the CEK machine. CEK machine’s multi-reduction

relation is defined on sets of machine configurations. Given a program t, the evaluator applies the multi-

transformation relation on the machine configuration 〈�, 〈t, /0〉〉f in which the program is associated with

an empty environment and an empty evaluation context. The evaluator is otherwise analogous to the one

defined in terms of the reduction semantics of Environmental ISWIM.

Definition 111 (Evaluator based on CEK Machine). Let the evaluator evalISWIM:CEK be a partial function

from the set of programs PRGMISWIM to the set of answers ANSISWIM.

evalISWIM:CEK : PRGMISWIM ⇀ ANSISWIM

evalISWIM:CEK(t) =

function if 〈�, 〈t, /0〉〉f 7−→∗cek /(λx.t ′), ρ.

n if 〈�, 〈t, /0〉〉f 7−→∗cek n

This evaluator is defined in terms of the CEK machine. The subscript “ISWIM:CEK” in evalISWIM:CEK

denotes the CEK machine of ISWIM.

We claim that the evaluators defined in terms of the reduction semantics and based on the CEK abstract

machine of Environmental ISWIM are equivalent.

Theorem 112 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:EnvRed(t) is Kleene equal

to evalISWIM:CEK(t).
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〈�, 〈((λx1.λx2.x1) 7) 4, /0〉 〉f
7−→cek 〈�, 〈((λx1.λx2.x1) 7) 4, /0〉 〉r
7−→cek 〈�, 〈(λx1.λx2.x1) 7, /0〉 〈4, /0〉 〉f
7−→cek 〈�[� 〈4, /0〉], 〈(λx1.λx2.x1) 7, /0〉 〉f
7−→cek 〈�[� 〈4, /0〉], 〈(λx1.λx2.x1) 7, /0〉 〉r
7−→cek 〈�[� 〈4, /0〉], 〈λx1.λx2.x1, /0〉 〈7, /0〉 〉f
7−→cek 〈�[� 〈4, /0〉][� 〈7, /0〉], 〈λx1.λx2.x1, /0〉 〉f
7−→cek 〈�[� 〈4, /0〉][� 〈7, /0〉], 〈λx1.λx2.x1, /0〉 〉r
7−→cek 〈�[� 〈4, /0〉][� 〈7, /0〉], /λx1.λx2.x1, /0. 〉f
7−→cek 〈�[� 〈4, /0〉][� 〈7, /0〉], /λx1.λx2.x1, /0. 〉b
7−→cek 〈�[� 〈4, /0〉][/λx1.λx2.x1, /0. �], 〈7, /0〉 〉f
7−→cek 〈�[� 〈4, /0〉][/λx1.λx2.x1, /0. �], 〈7, /0〉 〉r
7−→cek 〈�[� 〈4, /0〉][/λx1.λx2.x1, /0. �], 7 〉f
7−→cek 〈�[� 〈4, /0〉][/λx1.λx2.x1, /0. �], 7 〉b
7−→cek 〈�[� 〈4, /0〉], /λx1.λx2.x1, /0. 7 〉r
7−→cek 〈�[� 〈4, /0〉], 〈λx2.x1, {(x1,7)}〉 〉f
7−→cek 〈�[� 〈4, /0〉], 〈λx2.x1, {(x1,7)}〉 〉r
7−→cek 〈�[� 〈4, /0〉], /λx2.x1, {(x1,7)}. 〉f
7−→cek 〈�[� 〈4, /0〉], /λx2.x1, {(x1,7)}. 〉b
7−→cek 〈�[/λx2.x1, {(x1,7)}. �], 〈4, /0〉 〉f
7−→cek 〈�[/λx2.x1, {(x1,7)}. �], 〈4, /0〉 〉r
7−→cek 〈�[/λx2.x1, {(x1,7)}. �], 4 〉f
7−→cek 〈�[/λx2.x1, {(x1,7)}. �], 4 〉b
7−→cek 〈�, /λx2.x1, {(x1,7)}. 4 〉r
7−→cek 〈�, 〈x1, {(x1,7),(x2,4)}〉 〉f
7−→cek 〈�, 〈x1, {(x1,7),(x2,4)}〉 〉r
7−→cek 〈�, 7 〉f
7−→cek 〈�, 7 〉b
7−→cek 7

Figure 3.2: Evaluation of ((λx1.λx2.x1) 7) 4 in the CEK Machine.

56



3.7. Chapter Summary

We prove the above theorem in appendices.

As a corollary, the evaluators defined in terms of the Substitutional ISWIM and the CEK machine are

equivalent.

Corollary 113 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene

equal to evalISWIM:CEK(t).

Proof. It immediately follows from Theorems 96, 105 and 112 by the transitivity of Kleene equality.

3.7 Chapter Summary

Following the first dimension of the semantics refinement problem, this chapter solved the following prob-

lem that is less complicated than the main semantics refinement problem.

Can we refine the substitutional structural operational semantics of ISWIM to a corresponding

substitutional abstract machine, which is known as the CEK machine, and demonstrate their

equivalence?

We accomplished the development progressively in several manageable steps, each of which led to an in-

termediate semantics. We first studied the substitutional structural operational semantics of ISWIM. Then

we successively developed the structural operational semantics of Explicit ISWIM, the structural opera-

tional semantics of Suspended ISWIM, the structural operational semantics of Environmental ISWIM, the

reduction semantics of Environmental ISWIM, and finally derived the abstract machine of Environmental

ISWIM. The abstract machine of Environmental ISWIM is also known as the CEK machine.

We defined an evaluator based on each semantics. By proving the equivalence of every two adjacent

semantics, we finally showed that the CEK machine is equivalent to the substitutional structural operational

semantics of ISWIM.
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Chapter 4

Refining Semantics for MetaML:
Developing the MK Machine

Following the second dimension of simplifying the main semantics refinement problem, we study how to

stepwise develop an substitutional abstract machine rather than an environmental abstract machine for the

multi-stage language MetaML. The problem is restated as follows.

Can we refine the substitutional structural operational semantics of MetaML to a corresponding

substitutional abstract machine, which we call the MK machine, and demonstrate their equival-

ence?

Recall that Sections 3.4, 3.5 and 3.6 have shown an approach to refining a structural operational semantics

to a reduction semantics and finally to an abstract machine. We adopt the same strategy in deriving the MK

machine.

4.1 MetaML - Substitutional Reduction Semantics

MetaML’s substitutional structural operational semantics has been presented in Section 2.2. Following the

path of refining a structural operational semantics to a reduction semantics as shown in Section 3.5, we

derive a substitutional reduction semantics for MetaML.

4.1.1 Syntax

The definitions of terms, values and denotable terms are the same as Section 2.2.1.

4.1.1.1 Evaluation Contexts

Section 3.5 defined evaluation contexts to regulate the only places where an arbitrary reduction may happen

in a single-stage language. We now extend the definition to accommodate the multi-stage setting.

Definition 114 (Level-indexed Evaluation Contexts: Inside-out). Let ECXTi( j be the set of evaluation

contexts with inner level i and outer level j.
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4.1. MetaML - Substitutional Reduction Semantics

E i( j ∈ ECXTi( j, t i ∈ TERMi, vi ∈ VALUEi

� ∈ ECXTi(i (ept-i)

E ∈ ECXTi( j

E[� t i
2] ∈ ECXTi( j (appL-i) E ∈ ECXTi( j

E[vi
1 �] ∈ ECXTi( j (appR-i)

E ∈ ECXT(i+1)( j

E[λx.�] ∈ ECXT(i+1)( j
(lambda-(i+1))

E ∈ ECXTi( j

E[〈�〉] ∈ ECXT(i+1)( j
(code-i) E ∈ ECXT(i+1)( j

E[∼�] ∈ ECXTi( j (splice-(i+1)) E ∈ ECXTi( j

E[!�] ∈ ECXTi( j (run-i)

E ∈ ECXTi( j

E[�+ t i
2] ∈ ECXTi( j (plusL-i) E ∈ ECXTi( j

E[vi
1 +�] ∈ ECXTi( j (plusR-i)

An evaluation context E i( j comes with an inner level i and an outer level j. The inner level i is the level

of the hole of the context, indicating the level of terms that can fill the hole. The outer level j is the level of

the term produced by the context when the hole of the context is filled.

The sole hole �i(i in an evaluation context can be filled by a level-i term. E i( j[t i] is a level- j term

constructed by filling the sole hole of the evaluation context E i( j by a level-i term t i. The levels i and j

in an evaluation context E i( j can be related in any of the following three ways. (1) i > j. For example, a

level-0 term !〈λx.x〉 can be represented as (�[!�][〈�〉][λx.�])1(0[x]. (2) i = j. For example, a level-0 term

(λx.x) ((λx.x) 7) can be represented as (�[(λx.x)�])0(0[(λx.x) 7]. (3) i < j. For example, a level-1 term

∼((λx.x) 〈λx.x〉) can be represented as (�[∼�])0(1[(λx.x) 〈λx.x〉].
The definition of evaluation contexts is motivated by the structural rules of the single-step relations

(Definition 36). For example, the (code-i) rule

t i+1
1 −→i+1 t i+1

2

〈t i+1
1 〉 −→i 〈t i+1

2 〉
(code-i)

tells that a code operation at level i can be evaluated by reducing its operand at level i+1. Since an evaluation

context defines where a reduction may happen, we may replace the (code-i) rule by an evaluation context

(�[〈�〉])(i+1)(i and allow any level-(i+ 1) reduction to happen at the hole of the context. We observe

the following correspondences between evaluation contexts and structural rule of the single-step relations

(Definition 36). (1) The evaluation context E[� t i
2] corresponds to (appL-i). (2) The evaluation context

E[vi
1 �] corresponds to (appR-i). (3) The evaluation context E[λx.�] corresponds to (lambda-(i+1)). (4)

The evaluation context E[!�] corresponds to (run-i). (5) The evaluation context E[〈�〉] corresponds to

(code-i). (6) The evaluation context E[∼�] corresponds to (splice-i). (7) The evaluation context E[�+ t i
2]

corresponds to (plusL-i). (8) The evaluation context E[vi
1+�] corresponds to (plusR-i). To get familiar with
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4.1. MetaML - Substitutional Reduction Semantics

the above correspondences, consider the following example:

∼〈x〉 −→1 x
(splice-1)

λx.∼〈x〉 −→1 λx.x
(lambda-(i+1))

〈λx.∼〈x〉〉 −→0 〈λx.x〉
(code-i)

The level-0 term 〈λx.∼〈x〉〉 can be represented as (�[〈�〉][λx.�])1(0[∼〈x〉]. The evaluation context (�[〈�〉][λx.�])1(0

corresponds to the structural rules (code-i) and (lambda-(i+1)).

We can get the evaluation contexts that are suitable for a single-stage language such as ISWIM if we

remove the rules that involve any multi-stage annotation and repeatedly apply the rules that define evaluation

contexts with an inner level 0 and an outer level 0.

This definition is inside-out. An outside-in definition is provided in Definition 121.

4.1.2 Substitutional Reduction Semantics

We lay out the substitutional reduction semantics through a family of level-indexed notions of reduction R i,

a family of level-indexed reduction relations 7−→i and a family of level-indexed multi-reduction relations

7−→i∗.

Definition 115 (Level-indexed Notions of Reduction). For any i ∈ {0,1}, let the level-indexed notions of

reduction R i be a binary relation between the set of terms at level i and the set of terms at level i.

R i ⊆ TERMi×TERMi

(λx.t0) v0 R0 t0[v0/x] (app-0)

!〈v1〉 R0 v1 (run-0)

∼〈v1〉 R1 v1 (splice-1)

n1 +n2 R0 n where n = n1 +n2 (plus-0)

The notion of reduction t i
1 R i t i

2 reads as “t1 reduces to t2 at level i”. Each notion corresponds to one

reduction rule of the single-step relations presented in Definition 36.

Definition 116 (Level-indexed Reduction Relations). For any i ∈N, let the level-indexed reduction relation

7−→i be a binary relation between the set of terms and the set of terms directly based on the notions of

reduction R j.

7−→i ⊆ TERMi×TERMi

t j
1 R j t j

2

E j(i[t j
1] 7−→i E j(i[t j

2]

The reduction relation t i
1 7−→i t i

2 reads as “t1 single-reduces to t2 at level i”. The above definition states

that the reduction relation respects performing any notion of reduction in an evaluation context.

Intuitively, a level-indexed reduction relation 7−→i defines a single step of computation at level i. We

define the level-indexed multi-reduction relation 7−→i∗ to represent multiple (zero or more) steps of compu-

tation at level i.
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4.1. MetaML - Substitutional Reduction Semantics

!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉
= (�[!�][〈�〉][λy.�][� 0][∼�])0(0[(λx.〈x〉) (λx.y)]
7−→0 (�[!�][〈�〉][λy.�][� 0][∼�])0(0[〈λx.y〉] where (λx.〈x〉) (λx.y) R0 〈λx.y〉
= !〈λy.(∼〈λx.y〉 0)〉
= (�[!�][〈�〉][λy.�][� 0])1(0[∼〈λx.y〉]
7−→0 (�[!�][〈�〉][λy.�][� 0])1(0[λx.y] where ∼〈λx.y〉R1 λx.y
= !〈λy.((λx.y) 0)〉
= �0(0[!〈λy.((λx.y) 0)〉]
7−→0 �0(0[λy.((λx.y) 0)] where !〈λy.((λx.y) 0)〉R0 λy.((λx.y) 0)
= λy.((λx.y) 0)

Figure 4.1: Evaluation of !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉 in Substitutional Reduction Semantics of MetaML.

Definition 117 (Level-indexed Multi-reduction Relations). For any i∈N, let the level-indexed multi-reduction

relation 7−→i∗ be the reflexive-transitive closure of the reduction relation 7−→i.

The multi-reduction relation t i
1 7−→i∗ t i

2 reads as “t1 multi-reduces to t2 at level i”.

Example 118. Consider !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉.
By the substitutional reduction semantics of MetaML, we have:

!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉 7−→0∗
λy.((λx.y) 0)

as demonstrated in Figure 4.1.

A comparison of Figures 4.1 and 3.1 tells that MetaML’s substitutional reduction semantics follows

the exact same three-step break-apply-plug pattern of evaluating a program as Environmental ISWIM’s

reduction semantics.

Evaluator We now define an evaluator in terms of the substitutional reduction semantics of MetaML. The

evaluator is analogous to the evaluator defined in terms of the substitutional structural operational semantics

of MetaML.

Definition 119 (Evaluator based on Substitutional Reduction Semantics of MetaML). Let the evaluator

evalMetaML:SubRed be a partial function from the set of programs PRGMMetaML to the set of answers ANSMetaML.

evalMetaML:SubRed : PRGMMetaML ⇀ ANSMetaML

evalMetaML:SubRed(t) =


function if t 7−→0∗ λx.t ′

0

code if t 7−→0∗ 〈v1〉

n if t 7−→0∗ n

This evaluator is defined in terms of the substitutional reduction semantics. The subscript “MetaML:SubRed”

in evalMetaML:SubRed denotes the substitutional reduction semantics of MetaML.

We claim that the evaluators defined in terms of the substitutional structural operational semantics and

the substitutional reduction semantics of MetaML are equivalent.
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4.2. MetaML - MK Abstract Machine

Theorem 120 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:SubRed(t).

We prove the theorem in appendices.

4.2 MetaML - MK Abstract Machine

With a systematic strategy to search for an evaluation context and a redex, we can refine MetaML’s sub-

stitutional reduction semantics to a corresponding substitutional abstract machine which we call the MK

machine. This section mostly follows the path of refining Environmental ISWIM’s reduction semantics to

the CEK abstract machine as presented in Section 3.6.

4.2.1 Syntax

The definitions of terms, values and denotable terms are the same as Sections 2.2.1 and 4.1.

4.2.1.1 Evaluation Contexts

Evaluation contexts have been defined in Section 4.1 as inside-out. We provide an outside-in definition as

follows. These two definitions are equivalent and are used interchangeably at our convenience.

Definition 121 (Level-indexed Evaluation Contexts: Outside-in). Let i, j ∈ N. Define ECXTi( j to be the

set of evaluation contexts with inner level i and outer level j.

� ∈ ECXT j( j (ept-j)

E ∈ ECXTi( j

(E t j
2) ∈ ECXTi( j

(appL-j) E ∈ ECXTi( j

(v j
1 E) ∈ ECXTi( j

(appR-j)

E ∈ ECXTi(( j+1)

λx.E ∈ ECXTi(( j+1)
(lambda-(j+1))

E ∈ ECXTi(( j+1)

〈E〉 ∈ ECXTi( j (code-j) E ∈ ECXTi( j

∼E ∈ ECXTi(( j+1)
(splice-(j+1)) E ∈ ECXTi( j

!E ∈ ECXTi( j (run-j)

E ∈ ECXTi( j

(E + t j
2) ∈ ECXTi( j

(plusL-j) E ∈ ECXTi( j

(v j
1 +E) ∈ ECXTi( j

(plusR-j)

4.2.1.2 Machine Configurations

Section 3.6 defined the states of the CEK machine through four modes of machine configurations. We

extend the four-mode definition to accommodate multiple stages.

Definition 122 (Machine Configurations). Let CFG be the set of machine configurations
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4.2. MetaML - MK Abstract Machine

C ∈ CFG, t i ∈ TERMi, vi ∈ VALUEi, E i( j ∈ ECXTi( j

C ::= v0

| 〈i, E i(0, t i〉r
| 〈i, E i(0, t i〉f
| 〈i, E i(0, vi〉b

The machine operates in four modes: the value mode v0, the reduce mode 〈i, E i(0, t i〉r, the focus mode

〈i, E i(0, t i〉f, the build mode 〈i, E i(0, vi〉b.

A machine configuration 〈i, E i(0, t i〉? where ? ∈ {r, f,b} unloads to the configuration E i(0[t i].

4.2.2 MK Abstract Machine

We lay out the substitutional abstract machine, i.e., the MK machine, through the reduction relation 7−→mk

and the multi-reduction relation 7−→∗mk.

Definition 123 (Reduction Relation). Let the reduction relation 7−→mk be a binary relation between the set

of machine configurations and the set of machine configurations.

7−→mk ⊆ CFG×CFG

Reduce rules: 〈i, E i(0, t i〉r

〈0, E, (λx.t0) v0〉r 7−→mk 〈0, E, t0[v0/x]〉f (r-app-0)

〈0, E, !〈v1〉〉r 7−→mk 〈0, E, v1〉f (r-run-0)

〈1, E, ∼〈v1〉〉r 7−→mk 〈1, E, v1〉f (r-splice-1)

〈0, E, n1 +n2〉r 7−→mk 〈0, E, n〉f where n = n1 +n2 (r-plus-0)

Focus rules: 〈i, E i(0, t i〉f

〈i+1, E, x〉f 7−→mk 〈i+1, E, x〉b (f-var-(i+1))

〈i, E, t1 t2〉f 7−→mk 〈i, E[� t2], t1〉f (f-appL-i)

〈0, E, λx.t〉f 7−→mk 〈0, E, λx.t〉b (f-lambda-0)

〈i+1, E, λx.t〉f 7−→mk 〈i+1, E[λx.�], t〉f (f-lambda-(i+1))

〈i, E, 〈t〉〉f 7−→mk 〈i+1, E[〈�〉], t〉f (f-code-i)

〈i+1, E, ∼t〉f 7−→mk 〈i, E[∼�], t〉f (f-splice-(i+1))

〈i, E, !t〉f 7−→mk 〈i, E[!�], t〉f (f-run-i)

〈i, E, n〉f 7−→mk 〈i, E, n〉b (f-num-i)

〈i, E, t1 + t2〉f 7−→mk 〈i, E[�+ t2], t1〉f (f-plusL-i)

Build rules: 〈i, E i(0, vi〉b
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4.2. MetaML - MK Abstract Machine

〈0, �, v〉b 7−→mk v (b-value-0)

〈i, E[� t2], v1〉b 7−→mk 〈i, E[v1 �], t2〉f (b-appL-i)

〈0, E[v1 �], v2〉b 7−→mk 〈0, E, v1 v2〉r (b-appR-0)

〈i+1, E[v1 �], v2〉b 7−→mk 〈i+1, E, v1 v2〉b (b-appR-(i+1))

〈i+1, E[λx.�], v〉b 7−→mk 〈i+1, E, λx.v〉b (b-lambda-(i+1))

〈i+1, E[〈�〉], v〉b 7−→mk 〈i, E, 〈v〉〉b (b-code-(i+1))

〈0, E[∼�], v〉b 7−→mk 〈1, E, ∼v〉r (b-splice-0)

〈i+1, E[∼�], v〉b 7−→mk 〈i+2, E, ∼v〉b (b-splice-(i+1))

〈0, E[!�], v〉b 7−→mk 〈0, E, !v〉r (b-run-0)

〈i+1, E[!�], v〉b 7−→mk 〈i+1, E, !v〉b (b-run-(i+1))

〈i, E[�+ t2], v1〉b 7−→mk 〈i, E[v1 +�], t2〉f (b-plusL-i)

〈0, E[v1 +�], v2〉b 7−→mk 〈0, E, v1 + v2〉r (b-plusR-0)

〈i+1, E[v1 +�], v2〉b 7−→mk 〈i+1, E, v1 + v2〉b (b-plusR-(i+1))

The reduction relation C1 7−→mk C2 reads as “C1 single-reduces to C2”.

The intuition behind the above relation is analogous to that of CEK machine’s reduction relation. See

comments below Definition 108.

Intuitively, the reduction relation 7−→mk defines a single step of computation. We define 7−→∗mk to

represent multiple (zero or more) steps of computation.

Definition 124 (Multi-reduction Relation). Let the multi-reduction relation 7−→∗mk be the reflexive-transitive

closure of the reduction relation 7−→mk.

The multi-transformation relation C1 7−→∗mk C2 reads as “C1 multi-reduces to C2”.

The abstract machine defined above is also known as the MK machine. M stands for multi-stage and K

stands for continuation, i.e., the evaluation context.

Evaluator. We now define an evaluator in terms of the MK machine. The MK machine’s multi-reduction

relation is defined on machine configurations. Given a program t, the evaluator applies the multi-reduction

relation on the machine configuration 〈0, �, t〉f in which the program is associated with an empty evaluation

context and is evaluated at level 0. The evaluator is otherwise analogous to the one defined in terms of the

substitution reduction semantics of MetaML.

Definition 125 (Evaluator based on MK Machine). Let the evaluator evalMetaML:MK be a partial function

from the set of programs PRGMMetaML to the set of answers ANSMetaML.

evalMetaML:MK : PRGMMetaML ⇀ ANSMetaML

evalMetaML:MK(t) =


function if 〈0, �, t〉f 7−→∗mk λx.t ′

0

code if 〈0, �, t〉f 7−→∗mk 〈v1〉

n if 〈0, �, t〉f 7−→∗mk n
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4.2. MetaML - MK Abstract Machine

〈0, �, !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉〉f
7−→mk 〈0, �[!�], 〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉〉f
7−→mk 〈1, �[!�][〈�〉], λy.(∼((λx.〈x〉) (λx.y)) 0)〉f
7−→mk 〈1, �[!�][〈�〉][λy.�], ∼((λx.〈x〉) (λx.y)) 0〉f
7−→mk 〈1, �[!�][〈�〉][λy.�][� 0], ∼((λx.〈x〉) (λx.y))〉f
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�], (λx.〈x〉) (λx.y)〉f
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�][� (λx.y)], λx.〈x〉〉f
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�][� (λx.y)], λx.〈x〉〉b
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�][(λx.〈x〉)�], λx.y〉f
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�][(λx.〈x〉)�], λx.y〉b
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�], (λx.〈x〉) (λx.y)〉r
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�], 〈λx.y〉〉r
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�], 〈λx.y〉〉f
7−→mk 〈1, �[!�][〈�〉][λy.�][� 0][∼�][〈�〉], λx.y〉f
7−→mk 〈1, �[!�][〈�〉][λy.�][� 0][∼�][〈�〉], λx.y〉b
7−→mk 〈0, �[!�][〈�〉][λy.�][� 0][∼�], 〈λx.y〉〉b
7−→mk 〈1, �[!�][〈�〉][λy.�][� 0], ∼〈λx.y〉〉r
7−→mk 〈1, �[!�][〈�〉][λy.�][� 0], λx.y〉f
7−→mk 〈1, �[!�][〈�〉][λy.�][� 0], λx.y〉b
7−→mk 〈1, �[!�][〈�〉][λy.�][(λx.y)�], 0〉f
7−→mk 〈1, �[!�][〈�〉][λy.�][(λx.y)�], 0〉b
7−→mk 〈1, �[!�][〈�〉][λy.�], (λx.y) 0〉b
7−→mk 〈1, �[!�][〈�〉], λy.((λx.y) 0)〉b
7−→mk 〈0, �[!�], 〈λy.((λx.y) 0)〉〉b
7−→mk 〈0, �, !〈λy.((λx.y) 0)〉〉r
7−→mk 〈0, �, λy.((λx.y) 0)〉f
7−→mk 〈0, �, λy.((λx.y) 0)〉b
7−→mk λy.((λx.y) 0)

Figure 4.2: Evaluation of !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉 in the MK Machine.

This evaluator is defined in terms of the MK machine. The subscript “MetaML:MK” in evalMetaML:MK

denotes the MK machine of MetaML.

Example 126. Consider !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉.
We have:

evalMetaML:MK(!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉) = function

This is because

〈0, �, !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉〉f 7−→∗mk λy.((λx.y) 0)

as demonstrated in Figure 4.2.

The above example has appeared as Example 118. By MetaML’s substitutional reduction semantics, we

have:

evalMetaML:SubRed(!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉) = function

The evaluators defined in terms of the substitutional reduction semantics of MetaML and the MK machine
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agree on evaluating the the evaluation of the puzzle program !〈λa. ∼ ((λx.〈x〉)(λx.〈a〉))0〉. In fact, these

two evaluators agree on all programs.

Theorem 127 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubRed(t) is Kleene

equal to evalMetaML:MK(t).

We prove the above theorem in appendices.

As a corollary, the evaluators defined in terms of the substitutional structural operational semantics of

MetaML and based on the MK machine are equivalent.

Corollary 128 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:MK(t).

Proof. It immediately follows from Theorems 120 and 127 by the transitivity of Kleene equality.

4.3 Chapter Summary

Following the second dimension of the semantics refinement problem, this chapter solved the following

problem that is less complicated than the main semantics refinement problem.

Can we refine the substitutional structural operational semantics of MetaML to a corresponding

substitutional abstract machine, which we call the MK machine, and demonstrate their equival-

ence?

Given the substitutional structural operational semantics of MetaML, as a manageable step towards devel-

oping the MK machine, we developed an equivalent substitutional reduction semantics. Then based on

the substitutional reduction semantics, we developed an equivalent substitutional abstract machine, the MK

machine.

We defined an evaluator for each semantics. By proving the equivalence of every two adjacent semantics,

we finally showed that the MK machine is equivalent to the substitutional structural operational semantics

of MetaML.
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Chapter 5

Refining Semantics for MetaML:
Developing the MEK Machine

Developing an environmental abstract machine for the multi-stage language MetaML is not straightforward.

On the one hand, even for a single-stage language such as ISWIM, it is challenging to refine a substitutional

structural operational semantics to a corresponding environmental abstract machine. On the other hand, it is

uneasy to refine semantics for a multi-stage language such as MetaML even if substitutions are not replaced

with environments.

Chapter 3 studies how to develop an environmental abstract machine for the single-stage language

ISWIM. We split the problem into two subproblems. The first subproblem is to stepwise refine the known

substitutional structural operational semantics to a corresponding environmental structural operational se-

mantics. The crucial points of our approach include replacing meta-language substitutions by explicit sub-

stitutions, modelling how an explicit substitution percolates through a term at the semantical level, delaying

explicit substitutions outside lambda abstractions and replacing cascaded explicit substitutions by environ-

ments. The second subproblem is to stepwise refine the environmental structural operational semantics to

a corresponding environmental abstract machine. The key to our approach is relating these two semantics

by an environmental reduction semantics because a reduction semantics is a concise representation of an

abstract machine. At this point, we are unclear whether our approach to refining semantics for ISWIM is

applicable to MetaML.

To understand how refining semantics for MetaML is different from ISWIM and whether our approach

to refining semantics for ISWIM is applicable to MetaML, Chapter 4 studies how to develop a substitutional

abstract machine for the multi-stage language MetaML. This problem is analogous to the second subproblem

of refining semantics for ISWIM. Taking the same approach, we successfully derive a substitutional abstract

machine for MetaML. After Chapter 4, we are now familiar with refining semantics for MetaML and we

believe refining semantics for MetaML is analogous to refining semantics for ISWIM.

Utilising the experience of solving two less complicated semantics refinement problems in Chapters 3

and 4, we concentrate on the main semantics refinement problem in this chapter. We study how to stepwise

develop an environmental abstract machine for the multi-stage language MetaML. The problem is restated

as follows.

Can we refine the substitutional structural operational semantics of MetaML to a correspond-

ing environmental abstract machine, which we call the MEK machine, and demonstrate their

equivalence?

Taking the approach to refining semantics in Chapter 3, we propose to first stepwise derive an environmental
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structural operational semantics for MetaML and then refine the semantics to an environmental abstract

machine. We also draw lessons from Chapter 4 for refining a structural operational semantics to an abstract

machine for MetaML.

5.1 MetaML

For convenience, this section revisits the substitutional structural operational semantics of MetaML, which

has been intensively studied in Section 2.2.

Terms, Values and Denotable Terms. Terms, values and denotable terms have been defined in Section

2.2 using inductive rules. We present an equivalent definition in Backus Naur Form (BNF) as follows.

Definition 129 (Terms, Values and Denotable Terms). For any i ∈ N, let TERMi be the set of level-indexed

terms at level i and VALUEi be the set of level-indexed values at level i. Let DENOTABLE be the set of

denotable terms.

x ∈ VAR, i,n ∈ N, t i ∈ TERMi, vi ∈ VALUEi, w ∈ DENOTABLE

t0 ::= x | t0 t0 | λx.t0 | 〈t1〉 | !t0 | n | t0 + t0

t i+1 ::= x | t i+1 t i+1 | λx.t i+1 | 〈t i+2〉 | ∼t i | !t i+1 | n | t i+1 + t i+1

v0 ::= λx.t0 | 〈v1〉 | n
v1 ::= x | v1 v1 | λx.v1 | 〈v2〉 | !v1 | n | v1 + v1

vi+2 ::= x | vi+2 vi+2 | λx.vi+2 | 〈vi+3〉 | ∼vi+1 | !vi+2 | n | vi+2 + vi+2

w ::= x | v0

Given how concise the above BNF definition is, we can more clearly present the syntax changes between

different dialects of MetaML.

Alpha Equivalence Relation. Section 3.1.1.4 presents the alpha equivalence for the single-language

ISWIM and justifies why such a relation is necessary for proving equivalence of semantics of different

dialects of ISWIM or MetaML. We extend the definition of alpha equivalence for ISWIM (Definition 50) to

accommodate the multi-stage setting.

Definition 130 (Alpha Equivalence Relation). Let the alpha equivalence relation ∼α be a binary relation on

terms.
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∼α ⊆ TERM×TERM

x∼α x (var)
t11 ∼α t21 t12 ∼α t22

(t11 t12)∼α (t21 t22)
(app)

t1[x3/x1]∼α t2[x3/x2]

(λx1.t1)∼α (λx2.t2)
where x3 /∈ FV (t1)∪FV (t2) (lam)

t1 ∼α t2
〈t1〉 ∼α 〈t2〉

(code)
t1 ∼α t2
∼t1 ∼α ∼t2

(splice)
t1 ∼α t2

!t1 ∼α !t2
(run)

t11 ∼α t21 t12 ∼α t22

(t11 + t12)∼α (t21 + t22)
(plus)

n∼α n (num)

The alpha equivalence relation makes proving equivalence of semantics easier. In many cases, we may

replace a term by its alpha equivalent term in a proof at our convenience.

Properties. We observe the following properties that are useful in proving semantics equivalence. (1) The

single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of a

term. They are the same properties that Substitutional ISWIM holds.

Proposition 131. If t i
1 ∼α t i

2 and t i
1 −→i t i

11, then t i
2 −→i t i

21 and t i
11 ∼α t i

21.

Proposition 132. If FV (t i
1) = /0 and t i

1 −→∗i t i
2, then FV (t i

2) = /0.

5.2 Explicit MetaML

Following the path of refining Substitutional ISWIM to Explicit ISWIM in Section 3.2, we refine Substi-

tutional MetaML to Explicit MetaML. Explicit MetaML replaces Substitutional MetaML’s meta-language

substitutions (e.g., t[w/x]) by explicit substitutions (e.g., t[x := w]) and models how an explicit substitution

percolates through a term at the semantical level.

5.2.1 Syntax

We first define the basic syntax of Explicit MetaML: source terms, runtime terms, values and denotable

terms. Then we define the free variable function, the substitution function and the alpha equivalence relation.

5.2.1.1 Source Terms, Runtime Terms, Values and Denotable Terms

Definition 133 (Source Terms, Runtime Terms, Values and Denotable Terms). For any i ∈ N, let STERMi

be the set of level-indexed source terms at level i, RTERMi be the set of level-indexed runtime terms at level

i and VALUEi be the set of level-indexed values at level i. Let DENOTABLE be the set of denotable terms.
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x ∈ VAR, i,n ∈ N, t i
s ∈ STERMi, t i ∈ RTERMi, vi ∈ VALUEi, w ∈ DENOTABLE

t0
s := x | t0

s t0
s | λx.t0

s | 〈t1
s 〉 | !t0

s | n | t0
s + t0

s

t i+1
s := x | t i+1

s t i+1
s | λx.t i+1

s | 〈t i+2
s 〉 | ∼t i

s | !t i+1
s | n | t i+1

s + t i+1
s

t0 := x | t0 t0 | λx.t0 | 〈t1〉 | !t0 | n | t0 + t0 | λx.t0 | t0[x := w]

t i+1 := x | t i+1 t i+1 | λx.t i+1 | 〈t i+2〉 | ∼t i | !t i+1 | n | t i+1 + t i+1 | λx.t0 | t i[x := w]

v0 := 〈v1〉 | n | λx.t0

v1 := x | v1 v1 | λx.v1 | 〈v2〉 | !v1 | n | v1 + v1 | λx.t0

vi+2 := x | vi+2 vi+2 | λx.vi+2 | 〈vi+3〉 | ∼vi+1 | !vi+2 | n | vi+2 + vi+2 | λx.t0

w := x | v0

The set of source terms of Explicit MetaML is the same as the set of terms of Substitutional MetaML.

Explicit MetaML has been enhanced with an explicit substitution t i[x := w], which means that each free

occurrence of the variable x in the term t i needs to be substituted by the denotable term w. Evaluating an

explicit substitution takes steps.

To make Explicit MetaML be consistent with Substitutional MetaML, we must ensure that a value at

one level must be a value at any higher level. To preserve this property in Explicit MetaML, we introduce

an underlined lambda abstraction, λx.t0. To understand the necessity of this change of syntax, consider the

example of substituting a lambda abstraction for a variable where the variable is at a level higher than 0.

Since a lambda abstraction acts as a denotable term, it must be a level-0 value. When the substitution is

performed, the lambda abstraction is at a level higher than 0. We only perform substitution reduction for the

body of a lambda abstraction at a level higher than 0. Although the lambda abstraction is a level-0 value, it

may not be a value at a level higher than 0. We explain the reason in more detail through Example 142 after

presenting the semantics.

Explicit MetaML differs from Substitutional MetaML in what terms count as values. A (conventional)

lambda abstraction λx.t0 is no longer a value at level 0. An underlined lambda abstraction λx.t0 is a value

at any level. We usually call λx.vi+1 a level-(i+1) lambda value and call λx.t0 a level-0 lambda value.

5.2.1.2 Free Variable Function

We define the free variable function by extending Substitutional MetaML’s Definition 24 to accommodate

underlined lambda abstractions and explicit substitutions.

Definition 134 (Free Variable Function). Let the free variable function FV be a total function from the set

of runtime terms to the power set of variables.
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FV : RTERM −→P(VAR)

...
...

...
...

FV (λx.t) = FV (λx.t) (10)

FV (t[x := w]) = (FV (t)\{x})∪FV (w) (11)

Equations (1)-(9) are the same as Definition 20 in Substitutional MetaML. Equation (10) is trivial.

Equation (11) is analogous to Equation (6) of Explicit ISWIM’s free variable function (Definition 64).

5.2.1.3 Substitution Function

We define the substitution function by extending Substitutional MetaML’s Definition 24 to accommodate

underlined lambda abstractions and explicit substitutions.

Definition 135 (Substitution Function). Let the substitution function ·[·/·] be a partial function from the

3-tuple of the set of runtime terms, the set of denotable terms and the set of variables, to the set of runtime

terms.

·[·/·] : (RTERM×DENOTABLE×VAR)→ RTERM

...
...

...
...

(λx1.t0)[w/x2] = λx3.t0[x3/x1][w/x2]

where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (10)

(t0[x1 := w1])[w2/x2] = t0[x3/x1][w2/x2][x3 := w1[w2/x2]]

where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (11)

Equations (1)-(9) are the same as Definition 24 in Substitutional MetaML. Equation (10) is analogous

to Equation (4). Equation (11) is analogous to Equation (6) of Explicit ISWIM’s Definition 65.

5.2.1.4 Alpha Equivalence Relation

We define the alpha equivalence relation by extending Substitutional MetaML’s Definition 130 to accom-

modate underlined lambda abstractions and explicit substitutions.

Definition 136 (Alpha Equivalence Relation). Let the alpha equivalence relation ∼α be a binary relation on

runtime terms.
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∼α ⊆ RTERM×RTERM

...

t1[x3/x1]∼α t2[x3/x2]

(λx1.t1)∼α (λx2.t2)
where x3 /∈ FV (t1)∪FV (t2) (lamu)

w1 ∼α w2 t1[x3/x1]∼α t2[x3/x2]

(t1[x1 := w1])∼α (t2[x2 := w2])
where x3 /∈ FV (t1)∪FV (t2) (sub)

All rules except the (sub) rule are the same as Definition 130 in Substitutional MetaML. The (lamu) rule

is analogous to the (lam) rule. The (sub) rule is analogous to the (sub) rule of Explicit ISWIM’s Definition

66.

5.2.2 Structural Operational Semantics

We lay out the structural operational semantics of Explicit MetaML through the level-indexed single-step

relations −→i, the level-indexed single-step substitution reduction relations −→xi, the level-indexed multi-

step substitution reduction relations −→xi∗ and the level-indexed multi-step relations −→i∗.

Definition 137 (Level-indexed Single-step Relations). For any i ∈ N, let the level-indexed single-step rela-

tion −→i be a binary relation between the set of runtime terms at level i and the set of runtime terms at level

i.

−→i⊆ RTERMi×RTERMi

λx.t0 −→0 λx.t0 (lambda-0)
t i+1
1 −→i+1 t i+1

2

λx.t i+1
1 −→i+1 λx.t i+1

2

(lambda-(i+1))

t i
11 −→i t i

12

t i
11 t i

2 −→i t i
12 t i

2
(appL-i)

t i
21 −→i t i

22

vi
1 t i

21 −→i vi
1 t i

22
(appR-i)

(λx.t0) v0 −→0 t0[x := v0]
(app-0)

t i
1 −→i t i

2

!t i
1 −→i !t i

2
(run-i)

!〈v1〉 −→0 v1 (run-0)

t i+1
1 −→i+1 t i+1

2

〈t i+1
1 〉 −→i 〈t i+1

2 〉
(code-i)

t i
1 −→i t i

2

∼t i
1 −→i+1 ∼t i

2
(splice-(i+1))

∼〈v1〉 −→1 v1
(splice-1)
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t i
11 −→i t i

12

t i
11 + t i

2 −→i t i
12 + t i

2
(plusL-i)

t i
21 −→i t i

22

vi
1 + t i

21 −→i vi
1 + t i

22
(plusR-i)

n1 +n2 −→0 n
where n = n1 +n2 (plus-0)

The (app-0) rule is different from Substitutional MetaML and is analogous to the (app) rule of Explicit

ISWIM’s Definition 67. The (lambda-0) rule is new, corresponding to the definition of level-0 values. There

is no equivalent of the (lambda-(i+1)) rule for underlined lambda abstractions because an underlined lambda

abstraction is a value at any level.

The definition of the level-indexed single-step relations is currently incomplete because the percolation

of explicit substitutions has not been defined yet.

To show how explicit substitutions percolate, we define new relations t i[x := w]−→xi t i for substitution

reductions. The new relations ensure that explicit substitutions percolate deterministically.

Definition 138 (Level-indexed Single-step Substitution Reduction Relations). For any i ∈ N, let the level-

indexed single-step substitution reduction relation −→xi be a binary relation between the set of runtime

terms at level i and the set of runtime terms at level i.

−→xi⊆ RTERMi×RTERMi

x[x := w]−→xi w
(var-eq-subst)

x1[x2 := w]−→xi x1
where x1 6≡ x2 (var-df-subst)

n[x := w]−→xi n
(num-subst)

(t i
1 t i

2)[x := w]−→xi (t i
1[x := w]) (t i

2[x := w])
(app-subst)

(t i
1 + t i

2)[x := w]−→xi (t i
1[x := w])+(t i

2[x := w])
(plus-subst)

(λx1.t i)[x2 := w]−→xi λx3.t i[x1 := x3][x2 := w]
where x3 /∈ FV (λx1.t i)∪FV (w)∪{x2} (lam-subst)

(λx1.t0)[x2 := w]−→xi λx3.t0[x1 := x3][x2 := w]
where x3 /∈ FV (λx1.t0)∪FV (w)∪{x2} (lamu-subst)

〈t i+1〉[x := w]−→xi 〈t i+1[x := w]〉
(code-subst)

(!t i)[x := w]−→xi !t i[x := w]
(run-subst)

(∼t i)[x := w]−→x(i+1) ∼t i[x := w]
(splice-subst)

t i
1[x1 := w1]−→xi t i

2

t i
1[x1 := w1][x2 := w2]−→xi t i

2[x2 := w2]
(subst-subst)
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Most rules describe how explicit substitutions behave when encountering other terms in the language.

Every rule except the (lamu-subst) rule and the (subst-subst) rule correspond to an equation of Substitutional

MetaML’s substitution function (Definition 24). The (subst-subst) rule is analogous to the (subst-subst)

rule of Explicit ISWIM’s single-step substitution reduction relation, implying that only a single-step of

substitution reduction may happen underneath an explicit substitution. The (lamu-subst) rule accommodates

the newly invented underlined lambda abstraction and is analogous to the (lam-subst) rule.

Every single-step substitution reduction counts as a single step of computation. Thus we add the follow-

ing (inj-subst) rule to the definition of the level-indexed single-step relations, Definition 138.

t i
1 −→i t i

2
where t i

1 −→xi t i
2 (inj-subst)

Definition 139 (Level-indexed Multi-step Substitution Reduction Relations). For any i ∈ N, let the level-

indexed multi-step substitution reduction relation −→xi∗ be the reflexive-transitive closure of the level-

indexed single-step substitution reduction relation −→xi.

Definition 140 (Level-indexed Multi-step Relations). For any i∈N, let the level-indexed multi-step relation

−→i∗ be the reflexive-transitive closureof the level-indexed single-step relation −→i.

Example 141. Consider !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉.
By the structural operational semantics of Explicit MetaML, we have:

!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉
−→0 !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉
−→0 !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉
−→0 !〈λy.(∼(〈x〉[x := (λx.y)]) 0)〉
−→0 !〈λy.(∼(〈x[x := (λx.y)]〉) 0)〉
−→0 !〈λy.(∼〈λx.y〉 0)〉
−→0 !〈λy.((λx.y) 0)〉
−→0 λy.((λx.y) 0)

−→0 λy.((λx.y) 0)

As a comparison, by the substitutional structural operational semantics of MetaML, we have:

!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉
−→0 !〈λy.(∼(〈x〉[(λx.y)/x]) 0)〉
= !〈λy.(∼(〈x[(λx.y)/x]〉) 0)〉
= !〈λy.(∼〈λx.y〉 0)〉
−→0 !〈λy.((λx.y) 0)〉
−→0 λy.((λx.y) 0)

Explicit MetaML takes eight single-steps while Substitutional MetaML completes the execution in three

single-steps. Some of these right steps are percolating an explicit substitution through a term and the rest

are turning a lambda abstraction to its underlined counterpart.
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Example 142. Suppose x2 6≡ x3 and w ∈ DENOTABLE. Consider (λx1.〈x1〉) ((λx2.(λx3.x2)) w).

By the structural operational semantics of Explicit MetaML, we have:

(λx1.〈x1〉) ((λx2.(λx3.x2)) w)

−→0 (λx1.〈x1〉) ((λx2.(λx3.x2)) w)

−→0 (λx1.〈x1〉) ((λx3.x2)[x2 := w])

−→0 (λx1.〈x1〉) (λx4.x2[x3 := x4][x2 := w]) where x4 /∈ FV (λx3.t)∪FV (w)∪{x3}
−→0 (λx1.〈x1〉) (λx4.x2[x3 := x4][x2 := w])

−→0 〈x1〉[x1 := (λx4.x2[x3 := x4][x2 := w])]

−→0 〈x1[x1 := (λx4.x2[x3 := x4][x2 := w])]〉
−→0 〈λx4.x2[x3 := x4][x2 := w]〉

Suppose we had not introduced the underlined lambda abstraction to Explicit MetaML, the above ex-

ample would become:

(λx1.〈x1〉) ((λx2.(λx3.x2)) w)

−→0 (λx1.〈x1〉) ((λx3.x2)[x2 := w])

−→0 (λx1.〈x1〉) (λx4.x2[x3 := x4][x2 := w]) where x4 /∈ FV (λx3.t)∪FV (w)∪{x3}
−→0 〈x1〉[x1 := (λx4.x2[x3 := x4][x2 := w])]

−→0 〈x1[x1 := (λx4.x2[x3 := x4][x2 := w])]〉
−→0 〈λx4.x2[x3 := x4][x2 := w]〉
−→0 〈λx4.x2[x2 := w]〉
−→0 〈λx4.w〉

After two single-steps, the lambda abstraction λx4.x2[x3 := x4][x2 := w] is a level-0 value. Then it becomes

a denotable term in the next step and shall be identified as a denotable term at all times ever since. However,

after five single-steps, the lambda abstraction λx4.x2[x3 := x4][x2 := w] is put into the context of level 1. We

can apply the (lambda-(i+1)) rule to evaluate the body of the lambda abstraction at level 1. This destroys the

property that a value at one level must be a value at any higher level, making Explicit MetaML inconsist-

ent with Substitutional MetaML. To avoid this awkward circumstance, we let a level-0 lambda abstraction

single-step to its underlined counterpart and make it a value at any level to prevent it from being reduced at

higher levels.

In Explicit MetaML, explicit substitutions stop within the top of the body of a level-0 lambda value,

even if it sits at higher level. This plays into the development of the analogous conception closures in

Environmental MetaML.

Properties. We observe the following properties, which are useful in proving semantics equivalence. (1)

The single-step relation preserves alpha equivalence. (2) The multi-step relation preserves the closedness of

a runtime term. These are the same properties that Substitutional MetaML holds and are analogous to the

ones that Explicit ISWIM holds.
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Proposition 143. If t i
1 ∼α t i

2 and t i
1 −→i t i

11, then t i
2 −→i t i

21 and t i
11 ∼α t i

21.

Proposition 144. If FV (t i
1) = /0 and t i

1 −→∗i t i
2, then FV (t i

2) = /0.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Explicit

MetaML. The evaluator is analogous to the one defined in terms of Substitutional MetaML.

Definition 145 (Evaluator based on Structural Operational Semantics of Explicit MetaML). Define the

evaluator evalMetaML:ExpSOS to be a partial function from the set of programs PRGMMetaML to the set of

answers ANSMetaML.

evalMetaML:ExpSOS : PRGMMetaML ⇀ ANSMetaML

evalMetaML:ExpSOS(t) =


function if t −→0∗ λx.t ′

0

code if t −→0∗ 〈v1〉

n if t −→0∗ n

This evaluator is defined based on the structural operational semantics of Explicit MetaML. The sub-

script “MetaML:ExpSOS” in evalMetaML:ExpSOS denotes the structural operational semantics of Explicit MetaML.

We claim that the evaluators defined based on Substitutional MetaML and Explicit MetaML are equi-

valent.

Theorem 146 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:ExpSOS(t).

We prove the theorem in the appendices.

5.3 Suspended MetaML

Following the path of refining Explicit ISWIM to Suspended ISWIM as presented in Section 3.3, we re-

fine Explicit MetaML to Suspended MetaML. Suspended MetaML delays explicit substitutions outside

of a level-0 lambda value until the lambda abstraction is called in an application. When performing an

application at level 0, Suspended MetaML promotes substitution for the lambda bound variable to the

front and overwrites any existing explicit substitution for that variable. That is, a level-0 application

(λx.t0)[xi := wi] v0 single-steps to t0[x := v0][xi := wi] in Suspended MetaML. This transformation mo-

tivates introducing additional complexity in the ensuing dialects of MetaML. Proving the correctness of

this transformation for Suspended MetaML is substantially more complex than for Suspended ISWIM. We

introduce a notion of well-boundness judgement to help justify this transformation.

5.3.1 Syntax

We first define the basic syntax of the language: source terms, runtime terms, values and denotable terms.

Then we define the free variable function, the substitution function and the alpha equivalence relation.
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5.3.1.1 Source Terms, Runtime Terms, Values and Denotable Terms

Definition 147 (Source Terms, Runtime Terms, Values and Denotable Terms). For any i ∈ N, let STERMi

be the set of level-indexed source terms at level i, RTERMi be the set of level-indexed runtime terms at level

i and VALUEi be the set of level-indexed values at level i. Let DENOTABLE be the set of denotable terms.

x ∈ VAR, i,n ∈ N, t i
s ∈ STERMi, t i ∈ RTERMi, vi ∈ VALUEi, w ∈ DENOTABLE

t0
s := x | t0

s t0
s | λx.t0

s | 〈t1
s 〉 | !t0

s | n | t0
s + t0

s

t i+1
s := x | t i+1

s t i+1
s | λx.t i+1

s | 〈t i+2
s 〉 | ∼t i

s | !t i+1
s | n | t i+1

s + t i+1
s

t0 := x | t0 t0 | λx.t0 | 〈t1〉 | !t0 | n | t0 + t0 | λx.t0 | t0[x := w]

t i+1 := x | t i+1 t i+1 | λx.t i+1 | 〈t i+2〉 | ∼t i | !t i+1 | n | t i+1 + t i+1 | λx.t0 | t i[x := w] | λ̂x.t i+1

v0 := 〈v1〉 | n | (λx.t0)[x := w]

v1 := x | v1 v1 | λx.v1 | 〈v2〉 | !v1 | n | v1 + v1 | (λx.t0)[x := w]

vi+2 := x | vi+2 vi+2 | λx.vi+2 | 〈vi+3〉 | ∼vi+1 | !vi+2 | n | vi+2 + vi+2 | (λx.t0)[x := w]

w := x | v0

In Explicit MetaML, a level-0 lambda value λx.t0 is a value at any level. Since Suspended MetaML does

not push explicit substitutions into an underlined lambda abstraction, a level-0 lambda value surrounded by

explicit substitutions, (λx.t0)[x := w], is a value at any level.

Suspended MetaML evaluates the level-0 application (λx.t0)[xi := wi] v0 to t0[x := v0][xi := wi] rather

than t0[x := xN ][xi := wi][xN := v0] (where xN is a fresh variable). To make it sound with respect to Explicit

MetaML, we need to ensure that FV (v0)∩ (
⋃

i{xi}) = /0. In Suspended MetaML, the only way that v0

can have free variables is as a result of performing an evaluation under lambdas at levels higher than 0.

It is sufficient to make sure that whenever we go under a lambda during an evaluation at a level higher

than 0, the lambda bound variable gets renamed to a fresh variable so that it is guaranteed not to clash

with other variables. That is, when evaluating a lambda abstraction λx.t i+1 where t i+1 /∈ VALUEi+1, we

rename the lambda bound variable x to a globally fresh variable xN , resulting in λxN .t i+1[x := xN ], which

is observationally equivalent to λx.t i+1. To avoid falling in a loop of renaming the lambda bound variable,

we replace λ by its hatted counterpart λ̂ to explicitly indicate that such a renaming has been done. This

explains why we need a hatted lambda abstraction in Suspended MetaML. We demonstrate this in detail in

Example 157.

5.3.1.2 Free Variable Function

We define the free variable function by extending Explicit MetaML’s Definition 134 to accommodate hatted

lambda abstractions.

Definition 148 (Free Variable Function). Let the free variable function FV be a total function from the set
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of runtime terms to the power set of variables.

FV : RTERM −→P(VAR)

...
...

...
...

FV (λ̂x.t) = FV (λx.t) (11)

Equations (1)-(10) are the same as Definition 134 in Explicit MetaML. Equation (11) tells that the free

variables of a hatted lambda abstraction is the same as its unhatted counterpart.

5.3.1.3 Substitution Function

We define the substitution function by extending Explicit MetaML’s Definition 135 to accommodate hatted

lambda abstractions.

Definition 149 (Substitution Function). Let the substitution function ·[·/·] be a partial function from the

3-tuple of the set of runtime terms, the set of denotable terms and the set of variables, to the set of runtime

terms.

·[·/·] : (RTERM×DENOTABLE×VAR)→ RTERM

...
...

...
...

(λ̂x1.t0)[w/x2] = λ̂x3.t0[x3/x1][w/x2]

where x3 /∈ FV (λ̂x1.t0)∪FV (w)∪{x2} (12)

Equations (1)-(11) are the same as Definition 135 in Explicit MetaML. Equation (12) is analogous to

Equations (4) and (10).

5.3.1.4 Alpha Equivalence Relation

We define the alpha equivalence relation by extending Explicit MetaML’s Definition 136 to accommodate

hatted lambda abstractions.

Definition 150 (Alpha Equivalence Relation). Let the alpha equivalence relation ∼α be a binary relation on

runtime terms.

∼α ⊆ RTERM×RTERM

...

t1[x3/x1]∼α t2[x3/x2]

(λ̂x1.t1)∼α (λ̂x2.t2)
where x3 /∈ FV (t1)∪FV (t2) (lamh)

All rules except (lamh) are the same as Definition 136 in Explicit MetaML. The (lamh) rule is analogous

to the (lam) rule and the (lamu) rule.
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5.3.2 Structural Operational Semantics

We lay out the structural operational semantics of Suspended MetaML through the level-indexed single-step

relations −→i, the level-indexed single-step substitution reduction relations −→xi, the global single-step

relation .−→ , the level-indexed multi-step substitution reduction relations −→xi∗, the level-indexed multi-

step relations −→i∗ and the global multi-step relation .−→∗.

Definition 151 (Level-indexed Single-step Relations). For any i ∈ N, let the level-indexed single-step re-

lation −→i be a 5-ary relation on the power set of variables, the power set of variables, the power set of

variables, the set of runtime terms at level i and the set of runtime terms at level i.

−→i ⊆ P(VAR)×P(VAR)×P(VAR)×RTERMi×RTERMi

U ;V ;X ` (λx.t0)[x j := w j]−→0 (λx.t0)[x j := w j]
(lambda-0)

U ;V ;X ` λx.t i+1 −→i+1 λ̂xN .t i+1[x := xN ]
where t i+1 /∈ VALUEi+1 and xN /∈X (lambda-(i+1)-t)

U ∪{x};V ∪{x};X ` t i+1
1 −→i+1 t i+1

2

U ;V ;X ` λ̂x.t i+1
1 −→i+1 λ̂x.t i+1

2

(lambda-(i+1)-r)

U ;V ;X ` λ̂x.vi+1 −→i+1 λx.vi+1
(lambda-(i+1)-v)

U ;V ;X ` t i
11 −→i t i

12

U ;V ;X ` t i
11 t i

2 −→i t i
12 t i

2
(appL-i)

U ;V ;X ` t i
21 −→i t i

22

U ;V ;X ` vi
1 t i

21 −→i vi
1 t i

22
(appR-i)

U ;V ;X ` (λx.t0)[xi := wi] v0 −→0 t0[x := v0][xi := wi]
(app-0)

U ;V ;X ` t i
1 −→i t i

2

U ;V ;X ` !t i
1 −→i !t i

2
(run-i)

U ;V ;X ` !〈v1〉 −→0 v1 (run-0)

U ;V ;X ` t i+1
1 −→i+1 t i+1

2

U ;V ;X ` 〈t i+1
1 〉 −→i 〈t i+1

2 〉
(code-i)

U ;V ;X ` t i
1 −→i t i

2

U ;V ;X ` ∼t i
1 −→i+1 ∼t i

2
(splice-(i+1))

U ;V ;X ` ∼〈v1〉 −→1 v1
(splice-1)

U ;V ;X ` t i
11 −→i t i

12

U ;V ;X ` t i
11 + t i

2 −→i t i
12 + t i

2
(plusL-i)

U ;V ;X ` t i
21 −→i t i

22

U ;V ;X ` vi
1 + t i

21 −→i vi
1 + t i

22
(plusR-i)

U ;V ;X ` n1 +n2 −→0 n
where n = n1 +n2 (plus-0)

U ;V ;X ` t i
1 −→i t i

2
where U ;V ;X ` t i

1 −→xi t i
2 (inj-subst)

79



5.3. Suspended MetaML

Definition 152 (Level-indexed Single-step Substitution Reduction Relations). For any i ∈ N, let the level-

indexed single-step substitution reduction relation −→xi be a 5-ary relation on the power set of variables,

the power set of variables, the power set of variables, the set of runtime terms at level i and the set of runtime

terms at level i.

−→xi⊆P(VAR)×P(VAR)×P(VAR)×RTERMi×RTERMi

U ;V ;X ` x[x := w]−→xi w
(var-eq-subst)

U ;V ;X ` x1[x2 := w]−→xi x1
where x1 6≡ x2 (var-df-subst)

U ;V ;X ` n[x := w]−→xi n
(num-subst)

U ;V ;X ` (t i
1 t i

2)[x := w]−→xi (t i
1[x := w]) (t i

2[x := w])
(app-subst)

U ;V ;X ` (t i
1 + t i

2)[x := w]−→xi (t i
1[x := w])+(t i

2[x := w])
(plus-subst)

U ;V ;X ` (λx1.t i+1)[x2 := w]−→x(i+1) λxN .t i+1[x1 := xN ][x2 := w]
where xN /∈X (lam-subst)

no (lamu-subst)

U ;V ;X ` 〈t i+1〉[x := w]−→xi 〈t i+1[x := w]〉
(code-subst)

U ;V ;X ` (!t i)[x := w]−→xi !t i[x := w]
(run-subst)

U ;V ;X ` (∼t i)[x := w]−→x(i+1) ∼t i[x := w]
(splice-subst)

U ∪{x2};V ;X ` t i
1[x1 := w1]−→xi t i

2

U ;V ;X ` t i
1[x1 := w1][x2 := w2]−→xi t i

2[x2 := w2]
(subst-subst)

The level-indexed single-step relation U ;V ;X ` t i
1−→i t i

2 reads as “t1 single-steps to t2 at level i bound

by U , V and X ”.

To make a small-step when evaluating a program, we need to repeatedly apply the structural rules until

we find a subterm of the program on which a reduction rule can be applied. Suppose we have found such

a subterm t i
1 that is reducible and we have U ;V ;X ` t i

1 −→i t i
2. As illustrated by the (subst-subst) rule

and the (lambda-(i+1)-r) rule, the free variables of the term t i
1 must be bound by any means (i.e., explicit

substitutions or hatted lambda bound variables) in the surrounding scope, which are tracked by U . The free

variables of the term t i
1 that are bound by hatted lambda bound variables are also tracked by the variable

set V because the well-boundness judgement introduced in Definition 159 needs to pay special attention to

these variables. Both of the variable sets U and V play important roles in justifying the (app-0) rule. The

variable set X records all variables in the subterm t i
1 and its surrounding scope. We need the variable set

X to determine whether a variable is fresh in the sense that it has not appeared in the term being currently

evaluated or in its surrounding scope. The variable sets U , V and X help specify the well-boundness
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property of terms (Proposition 161).

The (app-0) rule is refined from the following (app-0-naive) rule.

U ;V ;X ` (λx.t0)[xi := wi] v0 −→0 t0[x := x0][xi := wi][x0 := v0]
where

x0 /∈ FV (λx.t0)∪⋃
i(FV (wi)∪{xi})

(app-0-naive)

The (app-0-naive) rule is semantically correct but not ideal. We want to eliminate renamings in any level-0

application, but the (app-0-naive) rule still renames the lambda bound variable.

Observe that if FV (v0)∩(
⋃

i{xi}) = /0, then we can promote the substitution [x0 := v0] to the front of the

explicit substitutions [xi := wi]. Then we can eliminate renaming the lambda bound variable x by combining

[x := x0] and [x0 := v0] to [x := v0]. It is provable that when the (app-0) rule is applied to a subterm of an

intermediate result of evaluating a program, we have FV (v0)∩(
⋃

i{xi}) = /0. We discuss the intuition behind

this after presenting the well-boundness judgement whose primary purpose is to help complete this proof.

Since the ultimate goal of the main refinement problem is to develop an environmental operational

semantics for MetaML, the (app-0) rule promotes the substitution for the underlined lambda bound variable

to the front, superseding any existing explicit substitution for that variable, which is close to the operation

of updating an environment in Environmental MetaML that is introduced in the next section.

Explicit MetaML’s (lambda-(i+1)) rule is replaced with three (lambda-(i+1)-?) rules in Suspended

MetaML. To evaluate a level-(i+ 1) lambda abstraction, if its body is not a level-(i+ 1) value, we first

apply the (lambda-(i+1)-t) rule to rename the lambda bound variable to a fresh variable that has not oc-

curred in the current term being evaluated and in the surrounding scope and replace λ by λ̂ to indicate

such a renaming is done. It is important to check whether the lambda abstraction is already a value before

renaming the lambda bound variable, which ensures no unnecessary renaming can happen. Checking this is

a deep syntactic operation in Suspended MetaML but becomes a shallow check in the MEK machine. Then

we repeatedly apply the (lambda-(i+1)-r) rule to reduce its body until it is a value. Finally we apply the

(lambda-(i+1)-v) rule to change λ̂ back to λ . Suspended MetaML forces the renaming to make the (app-

0) rule sound. Example 157 shows evaluations would behave unexpectedly if Suspended MetaML used

Explicit MetaML’s (lambda-(i+1)) rule instead.

The (lam-subst) rule no longer concerns level 0 because a level-0 lambda abstraction surrounded by

explicit substitutions single-steps to its underlined counterpart which is a level-0 value. There is no (lamu-

subst) rule because an underlined lambda abstraction surrounded by explicit substitutions is a value at any

level.

To apply the level-indexed single-step relation on a program, the variable sets U ;V ;X need to be

properly initialised. Moreover, from a user’s perspective, the only interface to the single-step relation should

be the program to be evaluated. We define the global single-step relation, which initialises the variable sets

U ;V ;X by itself and only shows what an entire program single-steps to.

Definition 153 (Global Single-step Relation). Let the global single-step relation .−→ be a binary relation

between the set of level-0 runtime terms and the set of level-0 runtime terms.

. t0
1 −→ t0

2 if and only if /0; /0; VAR(t0
1) ` t0

1 −→0 t0
2
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The global single-step relation . t0
1 −→ t0

2 reads as “t1 single-steps to t2”.

Definition 154 (Level-indexed Multi-step Substitution Reduction Relations). For any i ∈ N, let the multi-

step substitution reduction relation −→xi∗ be a 5-ary relation on the power set of variables, the power set of

variables, the power set of variables, the set of runtime terms at level i and the set of runtime terms at level i

directly based on the level-indexed single-step substitution relation −→xi.

−→xi∗⊆P(VAR)×P(VAR)×P(VAR)×RTERMi×RTERMi

U ;V ;X ` t i
1 −→xi∗ t i

2
where U ;V ;X `t i

1 −→xi t i
2 (step)

U ;V ;X ` t i −→xi∗ t i (refl)

U ;V ;X ` t i
1 −→xi∗ t i

2 U ;V ;X ∪VAR(t i
2) ` t i

2 −→xi∗ t i
3

U ;V ;X ` t i
1 −→xi∗ t i

3
(trans)

Definition 155 (Level-indexed Multi-step Relations). For any i∈N, let the level-indexed multi-step relation

−→i∗ be a 5-ary relation on the power set of variables, the power set of variables, the power set of variables,

the set of runtime terms at level i and the set of runtime terms at level i directly based on the level-indexed

single-step relation −→i.

−→i∗⊆P(VAR)×P(VAR)×P(VAR)×RTERMi×RTERMi

U ;V ;X ` t i
1 −→i∗ t i

2
where U ;V ;X `t i

1 −→i t i
2 (step)

U ;V ;X ` t i −→i∗ t i (refl)

U ;V ;X ` t i
1 −→i∗ t i

2 U ;V ;X ∪VAR(t i
2) ` t i

2 −→i∗ t i
3

U ;V ;X ` t i
1 −→i∗ t i

3
(trans)

Definition 156 (Global Multi-step Relation). Let the global multi-step relation . −→∗ be the reflexive-

transitive closure of the global single-step relation .−→.

Example 157. Consider !〈λy.∼(((λy.(λx.x)) n) 〈y〉)〉.
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By the structural operational semantics of Suspended MetaML, we have:

!〈λy.∼(((λy.(λx.x)) n) 〈y〉)〉
.−→ !〈λ̂ z.(∼(((λy.(λx.x)) n) 〈y〉))[y := z]〉 where z /∈ {x,y}
.−→ !〈λ̂ z.(∼(((λy.(λx.x)) n) 〈y〉)[y := z])〉
.−→ !〈λ̂ z.∼(((λy.(λx.x)) n)[y := z] 〈y〉[y := z])〉
.−→ !〈λ̂ z.∼(((λy.(λx.x))[y := z] n[y := z]) 〈y〉[y := z])〉
.−→ !〈λ̂ z.∼(((λy.(λx.x))[y := z] n[y := z]) 〈y〉[y := z])〉
.−→ !〈λ̂ z.∼(((λy.(λx.x))[y := z] n) 〈y〉[y := z])〉
.−→ !〈λ̂ z.∼((λx.x)[y := n][y := z] 〈y〉[y := z])〉
.−→ !〈λ̂ z.∼((λx.x)[y := n][y := z] 〈y〉[y := z])〉
.−→ !〈λ̂ z.∼((λx.x)[y := n][y := z] 〈y[y := z]〉)〉
.−→ !〈λ̂ z.∼((λx.x)[y := n][y := z] 〈z〉)〉
.−→ !〈λ̂ z.∼(x[x := 〈z〉][y := n][y := z])〉
.−→ !〈λ̂ z.∼〈z〉[y := n][y := z]〉
.−→ !〈λ̂ z.∼〈z[y := n]〉[y := z]〉
.−→ !〈λ̂ z.∼〈z[y := n][y := z]〉〉
.−→ !〈λ̂ z.∼〈z[y := z]〉〉
.−→ !〈λ̂ z.∼〈z〉〉
.−→ !〈λ̂ z.z〉
.−→ !〈λ z.z〉
.−→ λ z.z

.−→ λ z.z

Suppose we had not introduced the hatted lambda abstraction to Suspended MetaML, the above evaluation

would become
!〈λy.∼(((λy.(λx.x)) n) 〈y〉)〉

.−→ !〈λy.∼(((λy.(λx.x)) n) 〈y〉)〉

.−→ !〈λy.∼((λx.x)[y := n] 〈y〉)〉

.−→ !〈λy.∼( (λx.x)[y := n] 〈y〉 )〉

.−→ !〈λy.∼( x[x := 〈y〉][y := n] )〉

.−→ !〈λy.∼(〈y〉[y := n])〉

.−→ !〈λy.∼〈y[y := n]〉〉

.−→ !〈λy.∼〈n〉〉

.−→ !〈λy.n〉

.−→ λy.n

whose result is incorrect. The boxes highlight a critical mistake of the evaluation.

Since we did not rename the lambda bound variable at the first single-step before we dove into the body

of the lambda abstraction, we have FV (〈y〉)∩{y} 6= /0 for the boxed application (λx.x)[y := n] 〈y〉. Hence
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we cannot apply the (app-0) rule to the application. We should apply the (app-0-naive) rule and we get

x[x := x0][y := n][x0 := 〈y〉] where x0 /∈ FV (λx.x)∪FV (n)∪{y}.

Example 158. Consider !〈λy.(∼((λx.〈x〉) (λ z.y)) 0)〉 5.

By the structural operational semantics of Suspended MetaML, we have:

!〈λy.(∼((λx.〈x〉) (λ z.〈y〉)) 0)〉 5

.−→ !〈λ̂u.(∼((λx.〈x〉) (λ z.〈y〉)) 0)[y := u]〉 5 where u /∈ {x,y,z}

.−→ !〈λ̂u.(∼((λx.〈x〉) (λ z.〈y〉))[y := u] 0[y := u])〉 5

.−→ !〈λ̂u.(∼(((λx.〈x〉) (λ z.〈y〉))[y := u]) 0[y := u])〉 5

.−→ !〈λ̂u.(∼((λx.〈x〉)[y := u] (λ z.〈y〉)[y := u]) 0[y := u])〉 5

.−→ !〈λ̂u.(∼((λx.〈x〉)[y := u] (λ z.〈y〉)[y := u]) 0[y := u])〉 5

.−→ !〈λ̂u.(∼((λx.〈x〉)[y := u] (λ z.〈y〉)[y := u]) 0[y := u])〉 5

.−→ !〈λ̂u.(∼〈x〉[x := (λ z.〈y〉)[y := u]][y := u] 0[y := u])〉 5

.−→ !〈λ̂u.(∼〈x[x := (λ z.〈y〉)[y := u]]〉[y := u] 0[y := u])〉 5

.−→ !〈λ̂u.(∼〈x[x := (λ z.〈y〉)[y := u]][y := u]〉 0[y := u])〉 5

.−→ !〈λ̂u.(∼〈(λ z.〈y〉)[y := u][y := u]〉 0[y := u])〉 5

.−→ !〈λ̂u.((λ z.〈y〉)[y := u][y := u] 0[y := u])〉 5

.−→ !〈λ̂u.((λ z.〈y〉)[y := u][y := u] 0)〉 5

.−→ !〈λu.((λ z.〈y〉)[y := u][y := u] 0)〉 5

.−→ (λu.((λ z.〈y〉)[y := u][y := u] 0)) 5

.−→ (λu.((λ z.〈y〉)[y := u][y := u] 0)) 5

.−→ ((λ z.〈y〉)[y := u][y := u] 0)[u := 5]

.−→ (λ z.〈y〉)[y := u][y := u][u := 5] 0[u := 5]

.−→ (λ z.〈y〉)[y := u][y := u][u := 5] 0

.−→ 〈y〉[z := 0][y := u][y := u][u := 5]

.−→ 〈y[z := 0]〉[y := u][y := u][u := 5]

.−→ 〈y[z := 0][y := u]〉[y := u][u := 5]

.−→ 〈y[z := 0][y := u][y := u]〉[u := 5]

.−→ 〈 y[z := 0][y := u][y := u][u := 5] 〉

.−→ 〈y[y := u][y := u][u := 5]〉

.−→ 〈u[y := u][u := 5]〉

.−→ 〈u[u := 5]〉

.−→ 〈5〉

Consider the boxed term, y[z := 0][y := u][y := u][u := 5]. The variable y is bound by the substitution

[y := u] in which the denotable term u is bound by the substitution [u := 5]. By the (subst-subst) rule, Suspen-

ded MetaML resolve the substitutions by performing one substitution at a time. If we represent substitutions

using environments, a trivial approach will go wrong. This is discussed in detail at the beginning of the next

section.
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Properties. Our sole purpose of developing the structural operational semantics is to evaluate programs

which are closed level-0 source terms. To evaluate a program t0
s at level 0, we expect that the program t0

s

multi-steps to a value v0 at level 0. Suppose the closed term t0
1 is an intermediate result of evaluating the

program t0
s . For any subterm t11 of the term t0

1 , we want to ensure that all its free variables are bound in

its surrounding scope. In particular, we are interested in the free variables that are bound by hatted lambda

bound variables in the surrounding scope. We define the following judgement to specify the well-boundness

of a term. We demonstrate how this judgement helps prove the correctness of the (app-0) rule.

Definition 159 (Well-boundness Judgement). Let the well-boundness judgement ` wb be a ternary relation

on the power set of variables, the power set of variables and the set of runtime terms.

` wb ⊆ P(VAR)×P(VAR)×RTERM

U ;V ` x wb where x ∈U

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 t2 wb

U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V

U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V

U ∪{x};V ∪{x} ` t wb

U ;V ` λ̂x.t wb
where x /∈ V

U ;V ` t wb
U ;V ` 〈t〉 wb

U ;V ` t wb
U ;V `∼ t wb

U ;V ` t wb
U ;V `!t wb

U ;V ` n wb

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 + t2 wb

U ;V ` w wb U ∪{x};V ` t wb

U ;V ` t[x := w] wb where x /∈ V

The well-boundness judgement U ;V ` t wb reads as “t is well bound by U and V ”.

We come back to our discussion on the well-boundness of the subterm t11 of the term t0
1 . By the above

definition, we have /0; /0 ` t0
1 wb. Observe that a sub-derivation of /0; /0 ` t1 wb must be the derivation of

U ;V ` t11 wb for some variable sets U and V . The variable set U tracks all free variables of the subterm
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t11 that are bound in the surrounding scope. We observe the following property which shows if a term is well

bound, we can get an upper bound of the free variables of the term. We can use well-boundness judgement

to estimate the free variables of a term.

Proposition 160. If U ;V ` t wb, then FV (t)⊆U .

The variable set V in U ;V ` t11 wb tracks the free variables of the subterm t11 that are bound by hatted

lambdas in the surrounding scope. Consider a special case of the subterm t11 of the term t0
1 . Suppose t11

is an application (λx.t0)[xi := wi] v0 that is reducible by the (app-0) rule. Since the (app-0) rule is not

a substitution reduction, it cannot be applied under any explicit substitution. Thus the free variables of

v0 must be bound by hatted lambdas in its surrounding context, which are tracked by the variable set V

of the judgement U ;V ` (λx.t0)[xi := wi] v0 wb. By the definition of the well-boundness judgement, we

have xi /∈ V . Hence we have FV (v0)∩ (
⋃

i{xi}) = /0, which we call the well-boundness of the application

(λx.t0)[xi := wi] v0. This guarantees the correctness of the (app-0) rule.

The well-boundness judgement cooperates well with the multi-step relation. The second property says

the former is preserved by the latter.

Proposition 161. If U ;V ` t i
1 wb, VAR(t i

1)⊆X , V ⊆U ⊆X and U ;V ;X ` t i
1 −→i∗ t i

2, then U ;V `
t i
2 wb.

As a corollary of the above properties, the multi-step relation preserves the closedness of runtime terms.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Suspended

MetaML. The evaluator is analogous to the one defined for Explicit MetaML.

Definition 162 (Evaluator based on Structural Operational Semantics of Suspended MetaML). Define the

evaluator evalMetaML:SusSOS to be a partial function from the set of programs PRGMMetaML to the set of

answers ANSMetaML.

evalMetaML:SusSOS : PRGMMetaML ⇀ ANSMetaML

evalMetaML:SusSOS(t) =


function if . t −→∗ (λx.t ′

0
)[xi := wi]

code if . t −→∗ 〈v1〉

n if . t −→∗ n

This evaluator is defined based on the structural operational semantics of Suspended MetaML. The

subscript “MetaML:SusSOS” in evalMetaML:SusSOS denotes the structural operational semantics of Suspended

MetaML.

We claim that the evaluators defined in terms of Substitutional MetaML and Suspended MetaML are

equivalent.

Theorem 163 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:SusSOS(t).

We prove the above theorem in appendices.
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5.4 Environmental MetaML - Structural Operational Semantics

Refining Suspended ISWIM to Environmental ISWIM is discussed in Section 3.4. For a term surrounded

by cascaded explicit substitutions, t[xi := wi], every denotable term wi is closed in Suspended ISWIM. It is

a natural step to replace the explicit substitutions with a corresponding environment.

However, MetaML allows replacing a variable by a open denotable term. In Suspended MetaML, the

denotable term of some early explicit substitution in a cascade may have free variables that are bound by

some later substitution. Example 158 shows

. !〈λy.(∼((λx.〈x〉) (λ z.y)) 0)〉 5 −→∗ 〈y[z := 0][y := u][y := u][u := 5]〉

where u /∈ {x,y,z}. The term y[z := 0][y := u][y := u][u := 5] has y bound by u that is bound by 5. If we

represent the explicit substitutions that surround a term by one environment, an environment lookup may

lead to an unsound result. For example, we represent y[z := 0][y := u][y := u][u := 5] by pairing y with the

environment ρ = {(z,0),(y,u),(u,5)}. Looking up y in the environment ρ returns u solely which is not

paired with an environment. Then we incorrectly output u as the final result of the evaluation. The correct

result is 5 because u is bound to 5.

To refine Suspended MetaML to Environmental MetaML, we propose to replace cascaded explicit sub-

stitutions with meta-environments instead of environments. A meta-environment is a finite sequence of

environments, among which the free variables of one environment are bound by the next environment in

the sequence. To evaluate a variable with a meta-environment, we look up the variable in the first environ-

ment of the meta-environment and return the lookup result paired with the remaining environments of the

meta-environment. For example, y[z := 0][y := u][y := u][u := 5] may be represented by pairing y with the

meta-environment (ρ1;ρ2) where ρ1 = {(z,0),(y,u)} and ρ2 = {(u,5)}. After one small-step of evaluation,

we have u paired with the meta-environment ρ2 because ρ1(y) = u. After another step, we get the final result

5 because ρ2(u) = 5.

5.4.1 Syntax

We first define the basic syntax of the Environmental MetaML: source terms, runtime terms, values, denot-

able terms, configurations, environments and meta-environments. Then we define the free variable function.

5.4.1.1 Source Terms, Runtime Terms, Values, Denotable Terms, Configurations, Environments
and Meta-environments

Definition 164 (Source Terms, Runtime Terms, Values, Denotable Terms and Configurations). For any

i ∈ N, let STERMi be the set of level-indexed source terms at level i, RTERMi be the set of level-indexed

runtime terms at level i, VALUEi be the set of level-indexed values at level i, and CONFi be the set of level-

indexed configurations at level i. Let DENOTABLE be the set of denotable terms and ENV be a finite partial

function from the set of variables to the set of denotable terms.
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x ∈ VAR, i,n ∈ N, t i
s ∈ STERMi, t i ∈ RTERMi, vi ∈ VALUEi, w ∈ DENOTABLE, c ∈ CONF,

ρ ∈ ENV = VAR
fin
⇀ DENOTABLE

t0
s := x | t0 t0 | λx.t0 | 〈t1〉 | !t0 | n | t0 + t0

t i+1
s := x | t i+1 t i+1 | λx.t i+1 | 〈t i+2〉 | ∼t i | !t i+1 | n | t i+1 + t i+1

t0 := x | t0 t0 |Iλx.t0, ρ∗J | 〈t1〉 | !t0 | n | t0 + t0

t i+1 := x | t i+1 t i+1 | λx.t i+1 | 〈t i+2〉 | ∼t i | !t i+1 | n | t i+1 + t i+1

v0 := Iλx.t0, ρ∗J | 〈v1〉 | n
v1 := x | v1 v1 | λx.v1 | 〈v2〉 | !v1 | n | v1 + v1

vi+2 := x | vi+2 vi+2 | λx.vi+2 | 〈vi+3〉 | ∼vi+1 | !vi+2 | n | vi+2 + vi+2

w := x | v0

c0 := v0 | c0 c0 | λx.c0 |Gt0, ρ∗H | 〈c1〉 |!c0 | c0 + c0

ci+1 := vi+1 | ci+1 ci+1 | λx.ci+1 |Gt i+1, ρ∗H | 〈ci+2〉 | ∼ci |!ci+1 | ci+1 + ci+1

We usually call λx.ci+1 a level-(i+1) non-value lambda if c /∈ VALUEi+1 and a level-(i+1) lambda value

if c ∈ VALUEi+1.

Definition 165 (Environments). An environment ρ ∈ ENV is a finite partial function from the set of variables

to the set of denotable terms. Let dom(ρ) be the domain of the environment ρ and rng(ρ) be the range of

the environment ρ . Let ρ[x 7→ w] be an environment update and ρ(x) be an environment lookup. We have:

ρ[x 7→ w](y) =

w if x≡ y

ρ(y) if x 6≡ y

Definition 166 (Initial Environments). Let X ⊆ VAR. The initial environment ρX
init is the identity function

whose domain is X .

Definition 167 (Meta-environments). A meta-environment ρ∗ ∈ ENV∗ is a finite sequence of environments.

An empty meta-environment is denoted by ε . A meta-environment containing an empty environment is

denoted by ( /0;ε).

A term paired with a meta-environment, i.e., Gt i, ρ∗H or Iλx.t0, ρ∗J, is called a closure. A level-0

lambda abstraction paired with a meta-environment, i.e., Iλx.t0, ρ∗J, is called a closure value. A clos-

ure that is not a value, Gt i, ρ∗H, is called a non-value closure. A closure makes its top-level structure

immediately evident. For example, it is immediately recognisable that its top-level structure of the closure

Iλx.t0, ρ∗J is a level-0 lambda abstraction λx.t0 without having to dive into the meta-environment ρ∗.

As a comparison, in Suspended MetaML, to check the top-level structure of (λx.t0)[xi := wi], we have to
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dive down through the cascaded explicit substitutions [xi := wi] until reaching the level-0 lambda abstraction

λx.t0.

A closure Gt, ρ∗H has the meta-environment ρ∗. The meta-environment of the closure Gt, ( /0;ε)H has

one environment /0. The meta-environment of the closure Gt, εH has no environments.

Environmental MetaML’s closures are different from Environmental ISWIM’s closures. In Environ-

mental ISWIM, for an arbitrary closure 〈t, ρ〉, the term t is closed by the environment ρ . In Environmental

MetaML, a closure Gt, ρ∗H is a pair of a term t and a meta-environment ρ∗. Suppose ρ∗ = ρ1;ρ2; ...;ρm.

The free variables of the term t are bound by the first environment ρ1. If the first environment ρ1 does not

close the term t, the free variables of the closure Gt, ρ1H must be bound by the second environment ρ2 and

the free variables of the closure Gt, (ρ1;ρ2)H must be bound by the third environment ρ3, and so on. The

closure Gt, ρ∗H may also have free variables, which are bound by its surrounding context.

The design choice of closures and closure values are compatible with the original interpreter of MetaML

introduced in [Tah99a]. To ensure that any variable that has been eliminated by some substitution or renam-

ing does not escape from the scope of the substitution or renaming, they used a delayed environment called a

cover. A cover works like a normal environment on non-function terms. If a cover encounters a function, the

substitutions of the cover are delayed and are only performed on the result of calling the function. Analog-

ously, in Environmental MetaML, environments on a level-0 lambda abstraction are delayed, as modelled

by closure values. These environments work like normal environments on the result of applying the level-0

lambda abstraction.

Unlike the previous dialects of MetaML, Environmental MetaML deems the set of configurations rather

than the set of (runtime) terms to be the fundamental set on which the operational semantics is defined.

Recall that programs are closed level-0 source terms. To evaluate a program t0
s , we first pair it with the

initial meta-environment (ρVAR(t0
s )

init ;ε), resulting in the initial configuration c0
s = Gt0

s , (ρ
VAR(t0

s )
init ;ε)H. We

then pass the initial configuration to the operational semantics. Someone may wonder why the initial meta-

environment is (ρVAR(t0
s )

init ;ε) rather than ( /0;ε). In short, choosing (ρ
VAR(t0

s )
init ;ε) makes rules of the semantics

consistent, eases proving equivalence of semantics and preserves the correctness of the semantics. We

discuss its reasons in detail after introducing the evaluator for the semantics.

5.4.1.2 Free Variable Function

We define the free variable function by extending Substitutional MetaML’s Definition 20 to accommodate

configurations.

Definition 168 (Free Variable Function). Let the free variable function FV be a total function from the set

of configurations to the power set of variables.
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FV : CONF −→P(VAR)

FV (x) = x (1)

FV (n) = /0 (2)

FV (c1 c2) = FV (c1)∪FV (c2) (3)

FV (λx.c) = FV (c)\{x} (4)

FV (〈c〉) = FV (c) (5)

FV (!c) = FV (c) (6)

FV (∼c) = FV (c) (7)

FV (c1 + c2) = FV (c1)∪FV (c2) (8)

FV (Gt, εH) = FV (t) (9)

FV (Gt, ρ∗1 ;ρ2H) =
⋃

i FV (ρ2(xi)) where xi ∈ FV (Gt, ρ∗1H) (10)

FV (Iλx.t, ρ∗J) = FV (Gλx.t, ρ∗H) (11)

Equations (1)-(2) are the same as Equations (1) and (7) of Definition 20 in Substitutional MetaML.

Equations (3)-(8) are analogous to Equations (2)-(6) and (8) of Definition 20. Equations (9)-(11) are based

on the definitions of closures and closure values.

5.4.2 Structural Operational Semantics

We lay out the structural operational semantics of Environmental MetaML through the level-indexed single-

step relations −→i, the global single-step relation . −→ , the level-indexed multi-step relations −→i∗ and

the global multi-step relation .−→∗.

Definition 169 (Level-indexed Single-step Relations). For any i ∈ N, let the level-indexed single-step rela-

tion−→i be a 4-ary relation on the power set of variables, the power set of variables, the set of configurations

at level i and the set of configurations at level i.
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−→i ⊆ P(VAR)×P(VAR)×CONFi×CONFi

V ∪{x};X ` ci+1
1 −→i+1 ci+1

2

V ;X ` λx.ci+1
1 −→i+1 λx.ci+1

2

(lambda-(i+1))

V ;X ` ci
11 −→i ci

12

V ;X ` ci
11 ci

2 −→i ci
12 ci

2
(appL-i)

V ;X ` ci
21 −→i ci

22

V ;X ` vi
1 ci

21 −→i vi
1 ci

22
(appR-i)

V ;X `Iλx.t0, (ρ;ρ∗)J v0 −→0 Gt0, (ρ[x 7→ v0];ρ∗)H
(app-0)

V ;X ` ci
1 −→i ci

2

V ;X `!ci
1 −→i!ci

2
(run-i)

V ;X `!〈v1〉 −→0 Gv1, (ρX
init;ε)H

(run-0)

V ;X ` ci+1
1 −→i+1 ci+1

2

V ;X ` 〈ci+1
1 〉 −→i 〈ci+1

2 〉
(code-i)

V ;X ` ci
1 −→i ci

2

V ;X ` ∼ci
1 −→i+1 ∼ci

2
(splice-(i+1))

V ;X ` ∼〈v1〉 −→1 v1
(splice-1)

V ;X ` ci
11 −→i ci

12

V ;X ` ci
11 + ci

2 −→i ci
12 + ci

2
(plusL-i)

V ;X ` ci
21 −→i ci

22

V ;X ` vi
1 + ci

21 −→i vi
1 + ci

22
(plusR-i)

V ;X ` n1 +n2 −→0 n
where n = n1 +n2 (plus-0)

V ;X `Gλx.t0, ρ∗H−→0 Iλx.t0, ρ∗J
(lam-0-env)

V ;X `Gλx.t i+1, (ρ;ρ∗)H−→i+1 λxN .Gt i+1, (ρ[x 7→ xN ][xN 7→ xN ];(ρ[xN 7→ xN ])
∗)H

where xN /∈X (lam-(i+1)-env)

V ;X `GIλx.t, ρ∗1J, ρ∗2H−→i Iλx.t, (ρ∗1 ;ρ∗2 )J
(clov-env)

V ;X `Gw, εH−→i w
(den-env)

V ;X `Gx, (ρ;ρ∗)H−→i Gρ(x), ρ∗H
(var-env)

V ;X `Gn, ρ∗H−→i n
(num-env)

V ;X `Gt1 t2, ρ∗H−→i Gt1, ρ∗H Gt2, ρ∗H
(app-env)

V ;X `G〈t i+1〉, ρ∗H−→i 〈Gt i+1, ρ∗H〉
(code-env)

V ;X `G!t i, ρ∗H−→i!Gt i, ρ∗H
(run-env)

V ;X `G∼t i, ρ∗H−→i+1 ∼Gt i, ρ∗H
(splice-env)

V ;X `Gt1 + t2, ρ∗H−→i Gt1, ρ∗H+Gt2, ρ∗H
(plus-env) 91
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The level-indexed single-step relation V ;X ` ci
1 −→i ci

2 reads as “c1 single-steps to c2 at level i bound

by V and X ”.

To make a small-step when evaluating a program, we need to repeatedly apply the structural rules until

we find a configuration of the program on which a reduction rule can be applied. In the meanwhile, we

keep track of lambda bound variables when we dive into the body of a level-(i+1) non-value lambda using

the (lambda-(i+1)) rule. Suppose we have found such a configuration ci
1 that is reducible and we have

V ;X ` ci
1 −→i ci

2. The free variables of ci
1 must be bound by lambda bound variables of level-(i+1)

non-value lambdas in the surrounding scope, which are tracked by the variable set V . The variable set

X records all variables in the configuration ci
1 and its surrounding scope. We need the variable set X to

determine whether a variable is fresh in the sense that it has not appeared in the configuration being currently

evaluated or in its surrounding scope. The variable sets V and X help specify the well-boundness property

of configurations (Proposition 177).

We briefly explain some rules of the single-step relation. (1) The (app-0) rule models an application by

updating the environment, which completes the unfinished job of Suspended MetaML’s (app-0) rule. (2)

The (run-0) rule is about executing a code value at level 0. Someone may want to replace the configuration

Gv1, (ρX
init;ε)H with the value v1. This is incorrect. The single-step relation is defined on configurations.

The value v1 must be paired with a meta-environment in order to be evaluated at level 0. (3) The (*-env)

rules discuss how to evaluate a closure. (3.1) The (lam-0-env) rule turns a closure into a closure value.

(3.2) The (lam-(i+1)-env) rule combines Suspended MetaML’s (lambda-(i+1)-t) rule and (lam-subst) rule.

To evaluate a lambda abstraction at a level higher than 0, we must rename the lambda bound variable to a

fresh variable before diving into the body, where the fresh variable must have not occurred in the current

configuration being evaluated or in its surrounding scope. (3.3) The (clov-env) rule concatenates two meta-

environments. (3.4) The (den-env) rule is trivial. (3.5) The other (*-env) rules correspond to Suspended

MetaML’s single-step substitution reduction relations.

Definition 170 (Global Single-step Relation). Let the global single-step relation .−→ be a binary relation

between the set of level-0 configurations and the set of level-0 configurations.

. c0
1 −→ c0

2 if and only if /0; VAR(c0
1) ` c0

1 −→0 c0
2

The global single-step relation . c0
1 −→ c0

2 reads as “c1 single-steps to c2”.

Definition 171 (Level-indexed Multi-step Relations). For any i∈N, let the level-indexed multi-step relation

−→i∗ be a 4-ary relation on the power set of variables, the power set of variables, the set of configurations

at level i and the set of configurations at level i directly based on the level-indexed single-step relation −→i.

−→i∗⊆P(VAR)×P(VAR)×CONFi×CONFi

V ;X ` ci
1 −→i∗ ci

2
where V ;X `ci

1 −→i ci
2 (step)

V ;X ` ci −→i∗ ci (refl)

V ;X ` ci
1 −→i∗ ci

2 V ;X ∪VAR(ci
2) ` ci

2 −→i∗ ci
3

V ;X ` ci
1 −→i∗ ci

3
(trans)

Definition 172 (Global Multi-step Relation). Let the global multi-step relation . −→∗ be the reflexive-

transitive closure of the global single-step relation .−→.
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Example 173. Consider !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉. We first construct a configuration that pairs the

above term with an initial meta-environment:

G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H

By the structural operational semantics of Environmental MetaML, we have:

G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H
.−→ !G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H
.−→ !〈Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H〉
.−→ !〈λ z.G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H〉 where z /∈ {x,y}
.−→ !〈λ z.(G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼G((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼(G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H G(λx.y), ({(x,x),(y,z),(z,z)};ε)H) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼(I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J G(λx.y), ({(x,x),(y,z),(z,z)};ε)H) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼(I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J I(λx.y), ({(x,x),(y,z),(z,z)};ε)J) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼(G〈x〉, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼〈Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H〉G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼〈GI(λx.y), ({(x,x),(y,z),(z,z)};ε)J, (ε)H〉G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(∼〈I(λx.y), ({(x,x),(y,z),(z,z)};ε)J〉G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J G0, ({(x,x),(y,z),(z,z)};ε)H)〉
.−→ !〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0)〉
.−→ Gλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)H
.−→ Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J

Properties. Our sole purpose of developing the structural operational semantics is to evaluate programs

which are closed level-0 source terms. To evaluate a program t0
s at level 0, we construct the initial configur-

ation c0
s = Gt0

s , (ρ
VAR(t0

s )
init ;ε)H and pass it to the structural operational semantics. We expect that the initial

configuration multi-steps to a level-0 value v0. Suppose the closed configuration c0
1 is an intermediate result

of evaluating the initial configuration c0
s . We then repeatedly apply the structural rules on c0

1 until we find its

subconfiguration c11 on which a reduction rule can apply. We want to ensure that all free variables of c11 are

bound in its surrounding scope by lambda bound variables of level-(i+1) non-value lambdas. We define the

following judgement to specify the well-boundness of a configuration. We demonstrate how this judgement

helps prove the correctness of the (app-0) rule.

Definition 174 (Well-boundness Judgement). Let the well-boundness judgement ` wb be a ternary relation

on the power set of variables, the power set of variables and the set of configurations.
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` wb ⊆ P(VAR)×P(VAR)×CONF

U ;V ` x wb where x ∈U

U ;V ` c1 wb U ;V ` c2 wb

U ;V ` c1 c2 wb

U ∪{x};V ` c wb

U ;V ` λx.c0 wb
where x /∈ V

U ∪{x};V ` c wb

U ;V ` λx.vi+1 wb
where x /∈ V

U ∪{x};V ∪{x} ` c wb

U ;V ` λx.ci+1 wb
where ci+1 /∈ VALUEi+1 and x /∈ V

U ;V ` t wb
U ;V ` 〈t〉 wb

U ;V ` t wb
U ;V `∼ t wb

U ;V ` t wb
U ;V `!t wb

U ;V ` n wb

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 + t2 wb

U ;V ` t wb
U ;V `Gt, εH wb

U ;V ` ρm(xmk) wb U ∪{xmk};V `Gt, (ρi
m−1
1 ;ε)H wb

U ;V `Gt, (ρi
m
1 ;ε)H wb

where VAR(Gt, ρi
m
1 H)⊆ dom(ρi) for any ρi,

ρi(y j) = y j for any ρi and y j ∈ V ,
and xmk ∈ FV (Gt, (ρi

m−1
1 ;ε)H).

U ;V `Gt, ρiH wb
U ;V `It, ρiJ wb

Notation 175. A sequence of environments, ρ1;ρ2; ...;ρm, can be abbreviated as ρi
m
1 or ρi.

The well-boundness judgement U ;V ` c wb reads as “c is well bound by U and V ”. The variable set

U tracks all free variables of the configuration c that are bound any means in the surrounding scope. We

observe the following property which is analogous to Suspended MetaML’s Proposition 160.

Proposition 176. If U ;V ` c wb, then FV (c)⊆U .

We come back to our discussion of the well-boundness of the subconfiguration c11 of the configuration

c0
1. By the definition of well-boundness judgement, we have /0; /0 ` c0

1 wb. Observe that a sub-derivation

of /0; /0 ` c0
1 wb must be the derivation of U ;V ` c11 wb for some variable sets U and V . The variable
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set V tracks all free variables of the configuration c11 that are bound in the surrounding scope by lambda

bound variables of level-(i+ 1) non-value lambdas. Recall that other than level-(i+ 1) non-value lambdas,

the structural rules do not allow evaluating under lambdas or closures. Thus the variable set U is the same

as V . We have V ;V ` c11 wb.

Consider a special case of the configuration c11. Suppose c11 is an application Iλx.t0, (ρi
m
1 ;ε)J v0

that is reducible by the (app-0) rule. The free variables of v0 must be bound by lambda bound variables of

level-(i+ 1) non-value lambdas in its surrounding context, which are tracked by the variable set V of the

judgement V ;V `Iλx.t0, (ρi
m
1 ;ε)J v0 wb. By definition, ρi(y j) = y j for any y j ∈ V . By Proposition 176,

FV (v0)⊆ V . Hence, ρi(yv) = yv for any yv ∈ FV (v0), which we call the well-boundness of the application

Iλx.t0, (ρi
m
1 ;ε)J v0.

We briefly explain how the correctness of the (app-0) rule is guaranteed by the well-boundness of the

application Iλx.t0, (ρi
m
1 ;ε)J v0. Let’s represent each environment as a set of variable-and-denotable-term

pairs. We have:

ρi
m
1 = {(x1i,w1i)};{(x2i,w2i)}; ...;{(xmi,wmi)}

Then the application Iλx.t0, (ρi
m
1 ;ε)J v0 denotes

(λx.t0){[w1i/x1i]}{[w2i/x2i]}...{[wmi/xmi]} v0

where each braced set of substitutions works as an environment and substitutions in each braced set are

unordered. We first rename the lambda bound variable x to a globally fresh variable xN and then push all

braced sets of substitutions under the new lambda. We get:

λxN .(t0{[w1i/x1i][xN/x]}{[w2i/x2i][xN/xN ]}...{[wmi/xmi][xN/xN ]}) v0

Then we perform the application and get:

t0{[w1i/x1i][xN/x]}{[w2i/x2i][xN/xN ]}...{[wmi/xmi][xN/xN ]}{[v0/xN ]}

By the well-boundness of the application Iλx.t0, (ρi
m
1 ;ε)J v0, we know for any yv ∈ FV (v0), yv is substi-

tuted by itself in the first m braced sets of substitutions. Then we can splice the last braced substitution into

the first braced set and eliminate renaming the lambda bound variable. We get

t0{[w1i/x1i][v0/x]}{[w2i/x2i]}...{[wmi/xmi]}

which corresponds to

Gt0, (ρ1[x 7→ v0];ρ
m
2 ;ε)H

in the (app-0) rule of Environmental MetaML.

The well-boundness judgement cooperates well with the multi-step relation. The following property

says the former is preserved by the latter. It is analogous to Suspended MetaML’s Proposition 161.

Proposition 177. If V ;V ` ci
1 wb, VAR(ci

1)⊆X , V ⊆X and V ;X ` ci
1 −→i∗ ci

2, then V ;V ` ci
2 wb.
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As a corollary of the above properties, the multi-step relation preserves the closedness of configurations.

Evaluator. We now define an evaluator in terms of the structural operational semantics of Environmental

MetaML. Environmental MetaML’s multi-step relation is defined on sets of configurations rather than sets

of runtime terms. Given a program t, the evaluator applies the multi-step relation on the initial configuration

Gt, (ρVAR(t)
init ;ε)H which pairs the program with the initial environment of the program. The evaluator is

otherwise analogous to the one defined for Suspended MetaML.

Definition 178 (Evaluator based on Structural Operational Semantics of Environmental MetaML). Let the

evaluator evalMetaML:EnvSOS be a partial function from the set of programs PRGMMetaML to the set of answers

ANSMetaML.

evalMetaML:EnvSOS : PRGMMetaML ⇀ ANSMetaML

evalMetaML:EnvSOS(t) =


function if . Gt, (ρVAR(t)

init ;ε)H−→∗ Iλx.t ′
0
, ρ∗J

code if . Gt, (ρVAR(t)
init ;ε)H−→∗ 〈v1〉

n if . Gt, (ρVAR(t)
init ;ε)H−→∗ n

This evaluator is defined in terms of the structural operational semantics of Environmental MetaML. The

subscript “MetaML:EnvSOS” in evalMetaML:EnvSOS denotes the structural operational semantics of Environmental

MetaML.

Someone may wonder why the initial configuration has the meta-environment (ρVAR(t0
s )

init ;ε) rather than

( /0;ε). First of all, for any program t, the initial configuration Gt, ρ∗H is closed regardless of whether

ρ∗ = (ρ
VAR(t0

s )
init ;ε) or ρ∗ = ( /0;ε). Choosing (ρ

VAR(t0
s )

init ;ε) still preserves the closedness of the initial config-

uration. Secondly, as implied by the theorem at the end of this section, choosing (ρ
VAR(t0

s )
init ;ε) over ( /0;ε)

does not destroy the soundness or completeness of the semantics. Thirdly, having the meta-environment

(ρ
VAR(t0

s )
init ;ε) in the initial configuration is consistent with the (run-0) rule where the newly constructed con-

figuration has the meta-environment (ρX
init;ε). Fourthly, by the well-boundness judgement, given a well

bound closure Gt, ρ∗H where ρ∗ = ρi, we must have VAR(Gt, ρiH) ⊆ dom(ρi) for any ρi. If we do not

choose (ρ
VAR(t0

s )
init ;ε) over ( /0;ε), we need a more complicated well-boundness judgement that may obscure

the fundamental concepts, making proving semantics equivalence more complicated. In Section 7.2, we

propose a novel way of modelling environments, which no long requires the ad-hoc step of collecting all the

variables that exist in the program for the initial configuration as (ρVAR(t0
s )

init ;ε).

We claim that the evaluators defined in terms of Substitutional MetaML and Environmental MetaML

are equivalent.

Theorem 179 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:EnvSOS(t).

We prove the theorem in appendices.

96



5.5. Environmental MetaML - Reduction Semantics

5.5 Environmental MetaML - Reduction Semantics

Following the path of refining a structural operational semantics to its corresponding reduction semantics as

presented in Sections 3.5 and 4.1, we refine Environmental MetaML’s structural operational semantics to a

reduction semantics.

5.5.1 Syntax

The definitions of source terms, runtime terms, values, denotable terms, configurations and meta-environments

are the same as Section 5.4.

5.5.1.1 Evaluation Contexts

Section 4.1 defined evaluation contexts for Substitutional MetaML. Unlike Substitutional MetaML, Envir-

onmental MetaML defines its semantics on configurations rather than on terms. Taking this difference into

consideration, we define evaluation contexts for Environmental MetaML, which is analogous to Substitu-

tional MetaML’s Definition 114.

Definition 180 (Evaluation Contexts: Inside-out). Let ECXTi( j be the set of evaluation contexts with inner

level i and outer level j.

E i( j ∈ ECXTi( j, ci ∈ CONFi, vi ∈ VALUEi

� ∈ EXCTi(i (ept-i)

E ∈ EXCTi( j

E[� ci
2] ∈ EXCTi( j (appL-i) E ∈ EXCTi( j

E[vi
1 �] ∈ EXCTi( j (appR-i)

E ∈ EXCT(i+1)( j

E[λx.�] ∈ EXCT(i+1)( j
(lambda-(i+1))

E ∈ EXCTi( j

E[〈�〉] ∈ EXCT(i+1)( j
(code-i) E ∈ EXCT(i+1)( j

E[∼�] ∈ EXCTi( j (splice-(i+1)) E ∈ EXCTi( j

E[!�] ∈ EXCTi( j (run-i)

E ∈ EXCTi( j

E[�+ ci
2] ∈ EXCTi( j (plusL-i) E ∈ EXCTi( j

E[vi
1 +�] ∈ EXCTi( j (plusR-i)

5.5.2 Reduction Semantics

We lay out the reduction semantics through the level-indexed notions of reduction R i, the level-indexed

single-reduction relations 7−→i, the global single-reduction relation . 7−→, the level-indexed multi-reduction

relations 7−→i∗ and the global multi-reduction relation . 7−→∗.

Definition 181 (Level-indexed Notions of Reduction). For any i ∈ N, let the notions of reduction R i be a

binary relation between the set of configurations at level i and the set of configurations at level i.
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R i ⊆ P(VAR)×CONFi×CONFi

X ` Iλx.t0, (ρ;ρ∗)J v0 R0 Gt0, (ρ[x 7→ v0];ρ∗)H (app-0)

X ` !〈v1〉 R0 Gv1, (ρX
init;ε)H (run-0)

X ` ∼〈v1〉 R1 v1 (splice-1)

X ` n1 +n2 R0 n where n = n1 +n2 (plus-0)

X ` Gλx.t0, ρ∗H R0 Iλx.t0, ρ∗J (conf-lam-0)

X ` Gλx.t i+1, (ρ;ρ∗)H R i+1 λxN .Gt i+1, (ρ[x 7→ xN ];(ρ[xN 7→ xN ])
∗H (conf-lam-(i+1))

where xN /∈X

X ` GIλx.t, ρ∗1J, ρ∗2H R i Iλx.t, (ρ∗1 ;ρ∗2 )J (conf-clov-i)

X ` Gω, εH R i w (conf-den-i)

X ` Gx, (ρ;ρ∗)H R i Gρ(x), ρ∗H (conf-var-i)

X ` Gn, ρ∗H R i n (conf-num-i)

X ` Gt1 t2, ρ∗H R i Gt1, ρ∗H Gt2, ρ∗H (conf-app-i)

X ` G〈t i+1〉, ρ∗H R i 〈Gt i+1, ρ∗H〉 (conf-code-i)

X ` G!t i, ρ∗H R i !Gt i, ρ∗H (conf-run-i)

X ` G∼t i, ρ∗H R i+1 ∼Gt i, ρ∗H (conf-splice-i)

X ` Gt1 + t2, ρ∗H R i Gt1, ρ∗H+Gt2, ρ∗H (conf-plus-i)

The notion of reduction X ` ci
1 R i ci

2 reads as “c1 reduces to c2 at level i bound by X ”. Each notion

corresponds to one reduction rule of the single-step relations presented in Definition 169. The variable set

X records all variables in the configuration ci
1 and in its surrounding context, which is used in the (conf-

lam-(i+1)) rule to determine whether a variable is globally fresh.

Definition 182 (Level-indexed Single-reduction Relation). For any i ∈ N, let the level-indexed single-

reduction relation 7−→i be a binary relation between the set of configurations at level i and the set of config-

urations at level i directly based on the notions of reduction R j.

7−→i ⊆ CONFi×CONFi

X ` t j
1 R j t j

2

X ` E j(i[t j
1] 7−→i E j(i[t j

2]

The level-indexed single-reduction relation X ` ci
1 7−→i ci

2 reads as “c1 single-reduces to c2 at level i

bound by X ”. The above definition states that the single-reduction relation respects performing any notion

of reduction in an evaluation context.

Definition 183 (Global Single-reduction Relation). Let the global single-reduction relation . 7−→ be a binary

relation between the set of level-0 configurations and the set of level-0 configurations.

. c0
1 7−→ c0

2 if and only if VAR(c0
1) ` c0

1 7−→0 c0
2

The global single-reduction relation . c0
1 −→ c0

2 reads as “c1 single-reduces to c2”. It is defined based

on the single-reduction relation with a particular initialisation of the variable set X .
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Definition 184 (Level-indexed Multi-reduction Relations). For any i∈N, let the level-indexed multi-reduction

relation 7−→i∗ be the a binary relation between the set of configurations at level i and the set of configurations

at level i directly based on the level-indexed single-reduction relation 7−→i.

7−→i∗⊆P(VAR)×CONFi×CONFi

X ` ci
1 7−→i∗ ci

2
where X `ci

1 7−→i ci
2 (step)

X ` ci 7−→i∗ ci (refl)

X ` ci
1 7−→i∗ ci

2 X ∪VAR(ci
2) ` ci

2 7−→i∗ ci
3

X ` ci
1 7−→i∗ ci

3
(trans)

Definition 185 (Global Multi-reduction Relation). Let the global multi-reduction relation . −→∗ be the

reflexive-transitive closure of the global single-reduction relation .−→.

Example 186. Consider !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉.
We first construct a configuration that pairs the above term with an initial meta-environment:

G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H

By the reduction semantics of Environmental MetaML, we have:

. G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H

7−→∗ Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J

as demonstrated in Figure 5.1.

A comparison of the Figure 5.1 with Figures 3.1 and 4.1 tells that Environmental MetaML’s reduction

semantics follows the exact same three-step break-apply-plug pattern of evaluating a program as Environ-

mental ISWIM’s reduction semantics and Substitutional MetaML’s reduction semantics.

Property. The global multi-reduction relation preserves the closedness of a configuration. This is the same

property that Environmental MetaML’s structural operational semantics holds.

Proposition 187 (Closedness of Configurations). If . c0
1 7−→∗ c0

2 and FV (c0
1) = /0, then FV (c0

2) = /0.

Evaluator. We now define an evaluator based on the reduction semantics of Environmental MetaML. The

evaluator is analogous to the evaluators defined based on the structural operational semantics of Environ-

mental MetaML.

Definition 188 (Evaluator based on Reduction Semantics of Environmental MetaML). Let the evaluator

evalMetaML:EnvRed be a partial function from the set of programs PRGMMetaML to the set of answers ANSMetaML.
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G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H
= �0(0[G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H]
. 7−→ �0(0[!G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H]
= !G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H
= (�[!�])0(0[G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H]
. 7−→ (�[!�])0(0[〈Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H〉]
= !〈Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H〉
= (�[!�][〈�〉])1(0[Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H]
. 7−→ (�[!�][〈�〉])1(0[λ z.G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H] where z /∈ {x,y}
= !〈λ z.G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H〉
= (�[!�][〈�〉][λ z.�])1(0[G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�])1(0[G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H G0, ({(x,x),(y,z),(z,z)};ε)H]
= !〈λ z.(G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H])1(0[G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H])1(0[∼G((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H]
= !〈λ z.(∼G((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�])0(0[G((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�])0(0[G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H G(λx.y), ({(x,x),(y,z),(z,z)};ε)H]
= !〈λ z.(∼(G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H G(λx.y), ({(x,x),(y,z),(z,z)};ε)H) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][�G(λx.y), ({(x,x),(y,z),(z,z)};ε)H])0(0[G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][�G(λx.y), ({(x,x),(y,z),(z,z)};ε)H])0(0[I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J]
= !〈λ z.(∼(I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J G(λx.y), ({(x,x),(y,z),(z,z)};ε)H) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J�])0(0[G(λx.y), ({(x,x),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J�])0(0[I(λx.y), ({(x,x),(y,z),(z,z)};ε)J]
= !〈λ z.(∼(I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J I(λx.y), ({(x,x),(y,z),(z,z)};ε)J) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�])0(0[I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J I(λx.y), ({(x,x),(y,z),(z,z)};ε)J]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�])0(0[G〈x〉, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H]
= !〈λ z.(∼(G〈x〉, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H) G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�])0(0[G〈x〉, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�])0(0[〈Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H〉]
= !〈λ z.(∼〈Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H〉G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉])1(0[Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉])1(0[GI(λx.y), ({(x,x),(y,z),(z,z)};ε)J, (ε)H]
= !〈λ z.(∼〈GI(λx.y), ({(x,x),(y,z),(z,z)};ε)J, (ε)H〉G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉])1(0[GI(λx.y), ({(x,x),(y,z),(z,z)};ε)J, (ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉])1(0[I(λx.y), ({(x,x),(y,z),(z,z)};ε)J]
= !〈λ z.(∼〈I(λx.y), ({(x,x),(y,z),(z,z)};ε)J〉G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H])1(0[∼〈I(λx.y), ({(x,x),(y,z),(z,z)};ε)J〉]
. 7−→ (�[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H])1(0[I(λx.y), ({(x,x),(y,z),(z,z)};ε)J]
= !〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J G0, ({(x,x),(y,z),(z,z)};ε)H)〉
= (�[!�][〈�〉][λ z.�][I(λx.y), ({(x,x),(y,z),(z,z)};ε)J�])1(0[G0, ({(x,x),(y,z),(z,z)};ε)H]
. 7−→ (�[!�][〈�〉][λ z.�][I(λx.y), ({(x,x),(y,z),(z,z)};ε)J�])1(0[0]
= !〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0)〉
= �0(0[!〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0)〉]
. 7−→ �0(0[Gλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)H]
= Gλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)H
= �0(0[Gλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)H]
. 7−→ �0(0[Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J]
= Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J

Figure 5.1: Evaluation of !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉 in Reduction Semantics of Environmental MetaML.
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5.6. Environmental MetaML - Abstract Machine (MEK Machine)

evalMetaML:EnvRed : PRGMMetaML ⇀ ANSMetaML

evalMetaML:EnvRed(t) =


function if . Gt, (ρVAR(t)

init ;ε)H 7−→∗ Iλx.t ′
0
, ρ∗J

code if . Gt, (ρVAR(t)
init ;ε)H 7−→∗ 〈v1〉

n if . Gt, (ρVAR(t)
init ;ε)H 7−→∗ n

This evaluator is defined based on the reduction semantics of Environmental MetaML. The subscript

“MetaML:EnvRed” in evalMetaML:EnvRed denotes the reduction semantics of Environmental MetaML.

We claim that the evaluators defined in terms of the structural operational semantics and the reduction

semantics of Environmental MetaML are equivalent.

Theorem 189 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:EnvSOS(t) is Kleene

equal to evalMetaML:EnvRed(t).

We prove the theorem in appendices.

5.6 Environmental MetaML - Abstract Machine (MEK Machine)

Following the path of refining a reduction semantics to a corresponding abstract machine as presented in

Sections 3.6 and 4.2, we refine Environmental MetaML’s reduction semantics to an abstract machine. We

call the abstract machine the MEK machine.

5.6.1 Syntax

The definitions of source terms, runtime terms, values, denotable terms, configurations and meta-environments

are the same as Sections 5.4 and 5.5.

5.6.1.1 Evaluation Contexts

Analogous to Substitutional MetaML’s Definition 121, we provide an alternative definition for evaluation

contexts.

Definition 190 (Evaluation Contexts: Outside-in). Let i, j ∈ N. Define ECXTi( j to be the set of evaluation

contexts with inner level i and outer level j.
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5.6. Environmental MetaML - Abstract Machine (MEK Machine)

E i( j ∈ ECXTi( j, ci ∈ CONFi, vi ∈ VALUEi

� ∈ EXCT j( j (ept-j)

E ∈ EXCTi( j

(E c j
2) ∈ EXCTi( j

(appL-j) E ∈ EXCTi( j

(v j
1 E) ∈ EXCTi( j

(appR-j)

E ∈ EXCTi(( j+1)

λx.E ∈ EXCTi(( j+1)
(lambda-(j+1))

E ∈ EXCTi(( j+1)

〈E〉 ∈ EXCTi( j (code-j) E ∈ EXCTi( j

∼E ∈ EXCTi(( j+1)
(splice-(j+1)) E ∈ EXCTi( j

!E ∈ EXCTi( j (run-j)

E ∈ EXCTi( j

(E + c j
2) ∈ EXCTi( j

(plusL-j) E ∈ EXCTi( j

(v j
1 +E) ∈ EXCTi( j

(plusR-j)

5.6.1.2 Machine Configurations

Section 4.2 defines the states of the MK machine through four modes of machine configurations. We revise

the four-mode definition to accommodate an environmental semantics.

Definition 191 (Machine Configurations). Define CFG to be the set of machine configurations.

i, j ∈ N, C ∈ CFG, ci ∈ CONFi, vi ∈ VALUEi, E i( j ∈ ECTXi( j

C := v0

| 〈i, E i(0, ci〉r
| 〈i, E i(0, ci〉f
| 〈i, E i(0, vi〉b

The machine operates in four modes: the value mode v0, the reduce mode 〈i, E i(0, ci〉r, the focus mode

〈i, E i(0, ci〉f, the build mode 〈i, E i(0, vi〉b.

A machine configuration 〈i, E i(0, ci〉? where ? ∈ {r, f,b} unloads to the configuration E i(0[ci]. Pre-

cisely, the configuration ci in a machine configuration at reduce mode 〈i, E i(0, ci〉r needs to be a redex.

5.6.2 Abstract Machine (MEK Machine)

We lay out the abstract machine of Environmental MetaML, i.e., the MEK machine, through the reduction

relation 7−→mek and the multi-reduction relation 7−→∗mek.

Definition 192 (Reduction Relation). Let the reduction relation 7−→mek be a binary relation between the set

of machine configurations and the set of machine configurations.

7−→mek ⊆ CFG×CFG

102



5.6. Environmental MetaML - Abstract Machine (MEK Machine)

Reduce rules: 〈i, E i(0, ci〉r

〈0, E, Iλx.t0, (ρ;ρ∗)J v0〉r 7−→mek 〈0, E, Gt0, (ρ[x 7→ v0];ρ∗)H〉f (r-app-0)

〈0, E, !〈v1〉〉r 7−→mek 〈0, E, Gv1, (ρ
VAR(E[!〈v1〉])
init ;ε)H〉f (r-run-0)

〈1, E, ∼〈v1〉〉r 7−→mek 〈1, E, v1〉f (r-splice-1)
〈0, E, n1 +n2〉r 7−→mek 〈0, E, n〉f where n = n1 +n2 (r-plus-0)

〈0, E, Gλx.t0, ρ∗H〉r 7−→mek 〈0, E, Iλx.t0, ρ∗J〉f (r-conf-lam-0)
〈i+1, E, Gλx.t i+1, (ρ;ρ∗)H〉r 7−→mek 〈i+1, E, λxN .Gt i+1, (ρ[x 7→ xN ];ρ[xN 7→ xN ]

∗)H〉f
where xN /∈ VAR(E[Gλx.t i+1, (ρ;ρ∗)H]) (r-conf-lam-(i+1))

〈i, E, GIλx.t, ρ∗1 J, ρ∗2 H〉r 7−→mek 〈i, E, Iλx.t, (ρ∗1 ;ρ∗2 )J〉f (r-conf-clov-i)
〈i, E, Gw, εH〉r 7−→mek 〈i, E, w〉f (r-conf-den-i)

〈i, E, Gx, (ρ;ρ∗)H〉r 7−→mek 〈i, E, Gρ(x), ρ∗H〉f (r-conf-var-i)
〈i, E, Gn, ρ∗H〉r 7−→mek 〈i, E, n〉f (r-conf-num-i)

〈i, E, Gt1 t2, ρ∗H〉r 7−→mek 〈i, E, Gt1, ρ∗H Gt2, ρ∗H〉f (r-conf-app-i)
〈i, E, G〈t i+1〉, ρ∗H〉r 7−→mek 〈i, E, 〈Gt i+1, ρ∗H〉〉f (r-conf-code-i)
〈i, E, G!t i, ρ∗H〉r 7−→mek 〈i, E, !Gt i, ρ∗H〉f (r-conf-run-i)
〈i, E, G∼t i, ρ∗H〉r 7−→mek 〈i, E, ∼Gt i, ρ∗H〉f (r-conf-splice-(i+1))

〈i, E, Gt1 + t2, ρ∗H〉r 7−→mek 〈i, E, Gt1, ρ∗H+Gt2, ρ∗H〉f (r-conf-plus-i)

Focus rules: 〈i, E i(0, ci〉f

〈i, E, Gt, ρ∗H〉f 7−→mek 〈i, E, Gt, ρ∗H〉r (f-conf-i)
〈i+1, E, x〉f 7−→mek 〈i+1, E, x〉b (f-var-(i+1))
〈i, E, c1 c2〉f 7−→mek 〈i, E[� c2], c1〉f (f-appL-i)

〈0, E, Iλx.t, ρ∗J〉f 7−→mek 〈0, E, Iλx.t, ρ∗J〉b (f-lambda-0)
〈i+1, E, λx.c〉f 7−→mek 〈i+1, E[λx.�], c〉f (f-lambda-(i+1))

〈i, E, 〈c〉〉f 7−→mek 〈i+1, E[〈�〉], c〉f (f-code-i)
〈i+1, E, ∼c〉f 7−→mek 〈i, E[∼�], c〉f (f-splice-(i+1))
〈i, E, !c〉f 7−→mek 〈i, E[!�], c〉f (f-run-i)
〈i, E, n〉f 7−→mek 〈i, E, n〉b (f-num-i)

〈i, E, c1 + c2〉f 7−→mek 〈i, E[�+ c2], c1〉f (f-plusL-i)

Build rules: 〈i, E i(0, vi〉b

〈0, �, v〉b 7−→mek v (b-value-0)
〈i, E[� c2], v1〉b 7−→mek 〈i, E[v1 �], c2〉f (b-appL-i)
〈0, E[v1 �], v2〉b 7−→mek 〈0, E, v1 v2〉r (b-appR-0)

〈i+1, E[v1 �], v2〉b 7−→mek 〈i+1, E, v1 v2〉b (b-appR-(i+1))
〈i+1, E[λx.�], v〉b 7−→mek 〈i+1, E, λx.v〉b (b-lambda-(i+1))
〈i+1, E[〈�〉], v〉b 7−→mek 〈i, E, 〈v〉〉b (b-code-(i+1))
〈0, E[∼�], v〉b 7−→mek 〈1, E, ∼v〉r (b-splice-0)

〈i+1, E[∼�], v〉b 7−→mek 〈i+2, E, ∼v〉b (b-splice-(i+1))
〈0, E[!�], v〉b 7−→mek 〈0, E, !v〉r (b-run-0)

〈i+1, E[!�], v〉b 7−→mek 〈i+1, E, !v〉b (b-run-(i+1))
〈i, E[�+ c2], v1〉b 7−→mek 〈i, E[v1 +�], c2〉f (b-plusL-i)
〈0, E[v1 +�], v2〉b 7−→mek 〈0, E, v1 + v2〉r (b-plusR-0)

〈i+1, E[v1 +�], v2〉b 7−→mek 〈i+1, E, v1 + v2〉b (b-plusR-(i+1))
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5.6. Environmental MetaML - Abstract Machine (MEK Machine)

The reduction relation C1 7−→mek C2 reads as “C1 reduces to C2” or “C1 single-reduces to C2”.

The intuition behind the above relation is analogous to that of CEK machine’s reduction relation. See

comments below Definition 108.

Definition 193 (Multi-reduction Relation). Let the multi-reduction relation 7−→∗mek be the reflexive-transitive

closure of the reduction relation 7−→mek.

The abstract machine defined above is also known as the MEK machine. M stands for multi-stage, E

stands for environment, and K stands for continuation, i.e., the evaluation context.

Example 194. Consider !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉.
We first construct a closure that pairs the above term with an initial meta-environment:

G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H

Then we construct the initial machine configuration at focus mode:

〈0, �, G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H〉f

By the MEK machine, we have:

〈0, �, G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H〉f
7−→∗mek Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J

as demonstrated in Figure 5.2.

Evaluator. We now define an evaluator in terms of the MEK machine. The MEK machine’s multi-

reduction relation is defined on machine configurations. Given a program t, the evaluator applies the

multi-reduction relation on the machine configuration 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f in which the program is

associated with an initial meta-environment and an empty evaluation context. The evaluator is otherwise

analogous to the one defined in terms of the reduction semantics of Environmental MetaML.

Definition 195 (Evaluator based on MEK Machine). Let the evaluator evalMetaML:MEK be a partial function

from the set of programs PRGMMetaML to the set of answers ANSMetaML.

evalMetaML:MEK : PRGMMetaML ⇀ ANSMetaML

evalMetaML:MEK(t) =


function if 〈0, �, Gt, (ρVAR(t)

init ;ε)H〉f 7−→∗mek Iλx.t ′
0
, ρ∗J

code if 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek 〈v1〉

n if 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek n

This evaluator is defined based on the MEK machine. The subscript “MetaML:MEK” in evalMetaML:MEK

denotes the MEK machine of Environmental MetaML.
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〈0, �, G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H 〉f
7−→mek 〈0, �, G!〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H 〉r
7−→mek 〈0, �, !G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H 〉f
7−→mek 〈0, �[!�], G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H 〉f
7−→mek 〈0, �[!�], G〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉, ({(x,x),(y,y)};ε)H 〉r
7−→mek 〈0, �[!�], 〈Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H〉 〉f
7−→mek 〈1, �[!�][〈�〉], Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H 〉f
7−→mek 〈1, �[!�][〈�〉], Gλy.(∼((λx.〈x〉) (λx.y)) 0), ({(x,x),(y,y)};ε)H 〉r
7−→mek 〈1, �[!�][〈�〉], λ z.G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H 〉f

where z /∈ {x,y}
7−→mek 〈1, �[!�][〈�〉][λ z.�], G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�], G∼((λx.〈x〉) (λx.y)) 0, ({(x,x),(y,z),(z,z)};ε)H 〉r
7−→mek 〈1, �[!�][〈�〉][λ z.�], G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H G0, ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H], G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H], G∼((λx.〈x〉) (λx.y)), ({(x,x),(y,z),(z,z)};ε)H 〉r
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H], ∼G(λx.〈x〉) (λx.y), ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], G(λx.〈x〉) (λx.y), ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], G(λx.〈x〉) (λx.y), ({(x,x),(y,z),(z,z)};ε)H 〉r
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H G(λx.y), ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][�G(λx.y), ({(x,x),(y,z),(z,z)};ε)H], G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][�G(λx.y), ({(x,x),(y,z),(z,z)};ε)H], G(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)H 〉r
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][�G(λx.y), ({(x,x),(y,z),(z,z)};ε)H], I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][�G(λx.y), ({(x,x),(y,z),(z,z)};ε)H], I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J 〉b
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J�], G(λx.y), ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J�], G(λx.y), ({(x,x),(y,z),(z,z)};ε)H 〉r
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J�], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J�], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉b
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], I(λx.〈x〉), ({(x,x),(y,z),(z,z)};ε)J I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉r
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], G〈x〉, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H 〉f
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], G〈x〉, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H 〉r
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], 〈Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H〉 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉], Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉], Gx, ({(x,I(λx.y), ({(x,x),(y,z),(z,z)};ε)J),(y,z),(z,z)};ε)H 〉r
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉], GI(λx.y), ({(x,x),(y,z),(z,z)};ε)J, (ε)H 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉], GI(λx.y), ({(x,x),(y,z),(z,z)};ε)J, (ε)H 〉r
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�][〈�〉], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉b
7−→mek 〈0, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H][∼�], 〈I(λx.y), ({(x,x),(y,z),(z,z)};ε)J〉 〉b
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H], ∼〈I(λx.y), ({(x,x),(y,z),(z,z)};ε)J〉 〉r
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][�G0, ({(x,x),(y,z),(z,z)};ε)H], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 〉b
7−→mek 〈1, �[!�][〈�〉][λ z.�][I(λx.y), ({(x,x),(y,z),(z,z)};ε)J�], G0, ({(x,x),(y,z),(z,z)};ε)H 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][I(λx.y), ({(x,x),(y,z),(z,z)};ε)J�], G0, ({(x,x),(y,z),(z,z)};ε)H 〉r
7−→mek 〈1, �[!�][〈�〉][λ z.�][I(λx.y), ({(x,x),(y,z),(z,z)};ε)J�], 0 〉f
7−→mek 〈1, �[!�][〈�〉][λ z.�][I(λx.y), ({(x,x),(y,z),(z,z)};ε)J�], 0 〉b
7−→mek 〈1, �[!�][〈�〉][λ z.�], I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0 〉b
7−→mek 〈1, �[!�][〈�〉], λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0) 〉b
7−→mek 〈0, �[!�], 〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0)〉 〉b
7−→mek 〈0, �, !〈λ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0)〉 〉r
7−→mek 〈0, �, Gλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)H 〉f
7−→mek 〈0, �, Gλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)H 〉r
7−→mek 〈0, �, Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J 〉f
7−→mek 〈0, �, Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J 〉b
7−→mek Iλ z.(I(λx.y), ({(x,x),(y,z),(z,z)};ε)J 0), ({(x,x),(y,y),(z,z)};ε)J

Figure 5.2: Evaluation of !〈λy.(∼((λx.〈x〉) (λx.y)) 0)〉 in the MEK Machine.
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5.7. Chapter Summary

We claim that the evaluators defined in terms of Environmental MetaML’s reduction semantics and the

MEK machine are equivalent.

Theorem 196 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:EnvRed(t) is Kleene

equal to evalMetaML:MEK(t).

We prove the above theorem in appendices.

As a corollary, the evaluators defined in terms of Substitutional MetaML and the MEK machine are

equivalent.

Corollary 197 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:MEK(t).

Proof. It immediately follows from Theorems 179, 189 and 196 by the transitivity of Kleene equality.

5.7 Chapter Summary

Utilising the experience of refining semantics along two dimensions, this chapter eventually solved the

following semantics refinement problem.

Can we refine the substitutional structural operational semantics of MetaML to a correspond-

ing environmental abstract machine, which we call the MEK machine, and demonstrate their

equivalence?

We accomplished the development progressively in several manageable steps, each of which led to an inter-

mediate semantics. We first reviewed the substitutional structural operational semantics of MetaML that we

developed in Section 2.2. Then we successively developed the structural operational semantics of Explicit

MetaML, the structural operational semantics of Suspended MetaML, the structural operational semantics

of Environmental MetaML, the reduction semantics of Environmental MetaML, and finally derived the ab-

stract machine of Environmental MetaML. We call the abstract machine of Environmental MetaML the

MEK machine.

We defined an evaluator based on each semantics. By proving the equivalence of every two adjacent

semantics, we finally showed that the MEK machine is equivalent to the substitutional structural operational

semantics of MetaML.

By this chapter together with Chapter 2, we have successfully solved the main semantics refinement

problem.
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Chapter 6

Proof Methodology and Related Work

We first summarise three proof techniques that were adopted throughout the thesis the prove semantics

equivalences. Then we compare our thesis with the related work.

6.1 Proof Methodology

Most proofs of the thesis can be categorised as proving (1) the equivalence of two structural operational

semantics, (2) the equivalence of a structural operational semantics and a reduction semantics, or (3) the

equivalence of a reduction semantics and an abstract machine.

Proving Equivalence of Two Structural Operational Semantics. To prove the equivalence of structural

operational semantics of language A (defined by the single-step relation −→A and the multi-step relation

−→∗A) and structural operational semantics of language B (defined by the single-step relation −→B and the

multi-step relation −→∗B), we first define a bisimulation relation between their terms, i.e., ' ⊆ TERMA×
TERMB. Then the key is to demonstrate that the bisimulation relation respects the following properties.

1. ∀p ∈ PRGM, injA(p)' injB(p).

That is, for any program, its injected initial terms in languages A and B shall be related.

2. If vA ' vB, then obsA(vA) = obsB(vB).

That is, two related values shall have the same observable results.

3. Canonisation:

(a) If vA ' tB, then tB −→∗B vB and vA ' vB.

(b) If tA ' vB, then tA −→∗A vA and vA ' vB.

4. Weak Bisimulation:

(a) If tA1 ' tB1 and tA1 −→A tA2 , then tB1 −→∗B tB2 and tA2 ' tB2 .

(b) If tA1 ' tB1 and tB1 −→B tB2 , then tA1 −→∗A tA2 and tA2 ' tB2 .

The above-mentioned framework of proving the equivalence of structural operational semantics was motiv-

ated by the bisimulation proof method [San11, PS12].
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6.2. Related Work

Proving Equivalence of a Structural Operational Semantics and a Reduction Semantics. To prove

the equivalence of a structural operational semantics (defined by the single-step relation −→ and the multi-

step relation−→∗) and a reduction semantics (defined by the reduction relation 7−→ and the multi-reduction

relation 7−→∗) of the same language, the key is to prove the following two lemmas.

1. If t1 −→ t2, then t1 7−→ t2.

We may need to prove: If t1 −→ t2 and E ∈ ECXT, then E[t1] 7−→ E[t2].

2. If t1 7−→ t2, then t1 −→ t2.

We may need to prove: If t1 −→ t2 and E ∈ ECXT, then E[t1]−→ E[t2].

Proving Equivalence of a Reduction Semantics and an Abstract Machine. To prove the equivalence of

a reduction semantics (defined by the single-reduction relation 7−→ and the multi-reduction relation 7−→∗)
and an abstract machine (defined by the reduction relation 7−→abs and the multi-reduction relation 7−→∗abs) of

the same language, we first define a translator T to translate any machine configuration to its corresponding

term. Then the key is to prove the following two lemmas.

1. If E0[t0] = E1[t1] and E1[t1] 7−→ E1[t2] where t1 R t2, then 〈E0, t0〉f 7−→∗abs 〈E0, t0〉f.

We may need to prove: If t = E1[t1] and t1 R t2, then 〈E, t〉f 7−→∗abs 〈EE1, t1〉f.

2. If C1 7−→abs C2, then T (C1) 7−→∗ T (C2).

The above-mentioned framework of proving the equivalence of a reduction semantics and an abstract ma-

chine was motivated by the proof of the equivalence of the CC machine and the substitutional reduction

semantics of ISWIM in [FFF09].

The above-mentioned three proof frameworks are adaptable to more complex languages. For example,

the language of our interest may define its single-step relation (or the single-reduction relation) on config-

urations rather than on terms. As a result, we need to replace all t’s by c’s in the frameworks. As another

example, in a multi-stage language, a machine configuration may have a level component. As a result, we

need to add one more component of levels to any machine configuration in the last framework.

6.2 Related Work

Multi-stage Programming Languages. Several multi-stage programming languages and language ex-

tensions have been developed. For example, there are MetaML [TS97, She98, Tah99a, Tah99b] extends

ML, MetaOCaml [Tah04] extends OCaml, MetaHaskell [Mai12] extends Haskell, Mint [WRI+09] extends

Java and Metaphor [NR04] that extends C#. We intensively studied MetaML in the thesis.

Operational Semantics of MetaML. Taha [Tah99a] modelled a minimal subset of MetaML through two

formulations that extend the lambda calculus, i.e., the λ -M language and the λ -U language. They presented

a call-by-value substitutional natural semantics and a call-by-name substitutional natural semantics for the
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6.2. Related Work

λ -M language. They developed a call-by-name substitutional reduction semantics for the λ -U language and

demonstrated its equivalence with respect to the call-by-name substitutional natural semantics of the λ -M

language.

Our thesis took the call-by-value substitutional natural semantics of λ -M language defined in [Tah99a]

as the reference semantics of MetaML. The substitutional structural operational semantics of MetaML de-

veloped in Chapter 2 can be deemed as a call-by-value substitutional structural operational semantics for the

λ -M language.

Refining Semantics for ISWIM. Felleisen et al. [FFF09] presented how to develop the CEK machine

from the substitutional reduction semantics of ISWIM and demonstrated their equivalence. Given the sub-

stitutional reduction semantics of ISWIM, they first derived a substitutional abstract machine called the

CC machine in which a machine state is composed by a control string and an evaluation context. They

then simplified the CC machine to the SCC machine to eliminate unnecessary state transition rules and

side-conditions. Next they introduced a date structure called a continuation to make the evaluation context

around the current control string the most evident and they refined the SCC machine to the CK machine

in which a machine state is composed by a control string and a continuation. Finally they refined the CK

machine to an environmental abstract machine, the CEK machine, by introducing environments to represent

substitutions. Each CEK machine state has three components: a control string, an environment and a con-

tinuation. Furthermore, they built an evaluator for each above-mentioned semantics and they demonstrated

the equivalence of the evaluators.

Chapter 3 of our thesis developed the CEK machine from the substitutional structural operational se-

mantics of ISWIM. Instead of deriving a series of abstract machines, we developed a series of structural

operational semantics. We introduced explicit substitutions in the structural operational semantics of Ex-

plicit ISWIM, suspended explicit substitutions in the structural operational semantics of Suspended ISWIM

and environments in the structural operational semantics of Environmental ISWIM. We developed a reduc-

tion semantics for Environmental ISWIM, based on which the CEK machine was formulated.

Our thesis represents continuations by evaluation contexts. [FFF09] maintained a unique data structure

to represent continuations but we did not.

Explicit Substitutions. The idea of explicit substitutions was introduced in [Cur85, ACCL91]. The de-

velopment of Explicit ISWIM was partially inspired and motivated by the definitions of λx-terms and the

definitions of λxgc-reduction in the λxgc-calculus [Ros96].

Proof Methodology. As mentioned in the previous section, the framework of proving the equivalence

of structural operational semantics was motivated by the bisimulation proof method [San11, PS12]. The

framework of proving the equivalence of a reduction semantics and an abstract machine was motivated by

the proof of the equivalence of the CC machine and the substitutional reduction semantics of ISWIM in

[FFF09].
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Chapter 7

Conclusion

We conclude this thesis, summarise the limitations and list several directions for future work.

7.1 Conclusion

This thesis studied the problem of refining operational semantics for MetaML. We took the pre-existing

substitutional natural semantics presented in [Tah99a] as the reference semantics of MetaML. The main

research problem of our thesis, which was called the main semantics refinement problem, was stated as:

Can we refine the pre-existing substitutional natural semantics of MetaML to a corresponding

environmental abstract machine and demonstrate their equivalence?

As an environmental abstract machine is a small-step operational semantics, its development is more natural

and convenient to start from a structural operational semantics than a natural semantics. In Chapter 2, we

developed a substitutional structural operational semantics for MetaML and demonstrated its equivalence

with respect to the substitutional natural semantics.

We then simplified the main semantics refinement problem along two dimensions—each dimension

leads to a less complicated semantics refinement problem.

Following the first dimension, Chapter 3 studied how to develop an environmental abstract machine for a

single-stage language, ISWIM, rather than the multi-stage language MetaML. We refined the substitutional

structural operational semantics of ISWIM to its corresponding environmental abstract machine known as

the CEK machine.

Following the second dimension, Chapter 4 studied how to develop a substitutional abstract machine

rather than an environmental abstract machine for the multi-stage language MetaML. We refined the sub-

stitutional structural operational semantics of MetaML to its corresponding substitutional abstract machine,

which we called the MK machine.

Utilising the experience of refining semantics along two dimensions, Chapter 5 finally studied the main

semantics refinement problem, i.e., how to develop an environmental abstract machine for MetaML. We

refined the substitutional structural operational semantics of MetaML to its corresponding environmental

abstract machine, which we called the MEK machine.

Furthermore, three proof techniques were adopted throughout the thesis to prove the equivalence of

two structural operational semantics, the equivalence of a structural operational semantics and a reduction

semantics, and the equivalence of a reduction semantics and an abstract machine.
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7.2. Limitations and Future Work

7.2 Limitations and Future Work

We briefly summarise the limitations of our thesis and point out several research ideas to be further explored

in future work.

Simplifying Abstract Machines. We developed the CEK machine in Chapter 3, the MK machine in

Chapter 4 and the MEK machine in Chapter 5. These machines have several redundant transformations of

machine configurations. Felleisen et al. [FFF09] simplified abstract machines by (1) letting the machine

exploit information from both the control strings and the evaluation contexts, and (2) combining definite

transformations. Adopting the same approach, we can simplify our CEK machine, CK machine and MEK

machine analogously. For example, for the MEK machine, the (b-appR-0) rule

〈0, E[v1 �], v2〉b 7−→mek 〈0, E, v1 v2〉r

and the (r-app-0) rule

〈0, E, Iλx.t0, (ρ;ρ
∗)J v0〉r 7−→mek 〈0, E, Gt0, (ρ[x 7→ v0];ρ

∗)H〉f

can be merged into one rule

〈0, E[v1 �], v2〉b 7−→mek 〈0, E, Gt0, (ρ[x 7→ v0];ρ
∗)H〉f.

Modelling Fresh Variables. The (lambda-(i+1)-t) rule of the single-step relation of Suspended MetaML,

the (lam-(i+1)-env) rule of the single-step relation of Environmental MetaML, the (conf-lam-(i+1)) rule of

the notions of reduction of Environmental MetaML and the (r-conf-lam-(i+1)) rule of the single-transformation

relation of the MEK machine require that the variable xN is globally fresh in the sense that it has not ap-

peared in the current term/configuration being evaluated or in its surrounding context. Being globally fresh

is a very strict restriction on xN .

To loosen the restriction, we may maintain a set of variables W to keep track of the variables that have

lost their freshness due to acting as a fresh variable before in the above-mentioned rules. Then we may

interpret “xN is fresh” as that the variable xN is locally fresh and does not belong to W . We need formal

proofs to support our conjecture.

Modelling Environments by Finitary Functions. In Environmental MetaML, to evaluate a program

t0
s , we first construct the initial configuration Gt0

s , (ρ
VAR(t0

s )
init ;ε)H and pass it to the semantics. Moreover,

Environmental MetaML reduces !〈v1〉 to the initial configuration Gt0
s , (ρ

X
init;ε)H where the variable set X

contains the variables in the current configuration being evaluated and in its surrounding context. Envir-

onmental MetaML models environments as partial functions from variables to denotable terms and needs

collecting all variables that exist in the program for the initial configurations.

We propose to model environments as total functions from variables to denotable terms with the re-

striction that only a finite number of variables do not map to themselves, which we call finitary functions.
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7.2. Limitations and Future Work

There are several reasons that finitary functions are suitable for modelling environments in Environmental

MetaML. First of all, this model eliminates the extra ad-hoc step of collecting all variables that exist in the

program for the initial configurations. The initial meta-environment in an initial configuration is simply the

singleton list containing the identity environment. Secondly, this model captures the possibility of comput-

ing with open terms while preserving the finitary character of any environment that may arise during real

computation. Thirdly, this model still allows us to reason by induction on non-identical mappings of envir-

onments. Fourthly, this model allows separating the computer representation (i.e., a finite list of mappings)

from the mathematical model (i.e., a finitary function). We conjecture that changing how environments are

modelled in Environmental MetaML will not cause fundamental problems in developing the MEK machine.

Machine-checked Proofs. All proofs of the thesis are handwritten, which we believe are error-prone. We

may utilise the proof assistants [BC04, BDN09] to check our proofs mechanically.

Abstract Interpretation of MEK Machine. The reason that we developed the MEK machine is to apply

a general-purpose framework of developing static analysis [VHM12] to it. With the help of the framework,

it is expected that we are able to get a sound and decidable control flow analysis for MetaML.
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Appendix A

Proofs of Chapter 2

A.1 Equivalence of Substitutional Natural Semantics and Substitutional
Structural Operational Semantics of MetaML

We demonstrate the equivalence of the substitutional natural semantics and the substitutional structural

operational semantics of MetaML.

Lemma 198.

1. If t i+1
1 −→∗(i+1) t i+1

2 , then λx.t i+1
1 −→∗(i+1) λx.t i+1

2 .

2. If t i
11 −→∗i t i

12, then t i
11 t i

2 −→∗i t i
12 t i

2.

3. If t i
21 −→∗i t i

22, then vi
1 t i

21 −→∗i vi
1 t i

22.

4. If t i
1 −→∗i t i

2, then !t i
1 −→∗i!t i

2.

5. If t i+1
1 −→∗(i+1) t i+1

2 , then 〈t i+1
1 〉 −→∗i 〈t

i+1
2 〉.

6. If t i
1 −→∗i t i

2, then ∼t i
1 −→∗(i+1) ∼t i

2.

7. If t i
11 −→∗i t i

12, then t i
11 + t i

2 −→∗i t i
12 + t i

2.

8. If t i
21 −→∗i t i

22, then vi
1 + t i

21 −→∗i vi
1 + t i

22.

Proof. We proceed by cases.

1. Suppose the length of t i+1
1 −→∗(i+1) t i+1

2 is j ∈ N. By induction on j.

(a) ( j = 0). Then t i+1
1 = t i+1

2 . By (refl), λx.t i+1
1 −→∗(i+1) λx.t i+1

2 .

(b) Suppose t i+1
1 −→( j)(i+1) t i+1

11 −→(1)(i+1) t i+1
2 . By the induction hypothesis, λx.t i+1

1 −→∗(i+1)

λx.t i+1
11 . Given t i+1

11 −→i+1 t i+1
2 , by (lambda-(i+1)), λx.t i+1

11 −→i+1 λx.t i+1
2 . By (step) and (trans),

λx.t i+1
1 −→∗(i+1) λx.t i+1

2 .

2. Suppose the length of t i
11 −→∗i t i

12 is j ∈ N. By induction on j.

(a) ( j = 0). Then t i
11 = t i

12. By (refl), t i
11 t i

2 −→∗i t i
12 t i

2.

(b) Suppose t i
11 −→( j)(i) t i

111 −→(1)(i) t i
12. By the induction hypothesis, t i

11 t i
2 −→∗i t i

111 t i
2. Given

t i
111 −→i t i

12, by (appL-i), t i
111 t i

2 −→i t i
12 t i

2. By (step) and (trans), t i
11 t i

2 −→∗i t i
12 t i

2.
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3. Analogous to Case 2.

4. Suppose the length of t i
1 −→∗i t i

2 is j ∈ N. By induction on j.

(a) ( j = 0). Then t i
1 = t i

2. By (refl), !t i
1 −→∗i!t i

2.

(b) Suppose t i
1 −→( j)(i) t i

11 −→(1)(i) t i
2. By the induction hypothesis, !t i

1 −→∗i!t i
11. Given t i

11 −→i t i
2,

by (run-i), !t i
11 −→i!t i

2. By (step) and (trans), !t i
1 −→∗i!t i

2.

5. Analogous to Case 4.

6. Analogous to Case 4.

7. Analogous to Case 2.

8. Analogous to Case 3.

Theorem 199. −→∗i admits every rule from ⇓i.

1. λx.t0 −→∗0 λx.t0.

2. If t i+1
1 −→∗(i+1) vi+1

2 , then λx.t i+1
1 −→∗(i+1) λx.vi+1

2 .

3. If t0
1 −→∗0 λx.t0

11, t0
2 −→∗0 v0

2, and t0
11[v

0
2/x]−→∗0 v0, then t0

1 t0
2 −→∗0 v0.

4. If t i
1 −→∗i vi

1 and t i
2 −→∗i vi

2, then t i
1 t i

2 −→∗i vi
1 vi

2.

5. If t0
1 −→∗0 〈v1

1〉 and v1
1 −→∗0 v0

2, then !t0
1 −→∗0 v0

2.

6. If t i −→∗i vi, then !t i −→∗i!vi.

7. If t i+1 −→∗(i+1) vi+1, then 〈t i+1〉 −→∗i 〈vi+1〉.

8. If t0 −→∗0 〈v1〉, then ∼t0 −→∗1 v1.

9. If t i −→∗i vi, then ∼t i −→∗(i+1) ∼vi.

10. x−→∗(i+1) x.

11. n−→∗i n.

12. If t0
1 −→∗0 n1, t0

2 −→∗0 n2, and n = n1 +n2, then t0
1 + t0

2 −→∗0 n.

13. If t i
1 −→∗i vi

1 and t i
2 −→∗i vi

2, then t i
1 + t i

2 −→∗i vi
1 + vi

2.

Proof. We proceed by cases.

1. By (refl), λx.t0 −→∗0 λx.t0.
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2. By Lemma 198 Case 1.

3. By Case 4, t0
1 t0

2 −→∗0 (λx.t0
11) v0

2. By (app-0), (λx.t0
11) v0

2 −→0 t0
11[v

0
2/x]. By (step), (λx.t0

11) v0
2 −→∗0

t0
11[v

0
2/x]. Together with t0

11[v
0
2/x]−→∗0 v0, by (trans), t0

1 t0
2 −→∗0 v0.

4. By Lemma 198 Case 2, t i
1 t i

2−→∗i vi
1 t i

2. By Lemma 198 Case 3, vi
1 t i

2−→∗i vi
1 vi

2. By (trans), t i
1 t i

2−→∗i

vi
1 vi

2.

5. By Case 6, !t0
1 −→∗0!〈v1

1〉. By (run-0), !〈v1
1〉 −→0 v1

1. By (step), !〈v1
1〉 −→∗0 v1

1. Together with

v1
1 −→∗0 v0

2, by (trans), !t0
1 −→∗0 v0

2.

6. By Lemma 198 Case 4.

7. By Lemma 198 Case 5.

8. By Case 9, ∼t0 −→∗1 ∼〈v1〉. By (splice-1), ∼〈v1〉 −→1 v1. By (step) and (trans), ∼t0 −→∗1 v1.

9. By Lemma 198 Case 6.

10. By (refl), x−→∗(i+1) x.

11. By (refl), n−→∗i n.

12. By Case 13, t0
1 + t0

2 −→∗0 n1 +n2. By (plus-0), n1 +n2 −→0 n. By (step) and (trans), t0
1 + t0

2 −→∗0 n.

13. By Lemma 198 Case 7, t i
1 + t i

2 −→∗i vi
1 + t i

2. By Lemma 198 Case 8, vi
1 + t i

2 −→∗i vi
1 + vi

2. By (trans),

t i
1 + t i

2 −→∗i vi
1 + vi

2.

We demonstrate the soundness of the substitutional structural operational semantics with respect to the

substitutional natural semantics of MetaML.

Corollary 200 (Soundness of Substitutional Structural Operational Semantics w.r.t Substitutional Natural

Semantics). If t i ⇓i vi then t i −→∗i vi.

Proof. We proceed by induction on the derivation of t i ⇓i vi.

Case 1. (lambda-0). By Theorem 199 Case 1.

Case 2. (lambda-(i+1)). By Theorem 199 Case 2.

Case 3. (app-0). By Theorem 199 Case 3.

Case 4. (app-(i+1)). By Theorem 199 Case 4.

Case 5. (run-0). By Theorem 199 Case 5.

Case 6. (run-(i+1)). By Theorem 199 Case 6.
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Case 7. (code-i). By Theorem 199 Case 7.

Case 8. (splice-1). By Theorem 199 Case 8.

Case 9. (splice-(i+2)). By Theorem 199 Case 9.

Case 10. (ref-(i+1)). By Theorem 199 Case 10.

Case 11. (num-i). By Theorem 199 Case 11.

Case 12. (plus-0). By Theorem 199 Case 12.

Case 13. (plus-(i+1)). By Theorem 199 Case 13.

Theorem 201.

1. If λx.t1 −→∗i v2, then either

(a) i = 0 and v2 = λx.t1 ; or

(b) i = ( j+1)> 0, t1 −→∗( j+1) v j+1
21 , and v2 = λx.v j+1

21 .

2. If t1 t2 −→∗i v, then t1 −→∗i vi
1, t2 −→∗i vi

2, and either

(a) i = 0, v0
1 = λx.t0

11, and t0
11[v

0
2/x]−→∗0 v; or

(b) i = ( j+1)> 0, v = v j+1
1 v j+1

2 .

3. If !t1 −→∗i v2, then t1 −→∗i vi
1, and either

(a) i = 0, v0
1 = 〈v1

11〉, and v1
11 −→∗0 v2; or

(b) i = ( j+1)> 0, and v2 =!v j+1
1 .

4. If 〈t1〉 −→∗i v2, then t1 −→∗(i+1) vi+1
1 , and v2 = 〈vi+1

1 〉.

5. If ∼t1 −→∗i v2, then i = ( j+1)> 0, t1 −→∗ j v j
1, and either

(a) j = 0, v0
1 = 〈v1

11〉, and v2 = v1
11; or

(b) j = (k+1)> 0, and v2 =∼vk+1
1 .

6. If x−→∗i v, then i = ( j+1)> 0, and v = x.

7. If n−→∗i v, then v = n.

8. If t1 + t2 −→∗i v, then t1 −→∗i vi
1, t2 −→∗i vi

2, and either

(a) i = 0, v0
1 = n1, v0

2 = n2, and v = n1 +n2; or
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(b) i = ( j+1)> 0, v = v j+1
1 + v j+1

2 .

Proof. We proceed by cases.

1. We proceed by cases on i.

(a) (i = 0). Then, λx.t1 ∈ VALUE0, and λx.t1 6−→0. By (refl), v2 = λx.t0
1 .

(b) (i = ( j+1)> 0). Suppose the length of λx.t1 −→∗( j+1) v2 is k ∈ N. By induction on k.

i. (k = 0). Then, v2 = λx.t1, and t1 ∈ VALUEi+1. By (refl), t1 −→∗( j+1) t1.

ii. Suppose λx.t1 −→(1)( j+1) t2 −→(k)( j+1) v2. Proceed by cases on λx.t1 −→ j+1 t2. The only

case is (lambda-(i+1)). Then, t1 −→ j+1 t21, and t2 = λx.t21. Given λx.t21 −→(k)( j+1) v2,

by the induction hypothesis, t21 −→∗( j+1) v j+1
21 , and v2 = λx.v j+1

21 . By (step) and (trans),

t1 −→∗( j+1) v j+1
21 .

2. Suppose t1 does not multi-step to a value. Then, (appL-i) is the only rule that is applicable, and it

keeps applying, in which case t1 t2 can never multi-step to v. Hence, t1 has to multi-step to a value,

i.e., t1 −→∗i vi
1. Analogously, t2 has to multi-step to a value, i.e., t2 −→∗i vi

2. We have t1 t2 −→∗i vi
1 vi

2.

We proceed by cases on i.

(a) (i= 0). Assume v0
1 6= λx.t0

11. Then, v0
1 v0

2 6−→0 and v0
1 v0

2 6∈VALUE0. We get t1 t2−→∗0 v0
1 v0

2 6−→∗0

v, which contradicts with t1 t2 −→∗0 v. Hence, v0
1 = λx.t0

11.

Given v0
1 v0

2 = (λx.t0
11) v0

2, (app-0) is the only rule that is applicable. By (app-0), (λx.t0
11) v0

2 −→0

t0
11[v

0
2/x]. Given (λx.t0

11) v0
2 −→∗0 v, by the determinism of the language, t0

11[v
0
2/x]−→∗0 v.

(b) (i = ( j+1)> 0). Then v j+1
1 v j+1

2 ∈ VALUE j+1. v = v j+1
1 v j+1

2 .

3. Suppose t1 does not multi-step to a value. Then, (run-i) is the only rule that is applicable, and it keeps

applying, in which case !t1 can never multi-step to v2. Hence, t1 has to multi-step to a value, i.e.,

t1 −→∗i vi
1. We proceed by cases on i.

(a) (i = 0). Assume v0
1 6= 〈v1

11〉. Then, !v0
1 6−→0 and !v0

1 6∈ VALUE0. We get !t1 −→∗0!v0
1 6−→∗0 v2,

which contradicts with !t1 −→∗i v2. Hence, v0
1 = 〈v1

11〉.
Given !v0

1 =!〈v1
11〉, (run-0) is the only rule that is applicable. By (run-0), !〈v1

11〉 −→0 v1
11. Given

!〈v1
11〉 −→∗0 v2, by the determinism of the language, v1

11 −→∗0 v2.

(b) (i = ( j+1)> 0). Then, !v j+1
1 ∈ VALUE j+1. v2 =!v j+1

1 .

4. Suppose t1 does not multi-step to a value. Then, (code-i) is the only rule that is applicable, and it

keeps applying, in which case 〈t1〉 can never multi-step to v2. Hence, t1 has to multi-step to a value,

i.e., t1 −→∗(i+1) vi+1
1 . Then, 〈vi+1

1 〉 ∈ VALUEi. v2 = 〈vi+1
1 〉.

5. Analogous to Case 3.

6. By (refl), x−→∗( j+1) x. x ∈ VALUE j+1. v = x.
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7. By (refl), n−→∗i n. n ∈ VALUEi. v = n.

8. Analogous to Case 2.

We demonstrate the completeness of the substitutional structural operational semantics with respect to

the substitutional natural semantics of MetaML.

Corollary 202 (Completeness of Substitutional Structural Operational Semantics w.r.t Substitutional Nat-

ural Semantics). If t i −→∗i vi then t i ⇓i vi.

Proof. We proceed by the structure of t i ∈ TERMi and by induction on the size of derivation of t i −→∗i vi.

Case 1. (t i = x). By Theorem 201, i = ( j+1)> 0, and v = x. By (ref-(i+1)), x ⇓ j+1 x.

Case 2. (t i = t i
1 t i

2). By Theorem 201, t i
1 −→∗i vi

1, t i
2 −→∗i vi

2, and either

• i = 0, v0
1 = λx.t0

11, and t0
11[v

0
2/x]−→∗0 v0; or

• i = ( j+1)> 0, v j+1 = v j+1
1 v j+1

2 .

Given t i
1 −→∗i vi

1 and t i
2 −→∗i vi

2, by the induction hypothesis, t i
1 ⇓i vi

1 and t i
2 ⇓i vi

2. Proceed by

cases on i.

Case i. (i= 0). Obviously the derivation of t0
11[v

0
2/x]−→∗0 v0 is smaller than that of t0

1 t0
2 −→∗0

v0. By the induction hypothesis, t0
11[v

0
2/x] ⇓∗0 v0. Together with t0

1 ⇓0 λx.t0
11 and

t0
2 ⇓0 v0

2, by (app-0), t0
1 t0

2 ⇓0 v0.

Case ii. (i=( j+1)> 0). Given t j+1
1 ⇓ j+1 v j+1

1 and t j+1
2 ⇓ j+1 v j+1

2 , by (app-(i+1)), t j+1
1 t j+1

2 ⇓ j+1

v j+1
1 v j+1

2 .

Case 3. (t i = λx.t i
1). By Theorem 201, either

• i = 0 and v0 = λx.t0
1 ; or

• i = ( j+1)> 0, t j+1
1 −→∗( j+1) v j+1

2 , and v j+1 = λx.v j+1
2 .

Proceed by cases on i.

Case i. (i = 0). By (lambda-0), λx.t0
1 ⇓0 λx.t0

1 .

Case ii. (i = ( j + 1) > 0). By the induction hypothesis, t j+1
1 ⇓ j+1 v j+1

2 . By (lambda-(i+1)),

λx.t j+1
1 ⇓ j+1 λx.v j+1

2 .

Case 4. (t i = 〈t i+1
1 〉). By Theorem 201, t i+1

1 −→∗(i+1) vi+1
1 , and vi = 〈vi+1

1 〉. By the induction hypothesis,

t i+1
1 ⇓i+1 vi+1

1 . By (code-i), 〈t i+1
1 〉 ⇓i+1 〈vi+1

1 〉.

Case 5. (t i+1 =∼t i
1). By Theorem 201, t i

1 −→∗i vi
1, and either
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1. i = 0, v0
1 = 〈v1

11〉, and v1 = v1
11; or

2. i = ( j+1)> 0, and v j+2 =∼v j+1
1 .

Given t i
1 −→∗i vi

1, by the induction hypothesis, t i
1 ⇓i vi

1. Proceed by cases on i.

Case i. (i = 0). Given t0
1 ⇓i 〈v1

11〉, by (splice-1), ∼t0
1 ⇓1 v1

11.

Case ii. (i = ( j+1)> 0). By (splice-(i+2)), ∼t j+1
1 ⇓ j+2 ∼v j+1

1 .

Case 6. (t i =!t i
1). Analogous to Case 5.

Case 7. (t i = n). By Theorem 201, vi = n. By (num-i), n ⇓i n.

Case 8. (t i = t i
1 + t i

2). Analogous to Case 2.

We demonstrate the soundness and completeness of the substitutional structural operational semantics

with respect to the substitutional natural semantics of MetaML.

Theorem 203 (Soundness and Completeness of Substitutional Structural Operational Semantics w.r.t Sub-

stitutional Natural Semantics). For any i ∈ N, t i ⇓i vi if and only if t i −→∗i vi.

Proof. It directly follows Corollaries 200 and 202.

We prove the Kleene equality of evaluators evalMetaML:SubNat(t) and evalMetaML:SubSOS(t).

Theorem 204 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubNat(t) is Kleene

equal to evalMetaML:SubSOS(t).

Proof. For any t ∈ PRGMMetaML, by Theorem 203, t0 ⇓0 v0 if and only if t0 −→∗0 v0.

We first show if evalMetaML:SubNat(t) = a where a ∈ ANSMetaML, then evalMetaML:SubSOS(t) = a.

Case 1. If evalMetaML:SubNat(t) = function, then t ⇓0 λx.t ′
0
. Then t −→0∗ λx.t ′

0
.

We have evalMetaML:SubSOS(t) = function.

Case 2. If evalMetaML:SubNat(t) = code, then t ⇓0 〈v1〉. Then t −→0∗ 〈v1〉.
We have evalMetaML:SubSOS(t) = code.

Case 3. If evalMetaML:SubNat(t) = n, then t ⇓0 n. Then t −→0∗ n.

We have evalMetaML:SubSOS(t) = n.

We then show if evalMetaML:SubSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:SubNat(t) = a.

Case 1. If evalMetaML:SubSOS(t) = function, then t −→0∗ λx.t ′
0
. Then t ⇓0 λx.t ′

0
.

We have evalMetaML:SubNat(t) = function.
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Case 2. If evalMetaML:SubSOS(t) = code, then t −→0∗ 〈v1〉. Then t ⇓0 〈v1〉.
We have evalMetaML:SubNat(t) = code.

Case 3. If evalMetaML:SubSOS(t) = n, then t −→0∗ n. Then t ⇓0 n.

We have evalMetaML:SubNat(t) = n.

We observe that evalMetaML:SubNat(t) is undefined if and only if evalMetaML:SubSOS(t) is undefined. Therefore,

evalMetaML:SubNat(t) is Kleene equal to evalMetaML:SubSOS(t).
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Appendix B

Proofs of Chapter 3

B.1 Equivalence of ISWIM and Explicit ISWIM

We demonstrate the equivalence of the substitutional structural operational semantics of ISWIM and the

structural operational semantics of Explicit ISWIM. We use subscripts “sub” and “exp” to differentiate the

syntax of (Substitutional) ISWIM from the syntax of Explicit ISWIM.

B.1.1 Bisimulation Relation

We first introduce a bisimulation relation that relates (Substitutional) ISWIM terms to Explicit ISWIM

terms.

Definition 205 (Bisimulation Relation). Define the bisimulation relation' to be a binary relation up to alpha

equivalence between the set of terms in (Substitutional) ISWIM and the set of terms in Explicit ISWIM.

'⊆ TERMsub×TERMexp

x' x (var-sim)
ta1 ' tb1 ta2 ' tb2

ta1 ta2 ' tb1 tb2
(app-sim)

ta ' tb
(λx.ta)' (λx.tb)

(lam-sim)

n' n (num-sim)
ta1 ' tb1 ta2 ' tb2

ta1 + ta2 ' tb1 + tb2
(plus-sim)

ta ' tb wa ' wb

ta[wa/x]' tb[x := wb]
(subst-sim)

Remark 206. We explain each rule of the relation as follows.

(var-sim) A variable x from (Substitutional) ISWIM relates to the same variable x from Explicit ISWIM.

(app-sim) An application ta1 ta2 from (Substitutional) ISWIM and an application tb1 tb2 from Explicit ISWIM

are related, if their operators ta1 and tb1 are related, and their operands ta2 and tb2 are related.

(lam-sim) A lambda abstraction λx.ta from (Substitutional) ISWIM and a lambda abstraction λx.tb from

Explicit ISWIM with the same bound variable are related, if their bodies ta and tb are related.

(num-sim) A natural number n from (Substitutional) ISWIM relates to the same natural number n from

Explicit ISWIM.

(plus-sim) An addition of terms ta1 +ta2 from (Substitutional) ISWIM and an addition of terms tb1 +tb2 from

Explicit ISWIM are related, if their first operands ta1 and tb1 are related, and their second operands ta2

and tb2 are related.
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(subst-sim) A term surrounded by a substitution ta[wa/x] from (Substitutional) ISWIM and a term surroun-

ded by an explicit substitution tb[x := wb] from Explicit ISWIM are related, if the terms ta and tb are

related, and the denotable terms wa and wb are related.

Remark 207. The bisimulation relation ∼ is up to alpha equivalence. We immediately have: (1) if ta1 ' tb
and ta1 ∼α ta2 then ta2 ' tb, and (2) if ta ' tb1 and tb1 ∼α tb2 then ta ' tb2 .

B.1.2 Unload Function

We define U(t) to unload an Explicit ISWIM term t to (Substitutional) ISWIM.

Definition 208 (Unload Function). Define the unloading function U to be a total function from the set of

terms in Explicit ISWIM to the set of terms in (Substitutional) ISWIM.

U : TERMexp −→ TERMsub

U(x) = x

U(t1 t2) = U(t1)U(t2)

U(λx.t) = λx.U(t)

U(n) = n

U(t1 + t2) = U(t1)+U(t2)

U(t[x := w]) = U(t)[U(w)/x]

Lemma 209 (Equality of Related Terms w.r.t. Unload Function). If ta ' tb, then ta =U(tb).

Proof. We proceed by structural induction on ta ' tb.

Case 1. (var-sim). Then, ta = tb = x. We immediately get x =U(x).

Case 2. (app-sim). Then, ta = ta1 ta2 and tb = tb1 tb2 where ta1 ' tb1 and ta2 ' tb2 . By the induction

hypothesis, ta1 =U(tb1) and ta2 =U(tb2). Hence U(tb1 tb2) =U(tb1)U(tb2) = ta1 ta2 .

Case 3. (lam-sim). Then, ta = λx.ta1 and tb = λx.tb1 where ta1 ' tb1 . By the induction hypothesis, ta1 =

U(tb1). Hence U(λx.tb1) = λx.U(tb1) = λx.tb1 .

Case 4. (num-sim). Then, ta = tb = n. We immediately get U(n) = n.

Case 5. (plus-sim). Then, ta = ta1 + ta2 and tb = tb1 + tb2 where ta1 ' tb1 and ta2 ' tb2 . By the induction

hypothesis, ta1 =U(tb1) and ta2 =U(tb2). Hence U(tb1 + tb2) =U(tb1)+U(tb2) = ta1 + ta2 .

Case 6. (subst-sim). Then, ta = ta1 [wa1/x] and tb = tb1 [x := wb1 ] where ta1 ' tb1 and wa1 ' wb1 . By the in-

duction hypothesis, ta1 =U(tb1) and wa1 =U(wb1). Hence U(tb1 [x :=wb1 ]) =U(tb1)[U(wb1)/x] =

ta1 [wa1/x]
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B.1.3 Substitution Normal Form

In Explicit ISWIM, the terms that cannot perform single-step substitution reduction are in substitution nor-

mal form.

Definition 210 (Substitution Normal Form). A term t ∈ TERMexp is in substitution normal form if and only

if t 6−→x.

Remark 211. We use s with or without any subscript or superscript as a metavariable to range over the set

of terms of Explicit ISWIM in substitution normal form.

Remark 212. An Explicit ISWIM term in substitution normal form is not necessarily in the normal form

with respect to the single-step relation −→. For example, (λx.t) v is in substitution normal form but is not

in the normal form with respect to the single-step relation −→.

Lemma 213. If ta ' tb1 [x := wb1 ], then tb1 −→x∗ sb1 , sb1 [x := wb1 ]−→x∗ sb2 , and ta ' sb2 .

Proof. We proceed by structural induction on ta' tb1 [x :=wb1 ]. Only (subst-sim) applies. Let ta = ta1 [wa1/x]

and we have

ta1 ' tb1 wa1 ' wb1

ta1 [wa1/x]' tb1 [x := wb1 ],

We proceed by cases on ta1 ∈ TERMsub.

Case 1. (ta1 = x) We have

x' tb1 wa1 ' wb1

x[wa1/x]' tb1 [x := wb1 ].

Then, x[wa1/x] = wa1 . We proceed by cases on x' tb1 .

Case i. (var-sim). Let tb1 = x. Then, x−→x∗ x, x[x := wb1 ]−→x wb1 , and wa1 ' wb1 .

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given x ' tb11 [x1 := wb11 ], by the induction

hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 :=wb11 ]−→x∗ sb12 , and x' sb12 . We proceed

by cases on x ' sb12 . The only case is (var-sim), so let sb12 = x. Then, tb1 −→x∗ x,

x[x := wb1 ]−→x wb1 , and wa1 ' wb1 .

Case 2. (ta1 = x0 and x0 6≡ x). We have

x0 ' tb1 wa1 ' wb1

x0[wa1/x]' tb1 [x := wb1 ].

Then, x0[wa1/x] = x0. We proceed by cases on x0 ' tb1 .

Case i. (var-sim). Let tb1 = x0. Then, x0 −→x∗ x0, x0[x := wb1 ]−→x x0, and x0 ' x0.
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Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given x0 ' tb11 [x1 := wb11 ], by the induction hy-

pothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and x0 ' sb12 . We proceed

by cases on x0 ' sb12 . The only case is (var-sim), so let sb12 = x0. Then, tb1 −→x∗ x0,

x0[x := wb1 ]−→x∗ x0, and by (var-sim) x0 ' x0.

Case 3. (ta1 = (ta11 ta12)). We have

(ta11 ta12)' tb1 wa1 ' wb1

(ta11 ta12)[wa1/x]' tb1 [x := wb1 ].

Then, (ta11 ta12)[wa1/x] = (ta11 [wa1/x]) (ta12 [wa1/x]). We proceed by cases on (ta11 ta12)' tb1 .

Case i. (app-sim). Let tb1 = (tb11 tb12) where ta11 ' tb11 and ta12 ' tb12 . We have (tb11 tb12)−→x∗

(tb11 tb12) and (tb11 tb12)[x := wb1 ] −→x (tb11 [x := wb1 ]) (tb12 [x := wb1 ]). By (subst-sim)

and (app-sim), we get (ta11 [wa1/x]) (ta12 [wa1/x])' (tb11 [x := wb1 ]) (tb12 [x := wb1 ]).

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given (ta11 ta12) ' tb11 [x1 := wb11 ], by the in-

duction hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and (ta11 ta12)'
sb12 . We proceed by cases on (ta11 ta12) ' sb12 . The only case is (app-sim), so let

sb12 = (tb121 tb122) where ta11 ' tb121 and ta12 ' tb122 . Then, tb1 −→x∗ (tb121 tb122) and

(tb121 tb122)[x := wb1 ] −→x (tb121 [x := wb1 ]) (tb122 [x := wb1 ]). By (subst-sim) and (app-

sim), we get (ta11 [wa1/x]) (ta12 [wa1/x])' (tb121 [x := wb1 ]) (tb122 [x := wb1 ]).

Case 4. (ta1 = λx0.ta11). We have

(λx0.ta11)' tb1 wa1 ' wb1

(λx0.ta11)[wa1/x]' tb1 [x := wb1 ].

Then, (λx0.ta11)[wa1/x] = λx1.ta11 [x1/x0][wa1/x] where x1 /∈ FV (λx0.ta11)∪FV (wa1)∪{x}. We

proceed by cases on (λx0.ta11)' tb1 .

Case i. (lam-sim). Let tb1 = λx0.tb11 where ta11 ' tb11 . We have λx0.tb11 −→x∗ λx0.tb11 and

(λx0.tb11)[x :=wb1 ]−→x λx2.tb11 [x0 := x2][x :=wb1 ] where x2 /∈FV (λx0.tb11)∪FV (wb1)∪
{x}.
Let x3 /∈ FV (λx0.ta11)∪FV (wa1)∪FV (λx0.tb11)∪FV (wb1)∪{x}, then by the defin-

ition of α-equivalence, we get λx1.ta11 [x1/x0][wa1/x] ∼α λx3.ta11 [x3/x0][wa1/x] and

λx2.tb11 [x0 := x2][x := wb1 ]∼α λx3.tb11 [x0 := x3][x := wb1 ].

By (lam-sim) and (subst-sim), we get λx3.ta11 [x3/x0][wa1/x] ' λx3.tb11 [x0 := x3][x :=

wb1 ]. Hence we have λx1.ta11 [x1/x0][wa1/x]' λx2.tb11 [x0 := x2][x := wb1 ].

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given λx0.ta11 ' tb11 [x1 := wb11 ], by the induc-

tion hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and λx0.ta11 ' sb12 .

We proceed by cases on (λx0.ta11) ' sb12. The only case is (lam-sim), so let sb12 =
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λx0.tb121 where ta11 ' tb121 . We have tb1 −→x∗ λx0.tb121 and (λx0.tb121)[x := wb1 ] −→x

λx2.tb121 [x0 := x2][x := wb1 ] where x2 /∈ FV (λx0.tb121)∪FV (wb1)∪{x}.
Let x3 /∈ FV (λx0.ta11)∪FV (wa1)∪FV (λx0.tb121)∪FV (wb1)∪{x}, then by the defin-

ition of α-equivalence, we get λx1.ta11 [x1/x0][wa1/x] ∼α λx3.ta11 [x3/x0][wa1/x] and

λx2.tb121 [x0 := x2][x := wb1 ]∼α λx3.tb121 [x0 := x3][x := wb1 ].

By (lam-sim) and (subst-sim), we get λx3.ta11 [x3/x0][wa1/x]' λx3.tb121 [x0 := x3][x :=

wb1 ]. Hence we have λx1.ta11 [x1/x0][wa1/x]' λx2.tb121 [x0 := x2][x := wb1 ].

Case 5. (ta1 = n). We have

n' tb1 wa1 ' wb1

n[wa1/x]' tb1 [x := wb1 ].

Then, n[wa1/x] = n. We proceed by cases on n' tb1 .

Case i. (num-sim). Let tb1 = n. We have n−→x∗ n, n[x := wb1]−→x n and n' n.

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given n' tb11 [x1 := wb11 ], by the induction hy-

pothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and n' sb12 . We proceed

by cases on n' sb12 . The only case is (num-sim), so let sb12 = n. We have tb1 −→x∗ n,

n[x := wb1 ]−→x∗ n and by (num-sim) n' n.

Case 6. (ta1 = ta11 + ta12). We have

ta11 + ta12 ' tb1 wa1 ' wb1

(ta11 + ta12)[wa1/x]' tb1 [x := wb1 ].

Then, (ta11 + ta12)[wa1/x] = ta11 [wa1/x]+ ta12 [wa1/x]. We proceed by cases on ta11 + ta12 ' tb1 .

Case i. (plus-sim). Let tb1 = tb11 +tb12 where ta11 ' tb11 and ta12 ' tb12 . We have tb11 +tb12 −→x∗

tb11 tb12 and (tb11 +tb12)[x :=wb1 ]−→x tb11 [x :=wb1 ]+tb12 [x :=wb1 ]. By (subst-sim) and

(plus-sim), we get ta11 [wa1/x]+ ta12 [wa1/x]' tb11 [x := wb1 ]+ tb12 [x := wb1 ].

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given ta11 + ta12 ' tb11 [x1 := wb11 ], by the in-

duction hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and ta11 + ta12 '
sb12 . We proceed by cases on ta11 + ta12 ' sb12 . The only case is (plus-sim), so let

sb12 = tb121 + tb122 where ta11 ' tb121 and ta12 ' tb122 . Then, tb1 −→x∗ tb121 + tb122 and

(tb121 + tb122)[x := wb1 ]−→x tb121 [x := wb1 ]+ tb122 [x := wb1 ]. By (subst-sim) and (plus-

sim), we get ta11 [wa1/x]+ ta12 [wa1/x]' tb121 [x := wb1 ]+ tb122 [x := wb1 ].
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B.1.4 Canonisation

Given two related terms, if one term is a value, then the other term is a value or multi-steps to a value. We

have the following two lemmas.

Lemma 214 (Canonisation of (Substitutional) ISWIM). If ta1 ' vb1 , then ta1 ∈ VALUEsub.

Proof. We proceed by structural induction on ta1 ' vb1 .

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). This case is vacuous.

Case 3. (lam-sim). Let ta1 = λx.ta11 and vb1 = λx.tb11 where ta11 ' tb11 . We have λx.ta11 ∈ VALUEsub.

Case 4. (num-sim). Let ta1 = vb1 = n. We have n ∈ VALUEsub.

Case 5. (plus-sim). This case is vacuous.

Case 6. (subst-sim). This case is vacuous.

Lemma 215 (Canonisation of Explicit ISWIM). If va1 ' tb1 , then tb1 −→∗ vb2 and va1 ' vb2 .

Proof. We proceed by structural induction on va1 ' tb1 .

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). This case is vacuous.

Case 3. (lam-sim). Let va1 = λx.ta11 and tb1 = λx.tb11 where ta11 ' tb11 . We have λx.tb11 −→∗ λx.tb11 ,

λx.tb11 ∈ VALUEexp and va1 ' λx.tb11 .

Case 4. (num-sim). Let va1 = tb1 = n. We have n−→∗ n, n ∈ VALUEexp, and va1 ' n.

Case 5. (plus-sim). This case is vacuous.

Case 6. (subst-sim). Let va1 = ta11 [wa1/x] and tb1 = tb11 [x := wb1 ] where ta11 ' tb11 and wa1 ' wb1 . By

Lemma 213, we get tb11 [x := wb1 ] −→∗ sb12 and ta11 [wa1/x] ' sb12 . We proceed by cases on

ta11 [wa1/x]' sb12 .

Case i. (var-sim). This case is vacuous.

Case ii. (app-sim). This case is vacuous.

Case iii. (lam-sim). Let ta11 [wa1/x] = λx1.ta111 and sb12 = λx1.tb121 where ta111 ' tb121 . We have

tb11 [x := wb1 ]−→∗ λx1.tb121 , λx1.tb121 ∈ VALUEexp and va1 ' λx1.tb121 .
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Case iv. (num-sim). Let ta11 [wa1/x] = sb12 = n. We have tb11 [x := wb1 ] −→∗ n, n ∈ VALUEexp

and va1 ' n.

Case v. (plus-sim). This case is vacuous.

Case vi. (subst-sim). This case is vacuous.

B.1.5 Explicit Substitution Descendant Relation

We define the explicit substitution descendant relation and show its well-foundedness. As a result, we can

do induction on explicit substitution descendants.

Definition 216 (Explicit Substitution Descendant Relation). For any t1, t2 ∈ TERMexp, t1 ≺x t2 if and only if

t2 −→x t1. We call ≺x the explicit substitution descendant relation.

Definition 217 (Weight Function). For any t ∈ TERMexp, its weight is W (t) where W is a function defined

as follows.

W : TERMexp −→ Z+

W (x) = 1

W (t1 t2) = W (t1)+W (t2)+1

W (λx.t) = 1

W (n) = 1

W (t1 + t2) = W (t1)+W (t2)+1

W (t[x := w]) = W (t) · (W (w)+1)

Lemma 218 (Substitution reduction decreases weight.). For any t1, t2 ∈ TERMexp, if t1−→x t2, then W (t2)<

W (t1).

Proof. We proceed by structural induction on t1 −→x t2.

Case 1. (var-eq-subst). Let t1 = x[x := w] and t2 = w. Then, W (x[x := w]) =W (x) ·(W (w)+1) =W (w)+

1. We have W (w)<W (w)+1 =W (x[x := w]).

Case 2. (var-dif-subst). Let t1 = x1[x2 := w] and t2 = x1 where x1 6≡ x2. Then, W (x1[x2 := w]) =W (x1) ·
(W (w)+1) =W (w)+1. We have W (x1) = 1 <W (w)+1 =W (x1[x2 := w]).

Case 3. (num-subst). Let t1 = n[x :=w] and t2 = n. Then, W (n[x :=w]) =W (n) ·(W (w)+1) =W (w)+1.

We have W (n) = 1 <W (w)+1 =W (n[x := w]).

Case 4. (app-subst). Let t1 = (t11 t12)[x := w] and t2 = (t11[x := w]) (t12[x := w]). Then, W (t11[x :=

w] t12[x := w]) =W (t11[x := w])+W (t12[x := w])+1 =W (t11) · (W (w)+1)+W (t12) · (W (w)+

1) + 1 = (W (t11) +W (t12)) · (W (w) + 1) + 1 and W ((t11 t12)[x := w]) = W (t11 t12) · (W (w) +
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1) = (W (t11) +W (t12) + 1) · (W (w) + 1) = (W (t11) +W (t12)) · (W (w) + 1) +W (w) + 1. We

have W ((t11[x := w]) (t12[x := w])) = (W (t11)+W (t12)) · (W (w)+ 1)+ 1 < (W (t11)+W (t12)) ·
(W (w)+1)+W (w)+1 =W ((t11 t12)[x := w]).

Case 5. (plus-subst). Let t1 = (t11 + t12)[x := w] and t2 = t11[x := w] + t2[x := w]). Then, W (t11[x :=

w]+t12[x := w]) =W (t11[x := w])+W (t12[x := w])+1 =W (t11) ·(W (w)+1)+W (t12) ·(W (w)+

1)+1 = (W (t11)+W (t12)) · (W (w)+1)+1 and W ((t11 + t12)[x := w]) =W (t11 + t12) · (W (w)+

1) = (W (t11)+W (t12)+1) · (W (w)+1) = (W (t11)+W (t12)) · (W (w)+1)+W (w)+1. We have

W (t11[x := w]+ t12[x := w]) = (W (t11)+W (t12)) ·(W (w)+1)+1 < (W (t11)+W (t12)) ·(W (w)+

1)+W (w)+1 =W ((t11 + t12)[x := w]).

Case 6. (lam-subst). Let t1 = (λx1.t)[x2 := w] and t2 = λx3.t[x1 := x3][x2 := w] where x3 /∈ FV (λx1.t)∪
FV (w)∪{x2}. Then, W ((λx1.t11)[x2 := w]) = W (λx1.t11) · (W (w)+ 1) = W (w)+ 1. We have

W (λx3.t11[x1 := x3][x2 := w]) = 1 <W (w)+1 =W ((λx1.t11)[x2 := w]).

Case 7. (subst-subst). Let t1 = t11[x1 := w1][x2 := w2] and t2 = t21[x2 := w2] where t11[x1 := w1]−→x t21.

By the induction hypothesis, W (t21) < W (t11[x1 := w1]). Then, W (t21[x2 := w2]) = W (t21) ·
(W (w2)+1) and W (t11[x1 :=w1][x2 :=w2])=W (t11[x1 :=w1])·(W (w2)+1). We have W (t21[x2 :=

w2])=W (t21)·(W (w2)+1)=W (t21)·(W (w2)+1)<W (t11[x1 :=w1])·(W (w2)+1)=W (t11[x1 :=

w1][x2 := w2]).

Lemma 219 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation ≺x is well-founded.

Proof. Lemma 218 has proved that if t1 −→x t2, then W (t2) < W (t1), for any t1.t2 ∈ TERMexp. For any

t ∈ TERMexp, the length of the descending chain with respect to≺x starting from t is bound by W (t). Hence,

the explicit substitution descendant relation ≺x is well-founded.

B.1.6 Bisimulation

We demonstrate (Substitutional) ISWIM bisimulates Explicit ISWIM. Intuitively, given two related terms,

if one term single-steps, then the other term multi-steps, and the resulting two terms are related.

Lemma 220 (Simulation: Explicit ISWIM simulates (Substitutional) ISWIM.). If ta1 ' tb1 and ta1 −→ ta2 ,

then tb1 −→∗ tb2 and ta2 ' tb2 .

Proof. We proceed by induction on the structure of ta1 ' tb1 and by induction on the explicit substitution

descendants ≺x tb1 simultaneously.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Let ta1 = ta11 ta12 and tb1 = tb11 tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by cases

on ta1 −→ ta2 .
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Case i. (appL). Let ta11 −→ ta21 and ta2 = ta21 ta12 . By the induction hypothesis, tb11 −→∗ tb21

and ta21 ' tb21 . Then, tb11 tb12 −→∗ tb21 tb12 and by (app-sim) ta21 ta12 ' tb21 tb12 .

Case ii. (appR). Let ta11 = va11 , ta12 −→ ta22 and ta2 = va11 ta22 . Given va11 ' tb11 , by Lemma 215,

tb11 −→∗ vb11 and va11 ' vb11 . By the induction hypothesis, tb12 −→∗ tb22 and ta22 ' tb22 .

Then, tb11 tb12 −→∗ vb11 tb12 −→∗ vb11 tb22 and by (app-sim) va11 ta22 ' vb11 tb22 .

Case iii. (app). Let ta11 = λx.ta111 , ta12 = va12 , and ta2 = ta111 [va12/x]. Given λx.ta111 ' tb11 ,

by Lemma 215, tb11 −→∗ vb11 and λx.ta111 ' vb11 . Given va12 ' tb12 , by Lemma 215,

tb12 −→∗ vb12 and va12 ' vb12 . We proceed by cases on λx.ta111 ' vb11 . The only case is

(lam-sim), so let vb11 = λx.tb111 and ta111 ' tb111 . Then, tb11 tb12 −→∗ (λx.tb111) tb12 −→∗

(λx.tb111) vb12 −→ tb111 [x := vb12 ]. By (subst-sim), we get ta111 [va12/x]' tb111 [x := vb12 ].

Case 3. (lam-sim). This case is vacuous.

Case 4. (num-sim). This case is vacuous.

Case 5. (plus-sim). Let ta1 = ta11 + ta12 and tb1 = tb11 + tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by

cases on ta1 −→ ta2 .

Case i. (plusL). Let ta11 −→ ta21 and ta2 = ta21 + ta12 . By the induction hypothesis, tb11 −→∗ tb21

and ta21 ' tb21 . Then, tb11 + tb12 −→∗ tb21 + tb12 and by (plus-sim) ta21 + ta12 ' tb21 + tb12 .

Case ii. (plusR). Let ta11 = va11 , ta12 −→ ta22 and ta2 = va11 + ta22 . Given va11 ' tb11 , by Lemma

215, tb11 −→∗ vb11 and va11 ' vb11 . By the induction hypothesis, tb12 −→∗ tb22 and

ta22 ' tb22 . Then, tb11 +tb12 −→∗ vb11 +tb12 −→∗ vb11 +tb22 and by (plus-sim) va11 +ta22 '
vb11 + tb22 .

Case iii. (plus). Let ta11 = n1, ta12 = n2, and ta2 = n where n = n1 + n2. Given n1 ' tb11 , by

Lemma 215, tb11 −→∗ vb11 and n1' vb11 . Given n2' tb12 , by Lemma 215, tb12 −→∗ vb12

and n2 ' vb12 . We proceed by cases on n1 ' vb11 . The only case is (num-sim), so let

vb11 = n1. We proceed by cases on n2 ' vb12 . The only case is (num-sim), so let

vb12 = n2. Then, tb11 + tb12 −→∗ n1 + tb12 −→∗ n1 + n2 −→ n where n = n1 + n2. By

(num-sim), we get n' n.

Case 6. (subst-sim). Let ta1 = ta11 [wa11/x] and tb1 = tb11 [x := wb11 ] where ta11 ' tb11 and wa11 'wb11 . Given

ta1 ' tb11 [x := wb11 ], by Lemma 213, tb11 [x := wb11 ]−→x∗ sb21 and ta1 ' sb21 . Then, sb21 ≺x tb1 . If

ta1 −→ ta2 , by the induction hypothesis, sb21 −→∗ tb2 and ta2 ' tb2 . We have tb1 −→∗ sb21 −→∗ tb2 .

Remark 221. In the last case of the proof, given ta1 ' tb1 , ta1 ' sb21 and sb21 ≺x tb1 , if ta1 −→ ta2 , by the

induction hypothesis, sb21 −→∗ tb2 and ta2 ' tb2 .

Lemma 222 (Single-step explicit substitution reduction preserves simulation relation.). If ta1 ' tb1 and

tb1 −→x tb2 , then ta1 ' tb2 .
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Proof. We proceed by structural induction on ta1 ' tb1 . Since tb1 −→x tb2 , only (subst-sim) applies. Let

ta1 = ta11 [wa11/x1] and tb1 = tb11 [x1 := wb11 ] where ta11 ' tb11 and wa11 ' wb11 . We proceed by cases on

tb1 −→x tb2 .

Case 1. (var-eq-subst). Let tb11 = x1. We have x1[x1 := wb11 ]−→x wb11 . We proceed by cases on ta11 ' x1.

The only case is (var-sim), thus we get ta11 = x1. Then, x1[wa11/x1] = wa11 and wa11 ' wb11 .

Case 2. (var-dif-subst). Let tb11 = x2 and x2 6≡ x1. We have x2[x1 := wb11 ] −→x x2. We proceed by cases

on ta11 ' x2. The only case is (var-sim), thus we get ta11 = x2. Then, x2[wa11/x1] = x2 and x2 ' x2.

Case 3. (num-subst). Let tb11 = n. We have n[x1 := wb11 ] −→x n. We proceed by cases on ta11 ' n. The

only case is (num-sim), thus we get ta11 = n. Then, n[wa11/x1] = n and n' n.

Case 4. (app-subst). Let tb11 = tb111 tb112 . We have (tb111 tb112)[x1 :=wb11 ]−→x (tb111 [x1 :=wb11 ]) (tb112 [x1 :=

wb11 ]). We proceed by cases on ta11 ' tb111 tb112 . The only case is (app-sim), thus we get ta11 =

ta111 ta112 , ta111 ' tb111 and ta112 ' tb112 . Then, (ta111 ta112)[wa11/x1] = (ta111 [wa11/x1]) (ta112 [wa11/x1])

and by (subst-sim) and (app-sim) (ta111 [wa11/x1]) (ta112 [wa11/x1]) ' (tb111 [x1 := wb11 ]) (tb112 [x1 :=

wb11 ]).

Case 5. (plus-subst). Let tb11 = tb111 + tb112 . We have (tb111 + tb112)[x1 := wb11 ] −→x tb111 [x1 := wb11 ] +

tb112 [x1 := wb11 ]. We proceed by cases on ta11 ' tb111 + tb112 . The only case is (plus-sim), thus we

get ta11 = ta111 + ta112 , ta111 ' tb111 and ta112 ' tb112 . Then, (ta111 + ta112)[wa11/x1] = ta111 [wa11/x1]+

ta112 [wa11/x1] and by (subst-sim) and (plus-sim) ta111 [wa11/x1]+ ta112 [wa11/x1]' tb111 [x1 := wb11 ]+

tb112 [x1 := wb11 ].

Case 6. (lam-subst). Let tb11 = λx2.tb111 . We have (λx2.tb111)[x1 := wb11 ] −→x λx3.tb111 [x2 := x3][x1 :=

wb11 ] where x3 6∈ FV (λx2.tb111)∪FV (wb11)∪{x1}. We proceed by cases on ta11 ' λx2.tb111 . The

only case is (lam-sim), thus we get ta11 = λx2.ta111 where ta111 ' tb111 . Then, (λx2.ta111)[wa11/x1] =

λx4.ta111 [x4/x2][wa11/x1] where x4 /∈ FV (λx2.ta111)∪FV (wa11)∪{x1}.
Let x5 /∈ FV (λx2.tb111)∪FV (wb11)∪FV (λx2.ta111)∪FV (wa11)∪ {x1}, we have λx3.tb111 [x2 :=

x3][x1 :=wb11 ]∼α λx5.tb111 [x2 := x5][x1 :=wb11 ] and λx4.ta111 [x4/x2][wa11/x1]∼α λx5.ta111 [x5/x2][wa11/x1].

By (subst-sim) and (lam-sim), we get λx5.ta111 [x5/x2][wa11/x1] ' λx5.tb111 [x2 := x5][x1 := wb11 ].

Hence λx4.ta111 [x4/x2][wa11/x1]' λx3.tb111 [x2 := x3][x1 := wb11 ].

Case 7. (subst-subst). Let tb11 = tb111 [x2 := wb12 ]. We have (tb111 [x2 := wb12 ])[x1 := wb11 ] −→x tb121 [x1 :=

wb11 ] where tb111 [x2 := wb12 ]−→x tb121 . By the induction hypothesis, ta11 ' tb121 . Then, by (subst-

sim) ta11 [wa11/x1]' tb121 [x1 := wb11 ].

Lemma 223 (Simulation: (Substitutional) ISWIM simulates Explicit ISWIM.). If ta1 ' tb1 and tb1 −→ tb2 ,

then ta1 −→∗ ta2 and ta2 ' tb2 .

Proof. We proceed by induction on the structure of ta1 ' tb1 .
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Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Let ta1 = ta11 ta12 and tb1 = tb11 tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by cases

on tb1 −→ tb2 .

Case i. (appL). Let tb11 −→ tb21 and tb2 = tb21 tb12 . By the induction hypothesis, ta11 −→∗ ta21

and ta21 ' tb21 . Then, ta11 ta12 −→∗ ta21 ta12 and by (app-sim) ta21 ta12 ' tb21 tb12 .

Case ii. (appR). Let tb11 = vb11 , tb12 −→ tb22 and tb2 = vb11 tb22 . Given ta11 ' vb11 , by Lemma 214,

ta11 −→∗ va11 and va11 ' vb11 . By the induction hypothesis, ta12 −→∗ ta22 and ta22 ' tb22 .

Then, ta11 ta12 −→∗ va11 ta12 −→∗ va11 ta22 and by (app-sim) va11 ta22 ' vb11 tb22 .

Case iii. (app). Let tb11 = λx.tb111 , tb12 = vb12 , and tb2 = tb111 [x := vb12 ]. Given ta11 ' λx.tb111 ,

by Lemma 214, ta11 −→∗ va11 and va11 ' λx.tb111 . Given ta12 ' vb12 , by Lemma 214,

ta12 −→∗ va12 and va12 ' vb12 . We proceed by cases on va11 ' λx.tb111 . The only case is

(lam-sim), so let va11 = λx.ta111 and ta111 ' tb111 . Then, ta11 ta12 −→∗ (λx.ta111) ta12 −→∗

(λx.ta111) va12 −→ ta111 [va12/x]. By (subst-sim), we get ta111 [va12/x]' tb111 [x := vb12 ].

Case 3. (lam-sim). This case is vacuous.

Case 4. (num-sim). This case is vacuous.

Case 5. (plus-sim). Let ta1 = ta11 + ta12 and tb1 = tb11 + tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by

cases on tb1 −→ tb2 .

Case i. (plusL). Let tb11 −→ tb21 and tb2 = tb21 + tb12 . By the induction hypothesis, ta11 −→∗ ta21

and ta21 ' tb21 . Then, ta11 + ta12 −→∗ ta21 + ta12 and by (plus-sim) ta21 + ta12 ' tb21 + tb12 .

Case ii. (plusR). Let tb11 = vb11 , tb12 −→ tb22 and tb2 = vb11 + tb22 . Given ta11 ' vb11 , by Lemma

214, ta11 −→∗ va11 and va11 ' vb11 . By the induction hypothesis, ta12 −→∗ ta22 and

ta22 ' tb22 . Then, ta11 +ta12 −→∗ va11 +ta12 −→∗ va11 +ta22 and by (plus-sim) va11 +ta22 '
vb11 + tb22 .

Case iii. (plus). Let tb11 = n1, tb12 = n2, and tb2 = n where n = n1 + n2. Given ta11 ' n1, by

Lemma 214, ta11 −→∗ va11 and va11 ' n1. Given ta12 ' n2, by Lemma 214, ta12 −→∗ va12

and va12 ' n2. We proceed by cases on va11 ' n1. The only case is (num-sim), so let

va11 = n1. We proceed by cases on va12 ' n2. The only case is (num-sim), so let

va12 = n2. Then, ta11 + ta12 −→∗ n1 + ta12 −→∗ n1 + n2 −→ n where n = n1 + n2. By

(num-sim), we get n' n.

Case 6. (subst-sim). Let ta1 = ta11 [wa11/x] and tb1 = tb11 [x := wb11 ] where ta11 ' tb11 and wa11 'wb11 . Given

ta1 ' tb11 [x := wb11 ], by Lemma 213, tb11 [x := wb11 ]−→x∗ sb21 and ta1 ' sb21 . Since tb11 [x := wb11 ]

is not in the substitution normal form but sb21 is in substitution normal form, we have tb11 [x :=

wb11 ]−→x tb21 −→x∗ sb21 . By Lemma 222, ta1 ' tb21 . We also have ta1 −→∗ ta1 .
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B.1.7 Soundness and Completeness

We demonstrate the soundness and completeness of Explicit ISWIM with respect to (Substitutional) ISWIM.

Theorem 224 (Soundness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' tb1 and ta1 −→∗ va2 in

(Substitutional) ISWIM, then tb1 −→∗ vb2 in Explicit ISWIM and va2 ' vb2 .

Proof. We proceed by induction on the length of ta1 −→∗ va2 .

Case 1. (0). Let ta1 = va2 . By Lemma 215, tb1 −→∗ vb2 and va2 ' vb2 .

Case 2. (n+1). Let ta1 −→ ta2 −→(n) va2 . Given ta1 ' tb1 and ta1 −→ ta2 , by Lemma 220, tb1 −→∗ tb2 and

ta2 ' tb2 . Given ta2 ' tb2 and ta2 −→(n) va2 , by the induction hypothesis, tb2 −→∗ vb2 and va2 ' vb2 .

We have tb1 −→∗ tb2 −→∗ vb2 and va2 ' vb2 .

Remark 225. The parenthesised superscripted number n in −→(n) denotes the number of single step is n.

Theorem 226 (Completeness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' tb1 and tb1 −→∗ vb2

in Explicit ISWIM, then ta1 −→∗ va2 in (Substitutional) ISWIM and va2 ' vb2 .

Proof. We proceed by induction on the length of tb1 −→∗ vb2 .

Case 1. (0). Let tb1 = vb2 . By Lemma 214, ta1 ∈ VALUEsub. Let va2 = ta1 . We have ta1 −→∗ va2 and

va2 ' vb2 .

Case 2. (n+1). Let tb1 −→ tb2 −→(n) vb2 . Given ta1 ' tb1 and tb1 −→ tb2 , by Lemma 223, ta1 −→∗ ta2 and

ta2 ' tb2 . Given ta2 ' tb2 and tb2 −→(n) vb2 , by the induction hypothesis, ta2 −→∗ va2 and va2 ' vb2 .

We have ta1 −→∗ va2 and va2 ' vb2 .

B.1.7.1 An alternative proof.

We demonstrate a different proof of Theorem 226 which does not use Lemma 223. We start with two

lemmas. Their proofs are omitted.

Lemma 227. If ta1 ' tb1 , tb1 −→ tb2 and ta1 6' tb2 , then ta1 −→ ta2 .

Remark 228. Lemma 227 does not imply whether or not ta2 ' tb2 .

Lemma 229. If ta1 ' tb1 and ta1 −→ ta2 , then tb1 −→+ tb2 and ta2 ' tb2 .

Remark 230. Lemma 229 is stronger than Lemma 220. In other words, Lemma 229 implies Lemma 220.

We restate and prove Theorem 226 as follows.
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Theorem 231 (Completeness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' tb1 and tb1 −→∗ vb2

in Explicit ISWIM, then ta1 −→∗ va2 in (Substitutional) ISWIM and va2 ' vb2 .

Proof. We proceed by induction on the length of tb1 −→∗ vb2 .

Case 1. (0). Let tb1 = vb2 . By Lemma 214, ta1 ∈ VALUEsub. Let va2 = ta1 . We have ta1 −→∗ va2 and

va2 ' vb2 .

Case 2. (n+1). Let tb1 −→ tb2 −→(n) vb2 . We proceed by cases on ta1 ' tb1 , in particular on whether it is

(subst-sim) or not.

Case i. (subst-sim). Let ta1 = ta11 [wa1/x] and tb1 = tb11 [x := wb1 ] where ta11 ' tb11 and wa1 '
wb1 . By Lemma 213, tb1 −→x∗ sb2 . Observe that tb1 is not in substitution normal

form but sb2 is in substitution normal form. By the determinism of the small-step

semantics, tb1 −→x tb2 −→x(p) sb2 −→(q) vb2 and p+q = n where p,q≥ 0. By Lemma

222, ta1 ' tb2 . By the induction hypothesis, ta1 −→∗ va2 and va2 ' vb2 .

Case ii. (other cases). We proceed by cases on whether ta1 ' tb2 .

Case a. (ta1 ' tb2). Then, by the induction hypothesis, ta1 −→∗ va2 and va2 ' vb2 .

Case b. (ta1 6' tb2). By Lemma 227, ta1 −→ ta2 . By Lemma 229, tb1 −→+ tb3 and

ta2 ' tb3 . By the determinism of the small-step semantics, tb1 −→ tb2 −→(p)

tb3 −→(q) vb2 and p+ q = n where p,q ≥ 0. By the induction hypothesis,

ta2 −→∗ va2 and va2 ' vb2 .

B.1.8 Kleene Equality of Evaluators

We prove the Kleene equality of evaluators evalISWIM:SubSOS(t) and evalISWIM:ExpSOS(t).

Theorem 232 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene equal

to evalISWIM:ExpSOS(t).

Proof. We first show if evalISWIM:SubSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:ExpSOS(t) = a.

Case 1. If evalISWIM:SubSOS(t) = function, then t −→∗ λx.t ′. By Theorem 224, t −→∗ v′ and λx.t ′ ∼ v′.

Proceed by induction on λx.t ′ ∼ v′. The only case is (lam-sim). Then v′ = λx.t ′′ and t ′ ∼ t ′′. We

have evalISWIM:ExpSOS(t) = function.

Case 2. If evalISWIM:SubSOS(t) = n, then t −→∗ n. By Theorem 224, t −→∗ v′ and n ∼ v′. Proceed by

induction on n∼ v′. The only case is (num-sim). Then v′ = n. We have evalISWIM:ExpSOS(t) = n.

We then show if evalISWIM:ExpSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:SubSOS(t) = a.
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Case 1. If evalISWIM:ExpSOS(t) = function, then t −→∗ λx.t ′. By Theorem 226, t −→∗ v′ and v′ ∼ λx.t ′.

Proceed by induction on v′ ∼ λx.t ′. The only case is (lam-sim). Then v′ = λx.t ′′ and t ′′ ∼ t ′. We

have evalISWIM:SubSOS(t) = function.

Case 2. If evalISWIM:ExpSOS(t) = n, then t −→∗ n. By Theorem 226, t −→∗ v′ and v′ ∼ n. Proceed by

induction on v′ ∼ n. The only case is (num-sim). Then v′ = n. We have evalISWIM:SubSOS(t) = n.

We observe that evalISWIM:SubSOS(t) is undefined if and only if evalISWIM:ExpSOS(t) is undefined. Therefore,

evalISWIM:SubSOS(t) is Kleene equal to evalISWIM:ExpSOS(t).

B.2 Equivalence of ISWIM and Suspended ISWIM

We demonstrate the equivalence of the substitutional structural operational semantics of ISWIM and the

structural operational semantics of Suspended ISWIM. We use subscripts “sub” and “sus” to differentiate the

syntax of Substitutional ISWIM from the syntax of Suspended ISWIM.

B.2.1 Simulation Relation

We first introduce a bisimulation relation that relates (Substitutional) ISWIM terms to Suspended ISWIM

terms.

Definition 233 (Bisimulation Relation). Define the bisimulation relation ' to be a binary relation up to

alpha equivalence between the set of terms in (Substitutional) ISWIM and the set of terms in Suspended

ISWIM.

'⊆ TERMsub×TERMsus

x' x (var-sim)
ta1 ' tb1 ta2 ' tb2

ta1 ta2 ' tb1 tb2
(app-sim)

ta ' tb
(λx.ta)' (λx.tb)

(lam-sim)

n' n (num-sim)
ta1 ' tb1 ta2 ' tb2

ta1 + ta2 ' tb1 + tb2
(plus-sim)

ta ' tb wa ' wb

ta[wa/x]' tb[x := wb]
(subst-sim)

Remark 234. The bisimulation relation is the same as the one in proving the equivalence of (Substitutional)

ISWIM and Explicit ISWIM.

Remark 235. The bisimulation relation ∼ is up to alpha equivalence. We immediately have: (1) if ta1 ' tb
and ta1 ∼α ta2 then ta2 ' tb, and (2) if ta ' tb1 and tb1 ∼α tb2 then ta ' tb2 .

B.2.2 Unloading Function

We define U(t) to unload an Suspended ISWIM term t to (Substitutional) ISWIM.

Definition 236 (Unloading Function). Define the unloading function U to be a total function from the set of

terms in Suspended ISWIM to the set of terms in (Substitutional) ISWIM.
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U : TERMsus −→ TERMsub

U(x) = x

U(t1 t2) = U(t1)U(t2)

U(λx.t) = λx.U(t)

U(n) = n

U(t1 + t2) = U(t1)+U(t2)

U(t[x := w]) = U(t)[U(w)/x]

Lemma 237 (Equality of Related Terms w.r.t. Unloading Function). If ta ' tb, then ta =U(tb).

Proof. We proceed by structural induction on ta ' tb.

Case 1. (var-sim). Then, ta = tb = x. We immediately get x =U(x).

Case 2. (app-sim). Then, ta = ta1 ta2 and tb = tb1 tb2 where ta1 ' tb1 and ta2 ' tb2 . By the induction

hypothesis, ta1 =U(tb1) and ta2 =U(tb2). Hence U(tb1 tb2) =U(tb1)U(tb2) = ta1 ta2 .

Case 3. (lam-sim). Then, ta = λx.ta1 and tb = λx.tb1 where ta1 ' tb1 . By the induction hypothesis, ta1 =

U(tb1). Hence U(λx.tb1) = λx.U(tb1) = λx.tb1 .

Case 4. (num-sim). Then, ta = tb = n. We immediately get U(n) = n.

Case 5. (plus-sim). Then, ta = ta1 + ta2 and tb = tb1 + tb2 where ta1 ' tb1 and ta2 ' tb2 . By the induction

hypothesis, ta1 =U(tb1) and ta2 =U(tb2). Hence U(tb1 + tb2) =U(tb1)+U(tb2) = ta1 + ta2 .

Case 6. (subst-sim). Then, ta = ta1 [wa1/x] and tb = tb1 [x := wb1 ] where ta1 ' tb1 and wa1 ' wb1 . By the in-

duction hypothesis, ta1 =U(tb1) and wa1 =U(wb1). Hence U(tb1 [x :=wb1 ]) =U(tb1)[U(wb1)/x] =

ta1 [wa1/x]

B.2.3 Substitution Normal Form

In Suspended ISWIM, the terms that cannot perform substitution reduction are in substitution normal form.

Definition 238 (Substitution Normal Form). A term t ∈ TERMsus is in substitution normal form if and only

if t 6−→x.

Remark 239. We use the metavariable s with or without any subscript or superscript to range over the terms

in substitution normal form.

Remark 240. A Suspended ISWIM term in substitution normal is not necessarily in the normal form with

respect to the single-step relation −→. For example, (λx.t) v is in substitution normal form but is not in the

normal form with respect to the single-step relation −→.
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Remark 241. In Suspended ISWIM, (λx.t)[xi := vi] is in substitution normal form. However, in Explicit

ISWIM, (λx.t)[xi := vi] is not in substitution normal form.

Lemma 242. If ta1 ' tb1 and tb1 = (λx.tb11)[xi := wbi ]
n
i=1, then ta1 = (λx.ta11)[wai/xi]

n
i=1, ta11 ' tb11 and

wai ' wbi for any i = 1,2, ...,n.

Proof. We proceed by induction n.

Case 1. (0). Let tb1 = λx.tb11 . We proceed by cases on ta1 ' λx.tb11 . The only case is (lam-subst). Then,

ta1 = λx.ta11 and ta11 ' tb11 .

Case 2. (n+1). Let tb1 = (λx.tb11)[xi := wbi ]
n
i=1[xn+1 := wbn+1 ].

We proceed by cases on ta1 ' (λx.tb11)[xi := wbi ]
n
i=1[xn+1 :=wbn+1 ]. The only case is (subst-subst).

Then, ta1 = ta2 [wan+1/xn+1], ta2 ' (λx.tb11)[xi := wbi ]
n
i=1, and wan+1 ' wbn+1 . By the induction

hypothesis, ta2 = (λx.ta11)[wai/xi]
n
i=1, ta11 ' tb11 , and wai ' wbi for any i = 1,2, ...,n. Therefore,

ta1 = (λx.ta11)[wai/xi]
n+1
i=1 , ta11 ' tb11 , and wai ' wbi for any i = 1,2, ...,n,n+1.

Lemma 243. If ta1 ' wb1 and wb1 ∈ VALUEsus, then ta1 ∈ VALUEsub.

Proof. We proceed by cases on wb1 ∈ VALUEsus.

Case 1. (wb1 = n). We proceed by cases on ta1 ' n. The only case is (num-sim). Then, ta1 = n and

ta1 ∈ VALUEsub.

Case 2. (wb1 = (λx.tb11)[xi := wb0i ]
n
i=1). By Lemma 242, ta1 = (λx.ta11)[wa0i/xi]

n
i=1, ta11 ' tb11 and wa0i '

wb0i for any i = 1,2, ...,n. Then, ta1 ∈ VALUEsub.

Lemma 244. If ta ' tb1 [x := wb1 ], then tb1 −→x∗ sb1 , sb1 [x := wb1 ]−→x∗ sb2 , and ta ' sb2 .

Proof. We proceed by structural induction on ta' tb1 [x :=wb1 ]. Only (subst-sim) applies. Let ta = ta1 [wa1/x]

and we have

ta1 ' tb1 wa1 ' wb1

ta1 [wa1/x]' tb1 [x := wb1 ],

We proceed by cases on ta1 ∈ TERMsub.

Case 1. (ta1 = x) We have

x' tb1 wa1 ' wb1

x[wa1/x]' tb1 [x := wb1 ].
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Then, x[wa1/x] = wa1 . We proceed by cases on x' tb1 .

Case i. (var-sim). Let tb1 = x. Then, x−→x∗ x, x[x := wb1 ]−→x wb1 , and wa1 ' wb1 .

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given x ' tb11 [x1 := wb11 ], by the induction

hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 :=wb11 ]−→x∗ sb12 , and x' sb12 . We proceed

by cases on x' sb12 .

Case a. (var-sim). Let sb12 = x. Then, tb1 −→x∗ x, x[x := wb1 ]−→x wb1 , and wa1 '
wb1 .

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 2. (ta1 = x0 and x0 6≡ x). We have

x0 ' tb1 wa1 ' wb1

x0[wa1/x]' tb1 [x := wb1 ].

Then, x0[wa1/x] = x0. We proceed by cases on x0 ' tb1 .

Case i. (var-sim). Let tb1 = x0. Then, x0 −→x∗ x0, x0[x := wb1 ]−→x x0, and x0 ' x0.

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given x0 ' tb11 [x1 := wb11 ], by the induction hy-

pothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and x0 ' sb12 . We proceed

by cases on x0 ' sb12 .

Case a. (var-sim). Let sb12 = x0. Then, tb1 −→x∗ x0, x0[x := wb1 ] −→x∗ x0, and by

(var-sim) x0 ' x0.

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 3. (ta1 = (ta11 ta12)). We have

(ta11 ta12)' tb1 wa1 ' wb1

(ta11 ta12)[wa1/x]' tb1 [x := wb1 ].

Then, (ta11 ta12)[wa1/x] = (ta11 [wa1/x]) (ta12 [wa1/x]). We proceed by cases on (ta11 ta12)' tb1 .

Case i. (app-sim). Let tb1 = (tb11 tb12) where ta11 ' tb11 and ta12 ' tb12 . We have (tb11 tb12)−→x∗

(tb11 tb12) and (tb11 tb12)[x := wb1 ] −→x (tb11 [x := wb1 ]) (tb12 [x := wb1 ]). By (subst-sim)

and (app-sim), we get (ta11 [wa1/x]) (ta12 [wa1/x])' (tb11 [x := wb1 ]) (tb12 [x := wb1 ]).

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given (ta11 ta12)' tb11 [x1 := wb11 ], by the induc-

tion hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 :=wb11 ]−→x∗ sb12 , and (ta11 ta12)' sb12 .

We proceed by cases on (ta11 ta12)' sb12 .

Case a. (app-sim). Let sb12 = (tb121 tb122) where ta11 ' tb121 and ta12 ' tb122 . Then,

tb1 −→x∗ (tb121 tb122) and (tb121 tb122)[x :=wb1 ]−→x (tb121 [x :=wb1 ]) (tb122 [x :=

wb1 ]). By (subst-sim) and (app-sim), we get (ta11 [wa1/x]) (ta12 [wa1/x]) '
(tb121 [x := wb1 ]) (tb122 [x := wb1 ]).
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Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 4. (ta1 = λx0.ta11). We have

(λx0.ta11)' tb1 wa1 ' wb1

(λx0.ta11)[wa1/x]' tb1 [x := wb1 ].

Then, (λx0.ta11)[wa1/x] = λx1.ta11 [x1/x0][wa1/x] where x1 /∈ FV (λx0.ta11)∪FV (wa1)∪{x}. We

proceed by cases on (λx0.ta11)' tb1 .

Case i. (lam-sim). Let tb1 = λx0.tb11 where ta11 ' tb11 . We have λx0.tb11 −→x∗ λx0.tb11 , (λx0.tb11)[x :=

wb1 ]−→x∗ (λx0.tb11)[x := wb1 ], and (λx0.ta11)[wa1/x]' (λx0.tb11)[x := wb1 ].

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given λx0.ta11 ' tb11 [x1 := wb11 ], by the induc-

tion hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and λx0.ta11 ' sb12 .

We proceed by cases on (λx0.ta11)' sb12.

Case a. (lam-sim). Let sb12 = λx0.tb121 and ta11 ' tb121 .

We have tb1 −→x∗ λx0.tb121 , (λx0.tb121)[x :=wb1 ]−→x∗ (λx0.tb121)[x :=wb1 ],

and by (subst-sim) (λx0.ta11)[wa1/x]' (λx0.tb121)[x := wb1 ].

Case b. (subst-sim). Let sb12 = (λx−1.tb121)[xi := wb0i ]
+n
i=1.

By Lemma 242, λx.ta11 = (λx−1.ta111)[wa0i/xi]
+n
i=1, ta111 ' tb121 , and wa0i '

wb0i for any i = 1,2, ...,n. We have tb1 −→x∗ (λx−1.tb121)[xi := wb0i ]
+n
i=1,

(λx−1.tb121)[xi := wb0i ]
+n
i=1[x :=wb1 ]−→x∗ (λx−1.tb121)[xi := wb0i ]

+n
i=1[x :=wb1 ],

and by (subst-sim) (λx0.ta11)[wa1/x1]' (λx−1.tb121)[xi := wbi ]
+n
i=1[x :=wb1 ].

Case 5. (ta1 = n). We have

n' tb1 wa1 ' wb1

n[wa1/x]' tb1 [x := wb1 ].

Then, n[wa1/x] = n. We proceed by cases on n' tb1 .

Case i. (num-sim). Let tb1 = n. We have n−→x∗ n, n[x := wb1]−→x n and n' n.

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given n' tb11 [x1 := wb11 ], by the induction hy-

pothesis, we have tb11 −→x∗ sb11 , sb11 [x1 := wb11 ]−→x∗ sb12 , and n' sb12 . We proceed

by cases on n' sb12 .

Case a. (num-sim). Let sb12 = n. We have tb1 −→x∗ n, n[x := wb1 ] −→x∗ n and by

(num-sim) n' n.

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 6. (ta1 = ta11 + ta12). We have
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ta11 + ta12 ' tb1 wa1 ' wb1

(ta11 + ta12)[wa1/x]' tb1 [x := wb1 ].

Then, (ta11 + ta12)[wa1/x] = ta11 [wa1/x]+ ta12 [wa1/x]. We proceed by cases on ta11 + ta12 ' tb1 .

Case i. (plus-sim). Let tb1 = tb11 +tb12 where ta11 ' tb11 and ta12 ' tb12 . We have tb11 +tb12 −→x∗

tb11 tb12 and (tb11 +tb12)[x :=wb1 ]−→x tb11 [x :=wb1 ]+tb12 [x :=wb1 ]. By (subst-sim) and

(plus-sim), we get ta11 [wa1/x]+ ta12 [wa1/x]' tb11 [x := wb1 ]+ tb12 [x := wb1 ].

Case ii. (subst-sim). Let tb1 = tb11 [x1 := wb11 ]. Given ta11 + ta12 ' tb11 [x1 := wb11 ], by the induc-

tion hypothesis, we have tb11 −→x∗ sb11 , sb11 [x1 :=wb11 ]−→x∗ sb12 , and ta11 +ta12 ' sb12 .

We proceed by cases on ta11 + ta12 ' sb12 .

Case a. (plus-sim). Let sb12 = tb121 + tb122 where ta11 ' tb121 and ta12 ' tb122 . Then,

tb1 −→x∗ tb121 +tb122 and (tb121 +tb122)[x :=wb1 ]−→x tb121 [x :=wb1 ]+tb122 [x :=

wb1 ]. By (subst-sim) and (plus-sim), we get ta11 [wa1/x] + ta12 [wa1/x] '
tb121 [x := wb1 ]+ tb122 [x := wb1 ].

Case b. (subst-sim). This case is vacuous by Lemma 242.

B.2.4 Canonisation

Given two related terms, if one term is a value, then the other term is a value or multi-steps to a value. We

have the following two lemmas.

Lemma 245 (Canonisation of (Substitutional) ISWIM). If ta1 ' vb1 , then ta1 ∈ VALUEsub.

Proof. We proceed by structural induction on ta1 ' vb1 .

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). This case is vacuous.

Case 3. (lam-sim). Let ta1 = λx.ta11 and vb1 = λx.tb11 where ta11 ' tb11 . We have λx.ta11 ∈ VALUEsub.

Case 4. (num-sim). Let ta1 = vb1 = n. We have n ∈ VALUEsub.

Case 5. (plus-sim). This case is vacuous.

Case 6. (subst-sim). Let vb1 = (λx.tb11)[xi := wbi ]
+n
i=1. By Lemma 242, ta1 = (λx.ta11)[wai/xi]

+n
i=1, ta11 '

tb11 , and wai ' wbi for any i = 1,2, ...,n. We have (λx.ta11)[wai/xi]
+n
i=1 ∈ VALUEsub.

Lemma 246 (Canonisation of Suspended ISWIM). If va1 ' tb1 , then tb1 −→∗ vb2 and va1 ' vb2 .
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Proof. We proceed by structural induction on va1 ' tb1 .

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). This case is vacuous.

Case 3. (lam-sim). Let va1 = λx.ta11 and tb1 = λx.tb11 where ta11 ' tb11 . We have λx.tb11 −→∗ λx.tb11 ,

λx.tb11 ∈ VALUEsus and va1 ' λx.tb11 .

Case 4. (num-sim). Let va1 = tb1 = n. We have n−→∗ n, n ∈ VALUEexp, and va1 ' n.

Case 5. (plus-sim). This case is vacuous.

Case 6. (subst-sim). Let va1 = ta11 [wa1/x] and tb1 = tb11 [x := wb1 ] where ta11 ' tb11 and wa1 ' wb1 . By

Lemma 244, we get tb11 [x := wb1 ] −→∗ sb12 and ta11 [wa1/x] ' sb12 . We proceed by cases on

ta11 [wa1/x]' sb12 where ta11 [wa1/x] ∈ VALUEsub.

Case i. (var-sim). This case is vacuous.

Case ii. (app-sim). This case is vacuous.

Case iii. (lam-sim). Let ta11 [wa1/x] = λx1.ta111 and sb12 = λx1.tb121 where ta111 ' tb121 . We have

tb11 [x := wb1 ]−→∗ λx1.tb121 , λx1.tb121 ∈ VALUEsus and va1 ' λx1.tb121 .

Case iv. (num-sim). Let ta11 [wa1/x] = sb12 = n. We have tb11 [x := wb1 ] −→∗ n, n ∈ VALUEexp

and va1 ' n.

Case v. (plus-sim). This case is vacuous.

Case vi. (subst-sim). Let sb12 =(λx.tb121)[xi := wb0i ]
n
i=1. We have tb11 [x :=wb1 ]−→∗ (λx.tb121)[xi := wb0i ]

n
i=1,

(λx.tb121)[xi := wb0i ]
n
i=1 ∈ VALUEsus, and va1 ' (λx.tb121)[xi := wb0i ]

n
i=1.

B.2.5 Explicit Substitution Descendant Relation

We define the explicit substitution descendant relation and show its well-foundedness. As a result, we can

do induction on explicit substitution descendants.

Definition 247 (Explicit Substitution Descendant Relation). For any t1, t2 ∈ TERMsus, t1 ≺x t2 if and only if

t2 −→x t1. We call ≺x the explicit substitution descendant relation.

Definition 248 (Weight Function). For any t ∈ TERMsus, its weight is W (t) where W is a function defined

as follows.

W : TERMsus −→ Z+
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W (x) = 1

W (t1 t2) = W (t1)+W (t2)+1

W (λx.t) = 1

W (n) = 1

W (t1 + t2) = W (t1)+W (t2)+1

W (t[x := w]) = W (t) · (W (w)+1)

Lemma 249 (Substitution reduction decreases weight.). For any t1, t2 ∈ TERMsus, if t1 −→x t2, then W (t2)<

W (t1).

Proof. We proceed by structural induction on t1 −→x t2.

Case 1. (var-eq-subst). Let t1 = x[x := w] and t2 = w. Then, W (x[x := w]) =W (x) ·(W (w)+1) =W (w)+

1. We have W (w)<W (w)+1 =W (x[x := w]).

Case 2. (var-dif-subst). Let t1 = x1[x2 := w] and t2 = x1 where x1 6≡ x2. Then, W (x1[x2 := w]) =W (x1) ·
(W (w)+1) =W (w)+1. We have W (x1) = 1 <W (w)+1 =W (x1[x2 := w]).

Case 3. (num-subst). Let t1 = n[x :=w] and t2 = n. Then, W (n[x :=w]) =W (n) ·(W (w)+1) =W (w)+1.

We have W (n) = 1 <W (w)+1 =W (n[x := w]).

Case 4. (app-subst). Let t1 = (t11 t12)[x := w] and t2 = (t11[x := w]) (t12[x := w]). Then, W (t11[x :=

w] t12[x := w]) =W (t11[x := w])+W (t12[x := w])+1 =W (t11) · (W (w)+1)+W (t12) · (W (w)+

1) + 1 = (W (t11) +W (t12)) · (W (w) + 1) + 1 and W ((t11 t12)[x := w]) = W (t11 t12) · (W (w) +

1) = (W (t11) +W (t12) + 1) · (W (w) + 1) = (W (t11) +W (t12)) · (W (w) + 1) +W (w) + 1. We

have W ((t11[x := w]) (t12[x := w])) = (W (t11)+W (t12)) · (W (w)+ 1)+ 1 < (W (t11)+W (t12)) ·
(W (w)+1)+W (w)+1 =W ((t11 t12)[x := w]).

Case 5. (plus-subst). Let t1 = (t11 + t12)[x := w] and t2 = t11[x := w] + t2[x := w]). Then, W (t11[x :=

w]+t12[x := w]) =W (t11[x := w])+W (t12[x := w])+1 =W (t11) ·(W (w)+1)+W (t12) ·(W (w)+

1)+1 = (W (t11)+W (t12)) · (W (w)+1)+1 and W ((t11 + t12)[x := w]) =W (t11 + t12) · (W (w)+

1) = (W (t11)+W (t12)+1) · (W (w)+1) = (W (t11)+W (t12)) · (W (w)+1)+W (w)+1. We have

W (t11[x := w]+ t12[x := w]) = (W (t11)+W (t12)) ·(W (w)+1)+1 < (W (t11)+W (t12)) ·(W (w)+

1)+W (w)+1 =W ((t11 + t12)[x := w]).

Case 6. (subst-subst). Let t1 = t11[x1 := w1][x2 := w2] and t2 = t21[x2 := w2] where t11[x1 := w1]−→x t21.

By the induction hypothesis, W (t21) < W (t11[x1 := w1]). Then, W (t21[x2 := w2]) = W (t21) ·
(W (w2)+1) and W (t11[x1 :=w1][x2 :=w2])=W (t11[x1 :=w1])·(W (w2)+1). We have W (t21[x2 :=

w2])=W (t21)·(W (w2)+1)=W (t21)·(W (w2)+1)<W (t11[x1 :=w1])·(W (w2)+1)=W (t11[x1 :=

w1][x2 := w2]).

Lemma 250 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation ≺x is well-founded.
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Proof. Lemma 249 has proved that if t1 −→x t2, then W (t2) < W (t1), for any t1.t2 ∈ TERMsus. For any

t ∈ TERMsus, the length of the descending chain with respect to≺x starting from t is bound by W (t). Hence,

the explicit substitution descendant relation ≺x is well-founded.

B.2.6 Bisimulation

We demonstrate (Substitutional) ISWIM bisimulates Suspended ISWIM. Intuitively, given two related terms,

if one term single-steps, then the other term multi-steps, and the resulting two terms are related.

Lemma 251 (Simulation: Suspended ISWIM simulates (Substitutional) ISWIM.). If ta1 ' tb1 and ta1 −→ ta2

where FV (ta1) = /0 and FV (tb1) = /0, then tb1 −→∗ tb2 and ta2 ' tb2 where FV (ta2) = /0 and FV (tb2) = /0.

Proof. We proceed by induction on the structure of ta1 ' tb1 and by induction on the explicit substitution

descendants ≺x tb1 simultaneously.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Let ta1 = ta11 ta12 and tb1 = tb11 tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by cases

on ta1 −→ ta2 .

Case i. (appL). Let ta11 −→ ta21 and ta2 = ta21 ta12 . By the induction hypothesis, tb11 −→∗ tb21

and ta21 ' tb21 . Then, tb11 tb12 −→∗ tb21 tb12 and by (app-sim) ta21 ta12 ' tb21 tb12 .

Case ii. (appR). Let ta11 = va11 , ta12 −→ ta22 and ta2 = va11 ta22 . Given va11 ' tb11 , by Lemma 246,

tb11 −→∗ vb11 and va11 ' vb11 . By the induction hypothesis, tb12 −→∗ tb22 and ta22 ' tb22 .

Then, tb11 tb12 −→∗ vb11 tb12 −→∗ vb11 tb22 and by (app-sim) va11 ta22 ' vb11 tb22 .

Case iii. (app). Let ta11 = λx.ta111 , ta12 = va12 , and ta2 = ta111 [va12/x]. Given λx.ta111 ' tb11 ,

by Lemma 246, tb11 −→∗ vb11 and λx.ta111 ' vb11 . Given va12 ' tb12 , by Lemma 246,

tb12 −→∗ vb12 and va12 ' vb12 . We proceed by cases on λx.ta111 ' vb11 .

Case a. (lam-sim). Let vb11 = λx.tb111 and ta111 ' tb111 . Then, tb11 tb12 −→∗ (λx.tb111) tb12 −→∗

(λx.tb111) vb12 −→ tb111 [x := vb12 ]. By (subst-sim), we get ta111 [va12/x] '
tb111 [x := vb12 ].

Case b. (subst-sim). Let vb11 = (λx0.tb111)[xi := wbi ]
n
i=1. By Lemma 242, we have

λx.ta111 =(λx0.ta1111)[wai/xi]
n
i=1, tb111 ' ta111 and wai 'wbi for any i= 1,2, ...,n.

We know (λx0.ta1111)[wai/xi]
n
i=1∼α λx−1.ta1111 [x−1/x0][wai/xi]

n
i=1 where x−1 /∈

FV (λx0.ta1111)∪(
⋃

i(FV (wai)∪{xi})). We have λx.ta111 ∼α λx−1.ta1111 [x−1/x0]

[wai/xi]
n
i=1. Then, (λx.ta111) va12 ∼α (λx−1.ta1111 [x−1/x0][wai/xi]

n
i=1) va12 .

We have (λx−1.ta1111 [x−1/x0][wai/xi]
n
i=1) va12 −→ ta1111 [x−1/x0][wai/xi]

n
i=1[va12/x−1]

and (λx.ta111) va12 −→ ta111 [va12/x]. By Proposition 58, ta1111 [x−1/x0][wai/xi]
n
i=1

[va12/x−1]∼α ta111 [va12/x].

Given FV (ta1) = /0 and FV (ta1) = FV (ta11)∪FV (ta12), we have FV (va12) =

FV (ta12) = /0.
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Given x−1 6≡ xi for any i = 1,2, ...,n, x−1 /∈ FV (wai) for any i = 1,2, ...,n

and FV (va12)= /0, by Proposition 53, we have ta1111 [x−1/x0][wai/xi]
n
i=1[va12/x−1]∼α

ta1111 [x−1/x0][va12/x−1][wai/xi]
n
i=1 ∼α ta1111 [va12/x0][wai/xi]

n
i=1.

Then, ta1111 [va12/x0][wai/xi]
n
i=1∼α ta111 [va12/x]. By (subst-sim), ta1111 [va12/x0]

[wai/xi]
n
i=1 ' tb111 [x0 := vb12 ][xi := wbi ]

n
i=1. Then, ta111 [va12/x] ' tb111 [x0 :=

vb12 ][xi := wbi ]
n
i=1.

Case 3. (lam-sim). This case is vacuous.

Case 4. (num-sim). This case is vacuous.

Case 5. (plus-sim). Let ta1 = ta11 + ta12 and tb1 = tb11 + tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by

cases on ta1 −→ ta2 .

Case i. (plusL). Let ta11 −→ ta21 and ta2 = ta21 + ta12 . By the induction hypothesis, tb11 −→∗ tb21

and ta21 ' tb21 . Then, tb11 + tb12 −→∗ tb21 + tb12 and by (plus-sim) ta21 + ta12 ' tb21 + tb12 .

Case ii. (plusR). Let ta11 = va11 , ta12 −→ ta22 and ta2 = va11 + ta22 . Given va11 ' tb11 , by Lemma

246, tb11 −→∗ vb11 and va11 ' vb11 . By the induction hypothesis, tb12 −→∗ tb22 and

ta22 ' tb22 . Then, tb11 +tb12 −→∗ vb11 +tb12 −→∗ vb11 +tb22 and by (plus-sim) va11 +ta22 '
vb11 + tb22 .

Case iii. (plus). Let ta11 = n1, ta12 = n2, and ta2 = n where n = n1 + n2. Given n1 ' tb11 , by

Lemma 246, tb11 −→∗ vb11 and n1' vb11 . Given n2' tb12 , by Lemma 246, tb12 −→∗ vb12

and n2 ' vb12 . We proceed by cases on n1 ' vb11 .

Case a. (num-sim). Let vb11 = n1. We proceed by cases on n2 ' vb12 .

Case 1. (num-sim). Let vb12 = n2. Then, tb11 + tb12 −→∗ n1 + tb12 −→∗

n1 +n2 −→ n where n = n1 +n2. By (num-sim), we get n' n.

Case 2. (subst-sim). This case is vacuous by Lemma 242.

Case b. (subst-sim). This case is vacuous by Lemma 242.

Case 6. (subst-sim). Let ta1 = ta11 [wa11/x] and tb1 = tb11 [x := wb11 ] where ta11 ' tb11 and wa11 'wb11 . Given

ta1 ' tb11 [x := wb11 ], by Lemma 244, tb11 [x := wb11 ]−→x∗ sb21 and ta1 ' sb21 . Then, sb21 ≺x tb1 . If

ta1 −→ ta2 , by the induction hypothesis, sb21 −→∗ tb2 and ta2 ' tb2 . We have tb1 −→∗ sb21 −→∗ tb2 .

By Propositions 59 and 84, we know FV (ta2) = /0 and FV (tb2) = /0.

Remark 252. In the last case of the proof, given ta1 ' tb1 , ta1 ' sb21 and sb21 ≺x tb1 , if ta1 −→ ta2 , by the

induction hypothesis, sb21 −→∗ tb2 and ta2 ' tb2 .

Lemma 253 (Explicit substitution reduction preserves simulation relation.). If ta1 ' tb1 and tb1 −→x tb2 , then

ta1 ' tb2 .
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Proof. We proceed by structural induction on ta1 ' tb1 . Since tb1 −→x tb2 , only (subst-sim) applies. Let

ta1 = ta11 [wa11/x1] and tb1 = tb11 [x1 := wb11 ] where ta11 ' tb11 and wa11 ' wb11 . We proceed by cases on

tb1 −→x tb2 .

Case 1. (var-eq-subst). Let tb11 = x1. We have x1[x1 := wb11 ]−→x wb11 . We proceed by cases on ta11 ' x1.

The only case is (var-sim), thus we get ta11 = x1. Then, x1[wa11/x1] = wa11 and wa11 ' wb11 .

Case 2. (var-df-subst). Let tb11 = x2 and x2 6≡ x1. We have x2[x1 := wb11 ]−→x x2. We proceed by cases on

ta11 ' x2. The only case is (var-sim), thus we get ta11 = x2. Then, x2[wa11/x1] = x2 and x2 ' x2.

Case 3. (num-subst). Let tb11 = n. We have n[x1 := wb11 ] −→x n. We proceed by cases on ta11 ' n. The

only case is (num-sim), thus we get ta11 = n. Then, n[wa11/x1] = n and n' n.

Case 4. (app-subst). Let tb11 = tb111 tb112 . We have (tb111 tb112)[x1 :=wb11 ]−→x (tb111 [x1 :=wb11 ]) (tb112 [x1 :=

wb11 ]). We proceed by cases on ta11 ' tb111 tb112 . The only case is (app-sim), thus we get ta11 =

ta111 ta112 , ta111 ' tb111 and ta112 ' tb112 . Then, (ta111 ta112)[wa11/x1] = (ta111 [wa11/x1]) (ta112 [wa11/x1])

and by (subst-sim) and (app-sim) (ta111 [wa11/x1]) (ta112 [wa11/x1]) ' (tb111 [x1 := wb11 ]) (tb112 [x1 :=

wb11 ]).

Case 5. (plus-subst). Let tb11 = tb111 + tb112 . We have (tb111 + tb112)[x1 := wb11 ] −→x tb111 [x1 := wb11 ] +

tb112 [x1 := wb11 ]. We proceed by cases on ta11 ' tb111 + tb112 . The only case is (plus-sim), thus we

get ta11 = ta111 + ta112 , ta111 ' tb111 and ta112 ' tb112 . Then, (ta111 + ta112)[wa11/x1] = ta111 [wa11/x1]+

ta112 [wa11/x1] and by (subst-sim) and (plus-sim) ta111 [wa11/x1]+ ta112 [wa11/x1]' tb111 [x1 := wb11 ]+

tb112 [x1 := wb11 ].

Case 6. (subst-subst). Let tb11 = tb111 [x2 := wb12 ]. We have (tb111 [x2 := wb12 ])[x1 := wb11 ] −→x tb121 [x1 :=

wb11 ] where tb111 [x2 := wb12 ]−→x tb121 . By the induction hypothesis, ta11 ' tb121 . Then, by (subst-

sim) ta11 [wa11/x1]' tb121 [x1 := wb11 ].

Lemma 254 (Simulation: (Substitutional) ISWIM simulates Suspended ISWIM.). If ta1 ' tb1 and tb1 −→ tb2

where FV (ta1) = /0 and FV (tb1) = /0, then ta1 −→∗ ta2 and ta2 ' tb2 where FV (ta2) = /0 and FV (tb2) = /0.

Proof. We proceed by induction on the structure of ta1 ' tb1 .

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Let ta1 = ta11 ta12 and tb1 = tb11 tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by cases

on tb1 −→ tb2 .

Case i. (appL). Let tb11 −→ tb21 and tb2 = tb21 tb12 . By the induction hypothesis, ta11 −→∗ ta21

and ta21 ' tb21 . Then, ta11 ta12 −→∗ ta21 ta12 and by (app-sim) ta21 ta12 ' tb21 tb12 .
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Case ii. (appR). Let tb11 = vb11 , tb12 −→ tb22 and tb2 = vb11 tb22 . Given ta11 ' vb11 , by Lemma 245,

ta11 −→∗ va11 and va11 ' vb11 . By the induction hypothesis, ta12 −→∗ ta22 and ta22 ' tb22 .

Then, ta11 ta12 −→∗ va11 ta12 −→∗ va11 ta22 and by (app-sim) va11 ta22 ' vb11 tb22 .

Case iii. (app). Let tb11 =(λx.tb111)[xi := wbi ]
n
i=1, tb12 = vb12 , and tb2 = tb111 [x := vb12 ][xi := wbi ]

n
i=1.

Given ta11 ' (λx.tb111)[xi := wbi ]
n
i=1, by Lemma 242, ta11 = (λx.ta111)[wai/xi]

n
i=1, ta111 '

tb111 and wai 'wbi for any i= 1,2, ...,n. Given ta12 ' vb12 , by Lemma 245, ta12 −→∗ va12

and va12 ' vb12 .

We know (λx.ta111)[wai/xi]
n
i=1∼α λx−1.ta111 [x−1/x][wai/xi]

n
i=1 where x−1 /∈FV (λx.ta111)∪

(
⋃

i(FV (wai)∪{xi})). Then, (λx.ta111)[wai/xi]
n
i=1 va12 ∼α λx−1.ta111 [x−1/x][wai/xi]

n
i=1 va12 .

We have (λx−1.ta111 [x−1/x][wai/xi]
n
i=1) va12 −→ ta111 [x−1/x][wai/xi]

n
i=1[va12/x−1]. By

Proposition 58, (λx.ta111)[wai/xi]
n
i=1 va12 −→ ta2 and ta111 [x−1/x][wai/xi]

n
i=1[va12/x−1]∼α

ta2 .

Given FV (ta1) = /0 and FV (ta1) = FV (ta11)∪FV (ta12), we know FV (ta12) = /0. Given

ta12 −→∗ va12 , by Proposition 59, FV (va12) = /0.

Given x−1 6≡ xi for any i= 1,2, ...,n, x−1 /∈FV (wai) for any i= 1,2, ...,n and FV (va12)=

/0, by Proposition 53, we have ta111 [x−1/x][wai/xi]
n
i=1[va12/x−1]∼α ta111 [x−1/x][va12/x−1][wai/xi]

n
i=1

∼α ta111 [va12/x][wai/xi]
n
i=1. Then, ta111 [va12/x][wai/xi]

n
i=1 ∼α ta2 .

By (subst-sim), ta111 [va12/x][wai/xi]
n
i=1' tb111 [x := vb12 ][xi := wbi ]

n
i=1. Then, ta2 ' tb111 [x0 :=

vb12 ][xi := wbi ]
n
i=1.

Case 3. (lam-sim). This case is vacuous.

Case 4. (num-sim). This case is vacuous.

Case 5. (plus-sim). Let ta1 = ta11 + ta12 and tb1 = tb11 + tb12 where ta11 ' tb11 and ta12 ' tb12 . We proceed by

cases on tb1 −→ tb2 .

Case i. (plusL). Let tb11 −→ tb21 and tb2 = tb21 + tb12 . By the induction hypothesis, ta11 −→∗ ta21

and ta21 ' tb21 . Then, ta11 + ta12 −→∗ ta21 + ta12 and by (plus-sim) ta21 + ta12 ' tb21 + tb12 .

Case ii. (plusR). Let tb11 = vb11 , tb12 −→ tb22 and tb2 = vb11 + tb22 . Given ta11 ' vb11 , by Lemma

245, ta11 −→∗ va11 and va11 ' vb11 . By the induction hypothesis, ta12 −→∗ ta22 and

ta22 ' tb22 . Then, ta11 +ta12 −→∗ va11 +ta12 −→∗ va11 +ta22 and by (plus-sim) va11 +ta22 '
vb11 + tb22 .

Case iii. (plus). Let tb11 = n1, tb12 = n2, and tb2 = n where n = n1 + n2. Given ta11 ' n1, by

Lemma 245, ta11 −→∗ va11 and va11 ' n1. Given ta12 ' n2, by Lemma 245, ta12 −→∗ va12

and va12 ' n2. We proceed by cases on va11 ' n1. The only case is (num-sim), so let

va11 = n1. We proceed by cases on va12 ' n2. The only case is (num-sim), so let

va12 = n2. Then, ta11 + ta12 −→∗ n1 + ta12 −→∗ n1 + n2 −→ n where n = n1 + n2. By

(num-sim), we get n' n.
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Case 6. (subst-sim). Let ta1 = ta11 [wa11/x] and tb1 = tb11 [x := wb11 ] where ta11 ' tb11 and wa11 'wb11 . Given

ta1 ' tb11 [x := wb11 ], by Lemma 244, tb11 [x := wb11 ]−→x∗ sb21 and ta1 ' sb21 . We proceed by cases

on whether or not tb11 [x := wb11 ] is in the substitution normal form.

Case i. Let tb11 [x := wb11 ] be not in the substitution normal form. Since sb21 is in substitution

normal form, we shall have tb11 [x := wb11 ] −→x tb21 −→x∗ sb21 . By Lemma 253, ta1 '
tb21 . We also have ta1 −→∗ ta1 .

Case ii. Let tb11 [x := wb11 ] be in the substitution normal form. Then, sb21 = tb11 [x := wb11 ] =

(λx0.tb111)[xi := wbi ]
+n
i=1 where xn = x and wbn = wb11 . This case is vacuous because

tb1 6−→.

By Propositions 59 and 84, we know FV (ta2) = /0 and FV (tb2) = /0.

B.2.7 Soundness and Completeness

We demonstrate the soundness and completeness of Suspended ISWIM with respect to (Substitutional)

ISWIM.

Theorem 255 (Soundness of Suspended ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' tb1 and ta1 −→∗ va2

in (Substitutional) ISWIM where FV (ta1) = /0 and FV (tb1) = /0, then tb1 −→∗ vb2 in Suspended ISWIM and

va2 ' vb2 where FV (va2) = /0 and FV (vb2) = /0.

Proof. We proceed by induction on the length of ta1 −→∗ va2 .

Case 1. (0). Let ta1 = va2 . By Lemma 246, tb1 −→∗ vb2 and va2 ' vb2 . By Propositions 59 and 84, we

know FV (va2) = /0 and FV (vb2) = /0.

Case 2. (n+1). Let ta1 −→ ta2 −→(n) va2 . Given ta1 ' tb1 and ta1 −→ ta2 , by Lemma 251, tb1 −→∗ tb2 and

ta2 ' tb2 . Given ta2 ' tb2 and ta2 −→(n) va2 , by the induction hypothesis, tb2 −→∗ vb2 and va2 ' vb2 .

We have tb1 −→∗ tb2 −→∗ vb2 and va2 ' vb2 . By Propositions 59 and 84, we know FV (va2) = /0

and FV (vb2) = /0.

Theorem 256 (Completeness of Suspended ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' tb1 and tb1 −→∗

vb2 in Suspended ISWIM where FV (ta1) = /0 and FV (tb1) = /0, then ta1 −→∗ va2 in (Substitutional) ISWIM

and va2 ' vb2 where FV (va2) = /0 and FV (vb2) = /0.

Proof. We proceed by induction on the length of tb1 −→∗ vb2 .

Case 1. (0). Let tb1 = vb2 . By Lemma 245, ta1 ∈ VALUEsub. Let va2 = ta1 . We have ta1 −→∗ va2 and

va2 ' vb2 . By Propositions 59 and 84, we know FV (va2) = /0 and FV (vb2) = /0.
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Case 2. (n+ 1). Let tb1 −→ tb2 −→(n) vb2 . Given ta1 ' tb1 and tb1 −→ tb2 , by Lemma 254, ta1 −→∗ ta2

and ta2 ' tb2 . Given ta2 ' tb2 and tb2 −→(n) vb2 , by the induction hypothesis, ta2 −→∗ va2 and

va2 ' vb2 . We have ta1 −→∗ va2 and va2 ' vb2 . By Propositions 59 and 84, we know FV (va2) = /0

and FV (vb2) = /0.

B.2.8 Kleene Equality of Evaluators

We prove the Kleene equality of evaluators evalISWIM:SubSOS(t) and evalISWIM:SusSOS(t).

Theorem 257 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene equal

to evalISWIM:SusSOS(t).

Proof. We first show if evalISWIM:SubSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:SusSOS(t) = a.

Case 1. If evalISWIM:SubSOS(t) = function, then t −→∗ λx.t ′. By Theorem 255, t −→∗ v′ and λx.t ′ ' v′.

Proceed by induction on λx.t ′ ∼ v′.

Case i. (lam-sim). Then v′ = λx.t ′′ and t ′ ' t ′′. We have evalISWIM:SusSOS(t) = function.

Case ii. (subst-sim). Then v′ = λx.t ′′[xi := wi]
+

. We have evalISWIM:SusSOS(t) = function.

Case 2. If evalISWIM:SubSOS(t) = n, then t −→∗ n. By Theorem 255, t −→∗ v′ and n ' v′. Proceed by

induction on n∼ v′.

Case i. (num-sim). Then v′ = n. We have evalISWIM:SusSOS(t) = n.

Case ii. (subst-sim). Then v′= λx.t ′′[xi := wbi ]
+

. Given n' λx.t ′′[xi := wbi ]
+

, by Lemma 242,

n = (λx.t ′′′)[wai/xi]
+

, t ′′′ ' t ′′ and wai ' wbi for any i. This case is vacuous because

n = (λx.t ′′′)[wai/xi]
+

does not hold.

We then show if evalISWIM:SusSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:SubSOS(t) = a.

Case 1. If evalISWIM:SusSOS(t) = function, then t −→∗ λx.t ′. By Theorem 256, t −→∗ v′ and v′ ' λx.t ′.

Proceed by induction on v′ ' λx.t ′. The only case is (lam-sim). Then v′ = λx.t ′′ and t ′′ ' t ′. We

have evalISWIM:SubSOS(t) = function.

Case 2. If evalISWIM:SusSOS(t) = n, then t −→∗ n. By Theorem 256, t −→∗ v′ and v′ ' n. Proceed by

induction on v′ ' n. The only case is (num-sim). Then v′ = n. We have evalISWIM:SubSOS(t) = n.

We observe that evalISWIM:SubSOS(t) is undefined if and only if evalISWIM:SusSOS(t) is undefined. Therefore,

evalISWIM:SubSOS(t) is Kleene equal to evalISWIM:SusSOS(t).
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B.3 Equivalence of ISWIM and Environmental ISWIM

We demonstrate the equivalence of the substitutional structural operational semantics of ISWIM and the

structural operational semantics of Environmental ISWIM. We use subscripts “sub” and “env” to differentiate

the syntax of (Substitutional) ISWIM from the syntax of Environmental ISWIM.

B.3.1 Unload Function

We define U(c) to unload an Environmental ISWIM configuration c to a (Substitutional) ISWIM term.

Definition 258 (Unload Function). Define the unload function U to be a total function from the set of

configurations in Environmental ISWIM to the set of terms in (Substitutional) ISWIM.

U : CONFenv −→ TERMsub

U(n) = n

U(/λx.t, ρ.) = U(〈λx.t, ρ〉)
U(c1 c2) = U(c1)U(c2)

U(c1 + c2) = U(c1)+U(c2)

U(〈t, {(x1,w1),(x2,w2), ...,(xn,wn)}) = t[U(w1)/x1][U(w2)/x2]...[U(wn)/xn]

B.3.2 Bisimulation Relation

We introduce a bisimulation relation that relates (Substitutional) ISWIM terms to Environmental ISWIM

configurations.

Definition 259 (Bisimulation Relation). Define the bisimulation relation ' to be a binary relation up to

alpha equivalence between the set of terms in (Substitutional) ISWIM and the set of configurations in En-

vironmental ISWIM.

'⊆ TERMsub×CONFenv

t ' c if and only if t =U(c)

B.3.3 Canonisation

If a term and a configuration are relationed and one of them is a value, then the other one is a value or

multi-steps to a value. We have the following two lemmas.

Lemma 260 (Canonisation of (Substitutional) ISWIM). If ta1 ' vb1 , then ta1 ∈ VALUEsub.

Proof. We proceed by cases on vb1 ∈ VALUEenv.

Case 1. (vb1 = /λx.tb11 , ρ.). Then ta1 =U(/λx.tb11 , ρ.)=U(〈λx.tb11 , ρ〉). Suppose ρ = {(x1,w1),(x2,w2), ...,(xn,wn)}.
We have ta1 = (λx.tb11)[U(w1)/x1][U(w2)/x2]...[U(wn)/xn] ∈ VALUEsub.

Case 2. (vb1 = n). Then ta1 =U(n) = n and n ∈ VALUEsub.
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Lemma 261 (Canonisation of Environmental ISWIM). If va1 ' cb1 , then cb1 −→∗ vb2 and va1 ' vb2 .

Proof. We proceed by cases on va1 ∈ VALUEsub and by cases on cb1 ∈ CONFenv. The only possible cases are

the following ones.

Case 1. (va1 = λx.ta11).

Case i. (cb1 = /λx0.tb11 , ρ. where FV (λx0.tb11)⊆ dom(ρ)). Then /λx0.tb11 , ρ.∈ VALUEenv.

Case ii. (cb1 = 〈x0, ρ〉 where FV (x0)⊆ dom(ρ)). Given λx.ta11 ' 〈x0, ρ〉, we have λx.ta11 =

U(〈x0, ρ〉) = x0[U(wi)/xi] =U(wp) where x0 ≡ xp. Then by (var-env), 〈x0, ρ〉 −→wp

where ρ(x0) = wp. We have λx.ta11 ' wp.

Case iii. (cb1 = 〈λx0.tb11 , ρ〉where FV (λx0.tb11)⊆ dom(ρ)). Then by (clos-env), 〈λx0.tb11 , ρ〉−→
/λx0.tb11 , ρ. and /λx0.tb11 , ρ. ∈ VALUEenv.

Case 2. (va1 = n).

Case i. (cb1 = n). Then cb1 ∈ VALUEenv.

Case ii. (cb1 = 〈x0, ρ〉where FV (x0)⊆ dom(ρ)). Given n'〈x0, ρ〉, we have n=U(〈x0, ρ〉)=
x0[U(wi)/xi] = U(wp) where x0 ≡ xp. Then by (var-env), 〈x0, ρ〉 −→ wp where

ρ(x0) = wp. We have n' wp.

Case iii. (cb1 = 〈n0, ρ〉). Given n ' 〈n0, ρ〉, we have n = U(〈n0, ρ〉) = n0[U(wi)/xi] = n0.

Then by (num-env), 〈n0, ρ〉 −→ n0. We have n' n0.

B.3.4 Bisimulation

We demonstrate (Substitutional) ISWIM bisimulates Environmental ISWIM. Intuitively, if a term relates to

a configuration and one of them single-steps, then the other one multi-steps, and their results are related. .

Lemma 262 (Simulation: (Substitutional) ISWIM simulates Environmental ISWIM.). If ta1 ' cb1 and

cb1 −→ cb2 where FV (ta1) = /0 and FV (cb1) = /0, then ta1 −→∗ ta2 and ta2 ' cb2 where FV (ta2) = /0 and

FV (cb2) = /0.

Proof. We proceed by induction on the structure of cb1 ∈ CONFenv.

Case 1. (cb1 = vb1). This case is vacuous because cb1 6−→.

Case 2. (cb1 = cb11 cb12). Then ta1 = ta11 ta12 where ta11 =U(cb11) and ta12 =U(cb12). We proceed by cases

on cb1 −→ cb2 .
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Case i. (appL). Then cb11 cb12 −→ cb21 cb12 where cb11 −→ cb21 . By the induction hypothesis,

ta11 −→∗ ta21 and ta21 ' cb21 . Then ta11 ta12 −→∗ ta21 ta12 and ta21 ta12 ' cb21 cb12 .

Case ii. (appR). Then cb11 = vb11 and vb11 cb12 −→ vb11 cb22 where cb12 −→ cb22 . By Lemma

260, ta11 = va11 . By the induction hypothesis, ta12 −→∗ ta22 and ta22 ' cb22 . Then

va11 ta12 −→∗ va11 ta22 and va11 ta12 ' vb11 cb22 .

Case iii. (app). Then cb11 = /λx.tb11 , ρ., cb12 = vb12 and /λx.tb11 , ρ . vb12 −→ 〈tb11 , ρ[x 7→
vb12 ]〉. Suppose ρ = {(x1,w1),(x2,w2), ...,(xn,wn)}. We have ta11 =U(/λx.tb11 , ρ.) =

U(〈λx.tb11 , ρ〉=(λx.tb11)[U(wi)/xi]
n
i=1 and (λx.tb11)[U(wi)/xi]

n
i=1∼α λx0.tb11 [x0/x][U(wi)/xi]

n
i=1

where x0 /∈ FV (λx.tb11)∪(
⋃

i(FV (U(wi))∪xi)). By Lemma 260, we know ta12 = va12 .

Then we have (λx0.tb11 [x0/x][U(wi)/xi]
n
i=1) va12 −→ tb11 [x0/x][U(wi)/xi]

n
i=1[va12/x0].

Given FV (ta1) = /0, we know FV (ta11) = FV (λx0.tb11 [x0/x][U(wi)/xi]
n
i=1) = /0 and

FV (ta12) = FV (va12) = /0. By Proposition 53, tb11 [x0/x][U(wi)/xi]
n
i=1[va12/x0] ∼α

tb11 [va12/x][U(wi)/xi]
n
i=1. Then U(〈tb11 , ρ[x 7→ vb12 ]〉)= tb11 [U(vb12)/x][U(wi)/xi]

n
i=1 =

tb11 [va12/x][U(wi)/xi]
n
i=1. Hence tb11 [va12/x][U(wi)/xi]

n
i=1 ' 〈tb11 , ρ[x 7→ vb12 ]〉.

Case 3. (cb1 = cb11 + cb12). Then ta1 = ta11 + ta12 where ta11 =U(cb11) and ta12 =U(cb12). We proceed by

cases on cb1 −→ cb2 .

Case i. (plusL). Then cb11 + cb12 −→ cb21 + cb12 where cb11 −→ cb21 . By the induction hypo-

thesis, ta11 −→∗ ta21 and ta21 ' cb21 . Then ta11 + ta12 −→∗ ta21 + ta12 and ta21 + ta12 '
cb21 + cb12 .

Case ii. (plusR). Then cb11 = vb11 and vb11 +cb12 −→ vb11 +cb22 where cb12 −→ cb22 . By Lemma

260, ta11 = va11 . By the induction hypothesis, ta12 −→∗ ta22 and ta22 ' cb22 . Then

va11 + ta12 −→∗ va11 + ta22 and va11 + ta12 ' vb11 + cb22 .

Case iii. (plus). Then cb11 = n1, cb12 = n2, and n1 + n2 −→ n where n = n1 + n2. We have

ta11 = U(cb11) = n1, ta12 = U(cb12) = n2, and n1 + n2 −→ n where n = n1 + n2. Then

n' n.

Case 4. (cb1 = 〈tb1 , ρ〉 where FV (tb1) ⊆ dom(ρ)). Suppose ρ = {(x1,w1),(x2,w2), ...,(xn,wn)}. Then

ta1 = tb1 [U(wi)/xi]. We proceed by cases on cb1 −→ cb2 .

Case i. (clos-env). Then cb1 = 〈(λx.tb11), ρ〉 and cb2 = /(λx.tb11), ρ.. We have ta1 =U(〈(λx.tb11), ρ〉)
and ta2 =U(/(λx.tb11), ρ.) =U(〈(λx.tb11), ρ〉). Thus ta1 −→∗ ta2 and ta2 ' cb2 .

Case ii. (var-env). Then cb1 = 〈x, ρ〉 and cb2 = w where ρ(x) = w. We have ta1 =U(〈x, ρ〉) =
x[U(wi)/xi] =U(w) and ta2 =U(w). Thus ta1 −→∗ ta2 and ta2 ' cb2 .

Case iii. (num-env). Then cb1 = 〈n, ρ〉 and cb2 = n. We have ta1 = U(〈n, ρ〉) = n and ta2 =

U(n) = n. Thus ta1 −→∗ ta2 and ta2 ' cb2 .

Case iv. (app-env). Then cb1 = 〈(t1 t2), ρ〉 and cb2 = 〈t1, ρ〉 〈t2, ρ〉. We have ta1 =U(〈(t1 t2), ρ〉)=
(t1 t2)[U(wi)/xi] = (t1[U(wi)/xi]) (t2[U(wi)/xi])=U(〈t1, ρ〉)U(〈t2, ρ〉)=U(〈t1, ρ〉 〈t2, ρ〉)=
ta2 . Thus ta1 −→∗ ta2 and ta2 ' cb2 .
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Case v. (plus-env). Then cb1 = 〈(t1+t2), ρ〉 and cb2 = 〈t1, ρ〉+〈t2, ρ〉. We have ta1 =U(〈(t1+
t2), ρ〉)= (t1+t2)[U(wi)/xi] = (t1[U(wi)/xi])+(t2[U(wi)/xi])=U(〈t1, ρ〉)+U(〈t2, ρ〉)=
U(〈t1, ρ〉+ 〈t2, ρ〉) = ta2 . Thus ta1 −→∗ ta2 and ta2 ' cb2 .

By Propositions 59 and 94, we know FV (ta2) = /0 and FV (tb2) = /0.

Lemma 263 (Simulation: Environmental ISWIM simulates (Substitutional) ISWIM.). If ta1 ' cb1 and

ta1 −→ ta2 where FV (ta1) = /0 and FV (cb1) = /0, then cb1 −→∗ cb2 and ta2 ' cb2 where FV (ta2) = /0 and

FV (cb2) = /0.

Proof. We proceed by induction on the structure of ta1 ∈ TERMsub.

Case 1. (ta1 = x). This case is vacuous because x 6−→.

Case 2. (ta1 = ta11 ta12). Let cb1 = cb11 cb12 , ta11 = U(cb11) and ta12 = U(cb12). We proceed by cases on

ta1 −→ ta2 .

Case i. (appL). Then ta11 ta12 −→ ta21 ta12 where ta11 −→ ta21 . By the induction hypothesis,

cb11 −→ cb21 and ta21 ' cb21 . Then cb11 cb12 −→ cb21 cb12 and ta21 ta12 ' cb21 cb12 .

Case ii. (appR). Then ta11 = va11 and va11 ta12 −→ va11 ta22 where ta12 −→ ta22 . By Lemma

261, cb11 −→∗ vb11 . By the induction hypothesis, cb12 −→ cb22 and ta22 ' cb22 . Then

cb11 cb12 −→∗ vb11 cb12 −→ vb11 cb12 and ta11 ta22 ' cb11 cb22 .

Case iii. (app). Then ta11 = λx.ta111 , ta12 = va12 and (λx.ta111) va12 −→ ta111 [va12/x]. Given

λx.ta111 ' cb11 , by Lemma 261, cb11 −→∗ vb11 and λx.ta111 ' vb11 . Given va12 ' cb12 , by

Lemma 261, cb12 −→∗ vb12 and va12 ' vb12 . We proceed by cases on vb11 in λx.ta111 '
vb11 . The only possible case is vb11 = /λx0.tb111 , ρ. where FV (λx0.tb111) ∈ dom(ρ)

and U(/λx0.tb111 , ρ.) = λx.ta111 .

We have /λx0.tb111 , ρ . vb12 −→〈tb111 , ρ[x0 7→ vb12 ]〉 and we need to show ta111 [va12/x]'
〈tb111 , ρ[x0 7→ vb12 ]〉.
Suppose ρ = {(x1,w1),(x2,w2), ...,(xn,wn)}. Given λx.ta111 ' /λx0.tb111 , ρ.,

we have U(/λx0.tb111 , ρ.) =U(〈λx0.tb111 , ρ〉) = (λx0.tb111)[U(wi)/xi]
n
i=1 = λx.ta111 .

Then we get tb111 [x−1/x0][U(wi)/xi]
n
i=1[va12/x−1] = ta111 [va12/x] where x−1 /∈FV (λx0.tb111)∪

(
⋃

i(FV (U(wi))∪ xi)).

Given FV (ta1) = /0, we know FV (ta11) = λx.ta111 = /0 and FV (ta12) = FV (va12) = /0.

By Proposition 53, tb111 [x−1/x0][U(wi)/xi]
n
i=1[va12/x−1]∼α tb111 [va12/x0][U(wi)/xi]

n
i=1.

Then tb111 [U(vb12)/x0][U(wi)/xi]
n
i=1 = tb111 [va12/x0][U(wi)/xi]

n
i=1.

Hence, ta111 [va12/x]' 〈tb111 , ρ[x0 7→ vb12 ]〉.

Case 3. (ta1 = λx.ta11). This case is vacuous because λx.ta11 6−→.

Case 4. (ta1 = n). This case is vacuous because n 6−→.
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Case 5. (ta1 = ta11 + ta12). Let cb1 = cb11 + cb12 , ta11 =U(cb11) and ta12 =U(cb12). We proceed by cases on

ta1 −→ ta2 .

Case i. (appL). Then ta11 + ta12 −→ ta21 + ta12 where ta11 −→ ta21 . By the induction hypothesis,

cb11 −→ cb21 and ta21 ' cb21 . Then cb11 +cb12 −→ cb21 +cb12 and ta21 + ta12 ' cb21 +cb12 .

Case ii. (appR). Then ta11 = va11 and va11 + ta12 −→ va11 + ta22 where ta12 −→ ta22 . By Lemma

261, cb11 −→∗ vb11 . By the induction hypothesis, cb12 −→ cb22 and ta22 ' cb22 . Then

vb11 + cb12 −→ vb11 + cb12 and ta11 + ta22 ' cb11 + cb22 .

Case iii. (plus). Then ta11 = n1, ta12 = n2 and n1 +n2 −→ n where n = n1 +n2. Given n1 ' cb11 ,

by Lemma 261, cb11 −→∗ vb11 and n1' vb11 . Given n2' cb12 , by Lemma 261, cb12 −→∗

vb12 and n2 ' vb12 . We proceed by cases on vb11 in n1 ' vb11 and on vb12 in n2 ' vb12 .

The only case is vb11 = n1 and vb12 = n2. Then n1 + n2 −→ n where n = n1 + n2 and

n' n.

By Propositions 59 and 94, we know FV (ta2) = /0 and FV (tb2) = /0.

B.3.5 Soundness and Completeness

We demonstrate the soundness and completeness of Environmental ISWIM with respect to (Substitutional)

ISWIM.

Theorem 264 (Soundness of Environmental ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' cb1 and ta1 −→∗

va2 in (Substitutional) ISWIM where FV (ta1) = /0 and FV (cb1) = /0, then cb1 −→∗ vb2 in Environmental

ISWIM and va2 ' vb2 where FV (va2) = /0 and FV (vb2) = /0.

Proof. We proceed by induction on the length of ta1 −→∗ va2 .

Case 1. (0). Let ta1 = va2 . By Lemma 261, cb1 −→∗ vb2 and va2 ' vb2 . By Propositions 59 and 94, we

know FV (va2) = /0 and FV (vb2) = /0.

Case 2. (n+ 1). Let ta1 −→ ta2 −→(n) va2 . Given ta1 ' cb1 and ta1 −→ ta2 , by Lemma 263, cb1 −→∗ cb2

and ta2 ' cb2 . Given ta2 ' cb2 and ta2 −→(n) va2 , by the induction hypothesis, cb2 −→∗ vb2 and

va2 ' vb2 . We have cb1 −→∗ cb2 −→∗ vb2 and va2 ' vb2 . By Propositions 59 and 94, we know

FV (va2) = /0 and FV (vb2) = /0.

Remark 265. The parenthesised superscripted number n in −→(n) denotes the number of single step is n.

Theorem 266 (Completeness of Environmental ISWIM w.r.t. (Substitutional) ISWIM). If ta1 ' cb1 and

cb1 −→∗ vb2 in Environmental ISWIM where FV (ta1) = /0 and FV (cb1) = /0, then ta1 −→∗ va2 in (Substitu-

tional) ISWIM and va2 ' vb2 where FV (va2) = /0 and FV (vb2) = /0.

Proof. We proceed by induction on the length of cb1 −→∗ vb2 .
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Case 1. (0). Let cb1 = vb2 . By Lemma 260, ta1 ∈ VALUEsub. Let ta1 = va2 . We have ta1 −→∗ va2 and

va2 ' vb2 . By Propositions 59 and 94, we know FV (va2) = /0 and FV (vb2) = /0.

Case 2. (n+1). Let cb1 −→ cb2 −→(n) vb2 . Given ta1 ' cb1 and cb1 −→ cb2 , by Lemma 262, ta1 −→∗ ta2

and ta2 ' cb2 . Given ta2 ' cb2 and cb2 −→(n) vb2 , by the induction hypothesis, ta2 −→∗ va2 and

va2 ' vb2 . We have ta1 −→∗ va2 and va2 ' vb2 . By Propositions 59 and 94, we know FV (va2) = /0

and FV (vb2) = /0.

B.3.6 Kleene Equality of Evaluators

We prove the Kleene equality of evaluators evalISWIM:SubSOS(t) and evalISWIM:EnvSOS(t).

Theorem 267 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:SubSOS(t) is Kleene equal

to evalISWIM:EnvSOS(t).

Proof. We first show if evalISWIM:SubSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:EnvSOS(t) = a.

Case 1. If evalISWIM:SubSOS(t)= function, then t −→∗ λx.t ′. By Theorem 264, 〈t, /0〉−→∗ v′ and λx.t ′'
v′. Proceed by cases on v′ in λx.t ′ ' v′. The only case is v′ = /λx0.t ′′, ρ. and U(/λx0.t ′′, ρ.) =

λx.t ′. We have evalISWIM:EnvSOS(t) = function.

Case 2. If evalISWIM:SubSOS(t) = n, then t −→∗ n. By Theorem 264, 〈t, /0〉 −→∗ v′ and n' v′. Proceed by

cases on v′ in n' v′. The only case is v′ = n0 and n0 =U(n0) = n. We have evalISWIM:EnvSOS(t) =

n.

We then show if evalISWIM:EnvSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:SubSOS(t) = a.

Case 1. If evalISWIM:EnvSOS(t) = function, then 〈t, /0〉 −→∗ /λx.t ′, ρ.. By Theorem 266, t −→∗ v′ and

v′ ' /λx.t ′, ρ.. Proceed by cases on v′ in v′ ' /λx.t ′, ρ.. The only case is v′ = λx.t ′′ and

U(/λx.t ′, ρ.) = λx.t ′′. We have evalISWIM:SubSOS(t) = function.

Case 2. If evalISWIM:EnvSOS(t) = n, then 〈t, /0〉 −→∗ n. By Theorem 266, t −→∗ v′ and v′ ∼ n. Proceed by

cases on v′ in v′ ' n. The only case is v′ = n0 and n0 =U(n0) = n. We have evalISWIM:SubSOS(t) =

n.

We observe that evalISWIM:SubSOS(t) is undefined if and only if evalISWIM:EnvSOS(t) is undefined. Therefore,

evalISWIM:SubSOS(t) is Kleene equal to evalISWIM:EnvSOS(t).

B.4 Equivalence of Structural Operational Semantics and Reduction
Semantics of Environmental ISWIM

We demonstrate the equivalence of the structural operational semantics of Environmental ISWIM and re-

duction semantics of Environmental ISWIM.
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Lemma 268. If c1 −→ c2 and E ∈ ECXT, then E[c1] 7−→ E[c2].

Proof. Suppose c1 −→ c2 and E ∈ ECXT. We show that there exists some E0 ∈ ECXT such that E[c1] =

E0[c01] and E[c2] = E0[c02] where c01 −→ c02. We proceed by induction on the structure of the derivation of

c1 −→ c2.

Case 1. (appL). Let c1 = c11 c12, c2 = c21 c12 and c11 −→ c21. Let E0 = E[� c12]. By the induction

hypothesis, E0[c11] 7−→ E0[c21]. Thus E[c11 c12] 7−→ E[c21 c12].

Case 2. (appR). Let c1 = v11 c12, c2 = v11 c22 and c12 −→ c22. Let E0 = E[v11 �]. By the induction

hypothesis, E0[c12] 7−→ E0[c22]. Thus E[v11 c12] 7−→ E[v11 c22].

Case 3. (app). Let c1 = /(λx.t11), ρ . v12 and c2 = 〈t11, ρ[x 7→ v12〉. We have E[c1] 7−→ E[c2] because

c1 R c2.

Case 4. (plusL). Let c1 = c11+c12, c2 = c21+c12 and c11 −→ c21. Let E0 = E[�+c12]. By the induction

hypothesis, E0[c11] 7−→ E0[c21]. Thus E[c11 + c12] 7−→ E[c21 + c12].

Case 5. (plusR). Let c1 = v11+c12, c2 = v11+c22 and c12 −→ c22. Let E0 = E[v11+�]. By the induction

hypothesis, E0[c12] 7−→ E0[c22]. Thus E[v11 + c12] 7−→ E[v11 + c22].

Case 6. (plus). Let c1 = n1 +n2, c2 = n and n = n1 +n2. We have E[c1] 7−→ E[c2] because c1 R c2.

Case 7. (clos-env). Let c1 = 〈(λx.t), ρ〉 and c2 = /(λx.t), ρ.. We have E[c1] 7−→ E[c2] because c1 R c2.

Case 8. (var-env). Let c1 = 〈x, ρ〉, c2 = w and ρ(x) = w. We have E[c1] 7−→ E[c2] because c1 R c2.

Case 9. (num-env). Let c1 = 〈n, ρ〉 and c2 = n. We have E[c1] 7−→ E[c2] because c1 R c2.

Case 10. (app-env). Let c1 = 〈(t1 t2), ρ〉 and c2 = 〈t1, ρ〉 〈t2, ρ〉. We have E[c1] 7−→E[c2] because c1 R c2.

Case 11. (plus-env). Let c1 = 〈(t1 + t2), ρ〉 and c2 = 〈t1, ρ〉+ 〈t2, ρ〉. We have E[c1] 7−→ E[c2] because

c1 R c2.

Corollary 269. If c1 −→ c2, then c1 7−→ c2.

Proof. Suppose c1 −→ c2. Let E =� in Lemma 268. We get �[c1] 7−→�[c2]. Hence c1 7−→ c2.

Lemma 270. If c1 −→ c2 and E ∈ ECXT, then E[c1]−→ E[c2].

Proof. Suppose c1 −→ c2 and E ∈ ECXT. We proceed by induction on the structure of the derivation of

E ∈ ECXT.

Case 1. (E =�). Observe that c1 =�[c1] and c2 =�[c2]. We have �[c1]−→�[c2].
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Case 2. (E = E0[� c0]). By (appL), c1 c0 −→ c2 c0. By the induction hypothesis, E0[c1 c0]−→ E0[c2 c0].

We have E0[� c0][c1]−→ E0[� c0][c2].

Case 3. (E = E0[v0 �]). By (appR), v0 c1 −→ v0 c2. By the induction hypothesis, E0[v0 c1]−→ E0[v0 c2].

We have E0[v0 �][c1]−→ E0[v0 �][c2].

Case 4. (E = E0[�+ c0]). By (appL), c1 + c0 −→ c2 + c0. By the induction hypothesis, E0[c1 + c0] −→
E0[c2 + c0]. We have E0[�+ c0][c1]−→ E0[�+ c0][c2].

Case 5. (E = E0[v0 +�]). By (appR), v0 + c1 −→ v0 + c2. By the induction hypothesis, E0[v0 + c1] −→
E0[v0 + c2]. We have E0[v0 +�][c1]−→ E0[v0 +�][c2].

Corollary 271. If c1 7−→ c2, then c1 −→ c2.

Proof. Suppose c1 7−→ c2. We know c1 = E0[c01], c2 = E0[c02] and c01 R c02. Observe that c01 R c02

implies c01 −→ c02. Let E = E0 in Lemma 270, we get E0[c01]−→ E0[c02]. Hence c1 −→ c2.

Theorem 272. c1 −→ c2 if and only if c1 7−→ c2.

Proof. The theorem is implied by Corollaries 269 and 271.

We demonstrate the soundness and completeness of the reduction semantics with respect to the structural

operational semantics of Environmental ISWIM.

Theorem 273 (Soundness and Completeness of Reduction Semantics w.r.t Structural Operational Semantics

of Environmental ISWIM). c1 −→∗ c2 if and only if c1 7−→∗ c2.

Proof. We first show that if c1 −→∗ c2 then c1 7−→∗ c2. Suppose c1 −→(n) c2. We proceed by induction on

n.

Case 1. When n = 0, c1 = c2. We have c1 7−→∗ c2 immediately.

Case 2. Let c1 −→ c3 −→(n) c2.

Given c1 −→ c3, by Corollary 269, c1 7−→ c3. Given c3 −→(n) c2, by the induction hypothesis,

c3 7−→∗ c2. We get c1 7−→ c3 7−→∗ c2, that is c1 7−→∗ c2.

Now we show that if c1 7−→∗ c2 then c1 −→∗ c2. Suppose c1 7−→(n) c2. We proceed by induction on n.

Case 1. When n = 0, c1 = c2. We have c1 −→∗ c2 immediately.

Case 2. Let c1 7−→ c3 7−→(n) c2.

Given c1 7−→ c3, by Corollary 271, c1 −→ c3. Given c3 7−→(n) c2, by the induction hypothesis,

c3 −→∗ c2. We get c1 −→ c3 −→∗ c2, that is c1 −→∗ c2.

Therefore, c1 −→∗ c2 if and only if c1 7−→∗ c2.
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.

We prove the Kleene equality of evaluators evalISWIM:EnvSOS(t) and evalISWIM:EnvRed(t).

Theorem 274 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:EnvSOS(t) is Kleene equal

to evalISWIM:EnvRed(t).

Proof. We first show if evalISWIM:EnvSOS(t) = a where a ∈ ANSISWIM, then evalISWIM:EnvRed(t) = a.

Case 1. If evalISWIM:EnvSOS(t) = function, then 〈t, /0〉 −→∗ /λx.t ′, ρ.. By Theorem 273, 〈t, /0〉 7−→∗

/λx.t ′, ρ.. We have evalISWIM:EnvRed(t) = function.

Case 2. If evalISWIM:EnvSOS(t)= n, then 〈t, /0〉−→∗ n. By Theorem 273, 〈t, /0〉 7−→∗ n. We have evalISWIM:EnvRed(t)=

n.

We then show if evalISWIM:EnvRed(t) = a where a ∈ ANSISWIM, then evalISWIM:EnvSOS(t) = a.

Case 1. If evalISWIM:EnvRed(t) = function, then 〈t, /0〉 7−→∗ /λx.t ′, ρ.. By Theorem 273, 〈t, /0〉 −→∗

/λx.t ′, ρ.. We have evalISWIM:EnvSOS(t) = function.

Case 2. If evalISWIM:EnvRed(t)= n, then 〈t, /0〉 7−→∗ n. By Theorem 273, 〈t, /0〉−→∗ n. We have evalISWIM:EnvSOS(t)=

n.

We observe that evalISWIM:EnvSOS(t) is undefined if and only if evalISWIM:EnvRed(t) is undefined. Therefore,

evalISWIM:EnvSOS(t) is Kleene equal to evalISWIM:EnvRed(t).

B.5 Equivalence of Reduction Semantics and Abstract Machine (CEK
Machine) of Environmental ISWIM

We demonstrate the equivalence of the structural operational semantics of Environmental ISWIM and the

abstract machine (CEK machine) of Environmental ISWIM.

Lemma 275. 〈E, v〉f 7−→∗cek 〈E, v〉b.

Proof. We proceed by induction on the structure of the derivation of v ∈ VALUE.

Case 1. (/λx.t1, ρ. ∈ VALUE). We immediately have 〈E, /λx.t1, ρ.〉f 7−→cek 〈E, /λx.t1, ρ.〉b.

Case 2. (n ∈ VALUE). We immediately have 〈E, n〉f 7−→cek 〈E, n〉b.

Lemma 276. If c1 R c2, then 〈E, c1〉f 7−→∗cek 〈E, c1〉r 7−→cek 〈E, c2〉f.

Proof. We proceed by cases on c1 R c2.

Case 1. (app). Let c1 = /(λx.t11), ρ . v12 and c2 = 〈t11, ρ[x 7→ v12]〉. We have:
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〈E, /(λx.t11), ρ . v12〉f
7−→cek 〈E[� v12], /(λx.t11), ρ.〉f
7−→cek 〈E[� v12], /(λx.t11), ρ.〉b
7−→cek 〈E[/(λx.t11), ρ . �], v12〉f
7−→∗cek 〈E[/(λx.t11), ρ . �], v12〉b by Lemma 275

7−→cek 〈E, /(λx.t11), ρ . v12〉r
7−→cek 〈E, 〈t11, ρ[x 7→ v12]〉〉f

Case 2. (plus). Let c1 = n1 +n2 and c2 = n where n = n1 +n2. We have:

〈E, n1 +n2〉f
7−→cek 〈E[�+n2], n1〉f
7−→cek 〈E[�+n2], n1〉b
7−→cek 〈E[n1 +�], n2〉f
7−→cek 〈E[n1 +�], n2〉b
7−→cek 〈E, n1 +n2〉r
7−→cek 〈E, n〉f where n = n1 +n2

Case 3. (other cases). Let c1 = 〈t11, ρ〉 and 〈t11, ρ〉R c2. We have:

〈E, 〈t11, ρ〉〉f
7−→cek 〈E, 〈t11, ρ〉〉r
7−→cek 〈E, c2〉f

Lemma 277. If c = E1[c1] and c1 R c2, then 〈E, c〉f 7−→∗cek 〈EE1, c1〉f.

Proof. Suppose c = E1[c1] and c1 R c2. We want to show 〈E, c〉f 7−→∗cek 〈EE1, c1〉f. We proceed by

induction on the structure of the derivation of E1.

Case 1. (E1 =�). We know 〈E, c〉f = 〈E, c1〉f and 〈E, c1〉f 7−→∗cek 〈E, c1〉f.

Case 2. (E1 = E11 c11). We know 〈E, c〉f = 〈E, E1[c1]〉f = 〈E, (E11 c11)[c1]〉f. We have:

〈E, (E11 c11)[c1]〉f
7−→cek 〈E[� c11], E11[c1]〉f

Since E11 is a component of E1, by the induction hypothesis, we have 〈E[� c11], E11[c1]〉f 7−→∗cek

〈E[E11 c11], c1〉f.

Case 3. (E1 = v11 E11). We know 〈E, c〉f = 〈E, E1[c1]〉f = 〈E, (v11 E11)[c1]〉f. We have:
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〈E, (v11 E11)[c1]〉f
7−→cek 〈E[� E11[c1]], v11〉f
7−→∗cek 〈E[� E11[c1]], v11〉b by Lemma 275

7−→cek 〈E[v11 �], E11[c1]〉f

Since E11 is a component of E1, by the induction hypothesis, we have 〈E[v11 �], E11[c1]〉f 7−→∗cek

〈E[v11 E11], c1〉f.

Case 4. (E1 = E11 + c11). We know 〈E, c〉f = 〈E, E1[c1]〉f = 〈E, (E11 + c11)[c1]〉f. We have:

〈E, (E11 + c11)[c1]〉f
7−→cek 〈E[�+ c11], E11[c1]〉f

Since E11 is a component of E1, by the induction hypothesis, we have 〈E[�+c11], E11[c1]〉f 7−→∗cek

〈E[E11 + c11], c1〉f.

Case 5. (E1 = v11 +E11). We know 〈E, c〉f = 〈E, E1[c1]〉f = 〈E, (v11 +E11)[c1]〉f. We have:

〈E, (v11 +E11)[c1]〉f
7−→cek 〈E[�+E11[c1]], v11〉f
7−→∗cek 〈E[�+E11[c1]], v11〉b by Lemma 275

7−→cek 〈E[v11 +�], E11[c1]〉f

Since E11 is a component of E1, by the induction hypothesis, we have 〈E[v11+�], E11[c1]〉f 7−→∗cek

〈E[v11 +E11], c1〉f.

Lemma 278. If E0[c0] = E1[c1] and E1[c1] 7−→ E1[c2] where c1 R c2, then 〈E0, c0〉f 7−→∗cek 〈E1, c2〉f.

Proof. If c1 is inside c0 (or the same as c0), E1 extends E0 (or is the same as E0). Otherwise, because c0 is

not reduced, it must be a value.

Case 1. Suppose c1 is inside c0 (or the same as c0). Let c0 =E2[c1]. Then E1 =E0E2. We have 〈E0, c0〉f =
〈E0, E2[c1]〉f. By Lemma 277, 〈E0, E2[c1]〉f 7−→∗cek 〈E0E2, c1〉f. Given c1 R c2, by Lemma 276,

〈E0E2, c1〉f 7−→∗cek 〈E0E2, c1〉r 7−→cek 〈E0E2, c2〉f.

Case 2. Otherwise, c0 ∈ VALUE. By Lemma 275, 〈E0, c0〉f 7−→∗cek 〈E0, c0〉b. We prove the following

statement by induction on the structure of the derivation of E0 ∈ ECXT.

Statement: If E0[c0] = E1[c1] where c0 ∈ VALUE and E1[c1] 7−→ E1[c2] where c1 R c2, then

〈E0, c0〉b 7−→∗cek 〈E1, c2〉f.

Case i. (E0 =�). This case is vacuous.
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Case ii. (E0 = E2[� c22]). We have:

〈E0, c0〉b
= 〈E2[� c22], c0〉b
7−→cek 〈E2[c0 �], c22〉f

Case a. If c22 R c23, then c1 = c22 and c2 = c23.

By Lemma 276, 〈E2[c0 �], c22〉f 7−→∗cek 〈E2[c0 �], c2〉f.
Case b. If c22 6R and c22 ∈ VALUE, we have:

〈E2[c0 �], c22〉f
7−→cek 〈E2[c0 �], c22〉b
7−→cek 〈E2, c0 c22〉r

Then c1 = c0 c22. By Lemma 276, 〈E2, c0 c22〉r 7−→cek 〈E2, c2〉f.
Case c. If c22 6R and c22 6∈ VALUE, then c22 = E3[c1]. Hence E1 = E2[c0 E3]. We

have:
〈E2[c0 �], c22〉f

= 〈E2[c0 �], E3[c1]〉f
7−→∗cek 〈E2[c0 E3], c1〉f by Lemma 277

7−→∗cek 〈E2[c0 E3], c2〉f by Lemma 276

Case iii. (E0 = E2[v21 �]). We have:

〈E0, c0〉b
= 〈E2[v21 �], c0〉b
7−→cek 〈E2, v21 c0〉r

Then c1 = v21 c0. By Lemma 276, 〈E2, v21 c0〉r 7−→cek 〈E2, c2〉f.

Case iv. (E0 = E2[�+ c22]). We have:

〈E0, c0〉b
= 〈E2[�+ c22], c0〉b
7−→cek 〈E2[c0 +�], c22〉f

Case a. If c22 R c23, then c1 = c22 and c2 = c23.

By Lemma 276, 〈E2[c0 +�], c22〉f 7−→∗cek 〈E2[c0 +�], c2〉f.
Case b. If c22 6R and c22 ∈ VALUE, we have:

〈E2[c0 +�], c22〉f
7−→cek 〈E2[c0 +�], c22〉b
7−→cek 〈E2, c0 + c22〉r

Then c1 = c0 + c22. By Lemma 276, 〈E2, c0 + c22〉r 7−→cek 〈E2, c2〉f.
Case c. If c22 6R and c22 6∈ VALUE, then c22 = E3[c1]. Hence E1 = E2[c0+E3]. We

have:
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〈E2[c0 +�], c22〉f
= 〈E2[c0 +�], E3[c1]〉f
7−→∗cek 〈E2[c0 +E3], c1〉f by Lemma 277

7−→∗cek 〈E2[c0 +E3], c2〉f by Lemma 276

Case v. (E0 = E2[v21 +�]). We have:

〈E0, c0〉b
= 〈E2[v21 +�], c0〉b
7−→cek 〈E2, v21 + c0〉r

Then c1 = v21 + c0. By Lemma 276, 〈E2, v21 + c0〉r 7−→cek 〈E2, c2〉f.

Lemma 279. If v = E[c], then 〈E, c〉b 7−→∗cek v.

Proof. Suppose v = E[c]. We know c ∈ VALUE. We proceed by induction on the structure of the derivation

of E ∈ ECXT.

Case 1. (E =�). Then v = c. We have 〈�, v〉b 7−→mek v.

Case 2. (E = E1[� c12]). Then v = E1[c c12]. We know c ∈ VALUE and c12 ∈ VALUE. We have:

〈E1[� c12], c〉b
7−→cek 〈E1[c�], c12〉f
7−→∗cek 〈E1[c�], c12〉b by Lemma 275

7−→cek 〈E1, c c12〉f
7−→∗cek 〈E1, c c12〉b by Lemma 275

Since E1 is a component of E, by the induction hypothesis, we have 〈E1, c c12〉b 7−→∗cek v.

Case 3. (E = E1[v11 �]). Then v = E1[v11 c]. We know c ∈ VALUEi. We have:

〈E1[v11 �], c〉b
7−→cek 〈E1, v11 c〉f
7−→∗cek 〈E1, v11 c〉b by Lemma 275

Since E1 is a component of E, by the induction hypothesis, we have 〈E1, v11 c〉b 7−→∗cek v.

Case 4. (E = E1[�+ c12]). Then v = E1[c+ c12]. We know c ∈ VALUE and c12 ∈ VALUE. We have:

〈E1[�+ c12], c〉b
7−→cek 〈E1[c+�], c12〉f
7−→∗cek 〈E1[c+�], c12〉b by Lemma 275

7−→cek 〈E1, c+ c12〉f
7−→∗cek 〈E1, c+ c12〉b by Lemma 275
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Since E1 is a component of E, by the induction hypothesis, we have 〈E1, c+ c12〉b 7−→∗cek v.

Case 5. (E = E1[v11 +�]). Then v = E1[v11 + c]. We know c ∈ VALUEi. We have:

〈E1[v11 +�], c〉b
7−→cek 〈E1, v11 + c〉f
7−→∗cek 〈E1, v11 + c〉b by Lemma 275

Since E1 is a component of E, by the induction hypothesis, we have 〈E1, v11 + c〉b 7−→∗cek v.

Lemma 280. If v = E[c], then 〈E, c〉f 7−→∗cek v.

Proof. Suppose v = E[c]. Then c ∈ VALUE. By Lemma 275, 〈E, c〉f 7−→∗cek 〈E, c〉b. By Lemma 279,

〈E, c〉b 7−→cek v. Hence 〈E, c〉f 7−→∗cek v.

Lemma 281. If E[c1] 7−→∗ v2, then 〈E, c1〉f 7−→∗cek v2.

Proof. Suppose E[c1] 7−→(n)
cek v2. We proceed by induction on n.

Case 1. When n = 0, v2 = E[c1]. By Lemma 280, 〈E, c1〉f 7−→∗cek v2.

Case 2. Let E[c1] 7−→E1[c2] 7−→(n) v2 where E[c1] =E1[c11] and c11 R c2. By Lemma 278, 〈E, c1〉f 7−→∗cek

〈E1, c2〉f. Given E1[c2] 7−→(n) v2, by the induction hypothesis, 〈E1, c2〉f 7−→∗cek v2. Hence we have

〈E, c1〉f 7−→∗cek v2.

We demonstrate the soundness of the CEK machine with respect to the reduction semantics of Environ-

mental ISWIM.

Theorem 282 (Soundness of CEK Machine w.r.t. Reduction Semantics of Environmental ISWIM). For any

t1 ∈ PRGMISWIM, if 〈t1, /0〉 7−→∗ v2, then 〈�, 〈t1, /0〉〉f 7−→∗cek v2.

Proof. Suppose �[〈t1, /0〉] 7−→∗ v2, by Lemma 281, 〈�, 〈t1, /0〉〉f 7−→∗cek v2.

Any machine configuration in the CEK machine can be translated to its corresponding representation as

a configuration in Environmental ISWIM.

Definition 283 (Translator). Define the translator Tcek→env to be a total function from the set of machine

configurations CFG to the set of configurations CONF.

Tcek→env : CFG→ CONF

Tcek→env(v) = v

Tcek→env(〈E, c〉r) = E[c]

Tcek→env(〈E, c〉f) = E[c]

Tcek→env(〈E, c〉b) = E[c]
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Lemma 284. If C1 7−→cek C2, then Tcek→env(C1) 7−→∗ Tcek→env(C2).

Proof. We proceed by cases on C1 7−→cek C2.

Case 1. Reduce rules: Let C1 = 〈E, c1〉r and C2 = 〈E, c2〉f. Then E[c1] 7−→ E[c2] where c1 R c2. Hence

Tcek→env(C1) 7−→∗ Tcek→env(C2).

Case 2. Focus rules: Let C1 = 〈E1, c1〉f and C2 = 〈E2, c2〉?. Then E1[c1] =E2[c2]. Hence Tcek→env(C1) 7−→∗

Tcek→env(C2).

Case 3. Build rules:

Case i. (b-val). Let C1 = 〈�, v〉b and C2 = v. Then �[v] = v. Hence Tcek→env(C1) 7−→∗

Tcek→env(C2).

Case ii. (other rules). Let C1 = 〈E1, c1〉b and C2 = 〈E2, c2〉?. Then E1[c1] = E2[c2]. Hence

Tcek→env(C1) 7−→∗ Tcek→env(C2).

Lemma 285. If C1 7−→∗cek C2, then Tcek→env(C1) 7−→∗ Tcek→env(C2).

Proof. Suppose C1 7−→(n)
cek C2. We proceed by induction on n.

Case 1. (0). Then C1 =C2. Then Tcek→env(C1)=Tcek→env(C2). We have Tcek→env(C1) 7−→∗Tcek→env(C2)

immediately.

Case 2. (n+1). Let C1 7−→cek C3 7−→(n)
cek C2.

Given C1 7−→cek C3, by Lemma 284, Tcek→env(C1) 7−→∗ Tcek→env(C3).

Given C3 7−→(n)
cek C2, by the induction hypothesis, Tcek→env(C3) 7−→∗ Tcek→env(C2).

Hence Tcek→env(C1) 7−→∗ Tcek→env(C2).

We demonstrate the completeness of the CEK machine with respect to the reduction semantics of En-

vironmental ISWIM.

Theorem 286 (Completeness of CEK Machine w.r.t. Reduction Semantics of Environmental ISWIM). For

any t1 ∈ PRGMISWIM, if 〈�, 〈t, /0〉〉f 7−→∗cek v2, then 〈t, /0〉 7−→∗ v2.

Proof. If 〈�, 〈t, /0〉〉f 7−→∗cek v2, by Lemma 285, Tcek→env(〈�, 〈t, /0〉〉f) 7−→∗Tcek→env(v2). We have 〈t, /0〉 7−→∗

v2.

We prove the Kleene equality of evaluators evalISWIM:EnvRed(t) and evalISWIM:CEK(t).

Theorem 287 (Kleene Equality of Evaluators). For any t ∈ PRGMISWIM, evalISWIM:EnvRed(t) is Kleene equal

to evalISWIM:CEK(t).

Proof. We first show if evalISWIM:EnvRed(t) = a where a ∈ ANSISWIM, then evalISWIM:CEK(t) = a.
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Case 1. If evalISWIM:EnvRed(t)= function, then 〈t, /0〉 7−→∗ /λx.t ′, ρ.. By Theorem 282, 〈�, 〈t, /0〉〉f 7−→∗cek

/λx.t ′, ρ.. We have evalISWIM:CEK(t) = function.

Case 2. If evalISWIM:EnvRed(t) = n, then 〈t, /0〉 7−→∗ n. By Theorem 282, 〈�, 〈t, /0〉〉f 7−→∗cek n. We have

evalISWIM:CEK(t) = n.

We then show if evalISWIM:CEK(t) = a where a ∈ ANSISWIM, then evalISWIM:EnvRed(t) = a.

Case 1. If evalISWIM:CEK(t)= function, then 〈�, 〈t, /0〉〉f 7−→∗cek /λx.t ′, ρ.. By Theorem 286, 〈t, /0〉 7−→∗

/λx.t ′, ρ.. We have evalISWIM:EnvRed(t) = function.

Case 2. If evalISWIM:CEK(t) = n, then 〈�, 〈t, /0〉〉f 7−→∗cek n. By Theorem 286, 〈t, /0〉 7−→∗ n. We have

evalISWIM:EnvRed(t) = n.

We observe that evalISWIM:EnvRed(t) is undefined if and only if evalISWIM:CEK(t) is undefined. Therefore,

evalISWIM:EnvRed(t) is Kleene equal to evalISWIM:CEK(t).
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Appendix C

Proofs of Chapter 4

C.1 Equivalence of Substitutional Structural Operational Semantics and
Substitutional Reduction Semantics of MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the

substitutional reduction semantics of Environmental MetaML.

Lemma 288. If t i
1 −→i t i

2 and E ∈ EXCTi( j, then E i( j[t i
1] 7−→ j E i( j[t i

2].

Proof. Suppose that t i
1 −→i t i

2 and E ∈ EXCTi( j. We show there exists some E0 ∈ ECXTk( j and t01, t02 ∈
TERMk such that E i( j[t i

1] =Ek( j
0 [tk

01] and E i( j[t i
2] =Ek( j

0 [tk
02] where tk

01−→k tk
02. We proceed by induction

on the structure of the derivation of t i
1 −→i t i

2.

Case 1. (lambda-(i+1)). Let t i+1
1 = λx.t i+1

11 , t i+1
2 = λx.t i+1

21 and t i+1
11 −→i+1 t i+1

21 . Let E(i+1)( j
0 =E(i+1)( j[λx.�].

By the induction hypothesis, E(i+1)( j
0 [t i+1

11 ] 7−→ j E(i+1)( j
0 [t i+1

21 ]. Thus E(i+1)( j[λx.t i+1
11 ] 7−→ j

E(i+1)( j[λx.t i+1
21 ].

Case 2. (appL-i). Let t i
1 = t i

11 t i
12, t i

2 = t i
21 t i

12 and t i
11 −→i t i

21. Let E i( j
0 = E i( j[� t i

12]. By the induction

hypothesis, E i( j
0 [t i

11] 7−→ j E i( j
0 [t i

21]. Thus E i( j[t i
11 t i

12] 7−→ j E i( j[t i
21 t i

12].

Case 3. (appR-i). Let t i
1 = vi

11 t i
12, t i

2 = vi
11 t i

22 and t i
11 −→i t i

22. Let E i( j
0 = E i( j[vi

11 �]. By the induction

hypothesis, E i( j
0 [t i

12] 7−→ j E i( j
0 [t i

22]. Thus E i( j[vi
11 t i

12] 7−→ j E i( j[vi
11 t i

22].

Case 4. (app-0). Let t0
1 = (λx.t0) v0 and t0

2 = t0[v0/x]. We have E0( j[t0
1 ] 7−→ j E0( j[t0

2 ] because t0
1 R0 t0

2 .

Case 5. (run-0). Let t0
1 =!〈v1〉 and t0

2 = v1. We have E0( j[t0
1 ] 7−→ j E0( j[t0

2 ] because t0
1 R0 t0

2 .

Case 6. (run-i). Let t i
1 =!t i

11, t i
2 =!t i

21 and t i
11 −→i t i

21. Let E i( j
0 = E i( j[!�]. By the induction hypothesis,

E i( j
0 [t i

11] 7−→ j E i( j
0 [t i

21]. Thus E i( j[!t i
11] 7−→ j E i( j[!t i

21].

Case 7. (code-i). Let t i
1 = 〈t i+1

11 〉, t i
2 = 〈t i+1

21 〉 and t i+1
11 −→i+1 t i+1

21 . Let E(i+1)( j
0 = E i( j[〈�〉]. By the

induction hypothesis, E(i+1)( j
0 [t i+1

11 ] 7−→ j E(i+1)( j
0 [t i+1

21 ]. Thus E i( j[〈t i+1
11 〉] 7−→ j E i( j[〈t i+1

21 〉].

Case 8. (splice-1). Let t1
1 =∼〈v1〉 and t1

2 = v1. We have E1( j[t1
1 ] 7−→ j E1( j[t1

2 ] because t1
1 R1 t1

2 .

Case 9. (splice-(i+1)). Let t i+1
1 = ∼t i

11, t i+1
2 = ∼t i

21 and t i
11 −→i t i

21. Let E i( j
0 = E(i+1)( j[∼�]. By the

induction hypothesis, E i( j
0 [t i

11] 7−→ j E i( j
0 [t i

21]. Thus E(i+1)( j[∼t i
11] 7−→ j E(i+1)( j[∼t i

21].
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Case 10. (plusL-i). Let t i
1 = t i

11 + t i
12, t i

2 = t i
21 + t i

12 and t i
11 −→i t i

21. Let E i( j
0 = E i( j[�+ t i

12]. By the

induction hypothesis, E i( j
0 [t i

11] 7−→ j E i( j
0 [t i

21]. Thus E i( j[t i
11 + t i

12] 7−→ j E i( j[t i
21 + t i

12].

Case 11. (plusR-i). Let t i
1 = vi

11 + t i
12, t i

2 = vi
11 + t i

22 and t i
11 −→i t i

22. Let E i( j
0 = E i( j[vi

11 +�]. By the

induction hypothesis, E i( j
0 [t i

12] 7−→ j E i( j
0 [t i

22]. Thus E i( j[vi
11 + t i

12] 7−→ j E i( j[vi
11 + t i

22].

Case 12. (plus-0). Let t0
1 = n1+n2 and t0

2 = n where n = n1+n2. We have E0( j[t0
1 ] 7−→ j E0( j[t0

2 ] because

t0
1 R0 t0

2 .

Therefore, if t i
1 −→i t i

2 and E ∈ EXCTi( j, then E i( j[t i
1] 7−→ j E i( j[t i

2].

Corollary 289. If t i
1 −→i t i

2, then t i
1 7−→i t i

2.

Proof. Suppose t i
1−→i t i

2. Let E =�i(i in Lemma 288. We get�i(i[t i
1] 7−→i�i(i[t i

2]. Hence t i
1 7−→i t i

2.

Lemma 290. If t i
1 −→i t i

2 and E ∈ ECXTi( j, then E i( j[t i
1]−→ j E i( j[t i

2].

Proof. Suppose t i
1 −→i t i

2 and E ∈ ECXTi( j. We proceed by induction on the structure of the derivation

E ∈ ECXTi( j.

Case 1. (E =�). Observe that t i
1 =�

i(i[t i
1] and t i

2 =�
i(i[t i

2]. We have �i(i[t i
1]−→i �i[t i

1]

Case 2. (E = E i( j
0 [� t i

0]). By (appL-i), t i
1 t i

0 −→i t i
2 t i

0. By the induction hypothesis, E i( j
0 [t i

1 t i
0] −→ j

E i( j
0 [t i

2 t i
0]. Thus E i( j

0 [� t i
0][t

i
1]−→ j E i( j

0 [� t i
0][t

i
2].

Case 3. (E = E i( j
0 [vi

0 �]). By (appR-i), vi
0 t i

1 −→i vi
0 t i

2. By the induction hypothesis, E i( j
0 [vi

0 t i
1] −→ j

E i( j
0 [vi

0 t i
2]. Thus E i( j

0 [vi
0 �][t

i
1]−→ j E i( j

0 [vi
0 �][t

i
2].

Case 4. (E = E(i+1)( j
0 [λx.�]). By (lambda-(i+1)), λx.t i+1

1 −→i+1 λx.t i+1
2 .

By the induction hypothesis, E(i+1)( j
0 [λx.t i+1

1 ]−→ j E(i+1)( j
0 [λx.t i+1

2 ]. Thus E(i+1)( j
0 [λx.�][t i+1

1 ]−→ j

E(i+1)( j
0 [λx.�][t i+1

2 ].

Case 5. (E = E i( j
0 [〈�〉]). By (code-i), 〈t i+1

1 〉 −→i 〈t i+1
2 〉. By the induction hypothesis, E i( j

0 [〈t i+1
1 〉]−→ j

E i( j
0 [〈t i+1

2 〉]. Thus E i( j
0 [〈�〉][t i+1

1 ]−→ j E i( j
0 [〈�〉][t i+1

2 ].

Case 6. (E =E(i+1)( j
0 [∼�]). By (splice-(i+1)),∼t i

1−→i+1∼t i
2. By the induction hypothesis, E(i+1)( j

0 [∼t i
1]−→ j

E(i+1)( j
0 [∼t i

2]. Thus E(i+1)( j
0 [∼�][t i

1]−→ j E(i+1)( j
0 [∼�][t i

2].

Case 7. (E = E i( j
0 [!�]). By (run-i), !t i

1 −→i!t i
2. By the induction hypothesis, E i( j

0 [!t i
1] −→ j E i( j

0 [!t i
2].

Thus E i( j
0 [!�][t i

1]−→ j E i( j
0 [!�][t i

2].

Case 8. (E = E i( j
0 [�+ t i

0]). By (plusL-i), t i
1 + t i

0 −→i t i
2 + t i

0. By the induction hypothesis, E i( j
0 [t i

1 +

t i
0]−→ j E i( j

0 [t i
2 + t i

0]. Thus E i( j
0 [�+ t i

0][t
i
1]−→ j E i( j

0 [�+ t i
0][t

i
2].

Case 9. (E = E i( j
0 [vi

0 +�]). By (plusR-i), vi
0 + t i

1 −→i vi
0 + t i

2. By the induction hypothesis, E i( j
0 [vi

0 +

t i
1]−→ j E i( j

0 [vi
0 + t i

2]. Thus E i( j
0 [vi

0 +�][t
i
1]−→ j E i( j

0 [vi
0 +�][t

i
2].
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Therefore, if t i
1 −→i t i

2 and E ∈ ECXTi( j, then E i( j[t i
1]−→ j E i( j[t i

2].

Corollary 291. If t i
1 7−→i t i

2, then t i
1 −→i t i

2.

Proof. Suppose t i
1 7−→i t i

2. Let t i
1 = E j(i

0 [t j
01], t i

2 = E j(i
0 [t j

02] and t j
01 R j t j

02. Observe that t j
01 R j t j

02 implies

t j
01 −→ j t j

02. Let E = E j(i
0 in Lemma 290. We get E j(i

0 [t j
01]−→i E j(i

0 [t j
02]. Hence t i

1 −→i t i
2.

Theorem 292. t i
1 −→i t i

2 if and only if t i
1 7−→i t i

2.

Proof. This theorem follows Corollaries 289 and 291 directly.

Theorem 293. t i
1 −→i∗ t i

2 if and only if t i
1 7−→i∗ t i

2.

Proof. We first show that if t i
1 −→i∗ t i

2 then t i
1 7−→i∗ t i

2. Suppose t i
1 −→i(n) t i

2. We proceed by induction on n.

Case 1. When n = 0, t i
1 = t i

2. We have t i
1 7−→i∗ t i

2 immediately.

Case 2. Let t i
1 −→i t i

3 −→i(n) t i
2.

Given t i
1 −→i t i

3, by Corollary 289, t i
1 7−→i t i

3.

Given t i
3 −→i(n) t i

2, by the induction hypothesis, t i
3 7−→i∗ t i

2.

We get t i
1 7−→i t i

3 7−→i∗ t i
2. Hence t i

1 7−→i∗ t i
2.

Now we show that if t i
1 7−→i∗ t i

2 then t i
1 −→i∗ t i

2. Suppose t i
1 7−→i(n) t i

2. We proceed by induction on n.

Case 1. When n = 0, t i
1 = t i

2. We have t i
1 −→i∗ t i

2 immediately.

Case 2. Let t i
1 7−→i t i

3 7−→i(n) t i
2.

Given t i
1 7−→i t i

3, by Corollary 291, t i
1 −→i t i

3.

Given t i
3 7−→i(n) t i

2, by the induction hypothesis, t i
3 −→i∗ t i

2.

We get t i
1 −→i t i

3 −→i∗ t i
2. Hence t i

1 −→i∗ t i
2.

Therefore, t i
1 −→i∗ t i

2 if and only if t i
1 7−→i∗ t i

2.

Theorem 294 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:SubRed(t).

Proof. We first show if evalMetaML:SubSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:SubRed(t) = a.

Case 1. If evalMetaML:SubSOS(t) = function, then t −→0∗ λx.t ′
0
. By Theorem 293, t 7−→0∗ λx.t ′

0
.

We have evalMetaML:SubRed(t) = function.

Case 2. If evalMetaML:SubSOS(t) = code, then t −→0∗ 〈v1〉. By Theorem 293, t 7−→0∗ 〈v1〉.
We have evalMetaML:SubRed(t) = code.

Case 3. If evalMetaML:SubSOS(t) = n, then t −→0∗ n. By Theorem 293, t 7−→0∗ n.

We have evalMetaML:SubRed(t) = n.
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We then show if evalMetaML:SubRed(t) = a where a ∈ ANSMetaML, then evalMetaML:SubSOS(t) = a.

Case 1. If evalMetaML:SubRed(t) = function, then t 7−→0∗ λx.t ′
0
. By Theorem 293, t −→0∗ λx.t ′

0
.

We have evalMetaML:SubSOS(t) = function.

Case 2. If evalMetaML:SubRed(t) = code, then t 7−→0∗ 〈v1〉. By Theorem 293, t −→0∗ 〈v1〉.
We have evalMetaML:SubSOS(t) = code.

Case 3. If evalMetaML:SubRed(t) = n, then t 7−→0∗ n. By Theorem 293, t −→0∗ n.

We have evalMetaML:SubSOS(t) = n.

We observe that evalMetaML:SubSOS(t) is undefined if and only if evalMetaML:SubRed(t) is undefined. Therefore,

evalMetaML:SubSOS(t) is Kleene equal to evalMetaML:SubRed(t).

C.2 Equivalence of Substitutional Reduction Semantics and Substitutional
Abstract Machine (MK Machine) of MetaML

We demonstrate the equivalence of the substitutional reduction semantics of MetaML and the substitutional

abstract machine (the MK machine) of Environmental MetaML.

Lemma 295. 〈i, E i(0, vi〉f 7−→∗mk 〈i, E i(0, vi〉b.

Proof. We proceed by induction on the structure of the derivation of vi ∈ VALUEi.

Case 1. (x ∈ VALUEi+1). We immediately have 〈i+1, E(i+1)(0, x〉f 7−→mk 〈i, E(i+1)(0, x〉b.

Case 2. (vi+1
1 vi+1

2 ∈ VALUEi+1). We have:

〈i+1, E(i+1)(0, vi+1
1 vi+1

2 〉f
7−→mk 〈i+1, E(i+1)(0[� vi+1

2 ], vi+1
1 〉f

7−→∗mk 〈i+1, E(i+1)(0[� vi+1
2 ], vi+1

1 〉b by the induction hypothesis

7−→mk 〈i+1, E(i+1)(0[vi+1
1 �], vi+1

2 〉f
7−→∗mk 〈i+1, E(i+1)(0[vi+1

1 �], vi+1
2 〉b by the induction hypothesis

7−→mk 〈i+1, E(i+1)(0, vi+1
1 vi+1

2 〉b

Case 3. (λx.t0
1 ∈ VALUE0). We immediately have 〈0, E0(0, λx.t0

1〉f 7−→mk 〈0, E0(0, λx.t0
1〉b.

Case 4. (λx.vi+1
1 ∈ VALUEi+1). We have:

〈i+1, E(i+1)(0, λx.vi+1
1 〉f

7−→mk 〈i+1, E(i+1)(0[λx.�], vi+1
1 〉f

7−→∗mk 〈i+1, E(i+1)(0[λx.�], vi+1
1 〉b by the induction hypothesis

7−→mk 〈i+1, E(i+1)(0, λx.vi+1
1 〉b
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Case 5. (〈vi+1
1 〉 ∈ VALUEi). We have:

〈i, E i(0, 〈vi+1
1 〉〉f

7−→mk 〈i+1, E i(0[〈�〉], vi+1
1 〉f

7−→∗mk 〈i+1, E i(0[〈�〉], vi+1
1 〉b by the induction hypothesis

7−→mk 〈i, E i(0, 〈vi+1
1 〉〉b

Case 6. (∼vi+1
1 ∈ VALUEi+2). We have:

〈i+2, E(i+2)(0, ∼vi+1
1 〉f

7−→mk 〈i+1, E(i+2)(0[∼�], vi+1
1 〉f

7−→∗mk 〈i+1, E(i+2)(0[∼�], vi+1
1 〉b by the induction hypothesis

7−→mk 〈i+2, E(i+2)(0, ∼vi+1
1 〉b

Case 7. (!vi+1
1 ∈ VALUEi+1). We have:

〈i+1, E(i+1)(0, !vi+1
1 〉f

7−→mk 〈i+1, E(i+1)(0[!�], vi+1
1 〉f

7−→∗mk 〈i+1, E(i+1)(0[!�], vi+1
1 〉b by the induction hypothesis

7−→mk 〈i+1, E(i+1)(0, !vi+1
1 〉b

Case 8. (n ∈ VALUEi). We immediately have 〈i, E i(0, n〉f 7−→mk 〈i, E i(0, n〉b.

Lemma 296. If t i
1 R i t i

2, then 〈i, E i(0, t i
1〉f 7−→∗mk 〈i, E i(0, t i

1〉r 7−→mk 〈i, E i(0, t i
2〉f.

Proof. We proceed by cases on t i
1 R i t i

2.

Case 1. (app-0). Let i = 0, t0
1 = (λx.t0

11) v0
12 and t0

2 = t0
11[v

0
12/x]. We have:

〈0, E0(0, (λx.t0
11) v0

12〉f
7−→mk 〈0, E0(0[� v0

12], λx.t0
11〉f

7−→mk 〈0, E0(0[� v0
12], λx.t0

11〉b
7−→mk 〈0, E0(0[(λx.t0

11)�], v0
12〉f

7−→∗mk 〈0, E0(0[(λx.t0
11)�], v0

12〉b by Lemma 295

7−→mk 〈0, E0(0, (λx.t0
11) v0

12〉r
7−→mk 〈0, E0(0, t0

11[v
0
12/x]〉f

Case 2. (run-0). Let i = 0, t0
1 =!〈v1

11〉 and t0
2 = v1

11. We have:
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〈0, E0(0, !〈v1
11〉〉f

7−→mk 〈0, E0(0[!�], 〈v1
11〉〉f

7−→mk 〈1, E0(0[!�][〈�〉], v1
11〉f

7−→∗mk 〈1, E0(0[!�][〈�〉], v1
11〉b by Lemma 295

7−→mk 〈0, E0(0[!�], 〈v1
11〉〉b

7−→∗mk 〈0, E0(0, !〈v1
11〉〉r

7−→mk 〈0, E0(0, v1
11〉f

Case 3. (splice-1). Let i = 1, t1
1 =∼〈v1

11〉 and t1
2 = v1

11. We have:

〈1, E0(0, ∼〈v1
11〉〉f

7−→mk 〈0, E0(0[∼�], 〈v1
11〉〉f

7−→mk 〈1, E0(0[∼�][〈�〉], v1
11〉f

7−→∗mk 〈1, E0(0[∼�][〈�〉], v1
11〉b by Lemma 295

7−→mk 〈0, E0(0[∼�], 〈v1
11〉〉b

7−→∗mk 〈1, E0(0, ∼〈v1
11〉〉r

7−→mk 〈1, E0(0, v1
11〉f

Case 4. (plus-0). Let i = 0, t0
1 = n1 +n2 and t0

2 = n where n = n1 +n2. We have:

〈0, E0(0, n1 +n2〉f
7−→mk 〈0, E0(0[�+n2], n1〉f
7−→mk 〈0, E0(0[�+n2], n1〉b
7−→mk 〈0, E0(0[n1 +�], n2〉f
7−→mk 〈0, E0(0[n1 +�], n2〉b
7−→mk 〈0, E0(0, n1 +n2〉r
7−→mk 〈0, E0(0, n〉f where n = n1 +n2

Lemma 297. If t i = E j(i
1 [t j

1] and t j
1 R j t j

2 , then 〈i, E i(0, t i〉f 7−→∗mk 〈 j, E i(0E j(i
1 , t j

1〉f.

Proof. Suppose t i = E j(i
1 [t j

1] and t j
1 R j t j

2 . We want to show 〈i, E i(0, E j(i
1 [t j

1]〉f 7−→∗mk 〈 j, E i(0E j(i
1 , t j

1〉.
We proceed by induction on the structure of the derivation of E j(i

1 .

Case 1. (E i(i
1 =�i(i). We know 〈i, E i(0, t i〉f = 〈i, E i(0, t i

1〉f and 〈i, E i(0, t i
1〉f 7−→∗mk 〈i, E i(0, t i

1〉f.

Case 2. (E j(i
1 = E j(i

11 t i
11). We know 〈i, E i(0, t i〉f = 〈i, E i(0, E j(i

1 [t j
1]〉f = 〈i, E i(0, (E j(i

11 t i
11)[t

j
1]〉f.

We have:

〈i, E i(0, (E j(i
11 t i

11)[t
j
1]〉f

7−→mk 〈i, E i(0[� t i
11], E j(i

11 [t j
1]〉f
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Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[� t i
11], E j(i

11 [t j
1]〉f 7−→∗mk

〈i, E i(0[E j(i
11 t i

11], t j
1〉f.

Case 3. (E j(i
1 = vi

11 E j(i
11 ). We know 〈i, E i(0, t i〉f = 〈i, E i(0, E j(i

1 [t j
1]〉f = 〈i, E i(0, (vi

11 E j(i
11 )[t j

1]〉f.
We have:

〈i, E i(0, (vi
11 E j(i

11 )[t j
1]〉f

7−→mk 〈i, E i(0[� E j(i
11 [t j

1]], vi
11〉f

7−→∗mk 〈i, E i(0[� E j(i
11 [t j

1]], vi
11〉b by Lemma 295

7−→mk 〈i, E i(0[vi
11 �], E j(i

11 [t j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[vi
11�], E j(i

11 [t j
1]〉f 7−→∗mk

〈i, E i(0[vi
11 E j(i

11 ], t j
1〉f.

Case 4. (E j((i+1)
1 = λx.E j((i+1)

11 ). We know 〈i+1, E(i+1)(0, t i+1〉f = 〈i+1, E i+1(0, E j((i+1)
1 [t j

1]〉f =
〈i+1, E(i+1)(0, (λx.E j((i+1)

11 )[t j
1]〉f. We have:

〈i+1, E(i+1)(0, (λx.E j((i+1)
11 )[t j

1]〉f
7−→mk 〈i+1, E(i+1)(0[λx.�], E j((i+1)

11 [t j
1]〉f

Since E j((i+1)
11 is a component of E j((i+1)

1 , by the induction hypothesis,

we have 〈i+1, E(i+1)(0[λx.�], E j((i+1)
11 [t j

1]〉f 7−→∗mk 〈i+1, E(i+1)(0[λx.E j((i+1)
11 ], t j

1〉f.

Case 5. (E j(i
1 = 〈E j((i+1)

11 〉). We know 〈i, E i(0, t i〉f = 〈i, E i(0, E j(i
1 [t j

1]〉f = 〈i, E i(0, 〈E j((i+1)
11 〉[t j

1]〉f.
We have:

〈i, E i(0, 〈E j((i+1)
11 〉[t j

1]〉f
7−→mk 〈i, E i(0[〈�〉], E j((i+1)

11 [t j
1]〉f

Since E j((i+1)
11 is a component of E j(i

1 , by the induction hypothesis,

we have 〈i, E i(0[〈�〉], E j((i+1)
11 [t j

1]〉f 7−→∗mk 〈i, E i(0[〈E j((i+1)
11 〉], t j

1〉f.

Case 6. (E j((i+1)
1 =∼E j(i

11 ). We know:

〈i+1, E(i+1)(0, t i+1〉f
= 〈i+1, E(i+1)(0, E j((i+1)

1 [t j
1]〉f

= 〈i+1, E(i+1)(0, ∼E j(i
11 [t j

1]〉f

We have:

〈i+1, E(i+1)(0, ∼E j(i
11 [t j

1]〉f
7−→mk 〈i+1, E(i+1)(0[∼�], E j(i

11 [t j
1]〉f
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Since E j(i
11 is a component of E j((i+1)

1 , by the induction hypothesis,

we have 〈i+1, E(i+1)(0[∼�], E j(i
11 [t j

1]〉f 7−→∗mk 〈i+1, E(i+1)(0[∼E j(i
11 ], t j

1〉f.

Case 7. (E j(i
1 =!E j(i

11 ). We know 〈i, E i(0, t i〉f = 〈i, E i(0, E j(i
1 [t j

1]〉f = 〈i, E i(0, !E j(i
11 [t j

1]〉f. We have:

〈i, E i(0, !E j(i
11 [t j

1]〉f
7−→mk 〈i, E i(0[!�], E j(i

11 [t j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[!�], E j(i
11 [t j

1]〉f 7−→∗mk

〈i, E i(0[!E j(i
11 ], t j

1〉f.

Case 8. (E j(i
1 =E j(i

11 +t i
11). We know 〈i, E i(0, t i〉f = 〈i, E i(0, E j(i

1 [t j
1]〉f = 〈i, E i(0, (E j(i

11 +t i
11)[t

j
1]〉f.

We have:

〈i, E i(0, (E j(i
11 + t i

11)[t
j
1]〉f

7−→mk 〈i, E i(0[�+ t i
11], E j(i

11 [t j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[�+t i
11], E j(i

11 [t j
1]〉f 7−→∗mk

〈i, E i(0[E j(i
11 + t i

11], t j
1〉f.

Case 9. (E j(i
1 = vi

11+E j(i
11 ). We know 〈i, E i(0, t i〉f = 〈i, E i(0, E j(i

1 [t j
1]〉f = 〈i, E i(0, (vi

11+E j(i
11 )[t j

1]〉f.
We have:

〈i, E i(0, (vi
11 +E j(i

11 )[t j
1]〉f

7−→mk 〈i, E i(0[�+E j(i
11 [t j

1]], vi
11〉f

7−→∗mk 〈i, E i(0[�+E j(i
11 [t j

1]], vi
11〉b by Lemma 295

7−→mk 〈i, E i(0[vi
11 +�], E j(i

11 [t j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[vi
11+�], E j(i

11 [t j
1]〉f 7−→∗mk

〈i, E i(0[vi
11 +E j(i

11 ], t j
1〉f.

Lemma 298. If E i(0
0 [t i

0] = E j(0
1 [t j

1] and E j(0
1 [t j

1] 7−→ E j(0
1 [t j

2] where t j
1 R j t j

2 , then 〈i, E i(0
0 , t i

0〉f 7−→∗mk

〈 j, E j(0
1 , t j

2〉f.

Proof. If t j
1 is inside t i

0 (or the same as t i
0), E j(0

1 extends E i(0
0 (or is the same as E i(0

0 ). Otherwise, because

t i
0 is not reduced, it must be a value.

Case 1. Suppose t j
1 is inside t i

0 (or the same as t i
0). Let t i

0 = E j(i
2 [t j

1]. Then E j(0
1 = E i(0

0 E j(i
2 . We have

〈i, E i(0
0 , t i

0〉f = 〈i, E i(0
0 , E j(i

2 [t j
1]〉f. By Lemma 297, 〈i, E i(0

0 , E j(i
2 [t j

1]〉f 7−→∗mk 〈 j, E i(0
0 E j(i

2 , t j
1〉f.

By Lemma 296, 〈 j, E i(0
0 E j(i

2 , t j
1〉f 7−→∗mk 〈 j, E i(0

0 E j(i
2 , t j

1〉r 7−→mk 〈 j, E i(0
0 E j(i

2 , t j
2〉f.
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Case 2. Otherwise, t i
0 ∈ VALUEi. By Lemma 295, 〈i, E i(0

0 , t i
0〉f 7−→∗mk 〈i, E i(0

0 , t i
0〉b. We prove the

following statement by induction on the structure of the derivation of E i(0
0 ∈ ECXTi(0.

Statement: If E i(0
0 [t i

0] = E j(0
1 [t j

1] where t i
0 ∈ VALUEi and E j(0

1 [t j
1] 7−→ E j(0

1 [t j
2] where t j

1 R j t j
2 ,

then 〈i, E i(0
0 , t i

0〉b 7−→∗mk 〈 j, E j(0
1 , t j

2〉f.

Case i. (E0(0
0 =�0(0). This case is vacuous.

Case ii. (E i(0
0 = E i(0

2 [� t i
22]). We have:

〈i, E i(0
0 , t i

0〉b
= 〈i, E i(0

2 [� t i
22], t i

0〉b
7−→mk 〈i, E i(0

2 [t i
0 �], t i

22〉f

Case a. If t i
22 R i t i

23, then t i
1 = t i

22 and t i
2 = t i

23.

By Lemma 296, 〈i, E i(0
2 [t i

0 �], t i
22〉f 7−→∗mk 〈i, E i(0

2 [t i
0 �], t i

2〉f.
Case b. If t i

22 6R i and t i
22 ∈ VALUEi.

Case 1. If t22 ∈ VALUE0. We have:
〈0, E0(0

2 [t0
0 �], t0

22〉f
7−→mk 〈0, E0(0

2 [t0
0 �], t0

22〉b
7−→mk 〈0, E0(0

2 , t0
0 t0

22〉r
Then t0

1 = t0
0 t0

22. By Lemma 296, 〈0, E0(0
2 , t0

0 t0
22〉r 7−→mk

〈0, E0(0
2 , t0

2〉f.
Case 2. If t22 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
2 [t i+1

0 �], t i+1
22 〉f

7−→∗mk 〈i+1, E(i+1)(0
2 [t i+1

0 �], t i+1
22 〉b by Lemma 295

7−→mk 〈i+1, E(i+1)(0
2 , t i+1

0 t i+1
22 〉b

We know t i+1
0 t i+1

22 ∈ VALUEi+1. Since E(i+1)(0
2 is a component

of E(i+1)(0
0 , by the induction hypothesis, 〈i+1, E(i+1)(0

2 , t i+1
0 t i+1

22 〉b 7−→∗mk

〈 j, E j(0
1 , t j

2〉f.
Case c. If t i

22 6R i and t i
22 /∈VALUEi, then t i

22 =E j(i
3 [t j

1]. Hence E j(0
1 =E i(0

2 [t i
0 E j(i

3 ].

We have:
〈i+1, E(i+1)(0

2 [t i+1
0 �], t i+1

22 〉f
〈i, E i(0

2 [t i
0 �], t i

22〉f
= 〈i, E i(0

2 [t i
0 �], E j(i

3 [t j
1]〉f

7−→∗mk 〈 j, E i(0
2 [t i

0 E j(i
3 ], t j

1〉f by Lemma 297

7−→∗mk 〈 j, E i(0
2 [t i

0 E j(i
3 ], t j

2〉f by Lemma 296

Case iii. (E i(0
0 = E i(0

2 [vi
21 �]).

Case a. If t0 ∈ VALUE0. We have:
〈0, E0(0

0 , t0
0〉b

= 〈0, E0(0
2 [v0

21 �], t0
0〉b

7−→mk 〈0, E0(0
2 , v0

21 t0
0〉r
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Then t0
1 = v0

21 t0
0 . By Lemma 296, 〈0, E0(0

2 , v0
21 t0

0〉r 7−→mk 〈0, E0(0
2 , t0

2〉f.
Case b. If t0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , t i+1

0 〉b
= 〈i+1, E(i+1)(0

2 [vi+1
21 �], t i+1

0 〉b
7−→mk 〈i+1, E(i+1)(0

2 , vi+1
21 t i+1

0 〉b
We know vi+1

21 t i+1
0 ∈VALUEi+1. Since E(i+1)(0

2 is a component of E(i+1)(0
0 ,

by the induction hypothesis, 〈i+1, E(i+1)(0
2 , vi+1

21 t i+1
0 〉b 7−→∗mk 〈 j, E j(0

1 , t j
2〉f.

Case iv. (E(i+1)(0
0 = E(i+1)(0

2 [λx.�]). We have:

〈i+1, E(i+1)(0
0 , t i+1

0 〉b
= 〈i+1, E(i+1)(0

2 [λx.�], t i+1
0 〉b

7−→mk 〈i+1, E(i+1)(0
2 , λx.t i+1

0 〉b

We know λx.t i+1
0 ∈ VALUEi+1. Since E(i+1)(0

2 is a component of E(i+1)(0
0 , by the

induction hypothesis, 〈i+1, E(i+1)(0
2 , λx.t i+1

0 〉b 7−→∗mk 〈 j, E j(0
1 , t j

2〉f.

Case v. (E(i+1)(0
0 = E i(0

2 [〈�〉]). We have:

〈i+1, E(i+1)(0
0 , t i+1

0 〉b
= 〈i+1, E i(0

2 [〈�〉], t i+1
0 〉b

7−→mk 〈i, E i(0
2 , 〈t i+1

0 〉〉b

We know 〈t i+1
0 〉 ∈ VALUEi. Since E i(0

2 is a component of E(i+1)(0
0 , by the induction

hypothesis, 〈i, E i(0
2 , 〈t i+1

0 〉〉b 7−→∗mk 〈 j, E j(0
1 , t j

2〉f.

Case vi. (E i(0
0 = E(i+1)(0

2 [∼�]).

Case a. If t0 ∈ VALUE0. We have:
〈0, E0(0

0 , t0
0〉b

= 〈0, E1(0
2 [∼�], t0

0〉b
7−→mk 〈1, E1(0

2 , ∼t0
0〉r

Then t1
1 =∼t0

0 . By Lemma 296, 〈1, E1(0
2 , ∼t0

0〉r 7−→mk 〈1, E1(0
2 , t1

2〉f.
Case b. If t0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , t i+1

0 〉b
= 〈i+1, E(i+2)(0

2 [∼�], t i+1
0 〉b

7−→mk 〈i+2, E(i+2)(0
2 , ∼t i+1

0 〉b
We know ∼t i+1

0 ∈ VALUEi+2. Since E(i+2)(0
2 is a component of E(i+1)(0

0 ,

by the induction hypothesis, 〈i+2, E(i+2)(0
2 , ∼t i+1

0 〉b 7−→∗mk 〈 j, E j(0
1 , t j

2〉f.

Case vii. (E i(0
0 = E i(0

2 [!�]).

Case a. If t0 ∈ VALUE0. We have:
〈0, E0(0

0 , t0
0〉b

= 〈0, E0(0
2 [!�], t0

0〉b
7−→mk 〈0, E0(0

2 , !t0
0〉r
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Then t0
1 =!t0

0 . By Lemma 296, 〈0, E0(0
2 , !t0

0〉r 7−→mk 〈0, E0(0
2 , t0

2〉f.
Case b. If t0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , t i+1

0 〉b
= 〈i+1, E(i+1)(0

2 [!�], t i+1
0 〉b

7−→mk 〈i+1, E(i+1)(0
2 , !t i+1

0 〉b

We know !t i+1
0 ∈ VALUEi+1. Since E(i+1)(0

2 is a component of E(i+1)(0
0 ,

by the induction hypothesis, 〈i+1, E(i+1)(0
2 , !t i+1

0 〉b 7−→∗mk 〈 j, E j(0
1 , t j

2〉f.

Case viii. (E i(0
0 = E i(0

2 [�+ t i
22]). We have:

〈i, E i(0
0 , t i

0〉b
= 〈i, E i(0

2 [�+ t i
22], t i

0〉b
7−→mk 〈i, E i(0

2 [t i
0 +�], t i

22〉f

Case a. If t i
22 R i t i

23, then t i
1 = t i

22 and t i
2 = t i

23.

By Lemma 296, 〈i, E i(0
2 [t i

0 +�], t i
22〉f 7−→∗mk 〈i, E i(0

2 [t i
0 +�], t i

2〉f.
Case b. If t i

22 6R i and t i
22 ∈ VALUEi.

Case 1. If t22 ∈ VALUE0. We have:

〈0, E0(0
2 [t0

0 +�], t0
22〉f

7−→mk 〈0, E0(0
2 [t0

0 +�], t0
22〉b

7−→mk 〈0, E0(0
2 , t0

0 + t0
22〉r

Then t0
1 = t0

0 + t0
22. By Lemma 296, 〈0, E0(0

2 , t0
0 + t0

22〉r 7−→mk

〈0, E0(0
2 , t0

2〉f.
Case 2. If t22 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
2 [t i+1

0 +�], t i+1
22 〉f

7−→∗mk 〈i+1, E(i+1)(0
2 [t i+1

0 +�], t i+1
22 〉b by Lemma 295

7−→mk 〈i+1, E(i+1)(0
2 , t i+1

0 + t i+1
22 〉b

We know t i+1
0 + t i+1

22 ∈ VALUEi+1. Since E(i+1)(0
2 is a compon-

ent of E(i+1)(0
0 , by the induction hypothesis, 〈i+1, E(i+1)(0

2 , t i+1
0 +

t i+1
22 〉b 7−→∗mk 〈 j, E j(0

1 , t j
2〉f.

Case c. If t i
22 6R i and t i

22 /∈ VALUEi, then t i
22 = E j(i

3 [t j
1]. Hence E j(0

1 = E i(0
2 [t i

0 +

E j(i
3 ]. We have:

〈i+1, E(i+1)(0
2 [t i+1

0 +�], t i+1
22 〉f

〈i, E i(0
2 [t i

0 +�], t i
22〉f

= 〈i, E i(0
2 [t i

0 +�], E j(i
3 [t j

1]〉f
7−→∗mk 〈 j, E i(0

2 [t i
0 +E j(i

3 ], t j
1〉f by Lemma 297

7−→∗mk 〈 j, E i(0
2 [t i

0 +E j(i
3 ], t j

2〉f by Lemma 296

Case ix. (E i(0
0 = E i(0

2 [vi
21 +�]).

Case a. If t0 ∈ VALUE0. We have:
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〈0, E0(0
0 , t0

0〉b
= 〈0, E0(0

2 [v0
21 +�], t0

0〉b
7−→mk 〈0, E0(0

2 , v0
21 + t0

0〉r
Then t0

1 = v0
21+t0

0 . By Lemma 296, 〈0, E0(0
2 , v0

21+t0
0〉r 7−→mk 〈0, E0(0

2 , t0
2〉f.

Case b. If t0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , t i+1

0 〉b
= 〈i+1, E(i+1)(0

2 [vi+1
21 +�], t i+1

0 〉b
7−→mk 〈i+1, E(i+1)(0

2 , vi+1
21 + t i+1

0 〉b

We know vi+1
21 +t i+1

0 ∈VALUEi+1. Since E(i+1)(0
2 is a component of E(i+1)(0

0 ,

by the induction hypothesis, 〈i+1, E(i+1)(0
2 , vi+1

21 +t i+1
0 〉b 7−→∗mk 〈 j, E j(0

1 , t j
2〉f.

Lemma 299. If v0 = E i(0[t i], then 〈i, E i(0, t i〉b 7−→∗mk v0.

Proof. Suppose v0 = E i(0[t i]. We know t i ∈ VALUEi. We proceed by induction on the structure of the

derivation of E i(0 ∈ ECXTi(0.

Case 1. (E0(0 =�0(0). Then v0 = t0. We have 〈0, �0(0, v0〉b 7−→mk v0.

Case 2. (E i(0 = E i(0
1 [� t i

12]). Then v0 = E i(0
1 [t i t i

12]. We know t i ∈ VALUEi, t i
12 ∈ VALUEi and i ≥ 1.

Let’s use i+1 instead of i. We have:

〈i+1, E(i+1)(0
1 [� t i+1

12 ], t i+1〉b
7−→mk 〈i+1, E(i+1)(0

1 [t i+1 �], t i+1
12 〉f

7−→∗mk 〈i+1, E(i+1)(0
1 [t i+1 �], t i+1

12 〉b by Lemma 295

7−→mk 〈i+1, E(i+1)(0
1 , t i+1 t i+1

12 〉f
7−→∗mk 〈i+1, E(i+1)(0

1 , t i+1 t i+1
12 〉b by Lemma 295

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , t i+1 t i+1

12 〉b 7−→∗mk v0.

Case 3. (E i(0 = E i(0
1 [vi

11 �]). Then v0 = E i(0
1 [vi

11 t i]. We know t i ∈ VALUEi and i≥ 1. Let’s use i+1

instead of i. We have:

〈i+1, E(i+1)(0
1 [vi+1

11 �], t i+1〉b
7−→mk 〈i+1, E(i+1)(0

1 , vi+1
11 t i+1〉f

7−→∗mk 〈i+1, E(i+1)(0
1 , vi+1

11 t i+1〉b by Lemma 295

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , vi+1

11 t i+1〉b 7−→∗mk v0.
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Case 4. (E(i+1)(0 = E(i+1)(0
1 [λx.�]). Then v0 = E(i+1)(0

1 [λx.t i+1]. We know t i+1 ∈ VALUEi+1. We

have:

〈i+1, E(i+1)(0
1 [λx.�], t i+1〉b

7−→mk 〈i+1, E(i+1)(0
1 , λx.t i+1〉b

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , λx.t i+1〉b 7−→∗mk v0.

Case 5. (E(i+1)(0 = E i(0
1 [〈�〉]). Then v0 = E i(0

1 [〈t i+1〉]. We know t i+1 ∈ VALUEi+1. We have:

〈i+1, E i(0
1 [〈�〉], t i+1〉b

7−→mk 〈i, E i(0
1 , 〈t i+1〉〉b

Since E i(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i, E i(0
1 , 〈t i+1〉〉b 7−→∗mk v0.

Case 6. (E i(0 = E(i+1)(0
1 [∼�]). Then v0 = E(i+1)(0

1 [∼t i]. We know t i ∈ VALUEi and i ≥ 1. Let use

i+1 instead of i and i+2 instead of i+1. We have:

〈i+1, E(i+2)(0
1 [∼�], t i+1〉b

7−→mk 〈i+2, E(i+2)(0
1 , ∼t i+1〉b

Since E(i+2)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+2, E(i+2)(0
1 , ∼t i+1〉b 7−→∗mk v0.

Case 7. (E i(0 = E i(0
1 [!�]). Then v0 = E i(0

1 [!t i]. We know t i ∈ VALUEi and i≥ 1. Let use i+1 instead

of i. We have:

〈i+1, E(i+1)(0
1 [!�], t i+1〉b

7−→mk 〈i+1, E(i+1)(0
1 , !t i+1〉b

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , !t i+1〉b 7−→∗mk v0.

Case 8. (E i(0 = E i(0
1 [�+t i

12]). Then v0 = E i(0
1 [t i+t i

12]. We know t i ∈VALUEi, t i
12 ∈VALUEi and i≥ 1.

Let’s use i+1 instead of i. We have:

〈i+1, E(i+1)(0
1 [�+ t i+1

12 ], t i+1〉b
7−→mk 〈i+1, E(i+1)(0

1 [t i+1 +�], t i+1
12 〉f

7−→∗mk 〈i+1, E(i+1)(0
1 [t i+1 +�], t i+1

12 〉b by Lemma 295

7−→mk 〈i+1, E(i+1)(0
1 , t i+1 + t i+1

12 〉f
7−→∗mk 〈i+1, E(i+1)(0

1 , t i+1 + t i+1
12 〉b by Lemma 295
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Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis, we have 〈i+1, E(i+1)(0

1 , t i+1+

t i+1
12 〉b 7−→∗mk v0.

Case 9. (E i(0 = E i(0
1 [vi

11 +�]). Then v0 = E i(0
1 [vi

11 + t i]. We know t i ∈ VALUEi and i ≥ 1. Let’s use

i+1 instead of i. We have:

〈i+1, E(i+1)(0
1 [vi+1

11 +�], t i+1〉b
7−→mk 〈i+1, E(i+1)(0

1 , vi+1
11 + t i+1〉f

7−→∗mk 〈i+1, E(i+1)(0
1 , vi+1

11 + t i+1〉b by Lemma 295

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis, we have 〈i+1, E(i+1)(0

1 , vi+1
11 +

t i+1〉b 7−→∗mk v0.

Lemma 300. If v0 = E i(0[t i], then 〈i, E i(0, t i〉f 7−→∗mk v0.

Proof. Suppose v0 = E i(0[t i]. Then t i ∈ VALUEi. By Lemma 295, 〈i, E i(0, t i〉f 7−→∗mk 〈i, E i(0, t i〉b. By

Lemma 299, 〈i, E i(0, t i〉b 7−→mk v0. Hence 〈i, E i(0, t i〉f 7−→∗mk v0.

Lemma 301. If E i(0[t i
1] 7−→∗ v0

2, then 〈i, E i(0, t i
1〉f 7−→∗mk v0

2.

Proof. Suppose E i(0[t i
1] 7−→(n) v0

2. We proceed by induction on n.

Case 1. When n = 0, v0
2 = E i(0[t i

1]. By Lemma 300, 〈i, E i(0, t i
1〉f 7−→∗mk v0

2.

Case 2. Let E i(0[t i
1] 7−→ E j(0

1 [t j
2] 7−→(n) v0

2, where E i(0[t i
1] = E j(0

1 [t j
11] and t j

11 R j t j
2 .

By Lemma 298, 〈i, E i(0, t i
1〉f 7−→∗mk 〈 j, E j(0

1 , t j
2〉f. Given E j(0

1 [t j
2] 7−→(n) v0

2, by the induction

hypothesis, 〈 j, E j(0
1 , t j

2〉f 7−→∗mk v0
2. Hence we have 〈i, E i(0, t i

1〉f 7−→∗mk v0
2.

Theorem 302 (Soundness of Substitutional Abstract Machine w.r.t. Substitutional Reduction Semantics).
For any t1 ∈ PRGMMetaML, if t0

1 7−→∗ v0
2, then 〈0, �0(0, t0

1〉f 7−→∗mk v0
2.

Proof. Suppose �0(0[t0
1 ] 7−→∗ v0

2, by Lemma 301 , 〈0, �0(0, t0
1〉f 7−→∗mk v0

2.

Any machine configuration in the MK machine can be translated to its corresponding representation as

a term in (Substitutional) MetaML at level 0.

Definition 303 (Translator). Define the translator Tmk→sub to be a total function from the set of machine

configurations CFG to the set of level 0 terms TERM0.

Tmk→sub : CFG→ TERM0

Tmk→sub(〈i, E i(0, t i〉f) = E i(0[t i]

Tmk→sub(〈i, E i(0, vi〉b) = E i(0[vi]

Tmk→sub(〈i, E i(0, t i〉r) = E i(0[t i]

Tmk→sub(v0) = v0
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Lemma 304. If C1 7−→mk C2, then Tmk→sub(C1) 7−→0∗ Tmk→sub(C2).

Proof. We proceed by cases on C1 7−→mk C2.

Case 1. Reduce rules: Let C1 = 〈i, E i(0, t i
1〉r and C2 = 〈i, E i(0, t i

2〉f. Then E i(0[t1] 7−→0 E i(0[t2] where

t i
1 R i t i

2. Hence Tmk→sub(C1) 7−→0 Tmk→sub(C2).

Case 2. Focus rules: Let C1 = 〈i, E i(0, t i
1〉f and C2 = 〈i, E i(0, t i

2〉?. Then E i(0[t1] = E i(0[t2].

Hence Tmk→sub(C1) 7−→0∗ Tmk→sub(C2).

Case 3. Build rules:

Case i. (b-value-0). Let C1 = 〈0, �, v0〉b and C2 = v0. Then�[v0] = v0. Hence Tmk→sub(C1) 7−→0∗

Tmk→sub(C2).

Case ii. (other rules). Let C1 = 〈i, E i(0, t i
1〉b and C2 = 〈i, E i(0, t i

2〉?. Then E i(0[t1] =

E i(0[t2]. Hence Tmk→sub(C1) 7−→0∗ Tmk→sub(C2).

Lemma 305. If C1 7−→∗mk C2, then Tmk→sub(C1) 7−→0∗ Tmk→sub(C2).

Proof. Suppose C1 7−→(n)
mk C2. We proceed by induction on n.

Case 1. When n= 0, C1 =C2. Then Tmk→sub(C1)=Tmk→sub(C2). We have Tmk→sub(C1) 7−→0∗Tmk→sub(C2)

immediately.

Case 2. Let C1 7−→mk C3 7−→(n)
mk C2.

Given C1 7−→mk C3, by Lemma 304, Tmk→sub(C1) 7−→0∗ Tmk→sub(C3).

Given C3 7−→(n)
mk C2, by the induction hypothesis, Tmk→sub(C3) 7−→0∗ Tmk→sub(C2).

Hence Tmk→sub(C1) 7−→0∗ Tmk→sub(C2).

Theorem 306 (Completeness of Substitutional Abstract Machine w.r.t. Substitutional Reduction Semantics).
For any t0

1 ∈ PRGMMetaML, if 〈0, �, t0
1〉f 7−→∗mk v0

2, then t0
1 7−→0∗ v0

2.

Proof. If 〈0, �, t0
1〉f 7−→∗mk v0

2, by Lemma 305, Tmk→sub(〈0, �, t0
1〉f) 7−→0∗ Tmk→sub(v0

2). We have t0
1 7−→0∗

v0
2.

Theorem 307 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubRed(t) is Kleene

equal to evalMetaML:MK(t).

Proof. We first show if evalMetaML:SubRed(t) = a where a ∈ ANSMetaML, then evalMetaML:MK(t) = a.

Case 1. If evalMetaML:SubRed(t) = function, then t 7−→0∗ λx.t ′
0
. By Theorem 302, 〈0, �, t〉f 7−→∗mk

λx.t ′
0
. We have evalMetaML:MK(t) = function.
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Case 2. If evalMetaML:SubRed(t) = code, then t 7−→0∗ 〈v1〉. By Theorem 302, 〈0, �, t〉f 7−→∗mk 〈v1〉. We

have evalMetaML:MK(t) = code.

Case 3. If evalMetaML:SubRed(t) = n, then t 7−→0∗ n. By Theorem 302, 〈0, �, t〉f 7−→∗mk n. We have

evalMetaML:MK(t) = n.

We then show if evalMetaML:MK(t) = a where a ∈ ANSMetaML, then evalMetaML:SubRed(t) = a.

Case 1. If evalMetaML:MK(t) = function, then 〈0, �, t〉f 7−→∗mk λx.t ′
0
. By Theorem 306, t 7−→0∗ λx.t ′

0
.

We have evalMetaML:SubRed(t) = function.

Case 2. If evalMetaML:MK(t) = code, then 〈0, �, t〉f 7−→∗mk 〈v1〉. By Theorem 306, t 7−→0∗ 〈v1〉. We have

evalMetaML:SubRed(t) = code.

Case 3. If evalMetaML:MK(t)= n, then 〈0, �, t〉f 7−→∗mk n. By Theorem 306, t 7−→0∗ n. We have evalMetaML:SubRed(t)=

n.

We observe that evalMetaML:SubRed(t) is undefined if and only if evalMetaML:MK(t) is undefined. Therefore,

evalMetaML:SubRed(t) is Kleene equal to evalMetaML:MK(t).
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Appendix D

Proofs of Chapter 5

D.1 Equivalence of MetaML and Explicit MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the

structural operational semantics of Explicit MetaML. We use subscripts “sub” and “exp” to differentiate the

syntax of (Substitutional) MetaML from the syntax of Explicit MetaML.

D.1.1 Bisimulation Relation

Definition 308 (Bisimulation Relation). Define the bisimulation relation ' to be a binary relation up to

alpha equivalence on the set of terms in (Substitutional) MetaML and the set of runtime terms in Explicit

MetaML.

'⊆ TERMi
sub×RTERMi

exp

x' x (var-sim)
t i
a1
' t i

b1
t i
a2
' t i

b2

t i
a1

t i
a2
' t i

b1
t i
b2

(app-sim)
t i
a ' t i

b

(λx.t i
a)' (λx.t i

b)
(lam-sim)

t0
a ' t0

b

(λx.t0
a)' (λx.t0

b)
(lamu-sim)

t i+1
a ' t i+1

b

〈t i+1
a 〉 ' 〈t i+1

b 〉
(code-sim)

t i
a ' t i

b

∼t i
a '∼t i

b

(splice-sim)

t i
a ' t i

b

!t i
a ' !t i

b
(run-sim)

n' n (num-sim)
t i
a1
' t i

b1
t i
a2
' t i

b2

t i
a1
+ t i

a2
' t i

b1
+ t i

b2

(plus-sim)

t i
a ' t i

b wa ' wb

t i
a[wa/x]' t i

b[x := wb]
(subst-sim)

Remark 309. The bisimulation relation ∼ is up to alpha equivalence. We immediately have: (1) if ta1 ' tb
and ta1 ∼α ta2 then ta2 ' tb, and (2) if ta ' tb1 and tb1 ∼α tb2 then ta ' tb2 .

D.1.2 Unload Function

Definition 310 (Unload Function). Let i ∈ N. Define the unload function U to be a total function from the

set of Explicit MetaML runtime terms RTERMi
exp to the set of Substitutional MetaML terms TERMi

sub.
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U : RTERMi
exp→ TERMi

sub

U(x) = x

U(t1 t2) = U(t1)U(t2)

U(λx.t) = λx.U(t)

U(λx.t) = λx.U(t)

U(〈t〉) = 〈U(t)〉
U(∼t) = ∼U(t)

U(!t) = !U(t)

U(n) = n

U(t1 + t2) = U(t1)+U(t2)

U(t[x := w]) = U(t)[U(w)/x]

Lemma 311 (Equality of Related Terms w.r.t. Unload Function). If t i
a ' t i

b, then t i
a =U(t i

b).

Proof. We proceed by structural induction on t i
a ' t i

b.

Case 1. (var-sim). Let t i
a = t i

b = x. We immediately get x =U(x).

Case 2. (app-sim). Let t i
a = t i

a1
t i
a2

and t i
b = t i

b1
t i
b2

where t i
a1
' t i

b2
and t i

a2
' t i

b2
. By the induction hypothesis,

t i
a1
=U(t i

b1
) and t i

a2
=U(t i

b2
). Hence U(t i

b1
t i
b2
) =U(t i

b1
)U(t i

b2
) = t i

a1
t i
a2

.

Case 3. (lam-sim). Let t i
a = λx.t i

a1
and t i

b = λx.t i
b1

where t i
a1
' t i

b1
. By the induction hypothesis, t i

a1
=

U(t i
b1
). Hence U(λx.t i

b1
) = λx.U(t i

b1
) = λx.t i

a1
.

Case 4. (lamu-sim). Let t i
a = λx.t0

a1
and t i

b = λx.t0
b1

where t0
a1
' t0

b1
. By the induction hypothesis, t0

a1
=

U(t0
b1
). Hence U(λx.t0

b1
) = λx.U(t0

b1
) = λx.t0

a1
.

Case 5. (code-sim). Let t i
a = 〈t i+1

a1
〉 and t i

b = 〈t
i+1
b1
〉 where t i+1

a1
' t i+1

b1
. By the induction hypothesis, t i+1

a1
=

U(t i+1
b1

). Hence, U(〈t i+1
b1
〉) = 〈U(t i+1

b1
)〉= 〈t i+1

a1 〉.

Case 6. (splice-sim). Let t i+1
a = ∼t i

a1
and t i+1

b = ∼t i
b1

where t i
a1
' t i

b1
. By the induction hypothesis,

t i
a1
=U(t i

b1
). Hence, U(∼t i

b1
) =∼U(t i

b1
) =∼t i

a1
.

Case 7. (run-sim). Let t i
a = !t i

a1
and t i

b = !t i
b1

where t i
a1
' t i

b1
. By the induction hypothesis, t i

a1
= U(t i

b1
).

Hence, U(!t i
b1) = !U(t i

b1) = !t i
a1.

Case 8. (num-sim). Let t i
a = t i

b = n. We immediately get U(n) = n.

Case 9. (plus-sim). Let t i
a = t i

a1
+ t i

a2
and t i

b = t i
b1
+ t i

b2
where t i

a1
' t i

b2
and t i

a2
' t i

b2
. By the induction

hypothesis, t i
a1
=U(t i

b1
) and t i

a2
=U(t i

b2
). Hence U(t i

b1
+ t i

b2
) =U(t i

b1
)+U(t i

b2
) = t i

a1
+ t i

a2
.

Case 10. (subst-sim). Let ta = t i
a1
[wa1/x] and tb = t i

b1
[x := wb1 ] where t i

a1
' t i

b1
and wa1 'wb1 . By the induc-

tion hypothesis, t i
a1
= U(t i

b1
) and wa1 = U(wb1). Hence U(t i

b1
[x := wb1 ]) = U(t i

b1
)[U(wb1)/x] =

t i
a1
[wa1/x].
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D.1.3 Substitution Normal Form

Definition 312 (Substitution Normal Form). A term t i ∈ RTERMi
exp is in substitution normal form if and

only if t i 6−→xi.

Remark 313. We use s with or without any subscript or superscript as a metavariable to range over the

runtime terms of Explicit MetaML in substitution normal form.

Remark 314. An Explicit MetaML runtime term in substitution normal is not necessarily in the normal form

with respect to the single-step relation −→. For example, (λx.t) v is in substitution normal form but is not

in the normal form with respect to the single-step relation −→.

Lemma 315. If t i
a ' t i

b1
[x := wb1 ], then t i

b1
−→xi∗ si

b1
, si

b1
[x := wb1 ]−→xi∗ si

b2
, and t i

a ' si
b2

.

Proof. We proceed by structural induction on t i
a' t i

b1
[x :=wb1 ]. Only (subst-sim) applies. Let t i

a = t i
a1
[wa1/x]

and we have

t i
a1
' t i

b1
wa1 ' wb1

t i
a1
[wa1/x]' t i

b1
[x := wb1 ].

We proceed by cases on t i
a1
∈ TERMi

sub.

Case 1. (t i
a1
= x). We have

x' t i
b1

wa1 ' wb1

x[wa1/x]' t i
b1
[x := wb1 ].

Then, x[wa1/x] = wa1 . We proceed by cases on x' t i
b1

.

Case i. (var-sim). Let t i
b1
= x. Then, x−→xi∗ x, x[x := wb1 ]−→xi wb1 and wa1 ' wb1 .

Case ii. (subst-sim). Let t i
b1

= t i
b11

[x1 := wb11 ]. Given x ' t i
b11

[x1 := wb11 ], by the induction

hypothesis, we get t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ]−→xi∗ si

b12
and x' si

b12
. We proceed

by cases on x ' si
b12

. The only case is (var-sim), so let si
b12

= x. Then, t i
b1
−→xi∗ x,

x[x := wb1 ]−→xi wb1 and wa1 ' wb1 .

Case 2. (t i
a1
= x0 and x0 6≡ x). We have

x0 ' t i
b1

wa1 ' wb1

x0[wa1/x]' t i
b1
[x := wb1 ].

Then, x0[wa1/x] = x0. We proceed by cases on x0 ' t i
b1

.

Case i. (var-sim). Let t i
b1
= x0. Then, x0 −→xi∗ x0, x0[x := wb1 ]−→xi x0 and x0 ' x0.
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Case ii. (subst-sim). Let t i
b1

= t i
b11

[x1 := wb11 ]. Given x0 ' t i
b11

[x1 := wb11 ], by the induction

hypothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ] −→xi∗ si

b12
and x0 ' si

b12
. We

proceed by cases on x0 ' si
b12

. The only case is (var-sim), so let si
b12

= x0. Then,

t i
b1
−→xi∗ x0, x0[x := wb1 ]−→xi x0 and by (var-sim) x0 ' x0.

Case 3. (t i
a1
= (t i

a11
t i
a12

)). We have

(t i
a11

t i
a12

)' t i
b1

wa1 ' wb1

(t i
a11

t i
a12

)[wa1/x]' t i
b1
[x := wb1 ].

Then, (t i
a11

t i
a12

)[wa1/x] = (t i
a11

[wa1/x]) (t i
a12

[wa1/x]). We proceed by cases on (t i
a11

t i
a12

)' t i
b1

.

Case i. (app-sim). Let t i
b1
= (t i

b11
t i
b12

) where t i
a11
' t i

b11
and t i

a12
' t i

b12
. We have (t i

b11
t i
b12

)−→xi∗

(t i
b11

t i
b12

) and (t i
b11

t i
b12

)[x := wb1]−→xi (t i
b11

[x := wb1 ]) (t
i
b12

[x := wb1 ]). By (subst-sim)

and (app-sim), we get (t i
a11

[wa1/x]) (t i
a12

[wa1/x])' (t i
b11

[x := wb1 ]) (t
i
b12

[x := wb1 ]).

Case ii. (subst-sim). Let t i
b1
= t i

b11
[x1 := wb11 ]. Given (t i

a11
t i
a12

)' t i
b11

[x1 := wb11 ], by the induc-

tion hypothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ] −→xi∗ si

b12
, and (t i

a11
t i
a12

) '
si

b12
. We proceed by cases on (t i

a11
t i
a12

) ' si
b12

. The only case is (app-sim), so let

si
b12

= (t i
b121

t i
b122

) where t i
a11
' t i

b121
and t i

a12
' t i

b122
. Then, t i

b1
−→xi∗ (t i

b121
t i
b122

) and

(t i
b121

t i
b122

)[x := wb1 ] −→xi (t i
b121

[x := wb1 ]) (t
i
b122

[x := wb1 ]). By (subst-sim) and (app-

sim), we get (t i
a11

[wa1/x]) (t i
a12

[wa1/x])' (t i
b121

[x := wb1 ]) (t
i
b122

[x := wb1 ]).

Case 4. (t i
a1
= λx0.t i

a11
). We have

(λx0.t i
a11

)' t i
b1

wa1 ' wb1

(λx0.t i
a11

)[wa1/x]' t i
b1
[x := wb1 ].

Then, (λx0.t i
a11

)[wa1/x] = λx1.t i
a11

[x1/x0][wa1/x] where x1 /∈ FV (λx0.t i
a11

)∪FV (wa1)∪{x}. We

proceed by cases on (λx0.t i
a11

)' t i
b1

.

Case i. (lam-sim). Let t i
b1
= λx0.t i

b11
where t i

a11
' t i

b11
. We have λx0.t i

b11
−→xi∗ λx0.t i

b11
and

(λx0.t i
b11

)[x :=wb1 ]−→xi λx2.t i
b11

[x0 := x2][x :=wb1 ] where x2 /∈FV (λx0.t i
b11

)∪FV (wb1)∪
{x}.
Let x3 /∈ FV (λx0.t i

a11
)∪FV (wa1)∪FV (λx0.t i

b11
)∪FV (wb1)∪{x}, then by the defin-

ition of α-equivalence, we get λx1.t i
a11

[x1/x0][wa1/x] ∼α λx3.t i
a11

[x3/x0][wa1/x] and

λx2.t i
b11

[x0 := x2][x := wb1 ]∼α λx3.t i
b11

[x0 := x3][x := wb1 ].

By (lam-sim) and (subst-sim), we get λx3.t i
a11

[x3/x0][wa1/x] ' λx3.t i
b11

[x0 := x3][x :=

wb1 ]. Hence we have λx1.t i
a11

[x1/x0][wa1/x]' λx2.t i
b11

[x0 := x2][x := wb1 ].

Case ii. (lamu-sim). Let t i
a1
= λx0.t0

a11
and t i

b1
= λx0.t0

b11
where t0

a11
' t0

b11
. We have λx0.t0

b11
−→xi∗

λx0.t0
b11

and (λx0.t0
b11

)[x :=wb1]−→xi λx2.t0
b11

[x0 := x2][x :=wb1 ] where x2 /∈FV (λx0.t0
b11

)∪
FV (wb1)∪{x}.
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Let x3 /∈ FV (λx0.t0
a11

)∪FV (wa1)∪FV (λx0.t0
b11

)∪FV (wb1)∪{x}, then by the defin-

ition of α-equivalence, we get λx1.t0
a11

[x1/x0][wa1/x] ∼α λx3.t0
a11

[x3/x0][wa1/x] and

λx2.t0
b11

[x0 := x2][x := wb1 ]∼α λx3.t0
b11

[x0 := x3][x := wb1 ].

By (lam-sim) and (subst-sim), we get λx3.t0
a11

[x3/x0][wa1/x] ' λx3.t0
b11

[x0 := x3][x :=

wb1 ]. Hence we have λx1.t0
a11

[x1/x0][wa1/x]' λx2.t0
b11

[x0 := x2][x := wb1 ].

Case iii. (subst-sim). Let t i
b1
= t i

b11
[x1 := wb11 ]. Given (λx0.t i

a11
)' t i

b11
[x1 := wb11 ], by the induc-

tion hypothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ] −→xi∗ si

b12
and (λx0.t i

a11
) '

si
b12

. We proceed by cases on (λx0.t i
a11

)' si
b12

.

Case a. (lam-sim). Let si
b12 = λx0.t i

b121
where t i

a11
' t i

b121
. We have t i

b1
−→xi∗ λx0.t i

b121

and (λx0.t i
b121

)[x :=wb1 ]−→xi λx2.t i
b121

[x0 := x2][x :=wb1 ] where x2 /∈FV (λx0.t i
b121

)∪
FV (wb1)∪{x}.
Let x3 /∈ FV (λx0.t i

a11
)∪FV (wa1)∪FV (λx0.t i

b121
)∪FV (wb1)∪{x}, then by

the definition of α-equivalence, λx1.t i
a11

[x1/x0][wa1/x]∼α λx3.t i
a11

[x3/x0][wa1/x]

and λx2.t i
b121

[x0 := x2][x := wb1 ]∼α λx3.t i
b121

[x0 := x3][x := wb1 ]. By (lam-

sim) and (subst-sim), we get λx3.t i
a11

[x3/x0][wa1/x]' λx3.t i
b121

[x0 := x3][x :=

wb1 ]. Hence we have λx1.t i
a11

[x1/x0][wa1/x]' λx2.t i
b121

[x0 := x2][x := wb1 ].

Case b. (lamu-sim). Let t i
a1

= λx0.t0
a11

and si
b12

= λx0.t0
b121

where t0
a11
' t0

b121
. We

have t i
b1
−→xi∗ λx0.t0

b121
and (λx0.t0

b121
)[x :=wb1 ]−→xi λx2.t0

b121
[x0 := x2][x :=

wb1 ] where x2 /∈ FV (λx0.t0
b121

)∪FV (wb1)∪{x}.
Let x3 /∈ FV (λx0.t0

a11
)∪FV (wa1)∪FV (λx0.t0

b121
)∪FV (wb1)∪{x}, then by

the definition of α-equivalence, λx1.t0
a11

[x1/x0][wa1/x]∼α λx3.t0
a11

[x3/x0][wa1/x]

and λx2.t0
b121

[x0 := x2][x := wb1 ]∼α λx3.t0
b121

[x0 := x3][x := wb1 ]. By (lamu-

sim) and (subst-sim), we get λx3.t0
a11

[x3/x0][wa1/x]' λx3.t0
b121

[x0 := x3][x :=

wb1 ]. Hence we have λx1.t0
a11

[x1/x0][wa1/x]' λx2.t0
b121

[x0 := x2][x := wb1 ].

Case 5. (t i
a1
= 〈t i+1

a11
〉). We have

〈t i+1
a11
〉 ' t i

b1
wa1 ' wb1

〈t i+1
a11
〉[wa1/x]' t i

b1
[x := wb1 ] .

Then, 〈t i+1
a11
〉[wa1/x] = 〈t i+1

a11
[wa1/x]〉. We proceed by cases on 〈t i+1

a11
〉 ' t i

b1.

Case i. (code-sim). Let t i
b1
= 〈t i+1

b11
〉where t i+1

a11
' t i+1

b11
. We have 〈t i+1

b11
〉 −→xi∗ 〈t i+1

b11
〉, 〈t i+1

b11
〉[x :=

wb1 ]−→xi 〈t i+1
b11

[x := wb1 ]〉 and 〈t i+1
a11

[wa1/x]〉 ' 〈t i+1
b11

[x := wb1 ]〉.

Case ii. (subst-sim). Let t i
b1
= t i

b11
[x1 := wb11 ]. Given 〈t i+1

a11
〉 ' t i

b11
[x1 := wb11 ], by the induction

hypothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ] −→xi∗ si

b12
and 〈t i+1

a11
〉 ' si

b12
. We

proceed by cases on 〈t i+1
a11
〉 ' si

b12
. The only case is (code-sim), so let si

b12
= 〈t i+1

b121
〉

where t i+1
a11
' t i+1

b121
. Then, t i

b1
−→xi∗ 〈t i+1

b121
〉 and 〈t i+1

b121
〉[x := wb1 ] −→xi 〈t i+1

b121
[x := wb1 ]〉.

By (subst-sim) and (code-sim), we get 〈t i+1
a11

[wa1/x]〉 ' 〈t i+1
b121

[x := wb1 ]〉.
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Case 6. (t i+1
a1

=∼t i
a11

). We have

∼ t i
a11
' t i+1

b1
wa1 ' wb1

(∼ t i
a11

)[wa1/x]' t i+1
b1

[x := wb1 ].

Then, (∼t i
a11

)[wa1/x] =∼(t i
a11

[wa1/x]). We proceed by cases on ∼t i
a11
' t i+1

b1
.

Case i. (splice-sim). Let t i+1
b1

= ∼t i
b11

where t i
a11
' t i

b11
. We have ∼t i

b11
−→x(i+1)∗ ∼t i

b11
and

(∼t i
b11

)[x := wb1 ]−→x(i+1) ∼(t i
b11

[x := wb1 ]) and ∼(t i
a11

[wa1/x])'∼(t i
b11

[x := wb1 ]).

Case ii. (subst-sim). Let t i+1
b1

= t i+1
b11

[x1 := wb11 ]. Given ∼t i
a11
' t i+1

b11
[x1 := wb11 ], by the in-

duction hypothesis, we have t i+1
b11
−→x(i+1)∗ si+1

b11
, si+1

b11
[x1 := wb11 ] −→x(i+1)∗ si+1

b12
and

∼t i
a11
' si+1

b12
. We proceed by cases on ∼t i

a11
' si+1

b12
. The only case is (splice-sim),

so let si+1
b12

= ∼t i
b121

where t i
a11
' t i

b121
. Then t i+1

b1
−→x(i+1)∗∼ t i

b121
and (∼t i

b121
)[x :=

wb1 ]−→x(i+1)∼(t i
b121

[x :=wb1 ]). By (subst-sim) and (splice-sim), we get∼(t i
a11

[wa1/x])'
∼(t i

b121
[x := wb1 ]).

Case 7. (t i
a1
= !t i

a11
). We have

!t i
a11
' t i

b1
wa1 ' wb1

(!t i
a11

)[wa1/x]' t i
b1
[x := wb1 ].

Then, (!t i
a11

)[wa1/x] = !(t i
a11

[wa1/x]). We proceed by cases on !t i
a11
' t i

b1
.

Case i. (run-sim). Let t i
b1
= !t i

b11
where t i

a11
' t i

b11
. We have !t i

b11
−→xi∗ !t i

b11
and (!t i

b11
)[x :=

wb1 ]−→xi !(t i
b11

[x := wb1 ]) and !(t i
a11

[wa1/x])' !(t i
b11

[x := wb1 ]).

Case ii. (subst-sim). Let t i
b1
= t i

b11
[x1 := wb11 ]. Given !t i

a11
' t i

b11
[x1 := wb11 ], by the induction

hypothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ] −→xi∗ si

b12
and !t i

a11
' si

b12
. We

proceed by cases on !t i
a11
' si

b12
. The only case is (splice-sim), so let si

b12
= !t i

b121

where t i
a11
' t i

b121
. Then t i

b1
−→xi∗ !t i

b121
and (!t i

b121
)[x := wb1 ] −→xi !(t i

b121
[x := wb1 ]).

By (subst-sim) and (run-sim), we get !(t i
a11

[wa1/x])' !(t i
b121

[x := wb1 ]).

Case 8. (t i
a1
= n). We have

n' t i
b1

wa1 ' wb1

n[wa1/x]' t i
b1
[x := wb1 ].

Then, n[wa1/x] = n. We proceed by cases on n' t i
b1

.

Case i. (num-sim). Let t i
b1
= n. We have n−→xi∗ n, n[x := wb1 ]−→xi n and n' n.
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Case ii. (subst-sim). Then t i
b1
= t i

b11
[x1 :=wb11 ]. Given n' t i

b11
[x1 :=wb11 ], by the induction hy-

pothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ]−→xi∗ si

b12
and n' si

b12
. We proceed

by cases on n ' si
b12

. The only case is (num-sim), so let si
b12

= n. Then t i
b1
−→xi∗ n,

n[x := wb1 ]−→xi n and n' n.

Case 9. (t i
a1
= (t i

a11
+ t i

a12
)). We have

(t i
a11

+ t i
a12

)' t i
b1

wa1 ' wb1

(t i
a11

+ t i
a12

)[wa1/x]' t i
b1
[x := wb1 ].

Then, (t i
a11

+t i
a12

)[wa1/x] = (t i
a11

[wa1/x])+(t i
a12

[wa1/x]). We proceed by cases on (t i
a11

+t i
a12

)' t i
b1

.

Case i. (plus-sim). Let t i
b1

= (t i
b11

+ t i
b12

) where t i
a11
' t i

b11
and t i

a12
' t i

b12
. We have (t i

b11
+

t i
b12

)−→xi∗ (t i
b11

+t i
b12

) and (t i
b11

+t i
b12

)[x :=wb1]−→xi (t i
b11

[x :=wb1 ])+(t i
b12

[x :=wb1 ]).

By (subst-sim) and (plus-sim), we get (t i
a11

[wa1/x])+(t i
a12

[wa1/x])' (t i
b11

[x := wb1 ])+

(t i
b12

[x := wb1 ]).

Case ii. (subst-sim). Let t i
b1

= t i
b11

[x1 := wb11 ]. Given (t i
a11

+ t i
a12

) ' t i
b11

[x1 := wb11 ], by the

induction hypothesis, we have t i
b11
−→xi∗ si

b11
, si

b11
[x1 := wb11 ] −→xi∗ si

b12
, and (t i

a11
+

t i
a12

)' si
b12

. We proceed by cases on (t i
a11

+ t i
a12

)' si
b12

. The only case is (plus-sim), so

let si
b12

= (t i
b121

+ t i
b122

) where t i
a11
' t i

b121
and t i

a12
' t i

b122
. Then, t i

b1
−→xi∗ (t i

b121
+ t i

b122
)

and (t i
b121

+t i
b122

)[x :=wb1 ]−→xi (t i
b121

[x :=wb1 ])+(t i
b122

[x :=wb1 ]). By (subst-sim) and

(plus-sim), we get (t i
a11

[wa1/x])+(t i
a12

[wa1/x])' (t i
b121

[x := wb1 ])+(t i
b122

[x := wb1 ]).

D.1.4 Canonisation

Lemma 316 (Canonisation of (Substitutional) MetaML). If t i
a1
' vi

b1
, then t i

a1
∈ VALUEi

sub.

Proof. We proceed by structural induction on t i
a1
' vi

b1
.

Case 1. (var-sim). Let t i+1
a1

= vi+1
b1

= x. We have x ∈ VALUEi+1
sub .

Case 2. (app-sim). Let t i+1
a1

= t i+1
a11

t i+1
a12

and vi+1
b1

= vi+1
b11

vi+1
b12

where t i+1
a11
' vi+1

b11
and t i+1

a12
' vi+1

b12
. By the

induction hypothesis, t i+1
a11
∈ VALUEi+1

sub and t i+1
a12
∈ VALUEi+1

sub . Then t i+1
a11

t i+1
a12
∈ VALUEi+1

sub .

Case 3. (lam-sim). We proceed by cases on i.

Case i. (0). Let t0
a1
= λx.t0

a11
and v0

b1
= λx.t0

b11
where t0

a11
' t0

b11
. This case is vacuous because

λx.t0
b11

/∈ VALUE0
exp.

Case ii. (i+ 1). Let t i+1
a1

= λx.t i+1
a11

and vi+1
b1

= λx.vi+1
b11

where t i+1
a11
' vi+1

b11
. By the induction

hypothesis, t i+1
a11
∈ VALUEi+1

sub . Then λx.t i+1
a11
∈ VALUEi+1

sub .
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Case 4. (lamu-sim). Let t i
a1

= λx.t0
a11

and vi
b1

= λx.t0
b11

where t0
a11
' t0

b11
. Then λx.t0

a11
∈ VALUE0

sub ⊆
VALUEi

sub.

Case 5. (code-sim). Let t i
a1

= 〈t i+1
a11
〉 and vi

b1
= 〈vi+1

b11
〉 where t i+1

a11
' vi+1

b11
. By the induction hypothesis,

t i+1
a11
∈ VALUEi+1

sub . Then 〈t i+1
a11
〉 ∈ VALUEi

sub.

Case 6. (splice-sim). Let t i+2
a1

=∼t i+1
a11

and vi+2
b1

=∼vi+1
b11

where t i+1
a11
' vi+1

b11
. By the induction hypothesis,

t i+1
a11
∈ VALUEi+1

sub . Then ∼t i+1
a11
∈ VALUEi+2

sub .

Case 7. (run-sim). Let t i+1
a1

= !t i+1
a11

and vi+1
b1

= !vi+1
b11

where t i+1
a11
' vi+1

b11
. By the induction hypothesis,

t i+1
a11
∈ VALUEi+1

sub . Then !t i+1
a11
∈ VALUEi+1

sub .

Case 8. (num-sim). Let t i
a1
= vi

b1
= n. We have n ∈ VALUEi

sub.

Case 9. (plus-sim). Let t i+1
a1

= t i+1
a11

+ t i+1
a12

and vi+1
b1

= vi+1
b11

+vi+1
b12

where t i+1
a11
' vi+1

b11
and t i+1

a12
' vi+1

b12
. By the

induction hypothesis, t i+1
a11
∈ VALUEi+1

sub and t i+1
a12
∈ VALUEi+1

sub . Then t i+1
a11

+ t i+1
a12
∈ VALUEi+1

sub .

Case 10. (subst-sim). This case is vacuous.

Lemma 317 (Canonisation of Explicit MetaML). If vi
a1
' t i

b1
, then t i

b1
−→i∗ vi

b2
and vi

a1
' vi

b2
.

Proof. We proceed by structural induction on vi
a1
' t i

b1
.

Case 1. (var-sim). Let vi+1
a1

= t i+1
b1

= x. Then x−→(i+1)∗ x, x ∈ VALUEi+1
exp and x' x.

Case 2. (app-sim). Let vi+1
a1

= vi+1
a11

vi+1
a12

and t i+1
b1

= t i+1
b11

t i+1
b12

where vi+1
a11
' t i+1

b11
and vi+1

a12
' t i+1

b12
. By the

induction hypothesis, we have t i+1
b11
−→(i+1)∗ vi+1

b21
, vi+1

a11
' vi+1

b21
, t i+1

b12
−→(i+1)∗ vi+1

b22
and vi+1

a12
' vi+1

b22
.

Then t i+1
b11

t i+1
b12
−→(i+1)∗ vi+1

b21
t i+1
b12
−→(i+1)∗ vi+1

b21
vi+1

b22
and vi+1

b21
vi+1

b22
∈ VALUEi+1

exp . By (app-sim),

vi+1
a11

vi+1
a12
' vi+1

b21
vi+1

b22
.

Case 3. (lam-sim). We proceed by cases on i.

Case i. (0). Let v0
a1
= λx.t0

a11
and t0

b1
= λx.t0

b11
where t0

a11
' t0

b11
. Then λx.t0

b11
−→0 λx.t0

b11
and

λx.t0
b11
∈ VALUE0

exp. By (lamu-sim), λx.t0
a11
' λx.t0

b11
.

Case ii. (i+ 1). Let vi+1
a1

= λx.vi+1
a11

and t i+1
b1

= λx.t i+1
b11

where vi+1
a11
' t i+1

b11
. By the induction

hypothesis, we have t i+1
b11
−→∗ vi+1

b21
and vi+1

a11
' vi+1

b21
. Then λx.t i+1

b11
−→(i+1)∗ λx.vi+1

b21

and λx.vi+1
b21
∈ VALUEi+1

exp . By (lam-sim), λx.vi+1
a11
' λx.vi+1

b21
.

Case 4. (lamu-sim). Let vi
a1

= λx.t0
a11

and t i
b1

= λx.t0
b11

where t0
a11
' t0

b11
. Then λx.t0

b11
−→i∗ λx.t0

b11
,

λx.t0
b11
∈ VALUEi

exp and λx.t0
a11
' λx.t0

b11
.

Case 5. (code-sim). Let vi
a1
= 〈vi+1

a11
〉 and t i

b1
= 〈t i+1

b11
〉 where vi+1

a11
' t i+1

b11
. By the induction hypothesis, we

have t i+1
b11
−→(i+1)∗ vi+1

b21
and vi+1

a11
' vi+1

b21
. Then 〈t i+1

b11
〉 −→i∗ 〈vi+1

b21
〉 and 〈vi+1

b21
〉 ∈ VALUEi

exp. By

(code-sim), 〈vi+1
a11
〉 ' 〈vi+1

b11
〉.
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Case 6. (splice-sim). Let vi+2
a1

=∼vi+1
a11

and t i+2
b1

=∼t i+1
b11

where vi+1
a11
' t i+1

b11
. By the induction hypothesis,

we have t i+1
b11
−→(i+1)∗ vi+1

b21
and vi+1

a11
' vi+1

b21
. Then∼t i+1

b11
−→(i+2)∗ ∼vi+1

b21
and∼vi+1

b21
∈ VALUEi+2

exp .

By (splice-sim), we get ∼vi+1
a11
'∼vi+1

b21
.

Case 7. (run-sim). Let vi+1
a1

= !vi+1
a11

and t i+1
b1

= !t i+1
b11

where vi+1
a11
' t i+1

b11
. By the induction hypothesis, we

have t i+1
b11
−→(i+1)∗ vi+1

b21
and vi+1

a11
' vi+1

b21
. Then !t i+1

b11
−→(i+1)∗!vi+1

b21
and !vi+1

b21
∈ VALUEi+1

exp . By

(run-sim), we get !vi+1
a11
' !vi+1

b21
.

Case 8. (num-sim). Let vi
a1
= t i

b1
= n. Then n−→i∗ n, n ∈ VALUEi

exp and n' n.

Case 9. (plus-sim). Let vi+1
a1

= vi+1
a11

+vi+1
a12

and t i+1
b1

= t i+1
b11

+ t i+1
b12

where vi+1
a11
' t i+1

b11
and vi+1

a12
' t i+1

b12
. By the

induction hypothesis, we have t i+1
b11
−→(i+1)∗ vi+1

b21
, vi+1

a11
' vi+1

b21
, t i+1

b12
−→(i+1)∗ vi+1

b22
and vi+1

a12
' vi+1

b22
.

Then t i+1
b11

+ t i+1
b12
−→(i+1)∗ vi+1

b21
+ t i+1

b12
−→(i+1)∗ vi+1

b21
+vi+1

b22
and vi+1

b21
+vi+1

b22
∈ VALUEi+1

exp . By (plus-

sim), vi+1
a11

+ vi+1
a12
' vi+1

b21
+ vi+1

b22
.

Case 10. (subst-sim). Let vi
a1

= t i
a11

[wa1/x] and t i
b1

= t i
b11

[x := wb1 ] where t i
a11
' t i

b11
and wa1 ' wb1 . By

Lemma 315, t i
b11

[x := wb1 ]−→xi∗ si
b12

and t i
a11

[wa1/x]' si
b12

. We then proceed by structural induc-

tion on t i
a11

[wa1/x]' si
b12

.

Case i. (var-sim). Let t i+1
a11

[wa1/x] = si+1
b12

= x0. Then x0 −→(i+1)∗ x0, x0 ∈ VALUEi+1
exp and

x0 ' x0.

Case ii. (app-sim). Let t i+1
a11

[wa1/x] = vi+1
a111

vi+1
a112

and si+1
b12

= t i+1
b121

t i+1
b122

where vi+1
a111
' t i+1

b121
and

vi+1
a112
' t i+1

b122
. By the induction hypothesis, we get t i+1

b121
−→(i+1)∗ vi+1

b131
, vi+1

a111
' vi+1

b131
,

t i+1
b122
−→(i+1)∗ vi+1

b132
and vi+1

a112
' vi+1

b132
. Then t i+1

b11
[x := wb1 ] −→(i+1)∗ t i+1

b121
t i+1
b122
−→(i+1)∗

vi+1
b131

t i+1
b122
−→(i+1)∗ vi+1

b131
vi+1

b132
and vi+1

b131
vi+1

b132
∈ VALUEi+1

exp . By (app-sim), vi+1
a111

vi+1
a112
'

vi+1
a131

vi+1
a132

.

Case iii. (lam-sim). We proceed by cases on i.

Case a. (0). Let t0
a11

[wa1/x] = λx0.t0
a111

and s0
b12

= λx0.t0
b121

where t0
a111
' t0

b121
. Then

t0
b11

[x := wb1 ] −→0∗ λx0.t0
b121
−→0 λx0.t0

b121
and λx0.t0

b121
∈ VALUE0

exp. By

(lamu-sim), λx0.t0
a111
' λx0.t0

b121
.

Case b. (i+1). Let t i+1
a11

[wa1/x] = λx0.vi+1
a111

and si+1
b12

= λx0.t i+1
b121

where vi+1
a111
' t i+1

b121
.

By the induction hypothesis, we get t i+1
b121
−→(i+1)∗ vi+1

b131
and vi+1

a111
' vi+1

b131
.

Then t i+1
b11

[x := wb1 ] −→(i+1)∗ λx0.t i+1
b121
−→(i+1)∗ λx0.vi+1

b131
and λx0.vi+1

b131
∈

VALUEi+1
exp . By (lam-sim), λx0.vi+1

a111
' λx0.vi+1

b131
.

Case iv. (lamu-sim). Let t i
a11

[wa1/x] = λx0.t0
a111

and si
b12

= λx0.t0
b121

where t0
a111
' t0

b121
. Then

t i
b11

[x := wb1 ]−→i∗ λx0.t0
b121

, λx0.t0
b121
∈ VALUEi

exp and λx0.t0
a111
' λx0.t0

b121
.

Case v. (code-sim). Let t i
a11

[wa1/x] = 〈vi+1
a111
〉 and si

b12
= 〈t i+1

b121
〉where vi+1

a111
' t i+1

b121
. By the induc-

tion hypothesis, we get t i+1
b121
−→(i+1)∗ vi+1

b131
and vi+1

a111
' vi+1

b131
. Then t i

b11
[x := wb1 ]−→i∗

〈t i+1
b121
〉 −→i∗ 〈vi+1

b131
〉 and 〈vi+1

b131
〉 ∈ VALUEi

exp. By (code-sim), 〈vi+1
a111
〉 ' 〈vi+1

b131
〉.
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Case vi. (splice-sim). Let t i+2
a11

[wa1/x] = ∼vi+1
a111

and si+2
b12

= ∼t i+1
b121

where vi+1
a111
' t i+1

b121
. By the

induction hypothesis, we get t i+1
b121
−→(i+1)∗ vi+1

b131
and vi+1

a111
' vi+1

b131
. Then t i+2

b11
[x :=

wb1 ]−→(i+2)∗∼t i+1
b121
−→(i+2)∗∼vi+1

b131
and∼vi+1

b131
∈VALUEi+2

exp . By (splice-sim),∼vi+1
a111
'

∼vi+1
b131

.

Case vii. (run-sim). Let t i+1
a11

[wa1/x] = !vi+1
a111

and si+1
b12

= !t i+1
b121

where vi+1
a111
' t i+1

b121
. By the induction

hypothesis, we get t i+1
b121
−→(i+1)∗ vi+1

b131
and vi+1

a111
' vi+1

b131
. Then t i+1

b11
[x := wb1 ]−→(i+1)∗

!t i+1
b121
−→(i+1)∗ !vi+1

b131
and !vi+1

b131
∈ VALUEi+1

exp . By (run-sim), !vi+1
a111
' !vi+1

b131
.

Case viii. (num-sim). Let t i
a11

[wa1/x] = si
b12

= n. Then n−→i∗ n, n ∈ VALUEi
exp and n' n.

Case ix. (plus-sim). Let t i+1
a11

[wa1/x] = vi+1
a111

+ vi+1
a112

and si+1
b12

= t i+1
b121

+ t i+1
b122

where vi+1
a111
' t i+1

b121

and vi+1
a112
' t i+1

b122
. By the induction hypothesis, we get t i+1

b121
−→(i+1)∗ vi+1

b131
, vi+1

a111
' vi+1

b131
,

t i+1
b122
−→(i+1)∗ vi+1

b132
and vi+1

a112
' vi+1

b132
. Then t i+1

b11
[x := wb1 ]−→(i+1)∗ t i+1

b121
+ t i+1

b122
−→(i+1)∗

vi+1
b131

+ t i+1
b122
−→(i+1)∗ vi+1

b131
+ vi+1

b132
and vi+1

b131
+ vi+1

b132
∈ VALUEi+1

exp . By (plus-sim), vi+1
a111

+

vi+1
a112
' vi+1

a131
+ vi+1

a132
.

Case x. (subst-sim). This case is vacuous.

D.1.5 Explicit Substitution Descendant Relation

Definition 318 (Explicit Substitution Descendant Relation). For any t1, t2 ∈ RTERMexp, t1 ≺x t2 if and only

if t2 −→x t1. We call ≺x the explicit substitution descendant relation.

Definition 319 (Weight Function). Define the weight function W to be a total function from the set of

Explicit MetaML runtime terms to the set of natural numbers.

W : RTERMexp −→ N

W (x) = 1

W (t1 t2) = W (t1)+W (t2)+1

W (λx.t) = 1

W (λx.t) = 1

W (〈t〉) = W (t)+1

W (∼t) = W (t)+1

W (!t) = W (t)+1

W (n) = 1

W (t1 + t2) = W (t1)+W (t2)+1

W (t[x := w]) = W (t) · (W (w)+1)

Remark 320. Observe that W (t)> 0 for any t ∈ RTERMexp.

Lemma 321. For any t1, t2 ∈ RTERMexp, if t1 −→x t2, then W (t2)<W (t1).
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Proof. We proceed by structural induction on t1 −→x t2.

Case 1. (var-eq-subst). We have t1 = x[x := w] and t2 = w. Then, W (x[x := w]) = W (x) · (W (w)+ 1) =

W (w)+1, and W (w)<W (w)+1.

Case 2. (var-dif-subst). We have t1 = x1[x2 :=w] and t2 = x1 where x1 6≡ x2. Then, W (x1) = 1, W (x1[x2 :=

w]) =W (x1) · (W (w)+1) =W (w)+1, and 1 <W (w)+1.

Case 3. (num-subst). We have t1 = n[x :=w] and t2 = n. Then, W (n) = 1, W (n[x :=w]) =W (n) ·(W (w)+

1) =W (w)+1, and 1 <W (w)+1.

Case 4. (app-subst). We have t1 = (t1 t2)[x := w] and t2 = (t1[x := w]) (t2[x := w]). Then, W ((t1[x :=

w]) (t2[x :=w])) =W (t1[x :=w])+W (t2[x :=w])+1=W (t1) ·(W (w)+1)+W (t2) ·(W (w)+1)+

1 = (W (t1)+W (t2)) · (W (w)+1)+1, W ((t1 t2)[x := w]) =W ((t1 t2)) · ((W (w)+1) = (W (t1)+

W (t2) + 1) · ((W (w) + 1) = (W (t1) +W (t2)) · (W (w) + 1) +W (w) + 1, and (W (t1) +W (t2)) ·
(W (w)+1)+1 < (W (t1)+W (t2)) · (W (w)+1)+W (w)+1.

Case 5. (plus-subst). We have t1 = (t1 + t2)[x := w] and t2 = (t1[x := w])+(t2[x := w]). Then, W ((t1[x :=

w])+(t2[x := w])) =W (t1[x := w])+W (t2[x := w])+1 =W (t1) · (W (w)+1)+W (t2) · (W (w)+

1)+1 = (W (t1)+W (t2)) · (W (w)+1)+1, W ((t1 + t2)[x := w]) = W ((t1 + t2)) · ((W (w)+1) =

(W (t1) +W (t2) + 1) · ((W (w) + 1) = (W (t1) +W (t2)) · (W (w) + 1) +W (w) + 1, and (W (t1) +

W (t2)) · (W (w)+1)+1 < (W (t1)+W (t2)) · (W (w)+1)+W (w)+1.

Case 6. (lam-eq-subst). We have t1 =(λx.t11)[x :=w] and t2 = λx.t11. Then, W (λx.t11)= 1, W ((λx.t11)[x :=

w]) =W (λx.t11) · (W (w)+1) =W (w)+1, and 1 <W (w)+1.

Case 7. (lamu-eq-subst). We have t1 =(λx.t0
11)[x :=w] and t2 = λx.t0

11. Then, W (λx.t0
11)= 1, W ((λx.t0

11)[x :=

w]) =W (λx.t0
11) · (W (w)+1) =W (w)+1, and 1 <W (w)+1.

Case 8. (lam-df-subst). We have t1 = (λx1.t11)[x2 :=w] and t2 = λxN .t11[x1 := xN ][x2 :=w] where x1 6≡ x2

and xN /∈FV (λx1.t11)∪FV (w)∪{x2}. Then, W (λxN .t11[x1 := xN ][x2 :=w])= 1, W ((λx1.t11)[x2 :=

w]) =W (λx1.t11) · (W (w)+1) =W (w)+1, and 1 <W (w)+1.

Case 9. (lamu-df-subst). We have t1 = (λx1.t11)[x2 := w] and t2 = λxN .t11[x1 := xN ][x2 := w] where x1 6≡
x2 and xN /∈FV (λx1.t11)∪FV (w)∪{x2}. Then, W (λxN .t11[x1 := xN ][x2 :=w])= 1, W ((λx1.t11)[x2 :=

w]) =W (λx1.t11) · (W (w)+1) =W (w)+1, and 1 <W (w)+1.

Case 10. (code-subst). We have t1 = 〈t11〉[x := w] and t2 = 〈t11[x := w]〉. Then, W (〈t11[x := w]〉) =
W (t11[x :=w])+1=W (t11)·(W (w)+1)+1, W (〈t11〉[x :=w])=W (〈t11〉)·(W (w)+1)= (W (t11)+

1)·(W (w)+1)=W (t11)·(W (w)+1)+W (w)+1, and W (t11)·(W (w)+1)+1<W (t11)·(W (w)+

1)+W (w)+1.

Case 11. (run-subst). We have t1 = (!t11)[x := w] and t2 =!t11[x := w]. Then, W (!t11[x := w]) =W (t11[x :=

w]) + 1 = W (t11) · (W (w) + 1) + 1, W ((!t11)[x := w]) = W (!t11) · (W (w) + 1) = (W (t11) + 1) ·
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(W (w)+1) =W (t11) · (W (w)+1)+W (w)+1, and W (t11) · (W (w)+1)+1 <W (t11) · (W (w)+

1)+W (w)+1.

Case 12. (splice-subst). We have t1 = (∼ t11)[x := w] and t2 =∼ t11[x := w]. Then, W (∼ t11[x := w]) =

W (t11[x := w]) + 1 = W (t11) · (W (w)+ 1)+ 1, W ((∼ t11)[x := w]) = W (∼ t11) · (W (w)+ 1) =

(W (t11) + 1) · (W (w) + 1) = W (t11) · (W (w) + 1) +W (w) + 1, and W (t11) · (W (w) + 1) + 1 <

W (t11) · (W (w)+1)+W (w)+1.

Case 13. (subst-subst). We have t1 = t11[x1 :=w1][x2 :=w2] and t2 = t21[x2 :=w2] where t11[x1 :=w1]−→x

t21. By the induction hypothesis, W (t21) <W (t11[x1 := w1]). Then, W (t21[x2 := w2]) = W (t21) ·
(W (w2)+1), W (t11[x1 :=w1][x2 :=w2]) =W (t11[x1 :=w1]) ·(W (w2)+1), and W (t21) ·(W (w2)+

1)<W (t11[x1 := w1]) · (W (w2)+1).

Lemma 322 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation ≺x is well-founded.

Proof. Lemma 321 has proved that if t1 −→x t2, then W (t2) < W (t1), for any t1.t2 ∈ TERMexp. For any

t ∈ TERMexp, the length of the descending chain with respect to≺x starting from t is bound by W (t). Hence,

the explicit substitution descendant relation ≺x is well-founded.

D.1.6 Bisimulation

Lemma 323 (Simulation: Explicit MetaML simulates (Substitutional) MetaML.). If t i
a1
' t i

b1
and t i

a1
−→i t i

a2
,

then t i
b1
−→i∗ t i

b2
and t i

a2
' t i

b2
.

Proof. We proceed by simultaneous induction on the structure of t i
a1
' t i

b1
and on the explicit substitution

descendant relation ≺x t i
b1

.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Let t i
a1
= t i

a11
t i
a12

and t i
b1
= t i

b11
t i
b12

where t i
a11
' t i

b11
and t i

a12
' t i

b12
. We proceed by cases

on t i
a1
−→i t i

a2
.

Case i. (appL-i). Let t i
a11
−→i t i

a21
and t i

a2
= t i

a21
t i
a12

. By the induction hypothesis, t i
b11
−→i∗ t i

b21

and t i
a21
' t i

b21
. Then t i

b11
t i
b12
−→i∗ t i

b21
t i
b12

and by (app-sim) t i
a21

t i
a12
' t i

b21
t i
b12

.

Case ii. (appR-i). Let t i
a11

= vi
a11

, t i
a12
−→i t i

a22
and t i

a2
= vi

a11
t i
a22

. Given vi
a11
' t i

b11
, by Lemma

317, t i
b11
−→i∗ vi

b11
and vi

a11
' vi

b11
. By the induction hypothesis, t i

b12
−→i∗ t i

b22
and

t i
a22
' t i

b22
. Then t i

b11
t i
b12
−→i∗ vi

b11
t i
b12
−→i∗ vi

b11
t i
b22

and by (app-sim) vi
a11

t i
a22
' vi

b11
t i
b22

.

Case iii. (app-0). Let t0
a11

= λx.t0
a111

, t0
a12

= v0
a12

and t0
a2

= t0
a111

[v0
a12

/x]. Given λx.t0
a111
' t0

b11
,

by Lemma 317, t0
b11
−→0∗ v0

b11
and λx.t0

a111
' v0

b11
. Given v0

a12
' t0

b12
, by Lemma

317, t0
b12
−→0∗ v0

b12
and v0

a12
' v0

b12
. We proceed by cases on λx.t0

a111
' v0

b11
. The
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only case is (lamu-sim), so let v0
b11

= λx.t0
b111

and t0
a111
' t0

b111
. Then t0

b11
t0
b12
−→0∗

(λx.t0
b111

) t0
b12
−→0∗ (λx.t0

b111
) v0

b12
−→0 t0

b111
[x := v0

b12
]. By (subst-sim), t0

a111
[v0

a12
/x] '

t0
b111

[x := v0
b12

].

Case 3. (lam-sim). Let t i+1
a1

= λx.t i+1
a11

and t i+1
b1

= λx.t i+1
b11

where t i+1
a11
' t i+1

b11
. We proceed by cases on

t i+1
a1
−→i+1 t i+1

a2
. The only case is (lambda-(i+1)). Then t i+1

a11
−→i+1 t i+1

a21
and t i+1

a2
= λx.t i+1

a21
. By

the induction hypothesis, t i+1
b11
−→(i+1)∗ t i+1

b21
and t i+1

a21
' t i+1

b21
. Then λx.t i+1

b11
−→(i+1)∗ λx.t i+1

b21
and

by (lam-sim) λx.t i+1
a21
' λx.t i+1

b21
.

Case 4. (lamu-sim). We proceed by cases on i.

Case i. (0). Let t0
a1
= λx.t0

a11
and t0

b1
= λx.t0

b11
where t0

a11
' t0

b11
. This case is vacuous because

λx.t0
a11
6−→0.

Case ii. (i+1). Let t i+1
a1

= λx.t0
a11

and t i+1
b1

= λx.t0
b11

where t0
a11
' t0

b11
. Given λx.t0

a11
∈VALUE0

sub⊆
VALUEi+1

sub , we get λx.t0
a11
6−→i+1. This case is vacuous as well.

Case 5. (code-sim). Let t i
a1
= 〈t i+1

a11
〉 and t i

b1
= 〈t i+1

b11
〉where t i+1

a11
' t i+1

b11
. We proceed by cases on t i+1

a1
−→i+1

t i+1
a2

. The only case that applies is (code-i). Then t i+1
a11
−→i+1 t i+1

a21
and t i

a2
= 〈t i+1

a21
〉. By the

induction hypothesis, t i+1
b11
−→(i+1)∗ t i+1

b21
and t i+1

a21
' t i+1

b21
. Then 〈t i+1

b11
〉 −→i∗ 〈t i+1

b21
〉 and by (code-

sim) 〈t i+1
a21
〉 ' 〈t i+1

b21
〉.

Case 6. (splice-sim). Let t i+1
a1

= ∼t i
a11

and t i+1
b1

= ∼t i
b11

where t i
a11
' t i

b11
. We proceed by cases on

t i+1
a1
−→i+1 t i+1

a2
.

Case i. (splice-(i+1)). Let t i
a11
−→i t i

a21
and t i+1

a2
=∼t i

a21
. By the induction hypothesis, t i

b11
−→i∗

t i
b21

and t i
a21
' t i

b21
. Then ∼t i

b11
−→(i+1)∗ ∼t i

b21
and by (splice-sim) ∼t i

a21
'∼t i

b21
.

Case ii. (splice-1). Let t0
a11

= 〈v1
a111
〉, ∼〈v1

a111
〉 −→1 v1

a111
and t1

a2
= v1

a111
. Given 〈v1

a111
〉 ' t0

b11

and 〈v1
a111
〉 ∈ VALUE0

sub, by Lemma 317, t0
b11
−→0∗ v0

b21
and 〈v1

a111
〉 ' v0

b21
. We then

proceed by cases on 〈v1
a111
〉 ' v0

b21
. The only case is (code-sim), so let v0

b21
= 〈v1

b211
〉

where v1
a111
' v1

b211
. Then ∼t0

b11
−→1∗ ∼〈v1

b211
〉 −→1 v1

b211
.

Case 7. (run-sim). Let t i
a1
= !t i

a11
and t i

b1
= !t i

b11
where t i

a11
' t i

b11
. We proceed by cases on t i

a1
−→i ta2 .

Case i. (run-i). Let t i
a11
−→i t i

a21
and t i

a2
= !t i

a21
. By the induction hypothesis, t i

b11
−→i∗ t i

b21
and

t i
a21
' t i

b21
. Then, !t i

b11
−→i∗ !t i

b21
and by (run-sim) !t i

a21
' !t i

b21
.

Case ii. (run-0). Let t0
a11

= 〈v1
a111
〉, t0

a1
= !〈v1

a111
〉, !〈v1

a111
〉 −→0 v1

a111
and t0

a2
= v1

a111
. Given

〈v1
a111
〉 ' t0

b11
and 〈v1

a111
〉 ∈ VALUE0

sub, by Lemma 317, t0
b11
−→0∗ v0

b21
and 〈v1

a111
〉 ' v0

b21
.

We proceed by cases on 〈v1
a111
〉 ' v0

b21
. The only case that applies is (code-sim), so let

v0
b21

= 〈v1
b211
〉 where v1

a111
' v1

b211
. Then !t0

b11
−→0∗ !〈v1

b211
〉 −→0 v1

b211
.

Case 8. (num-sim). This case is vacuous.
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Case 9. (plus-sim). Let t i
a1
= t i

a11
+ t i

a12
and t i

b1
= t i

b11
+ t i

b12
where t i

a11
' t i

b11
and t i

a12
' t i

b12
. We proceed by

cases on t i
a1
−→i t i

a2
.

Case i. (plusL-i). Let t i
a11
−→i t i

a21
and t i

a2
= t i

a21
+ t i

a12
. By the induction hypothesis, t i

b11
−→i∗

t i
b21

and t i
a21
' t i

b21
. Then t i

b11
+ t i

b12
−→i∗ t i

b21
+ t i

b12
and by (plus-sim) t i

a21
+ t i

a12
' t i

b21
+

t i
b12

.

Case ii. (plusR-i). Let t i
a11

= vi
a11

, t i
a12
−→ t i

a22
and t i

a2
= vi

a11
+ t i

a22
. Given vi

a11
' t i

b11
, by Lemma

317, t i
b11
−→i∗ vi

b11
and vi

a11
' vi

b11
. By the induction hypothesis, t i

b12
−→∗ t i

b22
and

t i
a22
' t i

b22
. Then t i

b11
+ t i

b12
−→i∗ vi

b11
+ t i

b12
−→i∗ vi

b11
+ t i

b22
and by (plus-sim) vi

a11
+

t i
a22
' vi

b11
+ t i

b22
.

Case iii. (plus-0). Let t0
a11

= n1, t0
a12

= n2, and t0
a2
= n where n = n1 + n2. Given n1 ' t0

b11
, by

Lemma 317, t0
b11
−→0∗ v0

b11
and n1 ' v0

b11
. Given n2 ' t0

b12
, by Lemma 317, t0

b12
−→0∗

v0
b12

and n2 ' v0
b12

. We proceed by cases on n1 ' v0
b11

. The only case is (num-sim), so

let v0
b11

= n1. We proceed by cases on n2 ' v0
b12

. The only case is (num-sim), so let

v0
b12

= n2. Then t0
b11

+ t0
b12
−→0∗ n1 + t0

b12
−→0∗ n1 + n2 −→ n where n = n1 + n2. By

(num-sim), n' n.

Case 10. (subst-sim). Let t i
a1
= t i

a11
[wa11/x] and t i

b1
= t i

b11
[x := wb11 ] where t i

a11
' t i

b11
and wa11 'wb11 . Given

t i
a1
' t i

b11
[x := wb11 ], by Lemma 315, t i

b11
[x := wb11 ]−→xi∗ si

b21
and t i

a1
' si

b21
. Then si

b21
≺x t i

b1
. If

t i
a1
−→i t i

a2
, by the induction hypothesis, si

b21
−→i∗ t i

b2
and t i

a2
' t i

b2
. We have t i

b1
−→i∗ si

b21
−→i∗

t i
b2

.

Remark 324. In the last case of the proof, given t i
a1
' t i

b1
, t i

a1
' si

b21
and si

b21
≺x t i

b1
, if t i

a1
−→i t i

a2
, by the

induction hypothesis, si
b21
−→i∗ t i

b2
and t i

a2
' t i

b2
.

Lemma 325 (Single-step explicit substitution reduction preserves bisimulation relation.). If t i
a1
' t i

b1
, t i

b1
−→xi

t i
b2

, then t i
a1
' t i

b2
.

Proof. We proceed by structural induction on t i
a1
' t i

b1
. Since t i

b1
−→xi t i

b2
, only (subst-sim) applies. Let

t i
a1

= t i
a11

[wa11/x1] and t i
b1

= t i
b11

[x1 := wb11 ] where t i
a11
' t i

b11
and wa11 ' wb11 . We proceed by cases on

t i
b1
−→xi t i

b2
.

Case 1. (var-eq-subst). Let t i
b11

= x1. We have x1[x1 := wb11 ]−→xi wb11 . We proceed by cases on t i
a11
' x1.

The only case is (var-sim), thus we get t i
a11

= x1. Then x1[wa11/x1] = wa11 and wa11 ' wb11 .

Case 2. (var-df-subst). Let t i
b11

= x2 and x1 6≡ x2. We have x2[x1 := wb11 ] −→xi x2. We proceed by cases

on t i
a11
' x2. The only case is (var-sim), thus we get t i

a11
= x2. Then x2[wa11/x1] = x2 and x2 ' x2.

Case 3. (num-subst). Let t i
b11

= n. We have n[x1 := wb11 ] −→xi n. We proceed by cases on t i
a11
' n. The

only case is (num-sim), thus we get t i
a11

= n. Then n[wa11/x1] = n and n' n.
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Case 4. (app-subst). Let t i
b11

= t i
b111

t i
b112

. We have (t i
b111

t i
b112

)[x1 := wb11 ]−→xi t i
b111

[x1 := wb11 ] t i
b112

[x1 :=

wb11 ]. We proceed by cases on t i
a11
' t i

b111
t i
b112

. The only case is (app-sim), thus we get t i
a11

=

t i
a111

t i
a112

where t i
a111
' t i

b111
and t i

a112
' t i

b112
. Then (t i

a111
t i
a112

)[wa11/x1] = t i
a111

[wa11/x1] t i
a112

[wa11/x1]

and by (subst-sim) and (app-sim) t i
a111

[wa11/x1] t i
a112

[wa11/x1]' t i
b111

[x1 := wb11 ] t i
b112

[x1 := wb11 ].

Case 5. (plus-subst). Let t i
b11

= t i
b111

+ t i
b112

. We have (t i
b111

+ t i
b112

)[x1 := wb11 ] −→xi t i
b111

[x1 := wb11 ] +

t i
b112

[x1 :=wb11 ]. We proceed by cases on t i
a11
' t i

b111
+t i

b112
. The only case is (plus-sim), thus we get

t i
a11

= t i
a111

+ t i
a112

where t i
a111
' t i

b111
and t i

a112
' t i

b112
. Then (t i

a111
+ t i

a112
)[wa11/x1] = t i

a111
[wa11/x1]+

t i
a112

[wa11/x1] and by (subst-sim) and (plus-sim) t i
a111

[wa11/x1]+ t i
a112

[wa11/x1]' t i
b111

[x1 := wb11 ]+

t i
b112

[x1 := wb11 ].

Case 6. (lam-eq-subst). Let t i
b11

= λx1.t i
b111

. We have (λx1.t i
b111

)[x1 := wb11 ] −→xi λx1.t i
b111

. We proceed

by cases on t i
a11
' λx1.t i

b111
. The only case is (lam-subst), thus we get t i

a11
= λx1.t i

a111
where

t i
a111
' t i

b111
. Then (λx1.t i

a111
)[wa11/x1] = λx1.t i

a111
and λx1.t i

a111
' λx1.t i

b111
.

Case 7. (lamu-eq-subst). Let t i
b11

= λx1.t0
b111

. We have (λx1.t0
b111

)[x1 := wb11 ]−→xi λx1.t0
b111

. We proceed

by cases on t i
a11
' λx1.t0

b111
. The only case is (lamu-sim), thus we get t i

a11
= λx1.t0

a111
where

t0
a111
' t0

b111
. Then (λx1.t0

a111
)[wa11/x1] = λx1.t0

a111
and λx1.t0

a111
' λx1.t0

b111
.

Case 8. (lam-df-subst). Let t i
b11

= λx2.t i
b111

and x1 6≡ x2. We have (λx2.t i
b111

)[x1 :=wb11 ]−→xi λx3.t i
b111

[x2 :=

x3][x1 := wb11 ] where x3 6∈ FV (λx2.t i
b111

)∪ FV (wb11)∪ {x1}. We proceed by cases on t i
a11
'

λx2.t i
b111

. The only case is (lam-sim), thus we get t i
a11

= λx2.t i
a111

where t i
a111
' t i

b111
. Then

(λx2.t i
a111

)[wa11/x1] = λx4.t i
a111

[x4/x2][wa11/x1] where x4 /∈ FV (λx2.t i
a111

)∪FV (wa11)∪{x1}.
Let x5 /∈ FV (λx2.t i

b111
)∪FV (wb11)∪FV (λx2.t i

a111
)∪FV (wa11)∪{x1}. We have λx3.t i

b111
[x2 :=

x3][x1 :=wb11 ]∼α λx5.t i
b111

[x2 := x5][x1 :=wb11 ] and λx4.t i
a111

[x4/x2][wa11/x1]∼α λx5.t i
a111

[x5/x2][wa11/x1].

By (subst-sim) and (lam-sim), we get λx5.t i
a111

[x5/x2][wa11/x1] ' λx5.t i
b111

[x2 := x5][x1 := wb11 ].

Hence, λx4.t i
a111

[x4/x2][wa11/x1]' λx3.t i
b111

[x2 := x3][x1 := wb11 ].

Case 9. (lamu-df-subst). Let t i
b11

= λx2.t0
b111

and x1 6≡ x2. We have (λx2.t i
b111

)[x1 :=wb11 ]−→xi λx3.t i
b111

[x2 :=

x3][x1 := wb11 ] where x3 6∈ FV (λx2.t i
b111

)∪ FV (wb11)∪ {x1}. We proceed by cases on t i
a11
'

λx2.t i
b111

. The only case is (lamu-sim), thus we get t i
a11

= λx2.t i
a111

where t i
a111
' t i

b111
. Then

(λx2.t i
a111

)[wa11/x1] = λx4.t i
a111

[x4/x2][wa11/x1] where x4 /∈ FV (λx2.t i
a111

)∪FV (wa11)∪{x1}.
Let x5 /∈ FV (λx2.t i

b111
)∪FV (wb11)∪FV (λx2.t i

a111
)∪FV (wa11)∪{x1}. We have λx3.t i

b111
[x2 :=

x3][x1 :=wb11 ]∼α λx5.t i
b111

[x2 := x5][x1 :=wb11 ] and λx4.t i
a111

[x4/x2][wa11/x1]∼α λx5.t i
a111

[x5/x2][wa11/x1].

By (subst-sim) and (lamu-sim), we get λx5.t i
a111

[x5/x2][wa11/x1]' λx5.t i
b111

[x2 := x5][x1 := wb11 ].

Hence, λx4.t i
a111

[x4/x2][wa11/x1]' λx3.t i
b111

[x2 := x3][x1 := wb11 ].

Case 10. (code-subst). Let t i
b11

= 〈t i+1
b111
〉. We have 〈t i+1

b111
〉[x1 := wb11 ] −→xi 〈t i+1

b111
[x1 := wb11 ]〉. We proceed

by cases on t i
a11
' 〈t i+1

b111
〉. The only case is (code-sim), thus we get t i

a11
= 〈t i+1

a111
〉 where t i+1

a111
'

t i+1
b111

. Then 〈t i+1
a111
〉[wa11/x1] = 〈t i+1

a111
[wa11/x1]〉 and by (subst-sim) and (code-sim) 〈t i+1

a111
[wa11/x1]〉 '

〈t i+1
b111

[x1 := wb11 ]〉.
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Case 11. (run-subst). Let t i
b11

=!t i
b111

. We have (!t i
b111

)[x1 := wb11 ]−→xi!(t i
b111

[x1 := wb11 ]). We proceed by

cases on t i
a11
'!t i

b111
. The only case is (run-sim), thus we get t i

a11
=!t i

a111
where t i

a111
' t i

b111
. Then

(!t i
a111

)[wa11/x1] =!(t i
a111

[wa11/x1]) and by (subst-sim) and (run-sim) !(t i
a111

[wa11/x1]〉'!(t i
b111

[x1 :=

wb11 ]).

Case 12. (splice-subst). Let t i+1
b11

= ∼t i
b111

. We have (∼t i
b111

)[x1 := wb11 ] −→x(i+1) ∼(t i
b111

[x1 := wb11 ]).

We proceed by cases on t i+1
a11
' ∼t i

b111
. The only case is (splice-sim), thus we get t i+1

a11
= ∼t i

a111

where t i
a111
' t i

b111
. Then (∼t i

a111
)[wa11/x1] =∼(t i

a111
[wa11/x1]) and by (subst-sim) and (splice-sim)

∼(t i
a111

[wa11/x1]〉 ' ∼(t i
b111

[x1 := wb11 ]).

Case 13. (subst-subst). Let t i
b11

= t i
b111

[x2 := wb12 ]. We have (t i
b111

[x2 := wb12 ])[x1 := wb11 ] −→xi t i
b121

[x1 :=

wb11 ] where t i
b111

[x2 := wb12 ]−→xi t i
b121

. By the induction hypothesis, t i
a11
' t i

b121
. Then by (subst-

sim) t i
a11

[wa11/x1]' t i
b121

[x1 := wb11 ].

Lemma 326 (Simulation: (Substitutional) MetaML simulates Explicit MetaML.). If t i
a1
' t i

b1
and t i

b1
−→i t i

b2
,

then t i
a1
−→i∗ t i

a2
and t i

a2
' t i

b2
.

Proof. We proceed by induction on the structure of t i
a1
' t i

b1
.

Case 1. (var-sim). This case is vacuous.

Case 2. (app-sim). Let t i
a1
= t i

a11
t i
a12

and t i
b1
= t i

b11
t i
b12

where t i
a11
' t i

b11
and t i

a12
' t i

b12
. We proceed by cases

on t i
b1
−→i t i

b2
.

Case i. (appL-i). Let t i
b11
−→i t i

b21
and t i

b2
= t i

b21
t i
b12

. By the induction hypothesis, t i
a11
−→i∗ t i

a21

and t i
a21
' t i

b21
. Then t i

a11
t i
a12
−→i∗ t i

a21
t i
a12

and by (app-sim) t i
a21

t i
a12
' t i

b21
t i
b12

.

Case ii. (appR-i). Let t i
b11

= vi
b11

, t i
b12
−→i t i

b22
and t i

b2
= vi

b11
t i
b22

. Given t i
a11
' vi

b11
, by Lemma

316, t i
a11
−→i∗ vi

a11
and vi

a11
' vi

b11
. By the induction hypothesis, t i

a12
−→i∗ t i

a22
and

t i
a22
' t i

b22
. Then t i

a11
t i
a12
−→i∗ vi

a11
t i
a12
−→i∗ vi

a11
t i
a22

and by (app-sim) vi
a11

t i
a22
' vi

b11
t i
b22

.

Case iii. (app-0). Let t0
b11

= λx.t0
b111

, t0
b12

= v0
b12

and t0
b2
= t0

b111
[x := v0

b12
]. Given t0

a11
' λx.t0

b111
,

by Lemma 316, t0
a11
∈ VALUE0

sub. Given t0
a12
' v0

b12
, by Lemma 316, t0

a12
∈ VALUE0

sub.

Let t0
a11

= v0
a11

and t0
a12

= v0
a12

. We proceed by cases on v0
a11
' λx.t0

b111
. The only

case is (lamu-sim), so let v0
a11

= λx.t0
a111

where t0
a111
' t0

b111
. Then (λx.t0

a111
) v0

a12
−→0

t0
a111

[v0
a12

/x]. By (subst-sim), t0
a111

[v0
a12

/x]' t0
b111

[x := v0
b12

].

Case 3. (lam-sim). We proceed by cases on i.

Case i. (0). Let t0
a1

= λx.t0
a11

and t0
b1

= λx.t0
b11

where t0
a11
' t0

b11
. We proceed by cases on

t0
b1
−→0 t0

b2
. The only case is (lambda-0), so let λx.t0

b11
−→0 λx.t0

b11
and t0

b2
= λx.t0

b11
.

Then λx.t0
a11
−→0∗ λx.t0

a11
and by (lamu-sim) λx.t0

a11
' λx.t0

b11
.
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Case ii. (i + 1). Let t i+1
a1

= λx.t i+1
a11

and t i+1
b1

= λx.t i+1
b11

where t i+1
a11
' t i+1

b11
. We proceed by

cases on t i+1
b1
−→i+1 t i+1

b2
. The only case is (lambda-(i+1)), so let t i+1

b11
−→i+1 t i+1

b21

and t i+1
b2

= λx.t i+1
b21

. By the induction hypothesis, t i+1
a11
−→(i+1)∗ t i+1

a21
and t i+1

a21
' t i+1

b21
.

Then λx.t i+1
a11
−→(i+1)∗ λx.t i+1

a21
and by (lam-sim) λx.t i+1

a21
' λx.t i+1

b21
.

Case 4. (lamu-sim). Let t i
a1
= λx.t0

a11
and t i

b1
= λx.t0

b11
where t0

a11
' t0

b11
. This case is vacuous because

λx.t0
b11
6−→i.

Case 5. (code-sim). Let t i
a1
= 〈t i+1

a11
〉 and t i

b1
= 〈t i+1

b11
〉where t i+1

a11
' t i+1

b11
. We proceed by cases on t i+1

b1
−→i+1

t i+1
b2

. The only case that applies is (code-i), so let t i+1
b11
−→i+1 t i+1

b21
and t i

b2
= 〈t i+1

b21
〉. By the

induction hypothesis, t i+1
a11
−→(i+1)∗ t i+1

a21
and t i+1

a21
' t i+1

b21
. Then 〈t i+1

a11
〉 −→i∗ 〈t i+1

a21
〉 and by (code-

sim) 〈t i+1
a21
〉 ' 〈t i+1

b21
〉.

Case 6. (splice-sim). Let t i+1
a1

= ∼t i
a11

and t i+1
b1

= ∼t i
b11

where t i
a11
' t i

b11
. We proceed by cases on

t i+1
b1
−→i+1 t i+1

b2
.

Case i. (splice-(i+1)). Let t i
b11
−→i t i

b21
and t i+1

b2
=∼t i

b21
. By the induction hypothesis, t i

a11
−→i∗

t i
a21

and t i
a21
' t i

b21
. Then ∼t i

a11
−→(i+1)∗ ∼t i

a21
and by (splice-sim) ∼t i

a21
'∼t i

b21
.

Case ii. (splice-1). Let t0
b11

= 〈v1
b111
〉, ∼〈v1

b111
〉 −→1 v1

b111
and t1

b2
= v1

b111
. Given t0

a11
' 〈v1

b111
〉

and 〈v1
b111
〉 ∈ VALUE0

exp, by Lemma 316, t0
a11
−→0∗ v0

a21
and v0

a21
' 〈v1

b111
〉. We then

proceed by cases on v0
a21
' 〈v1

b111
〉. The only case is (code-sim), so let v0

a21
= 〈v1

a211
〉

where v1
a211
' v1

b111
. Then ∼t0

a11
−→1∗ ∼〈v1

a211
〉 −→1 v1

a211
.

Case 7. (run-sim). Let t i
a1
= !t i

a11
and t i

b1
= !t i

b11
where t i

a11
' t i

b11
. We proceed by cases on t i

b1
−→i tb2 .

Case i. (run-i). Let t i
b11
−→i t i

b21
and t i

b2
= !t i

b21
. By the induction hypothesis, t i

a11
−→i∗ t i

a21
and

t i
a21
' t i

b21
. Then !t i

a11
−→i∗ !t i

a21
and by (run-sim) !t i

a21
' !t i

b21
.

Case ii. (run-0). Let t0
b11

= 〈v1
b111
〉, t0

b1
= !〈v1

b111
〉, !〈v1

b111
〉 −→0 v1

b111
and t0

b2
= v1

b111
. Given

t0
a11
' 〈v1

b111
〉 and 〈v1

b111
〉 ∈ VALUE0

exp, by Lemma 316, t0
a11
−→0∗ v0

a21
and v0

a21
' 〈v1

b111
〉.

We proceed by cases on v0
a21
' 〈v1

b111
〉. The only case that applies is (code-sim), so let

v0
a21

= 〈v1
a211
〉 where v1

a211
' v1

b111
. Then !t0

a11
−→0∗ !〈v1

a211
〉 −→0 v1

a211
.

Case 8. (num-sim). This case is vacuous.

Case 9. (plus-sim). Let t i
a1
= t i

a11
+ t i

a12
and t i

b1
= t i

b11
+ t i

b12
where t i

a11
' t i

b11
and t i

a12
' t i

b12
. We proceed by

cases on t i
b1
−→i t i

b2
.

Case i. (plusL-i). Let t i
b11
−→i t i

b21
and t i

b2
= t i

b21
+ t i

b12
. By the induction hypothesis, t i

a11
−→i∗

t i
a21

and t i
a21
' t i

b21
. Then t i

a11
+ t i

a12
−→i∗ t i

a21
+ t i

a12
and by (plus-sim) t i

a21
+ t i

a12
' t i

b21
+

t i
b12

.

Case ii. (plusR-i). Let t i
b11

= vi
b11

, t i
b12
−→i t i

b22
and t i

b2
= vi

b11
+ t i

b22
. Given t i

a11
' vi

b11
, by

Lemma 316, t i
a11
−→i∗ vi

a11
and vi

a11
' vi

b11
. By the induction hypothesis, t i

a12
−→i∗
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t i
a22

and t i
a22
' t i

b22
. Then t i

a11
+ t i

a12
−→i∗ vi

a11
+ t i

a12
−→i∗ vi

a11
+ t i

a22
and by (app-sim)

vi
a11

+ t i
a22
' vi

b11
+ t i

b22
.

Case iii. (plus-0). Let t0
b11

= n1, t0
b12

= n2 and t0
b2
= n where n = n1 + n2. Given t0

a11
' n1, by

Lemma 316, t0
a11
−→0∗ v0

a11
and v0

a11
' n1. Given t0

a12
' n2, by Lemma 316, t0

a12
−→0∗

v0
a12

and v0
a12
' n2. We proceed by cases on v0

a11
' n1. The only case is (num-sim), so

let v0
a11

= n1. We proceed by cases on v0
a12
' n2. The only case is (num-sim), so let

v0
a12

= n2. Then t0
a11

+ t0
a12
−→0∗ n1 + t0

a12
−→0∗ n1 +n2 −→0 n where n = n1 +n2. By

(num-sim), n' n.

Case 10. (subst-sim). Let t i
a1
= t i

a11
[wa11/x] and t i

b1
= t i

b11
[x := wb11 ] where t i

a11
' t i

b11
and wa11 'wb11 . Given

t i
a1
' t i

b11
[x := wb11 ], by Lemma 315, t i

b11
[x := wb11 ]−→x∗ si

b21
and t i

a1
' si

b21
. Since t i

b11
[x := wb11 ]

is not in substitution normal form but si
b21

is in substitution normal form, t i
b11

[x := wb11 ] −→xi

t i
b21
−→xi∗ si

b21
. By Lemma 325, t i

a1
' t i

b21
. Then t i

b1
−→i t i

b21
, t i

a1
−→i∗ t i

a1
and t i

a1
' t i

b21
.

D.1.7 Soundness and Completeness

Theorem 327 (Soundness of Explicit MetaML w.r.t. (Substitutional) MetaML). If t i
a1
' t i

b1
and t i

a1
−→i∗ vi

a2

in (Substitutional) MetaML, then t i
b1
−→i∗ vi

b2
in Explicit MetaML and vi

a2
' vi

b2
.

Proof. We proceed by induction on the length of t i
a1
−→i∗ vi

a2
.

Case 1. (0). Let t i
a1
= vi

a2
. By Lemma 317, t i

b1
−→i∗ vi

b2
and vi

a2
' vi

b2
.

Case 2. (n+ 1). Let t i
a1
−→i t i

a2
−→i(n) vi

a2
. Given t i

a1
' t i

b1
and t i

a1
−→i t i

a2
, by Lemma 323, t i

b1
−→i∗ t i

b2

and t i
a2
' t i

b2
. Given t i

a2
' t i

b2
and t i

a2
−→i(n) vi

a2
, by the induction hypothesis, t i

b2
−→i∗ vi

b2
and

vi
a2
' vi

b2
. We have t i

b1
−→i∗ t i

b2
−→i∗ vi

b2
and vi

a2
' vi

b2
.

Theorem 328 (Completeness of Explicit MetaML w.r.t. (Substitutional) MetaML). If t i
a1
' t i

b1
and t i

b1
−→i∗

vi
b2

in Explicit MetaML, then t i
a1
−→i∗ vi

a2
in (Substitutional) MetaML and vi

a2
' vi

b2
.

Proof. We proceed by induction on the length of t i
b1
−→i∗ vi

b2
.

Case 1. (0). Let t i
b1

= vi
b2

. By Lemma 316, t i
a1
∈ VALUEi

sub. Let vi
a2

= t i
a1

. We have t i
a1
−→i∗ vi

a2
and

vi
a2
' vi

b2
.

Case 2. (n+ 1). Let t i
b1
−→i t i

b2
−→i(n) vi

b2
. Given t i

a1
' t i

b1
and t i

b1
−→i t i

b2
, by Lemma 326, t i

a1
−→i∗ t i

a2

and t i
a2
' t i

b2
. Given t i

a2
' t i

b2
and t i

b2
−→i(n) vi

b2
, by the induction hypothesis, t i

a2
−→i∗ vi

a2
and

vi
a2
' vi

b2
. We have t i

a1
−→i∗ vi

a2
and vi

a2
' vi

b2
.
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D.1.7.1 An alternative proof.

We demonstrate a different proof of Theorem 328 which does not use Lemma 326. We start with two

lemmas. Their proofs are omitted.

Lemma 329. If t i
a1
' t i

b1
, t i

b1
−→ t i

b2
and ta1 6' tb2 , then t i

a1
−→i t i

a2
.

Remark 330. Lemma 329 does not imply whether or not t i
a2
' t i

b2
.

Lemma 331. If t i
a1
' t i

b1
and t i

a1
−→ t i

a2
, then t i

b1
−→i+ t i

b2
and t i

a2
' t i

b2
.

Remark 332. Lemma 331 is stronger than Lemma 323. In other words, Lemma 331 implies Lemma 323.

Theorem 333 (Completeness of Explicit ISWIM w.r.t. (Substitutional) ISWIM). If t i
a1
' t i

b1
and t i

b1
−→i∗ vi

b2

in Explicit MetaML, then t i
a1
−→i∗ vi

a2
in Substitutional MetaML and vi

a2
' vi

b2
.

Proof. We proceed by induction on the length of t i
b1
−→i∗ vi

b2
.

Case 1. (0). Let t i
b1

= vi
b2

. By Lemma 316, t i
a1
∈ VALUEsub. Let vi

a2
= t i

a1
. We have t i

a1
−→i∗ vi

a2
and

vi
a2
' vi

b2
.

Case 2. (n+1). Let t i
b1
−→i t i

b2
−→i(n) vi

b2
. We proceed by cases on t i

a1
' t i

b1
, in particular on whether it

is (subst-sim) or not.

Case i. (subst-sim). Let t i
a1
= t i

a11
[wa1/x] and t i

b1
= t i

b11
[x := wb1 ] where t i

a11
' t i

b11
and wa1 '

wb1 . By Lemma 315, t i
b1
−→xi∗ si

b2
. Observe that t i

b1
is not in substitution normal form

but si
b2

is in substitution normal form. By the determinism of the small-step semantics,

t i
b1
−→xi t i

b2
−→xi(p) si

b2
−→i(q) vi

b2
and p+ q = n where p,q ≥ 0. By Lemma 325,

t i
a1
' t i

b2
. By the induction hypothesis, t i

a1
−→i∗ vi

a2
and vi

a2
' vi

b2
.

Case ii. (other cases). We proceed by cases on whether t i
a1
' t i

b2
.

Case a. (t i
a1
' t i

b2
). Then by the induction hypothesis, t i

a1
−→i∗ vi

a2
and vi

a2
' vi

b2
.

Case b. (t i
a1
6' t i

b2
). By Lemma 329, t i

a1
−→ t i

a2
. By Lemma 331, t i

b1
−→i+ t i

b3

and t i
a2
' t i

b3
. By the determinism of the small-step semantics, t i

b1
−→i

t i
b2
−→i(p) t i

b3
−→i(q) vi

b2
and p+ q = n where p,q ≥ 0. By the induction

hypothesis, t i
a2
−→i∗ vi

a2
and vi

a2
' vi

b2
.

Theorem 334 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:ExpSOS(t).

Proof. We first show that if evalMetaML:SubSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:ExpSOS(t) = a.

Case 1. If evalMetaML:SubSOS(t) = function, then t −→0∗ λx.t ′
0

in (Substitutional) MetaML. Observe

that t ' t. By Theorem 327, t −→0∗ v in Explicit MetaML and λx.t ′
0 ' v. We proceed by

cases on λx.t ′
0 ' v. The only case is (lamu-sim), thus v = λx.t ′′

0
and t ′

0 ' t ′′
0
. We have

evalMetaML:ExpSOS(t) = function.
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Case 2. If evalMetaML:SubSOS(t) = code, then t −→0∗ 〈v′1〉 in (Substitutional) MetaML. Observe that t ' t.

By Theorem 327, t −→0∗ v in Explicit MetaML and 〈v′1〉 ' v. We proceed by cases on 〈v′1〉 ' v.

The only case is (splice-sim), thus v = 〈v′′1〉 and v′
1 ' v′′

1
. We have evalMetaML:ExpSOS(t) = code.

Case 3. If evalMetaML:SubSOS(t) = n, then t −→0∗ n in (Substitutional) MetaML. Observe that t ' t. By

Theorem 327, t −→0∗ v in Explicit MetaML and n' v. We proceed by cases on n' v. The only

case is (num-sim), thus v = n. We have evalMetaML:ExpSOS(t) = n.

We then show that if evalMetaML:ExpSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:SubSOS(t) = a.

Case 1. If evalMetaML:ExpSOS(t) = function, then t −→0∗ λx.t ′
0

in Explicit MetaML. Observe that t '
t. By Theorem 328, t −→0∗ v in (Substitutional) MetaML and v ' λx.t ′

0
. We proceed by

cases on v ' λx.t ′
0
. The only case is (lamu-sim), thus v = λx.t ′′

0
and t ′′

0 ' t ′
0
. We have

evalMetaML:SubSOS(t) = function.

Case 2. If evalMetaML:ExpSOS(t) = code, then t −→0∗ 〈v′1〉 in Explicit MetaML. Observe that t ' t. By

Theorem 328, t −→0∗ v in (Substitutional) MetaML and v ' 〈v′1〉. We proceed by cases on v '
〈v′1〉. The only case is (splice-sim), thus v = 〈v′′1〉 and v′′

1 ' v′′. We have evalMetaML:SubSOS(t) =

code.

Case 3. If evalMetaML:ExpSOS(t) = n, then t −→0∗ n in Explicit MetaML. Observe that t ' t. By Theorem

328, t −→0∗ v in (Substitutional) MetaML and v ' n. We proceed by cases on v ' n. The only

case is (num-sim), thus v = n. We have evalMetaML:SubSOS(t) = n.

We observe that evalMetaML:SubSOS(t) is undefined if and only if evalMetaML:ExpSOS(t) is undefined. Therefore,

evalMetaML:SubSOS(t) is Kleene equal to evalMetaML:ExpSOS(t).

D.2 Equivalence of MetaML and Suspended MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the

structural operational semantics of Suspended MetaML. We use subscripts “sub” and “sus” to differentiate

the syntax of (Substitutional) MetaML from the syntax of Suspended MetaML.

D.2.1 Well-boundness Judgement

Definition 335 (Well-boundness Judgement). Let the well-boundness judgement ` wb be a ternary relation

on the power set of variables, the power set of variables and the set of runtime terms.
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` wb ⊆ P(VAR)×P(VAR)×RTERM

U ;V ` x wb where x ∈U

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 t2 wb

U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V

U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V

U ∪{x};V ∪{x} ` t wb

U ;V ` λ̂x.t wb
where x /∈ V

U ;V ` t wb
U ;V ` 〈t〉 wb

U ;V ` t wb
U ;V `∼ t wb

U ;V ` t wb
U ;V `!t wb

U ;V ` n wb

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 + t2 wb

U ;V ` w wb U ∪{x};V ` t wb

U ;V ` t[x := w] wb where x /∈ V

Lemma 336. If U ;V ` t wb, then FV (t)⊆U .

Proof. We proceed by structural induction on U ;V ` t wb.

Case 1. U ;V ` x wb where x ∈U .

We immediately have FV (x) = {x} ⊆U since x ∈U .

Case 2.

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 t2 wb .

By the induction hypothesis, FV (t1)⊆U and FV (t2)⊆U . Then, FV (t1 t2)⊆FV (t1)∪FV (t2)⊆
U .

Case 3.
U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V .

By the induction hypothesis, FV (t)⊆U ∪{x}. Then, FV (λx.t)=FV (t)\{x}⊆ (U ∪{x})\{x}=
U \{x} ⊆U .

202



D.2. Equivalence of MetaML and Suspended MetaML

Case 4.
U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V .

This is analogous to the case of U ;V ` λx.t wb.

Case 5.

U ∪{x};V ∪{x} ` t wb

U ;V ` λ̂x.t wb
where x /∈ V

.

By the induction hypothesis, FV (t)⊆U ∪{x}. Then, FV (λ̂x.t)=FV (t)\{x}⊆ (U ∪{x})\{x}=
U \{x} ⊆U .

Case 6.
U ;V ` t wb

U ;V ` 〈t〉 wb.

By the induction hypothesis, FV (t)⊆U . Then, FV (〈t〉) = FV (t)⊆U .

Case 7.
U ;V ` t wb

U ;V `∼ t wb.

This is analogous to the case of U ;V ` ∼t wb.

Case 8.
U ;V ` t wb
U ;V `!t wb.

This is analogous to the case of U ;V ` ∼t wb.

Case 9. U ;V ` n wb.

We immediately have FV (n) = /0⊆U .

Case 10.

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 + t2 wb .

This is analogous to the case of U ;V ` t1 t2 wb.

Case 11.

U ;V ` w wb U ∪{x};V ` t wb

U ;V ` t[x := w] wb where x /∈ V .

By the induction hypothesis, FV (w)⊆U and FV (t)⊆U ∪{x}. Then, FV (t[x :=w]) =FV (w)∪
(FV (t)\{x})⊆U ∪ ((U ∪{x})\{x}) = U .

Lemma 337. If U ;V ` t wb, then U ∪W ;V ` t wb.

Proof. By induction on the structure of U ;V ` t wb.

Lemma 338. If U ;V ` t wb and xN /∈U ∪V ∪Var(t), then U ∪{xN};V ∪{xN} ` t wb.

Proof. By induction on the structure of U ;V ` t wb.

Lemma 339. If U ∪{x};V ∪{x} ` vi+1 wb, then U ∪{x};V \{x} ` vi+1 wb.

Proof. By induction on the structure of U ∪{x};V ∪{x} ` vi+1 wb.

Lemma 340. If U ;V ` t i
0 wb, VAR(t i

1)⊆X , V ⊆U ⊆X and U ;V ;X ` t i
0 −→i∗ t ′i0 , then U ;V ` t ′i0 wb.
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Proof. We proceed by induction on the structure of U ;V ` t i
0 wb and the structure of U ;V ;X ` t i

0−→i∗ t ′i0 .

Case 1. U ;V ` x wb where x ∈U .

This case is vacuous because U ;V ;X ` x 6−→.

Case 2.

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 t2 wb .

In this case, t0 = t1 t2.

We proceed by cases on U ;V ;X ` t i
0 −→i∗ t ′i0 .

Case i.

U ;V ;X ` t1 −→i t ′1
U ;V ;X ` t1 t2 −→i t ′1 t2.

By induction hypothesis, U ;V ` t ′1 wb. Then U ;V ` t ′1 t2 wb.

Case ii.

U ;V ;X ` t2 −→i t ′2
U ;V ;X ` v1 t2 −→i v1 t ′2.

This case is analogous to the previous case.

Case iii. U ;V ;X ` (λx0.t0)[x1 := w1]...[xn := wn] v0 −→0 t0[x0 := v0][x1 := w1]...[xn := wn].

Then t1 = (λx0.t0)[x1 := w1]...[xn := wn] and t2 = v0.

Given U ;V ` (λx0.t0)[x1 := w1]...[xn := wn] wb, the following holds:

(1) U ;V ` wn wb,

(2) U ∪{xn};V ` wn−1 wb,

...

(n) U ∪{xn,xn−1, ...,x2};V ` w1 wb,

(n+1) U ∪{xn,xn−1, ...,x2,x1,x0};V ` t0 wb,

(n+2) {x1,x2, ...,xn}∩V = /0, and

(n+3) x0 /∈ V .

We also have

(n+4) U ;V ` v0 wb.

To show U ;V ` t0[x0 := v0][x1 := w1]...[xn := wn] wb, it is sufficient to show that

(1) U ;V ` wn wb,

(2) U ∪{xn};V ` wn−1 wb,

...

(n) U ∪{xn,xn−1, ...,x2};V ` w1 wb,

(n+1) U ∪{xn,xn−1, ...,x2,x1};V ` v0 wb,

(n+2) U ∪{xn,xn−1, ...,x2,x1,x0};V ` t0 wb, and

(n+3) {x0,x1,x2, ...,xn}∩V = /0.

All of (1)-(n+3) above hold.
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Case 3.
U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V .

In this case, t0 = λx.t. We proceed by cases on U ;V ;X ` t0 −→ t ′0.

Case i. U ;V ;X ` λx.t −→0 λx.t.

Given U ;V ` λx.t wb, we immediately have U ;V ` λx.t wb.

Case ii. U ;V ;X ` λx.t −→i+1 λ̂xN .t[x := xN ]
where t i+1 /∈ VALUEi+1 and xN /∈X

To show U ;V ` λ̂xN .t[x := xN ] wb, it is sufficient to show that

• xN /∈ V , and

• U ∪{xN};V ∪{xN} ` t[x := xN ] wb, which can be shown by

– x /∈ V ∪{xN},
– U ∪{xN};V ∪{xN} ` xN wb, and

– U ∪{xN ,x};V ∪{xN} ` t wb.

We show the above all hold as follows.

• Given xN /∈X and V ⊆U , we get xN /∈ V .

• Given x /∈ V and x 6≡ xN , we get x /∈ V ∪{xN}.
• Given xN ∈U ∪{xN}, we get U ∪{xN};V ∪{xN} ` xN wb.

• Given U ∪{x};V ` t wb and xN /∈ (U ∪{x})∪Y ∪Var(t) , by Lemma 338, we

get U ∪{x}∪{xN};V ∪{xN} ` t wb.

Case 4.
U ∪{x};V ` t wb
U ;V ` λx.t wb where x /∈ V .

This case is vacuous because U ;V ;X ` λx.t 6−→.

Case 5.

U ∪{x};V ∪{x} ` t wb

U ;V ` λ̂x.t wb
where x /∈ V

.

In this case, t0 = λ̂x.t. We proceed by cases on U ;V ;X ` t0 −→ t ′0.

Case i.

U ∪{x};V ∪{x};X ` t −→i+1 t ′

U ;V ;X ` λ̂x.t −→i+1 λ̂x.t ′

To show U ;V ` λ̂x.t ′ wb, it is sufficient to show that

• x /∈ V , and

• U ∪{x};V ∪{x} ` t ′ wb.

Given U ;V ` λ̂x.t wb, we have U ∪{x};V ∪{x} ` t wb and x /∈ V . By the induction

hypothesis, we have U ∪{x};V ∪{x} ` t ′ wb.

Case ii. U | λ̂x.vi+1 −→i+1 U | λx.vi+1

In this case, t = vi+1.

To show U ;V ` λx.vi+1 wb, it is sufficient to show that
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• x /∈ V , and

• U ∪{x};V ` vi+1 wb.

Given U ;V ` λ̂x.v wb, we have x /∈ V and U ∪{x};V ∪{x} ` vi+1 wb. By Lemma

339, we get U ∪{x};V \{x} ` vi+1 wb. Since x /∈ V , we get U ∪{x};V ` vi+1 wb.

Case 6.
U ;V ` t wb

U ;V ` 〈t〉 wb.

In this case, t0 = 〈t〉. We proceed by cases on U ;V ;X ` t0 −→ t ′0.

Case i.
U ;V ;X ` t −→i+1 t ′

U ;V ;X ` 〈t〉 −→i 〈t ′〉
By induction hypothesis, U ;V ` t ′ wb. Then U ;V ` 〈t ′〉 wb.

Case 7.
U ;V ` t wb

U ;V ` ∼t wb.

This case is analogous to the previous case.

Case 8.
U ;V ` t wb
U ;V `!t wb.

This case is analogous to the previous case.

Case 9.

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 + t2 wb .

This case is analogous to the U ;V ` t1 t2 wb case.

Case 10. U ;V ` n wb.

This case is vacuous because n 6−→.

Case 11.

U ;V ` w wb U ∪{x};V ` t wb

U ;V ` t[x := w] wb where x /∈ V .

In this case, t0 = t[x := w].

We proceed by cases on U ;V ;X ` t0 −→ t ′0.

Case i. U ;V ;X ` (λx1.t0
1)[x j := w j][x := w]−→0 (λx1.t0

1)[x j := w j][x := w].

In this case, t = (λx1.t0
1)[x j := w j].

Given U ;V ` (λx1.t0
1)[x j := w j][x :=w]wb, we immediately have U ;V ` (λx1.t0

1)[x j := w j][x :=

w] wb.

Case ii. U ;V ;X ` t[x := w]−→xi t ′.

We then proceed by induction on the structure of U ;V ;X ` t[x := w]−→xi t ′.

Case a. U ;V ;X ` n[x := w]−→xi n.

In this case, t = n.

We immediately have U ;V ` n wb.

Case b. U ;V ;X ` x[x := w]−→xi w

In this case, t = x. We have U ;V ` w wb.
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Case c. U ;V ;X ` x1[x := w]−→xi x1
where x1 6≡ x

In this case, t = x1.

Since U ∪{x};V ` x1, we know x1 ∈U ∪{x}. As x1 6≡ x, x1 ∈U . Then

U ;V ` x1 wb.

Case d. U ;V ;X ` (t1 t2)[x := w]−→xi (t1[x := w]) (t2[x := w])

In this case, t = t1 t2.

To show U ;V ` (t1[x :=w]) (t2[x :=w])wb, it is sufficient to show U ;V `
ti[x := w] wb for i = 1,2, which can be shown by

• U ;V ` w wb,

• U ∪{x};V ` ti wb for i = 1,2, and

• x /∈ V .

All the above hold.

Case e. U ;V ;X ` (t1 + t2)[x := w]−→xi (t1[x := w])+(t2[x := w])

This is analogous to the previous case.

Case f. U ;V ;X ` (λx1.t1)[x := w]−→x(i+1) λxN .t1[x1 := xN ][x := w]
where xN /∈X

In this case, t = λx1.t1.

Given U ∪{x};V ` λx1.t1 wb, we have U ∪{x,x1};V ` t1 wb and x1 /∈V .

To show U ;V ` λxN .t1[x1 := xN ][x := w] wb, it is sufficient to show

• xN /∈ V , and

• U ∪{xN};V ` t1[x1 := xN ][x :=w]wb, the latter of which can be shown

by

– x /∈ V ,

– U ∪{xN};V ` w wb, and

– U ∪{xN ,x};V ` t1[x1 := xN ] wb, the last of which can be shown by

∗ x1 /∈ V ,

∗ U ∪{xN ,x};V ` xN wb,

∗ U ∪{xN ,x,x1};V ` t1 wb.

We show the above all hold as follows.

• We already know x /∈ V and x1 /∈ V .

• Given xN /∈X and V ⊆X , we get xN /∈ V .

• Since xN ∈X ∪{xN ,x}, we have U ∪{xN ,x};V ` xN wb.

• Given U ;V ` w wb, by Lemma 337, U ∪ {xN};V ` w wb. U ∪
{xN ,x,x1};V ` t1 wb holds analogously.

Case g. U ;V ;X ` 〈t1〉[x := w]−→xi 〈t1[x := w]〉
In this case, t = 〈t1〉.
Given U ∪{x};V ` 〈t1〉 wb, we have U ∪{x};V ` t1 wb.
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To show U ;V ` 〈t1[x := w]〉 wb, it is sufficient to show U ;V ` t1[x :=

w] wb, which can be shown by

• x /∈ V ,

• U ;V ` w wb, and

• U ∪{x};V ` t1 wb.

All the above hold.

Case h. U ;V ;X ` (!t1)[x := w]−→xi!t1[x := w]

This case is analogous to the previous case.

Case i. U ;V ;X ` (∼ t1)[x := w]−→xi∼ t1[x := w]

This case is analogous to the previous case.

Case j.
U ∪{x};V ;X ` t1[x1 := w1]−→xi t2

U ;V ;X ` t1[x1 := w1][x := w]−→xi t2[x := w]

In this case, t = t1[x1 := w].

Given U ∪{x};V ` t1[x1 := w] wb, by induction hypothesis, we get U ∪
{x};V ` t2 wb. Together with x /∈ V and U ;V ` w wb, we get U ;V `
t2[x := w] wb.

D.2.2 Unload Function

Definition 341 (Unload Function). Let i ∈ N. Define the unload function U to be a total function from the

set of Suspended MetaML runtime terms RTERMi
sus to the set of Substitutional MetaML terms TERMi

sub.

U : P(VAR)×RTERMi
sus→ TERMi

sub

U(Z | x) = x

U(Z | t1 t2) = U(Z | t1)U(Z | t2)
U(Z | λx.t0) = λx.U(Z | t0)

U(Z | λx.t i+1) = λxN .U(Z ∪{xN} | t i+1[x := xN ])

where t i+1 /∈ VALUEi+1
sus xN /∈Z

U(Z | λx.vi+1) = λx.U(Z | vi+1)

U(Z | λx.t) = λx.U(Z | t)
U(Z | λ̂x.t) = λx.U(Z | t)

U(Z | 〈t〉) = 〈U(Z | t)〉
U(Z | ∼t) = ∼U(Z | t)
U(Z | !t) = !U(Z | t)
U(Z | n) = n

U(Z | t1 + t2) = U(Z | t1)+U(Z | t2)
U(Z | t[x0 := w0][xi := wi]) = U(Z | t[w0/x0][xi := wi])

Remark 342. U(Z | t) may be omitted to U(t) if Z is clear by the context.
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Proposition 343. U(Z | t i
s) = t i

s.

Proposition 344. U(Z | t[wi/xi]) =U(Z | t)[U(Z | wi)/xi].

D.2.3 Bisimulation Relation

Definition 345 (Bisimulation Relation). Define the bisimulation relation ' to be a binary relation between

the set of terms in (Substitutional) MetaML and the set of runtime terms in Suspended MetaML.

'⊆ TERMi
sub×RTERMi

sus

t i
1 ' t i

2 if and only if t i
1 =U(Z | t i

2) where VAR(t i
2)⊆Z

D.2.4 Explicit Substitution Descendant Relation

Definition 346 (Explicit Substitution Descendant Relation). For any t1, t2 ∈ RTERMsus, t1 ≺x t2 if and only

if U ;V ;X ` t2 −→x t1. We call ≺x the explicit substitution descendant relation.

Proposition 347 (Well-foundedness of Explicit Substitution Descendant Relation). The explicit substitution

descendant relation ≺x is well-founded.

The proof is analogous to the proof of Lemma 322.

D.2.5 Canonisation

Lemma 348 (Canonisation of Substitutional MetaML). If t i
a1
' vi

b1
, then t i

a1
∈ VALUEi

sub.

Proof. We proceed by induction on the structure of vi
b1
∈ VALUEi

sus.

Case 1. (vi+1
b1

= x). Then t i+1
a1

=U(x) = x and x ∈ VALUEi+1
sub .

Case 2. (vi+1
b1

= vi+1
b11

vi+1
b12

). Then t i+1
a1

= U(vi+1
b11

vi+1
b12

) = U(vi+1
b11

) U(vi+1
b12

). Let t i+1
a1

= t i+1
a11

t i+1
a12

. We have

t i
a11
' vi

b11
and t i

a12
' vi

b12
. By the induction hypothesis, t i+1

a11
∈ VALUEi+1

sub and t i+1
a12
∈ VALUEi+1

sub .

Then t i+1
a11

t i+1
a12
∈ VALUEi+1

sub .

Case 3. (vi+1
b1

= λx.vi+1
b11

). Then t i+1
a1

=U(λx.vi+1
b11

) = λx.U(vi+1
b11

). Let t i+1
a1

= λx.t i+1
a11

. We have t i
a11
' vi

b11
.

By the induction hypothesis, t i+1
a11
∈ VALUEi+1

sub . Then λx.t i+1
a11
∈ VALUEi+1

sub .

Case 4. (vi
b1
= (λx.t0

b11
)[xi := wi]). Then t i

a1
= U(Z | (λx.t0

b11
)[xi := wi]) = U(Z | (λx.t0

b11
)[wi/xi]). Let

xN /∈Z . We have t i
a1
=U((λx.t0

b11
)[wi/xi])=U(λxN .t0

b11
[xN/x][wi/xi])= λxN .U(t0

b11
[xN/x][wi/xi])∈

VALUE0
sub ⊆ VALUEi

sub.

Case 5. (vi
b1
= 〈vi+1

b11
〉). Then t i

a1
=U(〈vi+1

b11
〉) = 〈U(vi+1

b11
)〉. Let t i

a1
= 〈t i+1

a11
〉. We have t i+1

a11
' vi+1

b11
. By the

induction hypothesis, t i+1
a11
∈ VALUEi+1

sub . Then 〈t i+1
a11
〉 ∈ VALUEi

sub.

Case 6. (vi+2
b1

=∼vi+1
b11

). This case is analogous to the (vi
b1
= 〈vi+1

b11
〉) case.

Case 7. (vi+1
b1

=!vi+1
b11

). This case is analogous to the (vi
b1
= 〈vi+1

b11
〉) case.
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Case 8. (vi
b1
= n). Then t i

a1
=U(n) = n and n ∈ VALUEi

sub.

Case 9. (vi+1
b1

= vi+1
b11

+ vi+1
b12

). This case is analogous to the (vi+1
b1

= vi+1
b11

vi+1
b12

) case.

Lemma 349 (Canonisation of Suspended MetaML). If vi
a1
' t i

b1
, U ;V ` t i

b1
wb, VAR(t i

b1
) ⊆X and V ⊆

U ⊆X , and either t i
b1

is in substitution normal form and FV (t i
b1
) ⊆ V = U , or t i

b1
is not in substitution

normal form and FV (t i
b1
)⊆U , then U ;V ;X ` t i

b1
−→i∗ vi

b2
and vi

a1
' vi

b2
.

Proof. We proceed by simultaneous induction on the structure of vi
a1
∈ VALUEi

sub and on the explicit sub-

stitution descendant relation ≺x t i
b1

.

Case 1. (vi+1
a1

= x). We proceed by cases on t i+1
b1
∈ RTERMi+1

sus .

Case i. (t i+1
b1

= x). Then x ∈ VALUEi+1
sus .

Case ii. (t i+1
b1

= x0[x1 := w1]...[xm := wm]). We proceed by cases on m.

Case a. (m = 1). Given x' x0[x1 := w1], we have:

x

= U(x0[x1 := w1])

= U(x0[w1/x1])

= U(w1) where x0 ≡ x1

or = U(x0) where x0 6≡ x1

We have x' w1 or x' x0.

Then by (var-eq-subst) or (var-df-subst) and (subst-subst), we have:

U ;V ;X ` x0[x1 := w1]

−→x w1 where x0 ≡ x1

or −→x x0 where x0 6≡ x1

Case 1. (x0≡ x1). We have x'w1. Then w1 = x. We have x∈VALUEi+1
sus .

Case 2. (x0 6≡ x1). We have x' x0. Then x0 = x. We have x∈VALUEi+1
sus .

Case b. (m > 1). Given x' x0[x1 := w1]...[xm := wm], we have:

x

= U(x0[x1 := w1][x2 := w2]...[xm := wm])

= U(x0[w1/x1][x2 := w2]...[xm := wm])

= U(w1[x2 := w2]...[xm := wm]) where x0 ≡ x1

or = U(x0[x2 := w2]...[xm := wm]) where x0 6≡ x1

We have x' w1[x2 := w2]...[xm := wm] or x' x0[x2 := w2]...[xm := wm].

Then by (var-eq-subst) or (var-df-subst) and (subst-subst), we have:

U ;V ;X ` x0[x1 := w1][x2 := w2]...[xm := wm]

−→x w1[x2 := w2]...[xm := wm] where x0 ≡ x1

or −→x x0[x2 := w2]...[xm := wm] where x0 6≡ x1
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Case 1. (x0 ≡ x1). We have x ' w1[x2 := w2]...[xm := wm] and w1[x2 :=

w2]...[xm := wm]≺x x0[x1 := w1][x2 := w2]...[xm := wm].

By Lemma 340, U ;V `w1[x2 :=w2]...[xm :=wm]wb. By Lemma

336, FV (w1[x2 := w2]...[xm := wm])⊆U .

By the induction hypothesis, we have U ;V ;X `w1[x2 :=w2]...[xm :=

wm]−→∗ vi+1
b2

and x' vi+1
b2

.

Case 2. (x0 6≡ x1). It is analogous to the previous case.

Case 2. (vi+1
a1

= vi+1
a11

vi+1
a12

). We proceed by cases on t i+1
b1
∈ RTERMi+1

sus .

Case i. (t i+1
b1

= t i+1
b11

t i+1
b12

). Given vi+1
a11

vi+1
a12
' t i+1

b11
t i+1
b12

, we have:

vi+1
a11

vi+1
a12

= U(t i+1
b11

t i+1
b12

)

= U(t i+1
b11

)U(t i+1
b12

)

Then vi+1
a11
' t i+1

b11
and vi+1

a12
' t i+1

b12
.

We have U ;V ` t i
b11

wb, U ;V ` t i
b12

wb, FV (t i
b11

)⊆ V , FV (t i
b12

)⊆ V and V = U .

By the induction hypothesis, U ;V ;X ` t i+1
b11
−→∗ vi+1

b21
, vi+1

a11
' vi+1

b21
, U ;V ;X ∪

VAR(vi+1
b21

) ` t i+1
b12
−→ vi+1

b22
and vi+1

a12
' vi+1

b22
.

Hence U ;V ;X ` t i+1
b11

t i+1
b12
−→∗ vi+1

b21
vi+1

b22
and vi+1

a11
vi+1

a12
' vi+1

b21
vi+1

b22
.

Case ii. (t i+1
b1

= (t i+1
b11

t i+1
b12

)[x1 := w1]...[xm := wm] where (t i+1
b11

t i+1
b12

)[x1 := w1]...[xm := wm] is

well formed.). Given vi+1
a11

vi+1
a12
' (t i+1

b11
t i+1
b12

)[x1 := w1]...[xm := wm], we have:

vi+1
a11

vi+1
a12

= U((t i+1
b11

t i+1
b12

)[x1 := w1]...[xm := wm])

= U((t i+1
b11

t i+1
b12

)[w1/x1]...[wm/xm])

= U((t i+1
b11

[w1/x1]...[wm/xm]) (t i+1
b12

[w1/x1]...[wm/xm]))

= U(t i+1
b11

[w1/x1]...[wm/xm])U(t i+1
b12

[w1/x1]...[wm/xm])

= U(t i+1
b11

[x1 := w1]...[xm := wm])U(t i+1
b12

[x1 := w1]...[xm := wm])

Then vi+1
a11
' t i+1

b11
[x1 := w1]...[xm := wm] and vi+1

a12
' t i+1

b12
[x1 := w1]...[xm := wm].

We have U ;V ` t i+1
b11

[x1 :=w1]...[xm :=wm]wb, U ;V ` t i
b12

[x1 :=w1]...[xm :=wm]wb,

FV (t i+1
b11

[x1 := w1]...[xm := wm])⊆U and FV (t i
b12

[x1 := w1]...[xm := wm])⊆U .

By the induction hypothesis, U ;V ;X ` t i+1
b11

[x1 := w1]...[xm := wm]−→∗ vi+1
b21

, vi+1
a11
'

vi+1
b21

, U ;V ;X ∪VAR(vi+1
b21

) ` t i+1
b12

[x1 := w1]...[xm := wm]−→∗ vi+1
b22

and vi+1
a12
' vi+1

b22
.

Hence U ;V ;X ` (t i+1
b11

t i+1
b12

)[x1 := w1]...[xm := wm] −→∗ vi+1
b21

vi+1
b22

and vi+1
a11

vi+1
a12
'

vi+1
b21

vi+1
b22

.

Case 3. (v0
a1
= λx.t0

a11
). We proceed by cases on t0

b1
∈ RTERM0

sus.

Case i. (t0
b1

= (λx0.t0
b11

)[x1 := w1]...[xm := wm]). Then (λx0.t0
b11

)[x1 := w1]...[xm := wm] ∈
VALUE0

sus.
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Case ii. (t0
b1
= (λx0.t0

b11
)[x1 := w1]...[xm := wm]). Given λx.t0

a11
' (λx0.t0

b11
)[x1 := w1]...[xm :=

wm], we have:

λx.t0
a11

= U((λx0.t0
b11

)[x1 := w1]...[xm := wm])

= U((λx0.t0
b11

)[x1 := w1]...[xm := wm])

Then λx.t0
a11
' (λx0.t0

b11
)[x1 := w1]...[xm := wm].

By (lambda-0) we have:

U ;V ;X ` (λx0.t0
b11

)[x1 := w1]...[xm := wm]−→ (λx0.t0
b11

)[x1 := w1]...[xm := wm]

Case iii. (t0
b1
= x0[x1 := w1]...[xm := wm]). This is analogous to the (t i+1

b1
= x0[x1 := w1]...[xm :=

wm]) subcase of the (vi+1
a1

= x) case.

Case 4. (vi+1
a1

= λx.vi+1
a11

). We proceed by cases on t i+1
b1
∈ RTERMi+1

sus .

Case i. (t i+1
b1

= λx0.vi+1
b11

). Then λx0.vi+1
b11
∈ VALUEi+1

sus .

Case ii. (t i+1
b1

= λx0.t i+1
b11

where t i+1
b11

/∈ VALUEi+1
sus ).

Let xN /∈X ∪VAR(vi+1
a1

). Then λx.vi+1
a11
∼α λxN .vi+1

a11
[xN/x].

We have U ;V ;X ` λx0.t i+1
b11
−→ λ̂xN .t i+1

b11
[x0 := xN ].

By Lemma 340, U ;V ` λ̂xN .t i+1
b11

[x0 := xN ] wb. By Lemma 336, FV (λ̂xN .t i+1
b11

[x0 :=

xN ])⊆ V = U .

Then U ∪{xN};V ∪{xN} ` t i+1
b11

[x0 := xN ]wb, xN /∈V , FV (t i+1
b11

[x0 := xN ])⊆V ∪{xN}
and V = U .

We have:

λxN .vi+1
a11

[xN/x]

= U(X | λx0.t i+1
b11

)

= λxN .U(X ∪{xN} | t i+1
b11

[x0 := xN ])

Then vi+1
a11

[xN/x]' t i+1
b11

[x0 := xN ].

By the induction hypothesis, we have U ∪ {xN};V ∪ {xN};X ∪ {xN} ` t i+1
b11

[x0 :=

xN ]−→∗ vi+1
b12

and vi+1
a11
' vi+1

b12
.

Hence U ;V ;X ` λ̂xN .t i+1
b11

[x0 := xN ]−→∗ λxN .vi+1
b12

and λxN .vi+1
a11

[xN/x]' λxN .vi+1
b12

.

Case iii. (t i+1
b1

= λ̂x.t i+1
b11

). Given λx.vi+1
a11
' λ̂x.t i+1

b11
, we have:

λx.vi+1
a11

= U(λ̂x.t i+1
b11

)

= λx.U(t i+1
b11

)

Then vi+1
a11
' t i+1

b11
.

We have U ∪{x};V ∪{x} ` t i+1
b11

wb, x /∈ V , FV (t i+1
b11

)⊆ V ∪{x} and V = U .
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By the induction hypothesis, we have U ∪ {x};V ∪ {x};X ` t i+1
b11
−→∗ vi+1

b12
and

vi+1
a11
' vi+1

b12
.

Hence U ;V ;X ` λ̂xN .t i+1
b11
−→∗ λxN .vi+1

b12
and λx.vi+1

a11
' λxN .vi+1

b12
.

Case iv. (t0
b1

= (λx0.t0
b11

)[x1 := w1]...[xm := wm]). Then (λx0.t0
b11

)[x1 := w1]...[xm := wm] ∈
VALUE0

sus ⊆ VALUEi+1
sus .

Case v. (t i+1
b1

= x0[x1 :=w1]...[xm :=wm]). This is analogous to the (t i+1
b1

= x0[x1 :=w1]...[xm :=

wm]) subcase of the (vi+1
a1

= x) case.

Case vi. (t i+1
b1

=(λx0.t i+1
b11

)[x1 :=w1]...[xm :=wm]). Given λx.vi+1
a11
' (λx0.t i+1

b11
)[x1 :=w1]...[xm :=

wm], we have:

λx.vi+1
a11

= U(X | (λx0.t i+1
b11

)[x1 := w1]...[xm := wm])

= U(X | (λx0.t i+1
b11

)[w1/x1][x2 := w2]...[xm := wm])

= U(X ∪{xN} | (λxN .t i+1
b11

[xN/x0][w1/x1])[x2 := w2]...[xm := wm]) where xN /∈X

= U(X ∪{xN} | (λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm])

Then λx.vi+1
a11
' (λxN .t i+1

b11
[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm].

By (lam-subst) and (subst-subst) we have:

U ;V ;X ` (λx0.t i+1
b11

)[x1 := w1][x2 := w2]...[xm := wm]

−→x (λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm] where xN /∈X

By Lemma 340, U ;V ` (λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm] wb. By

Lemma 336, FV ((λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm])⊆U .

Since (λxN .t i+1
b11

[x0 := xN ][x1 :=w1])[x2 :=w2]...[xm :=wm]≺x (λx0.t i+1
b11

)[x1 :=w1][x2 :=

w2]...[xm :=wm], by the induction hypothesis, we have U ;V ;X ∪{xN} ` (λxN .t i+1
b11

[x0 :=

xN ][x1 := w1])[x2 := w2]...[xm := wm]−→∗ vi+1
b12

and λx.vi+1
a11
' vi+1

b12
.

Case 5. (vi
a1
= 〈vi+1

a11
〉). We proceed by cases on t i

b1
∈ RTERMi

sus.

Case i. (t i
b1
= 〈t i+1

b11
〉). Given 〈vi+1

a11
〉 ' 〈t i+1

b11
〉, we have:

〈vi+1
a11
〉

= U(〈t i+1
b11
〉)

= 〈U(t i+1
b11

)〉

Then vi+1
a11
' t i+1

b11
.

We have U ;V ` t i+1
b11

wb and FV (t i+1
b11

)⊆ V = U .

By the induction hypothesis, U ;V ;X ` t i+1
b11
−→∗ vi+1

b21
and vi+1

a11
' vi+1

b21
.

Hence U ;V ;X ` 〈t i+1
b11
〉 −→∗ 〈vi+1

b21
〉 and 〈vi+1

a11
〉 ' 〈vi+1

b21
〉.
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Case ii. (t i
b1
= 〈t i+1

b11
〉[x1 := w1]...[xm := wm]). Given 〈vi+1

a11
〉 ' 〈t i+1

b11
〉[x1 := w1]...[xm := wm], we

have:

〈vi+1
a11
〉

= U(〈t i+1
b11
〉[x1 := w1]...[xm := wm])

= 〈U(t i+1
b11

[x1 := w1]...[xm := wm])〉

We have vi+1
a11
' t i+1

b11
[x1 := w1]...[xm := wm].

By (code-subst) and (subst-subst), we have:

U ;V ;X ` 〈t i+1
b11
〉[x1 := w1]...[xm := wm]

−→x∗ 〈t i+1
b11

[x1 := w1]...[xm := wm]〉

We have U ;V ` t i+1
b11

[x1 :=w1]...[xm :=wm]wb and FV (t i+1
b11

[x1 :=w1]...[xm :=wm])⊆
U .

By the induction hypothesis, U ;V ;X ` t i+1
b11

[x1 := w1]...[xm := wm] −→∗ vi+1
b21

and

vi+1
a11
' vi+1

b21
.

Hence 〈t i+1
b11
〉[x1 := w1]...[xm := wm]−→∗ 〈vi+1

b21
〉 and 〈vi+1

a11
〉 ' 〈vi+1

b21
〉.

Case iii. (v0
a1

= 〈v1
a11
〉 and t0

b1
= x0[x1 := w1]...[xm := wm]). This is analogous to the (t i+1

b1
=

x0[x1 := w1]...[xm := wm]) subcase of the (vi+1
a1

= x) case.

Case 6. (vi+2
a1

=∼vi+1
a11

). This case is analogous to the (vi
a1
= 〈vi+1

a11
〉) case.

Case 7. (vi+1
a1

=!vi+1
a11

). This case is analogous to the (vi
a1
= 〈vi+1

a11
〉) case.

Case 8. (vi
a1
= n). We proceed by cases on t i

b1
∈ RTERMi

sus where t i
b1

is in substitution normal form.

Case i. (t i
b1
= n). Then n ∈ VALUEi

sus.

Case ii. (t i
b1
= x0[x1 := w1]...[xm := wm]). This is analogous to the (t i+1

b1
= x0[x1 := w1]...[xm :=

wm]) subcase of the (vi+1
a1

= x) case.

Case iii. (t i
b1
= n0[x1 := w1]...[xm := wm]). Given n' n0[x1 := w1]...[xm := wm], we have:

n

= U(n0[x1 := w1]...[xm := wm])

= n0

Then n' n0.

By (num-subst) and (subst-subst), we have:

n0[x1 := w1]...[xm := wm]

−→x∗ n0

Case 9. (vi+1
a1

= vi+1
a11

+ vi+1
a12

). This case is analogous to the (vi+1
a1

= vi+1
a11

vi+1
a12

) case.
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D.2.6 Bisimulation

Lemma 350 (Simulation: Suspended MetaML simulates (Substitutional) MetaML.). If t i
a1
' t i

b1
, t i

a1
−→i t i

a2
,

U ;V ` t i
b1

wb, VAR(t i
b1
)⊆X , V ⊆U ⊆X , and either t i

b1
is in substitution normal form and FV (t i

b1
)⊆

V = U , or t i
b1

is not in substitution normal form and FV (t i
b1
) ⊆ U , then U ;V ;X ` t i

b1
−→i∗ t i

b2
and

t i
a2
' t i

b2
.

Proof. We proceed by simultaneous induction on the structure of t i
a1
∈ TERMi

sub and on the explicit substi-

tution descendant relation ≺x t i
b1

.

Case 1. (t i
a1
= x). This case is vacuous because x 6−→.

Case 2. (t i
a1
= t i

a11
t i
a12

). We proceed by cases on t i
b1
∈ RTERMi

sus.

Case i. Suppose t i
b1

is in substitution normal form. Let t i
b1
= t i

b11
t i
b12

We have t i
a11
' t i

b11
, t i

a12
' t i

b12
, U ;V ` t i

b11
wb, U ;V ` t i

b12
wb, VAR(t i

b11
) ⊆ X ,

VAR(t i
b12

)⊆X , FV (t i
b11

)⊆ V , FV (t i
b12

)⊆ V and V = U .

We proceed by cases on t i
a1
−→ t i

a2
.

Case a. (appL-i). Let t i
a11

t i
a12
−→ t i

a21
t i
a12

where t i
a11
−→ t i

a21
.

By the induction hypothesis, U ;V ;X ` t i
b11
−→∗ t i

b21
and t i

a21
' t i

b21
.

Hence U ;V ;X ` t i
b11

t i
b12
−→∗ t i

b21
t i
b12

and t i
a21

t i
a12
' t i

b21
t i
b12

.

Case b. (appR-i). Let t i
a11

= vi
a11

and vi
a11

t i
a12
−→ vi

a11
t i
a22

where t i
a12
−→ t i

a22
.

By Lemma 349, U ;V ;X ` t i
b11
−→∗ vi

b11
.

Then U ;V ;X ` t i
b11

t i
b12
−→∗ vi

b11
t i
b12

.

By the induction hypothesis, U ;V ;X ∪ VAR(vi
b11

) ` t i
b12
−→∗ t i

b22
and

t i
a22
' t i

b22
.

Then U ;V ;X ∪VAR(vi
b11

) ` vi
b11

t i
b12
−→∗ vi

b11
t i
b22

.

Hence U ;V ;X ` t i
b11

t i
b12
−→∗ vi

b11
t i
b22

and t i
a11

t i
a22
' vi

b11
t i
b22

.

Case c. (app-0). Let t0
a11

= λx.t0
a111

, t0
a12

= v0
a12

and λx.t0
a111

v0
a12
−→ t0

a111
[v0

a12
/x].

Given λx.t0
a111
' t0

b11
, by Lemma 349, U ;V ;X ` t0

b11
−→∗ v0

b11
and λx.t0

a111
'

v0
b11

. Then U ;V ;X ` t0
b11

t0
b12
−→∗ v0

b11
t0
b12

.

Given v0
a12
' t0

b12
, by Lemma 349, U ;V ;X ∪VAR(v0

b11
) ` t0

b12
−→∗ v0

b12

and v0
a12
' v0

b12
. Then U ;V ;X ∪VAR(v0

b11
) ` v0

b11
t0
b12
−→∗ v0

b11
v0

b12
.

We have U ;V ;X ` t0
b11

t0
b12
−→∗ v0

b11
v0

b12
.

By Lemma 340, U ;V ` v0
b11

wb, U ;V ` v0
b12

wb. By Lemma 336, FV (v0
b11

)⊆
V and FV (v0

b12
)⊆ V .

We proceed by cases on v0
b11

in λx.t0
a111
' v0

b11
. The only possible case is

v0
b11

= (λx0.t0
b111

)[x1 := w1]...[xm := wm].

Let xN /∈X ∪VAR(t0
a11

t0
a12

)∪VAR(v0
b11

v0
b12

).

We have λx.t0
a111
∼α λxN .t0

a111
[xN/x] and (λx0.t0

b111
)[x1 :=w1]...[xm :=wm]∼α

(λxN .t0
b111

[xN/x0])[x1 := w1]...[xm := wm].

We have:
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λxN .t0
a111

[xN/x]

= U((λx0.t0
b111

)[x1 := w1]...[xm := wm])

= U((λxN .t0
b111

[xN/x0])[x1 := w1]...[xm := wm])

= U((λxN .t0
b111

[xN/x0])[w1/x1]...[wm/xm])

= U(λxN .t0
b111

[xN/x0][w1/x1]...[wm/xm])

= λxN .U(t0
b111

[xN/x0][w1/x1]...[wm/xm])

Then t0
a111

[xN/x]' t0
b111

[xN/x0][w1/x1]...[wm/xm].

Observe that

λxN .t0
a111

[xN/x] v0
a12
−→ t0

a111
[xN/x][v0

a12
/xN ]

and
U ;V ;X ∪VAR(v0

b11
v0

b12
) ` (λx0.t0

b111
)[x1 := w1]...[xm := wm] v0

b12

−→ t0
b111

[x0 := v0
b12

][x1 := w1]...[xm := wm] .

Since FV ((λx0.t0
b111

)[x1 := w1]...[xm := wm] v0
b12

)⊆ V , we have

FV (v0
b12

)⊆ V .

Since U ;V ` (λx0.t0
b111

)[x1 := w1]...[xm := wm] wb, we have xi /∈ V .

Hence xi /∈ FV (v0
b12

).

We have:

U(t0
b111

[x0 := v0
b12

][x1 := w1]...[xm := wm])

= U(t0
b111

[v0
b12

/x0][w1/x1]...[wm/xm])

= U(t0
b111

[xN/x0][v0
b12

/xN ][w1/x1]...[wm/xm])

= U(t0
b111

[xN/x0][w1/x1]...[wm/xm][v0
b12

/xN ])

= U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm][U(v0
b12

)/xN ]

= U(t0
b111

[xN/x0][w1/x1]...[wm/xm])[U(v0
b12

)/xN ]

= t0
a111

[xN/x][v0
a12

/xN ]

We get:

t0
a111

[xN/x][v0
a12

/xN ]' t0
b111

[x0 := v0
b12

][x1 := w1]...[xm := wm]

Case ii. Suppose t i
b1

is not in substitution normal form. Let t i
b1
= (t i

b11
t i
b12

)[x1 := w1]...[xm :=

wm].

We have U ;V ` t i
b11

[x1 :=w1]...[xm :=wm] t i
b12

[x1 :=w1]...[xm :=wm]wb, VAR(t i
b11

[x1 :=

w1]...[xm :=wm] t i
b12

[x1 :=w1]...[xm :=wm])⊆X and FV (t i
b11

[x1 :=w1]...[xm :=wm] t i
b12

[x1 :=

w1]...[xm := wm])⊆U .

By (app-subst) and (subst-subst), we have U ;V ;X ` (t i
b11

t i
b12

)[x1 := w1]...[xm :=

wm]−→x∗ t i
b11

[x1 := w1]...[xm := wm] t i
b12

[x1 := w1]...[xm := wm].

Then t i
b11

[x1 :=w1]...[xm :=wm] t i
b12

[x1 :=w1]...[xm :=wm]≺x (t i
b11

t i
b12

)[x1 :=w1]...[xm :=

wm].

Given t i
a11

t i
a12
' (t i

b11
t i
b12

)[x1 := w1]...[xm := wm], we have t i
a11
' t i

b11
[x1 := w1]...[xm :=
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wm] and t i
a12
' t i

b12
[x1 := w1]...[xm := wm].

Suppose t i
a11

t i
a12
−→ t i

a2
, by the induction hypothesis, U ;V ;X ` t i

b11
[x1 :=w1]...[xm :=

wm] t i
b12

[x1 := w1]...[xm := wm]−→∗ t i
b2

and t i
a2
' t i

b2
.

Case 3. (t i+1
a1

= λx.t i+1
a11

). We proceed by cases on t i+1
a1
−→ t i+1

a2
. The only case is (lambda-(i+1)).

Let U ;V ` t i+1
b1

wb. Let VAR(t i+1
b1

)⊆X . Let V ⊆U ⊆X .

We proceed by cases on t i+1
b1
∈ RTERMi+1

sus .

Case i. Suppose t i+1
b1

is in substitution normal form. We have U ;V ` t i+1
b1

wb, VAR(t i+1
b1

) ⊆
X , FV (t i+1

b1
)⊆ V and V = U .

Case a. Let t i+1
b1

= λx0.t i+1
b11

.

Let xN /∈X ∪VAR(t i+1
a1

).

We have λx.t i+1
a11
∼α λxN .t i+1

a11
[xN/x]. We also have U ;V ;X ` λx0.t i+1

b11
−→

λ̂xN .t i+1
b11

[x0 := xN ].

By Lemma 340, we have U ;V ` λ̂xN .t i+1
b11

[x0 := xN ] wb. By Lemma 336,

FV (λ̂xN .t i+1
b11

[x0 := xN ])⊆ V .

We have U ∪{xN};V ∪{xN} ` t i+1
b11

[x0 := xN ] wb, xN /∈ V , FV (t i+1
b11

[x0 :=

xN ])⊆ V ∪{xN} and V = U .

We have:
λxN .t i+1

a11
[xN/x]

= U(X | λx0.t i+1
b11

)

= λxN .U(X ∪{xN} | t i+1
b11

[x0 := xN ])

Then t i+1
a11

[xN/x]' t i+1
b11

[x0 := xN ].

Suppose λxN .t i+1
a11

[xN/x]−→ λxN .t i+1
a21

where t i+1
a11

[xN/x]−→ t i+1
a21

.

By the induction hypothesis, U ∪{xN};V ∪{xN};X ∪{xN} ` t i+1
b11

[x0 :=

xN ]−→∗ t i+1
b21

and t i+1
a21
' t i+1

b21
.

Hence U ;V ;X ` λxN .t i+1
b11
−→∗ λ̂xN .t i+1

b21
and λxN .t i+1

a21
' λ̂xN .t i+1

b21
.

Case b. Let t i+1
b1

= λ̂x.t i+1
b11

. We have:

λx.t i+1
a11

= U(λ̂x.t i+1
b11

)

= λx.U(t i+1
b11

)

Then t i+1
a11
' t i+1

b11
.

We have U ∪{x};V ∪{x} ` t i+1
b11

wb, x /∈ V , FV (t i+1
b11

)⊆ V ∪{x} and V =

U .

Suppose λx.t i+1
a11
−→ λx.t i+1

a21
where t i+1

a11
−→ t i+1

a21
.

By the induction hypothesis, U ∪ {x};V ∪ {x};X ` t i+1
b11
−→∗ t i+1

b21
and

t i+1
a21
' t i+1

b21
.

Hence U ;V ;X ` λ̂x.t i+1
b11
−→∗ λ̂x.t i+1

b21
and λx.t i+1

a21
' λ̂x.t i+1

b21
.

Case ii. Suppose t i+1
b1

is in not substitution normal form. We have U ;V ` t i+1
b1

wb, VAR(t i+1
b1

)⊆
X , FV (t i+1

b1
)⊆U .
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Case a. Let t i+1
b1

=(λx0.t i+1
b11

)[x1 :=w1][x2 :=w2]...[xm :=wm]. We proceed by cases

on m.

Case 1. (m = 1). Let xN1 ,xN2 /∈X ∪VAR(t i+1
a1

) and xN1 6≡ xN2 .

We have λx.t i+1
a11
∼α λxN2 .t

i+1
a11

[xN2/x]. We also have U ;V ;X `
(λx0.t i+1

b11
)[x1 :=w1]−→x λxN1 .t

i+1
b11

[x0 := xN1 ][x1 :=w1] and U ;V ;X ∪
{xN1} ` λxN1 .t

i+1
b11

[x0 := xN1 ][x1 :=w1]−→x λ̂xN2 .t
i+1
b11

[x0 := xN1 ][x1 :=

w1][xN1 := xN2 ].

By Lemma 340, U ;V ` λ̂xN2 .t
i+1
b11

[x0 := xN1 ][x1 := w1][xN1 :=

xN2 ] wb. By Lemma 336, λ̂xN2 .t
i+1
b11

[x0 := xN1 ][x1 := w1][xN1 :=

xN2 ]⊆U .

We have U ∪{xN2};V ∪{xN2} ` t i+1
b11

[x0 := xN1 ][x1 :=w1][xN1 :=

xN2 ] wb, xN2 /∈ V , FV (t i+1
b11

[x0 := xN1 ][x1 := w1][xN1 := xN2 ]) ⊆
U ∪{xN2}.
We have:

λxN2 .t
i+1
a11

[xN2/x]

= U(X | (λx0.t i+1
b11

)[x1 := w1])

= U(X | (λx0.t i+1
b11

)[w1/x1])

= U(X ∪{xN1} | λxN1 .t
i+1
b11

[xN1/x0][w1/x1])

= λxN2 .U(X ∪{xN1 ,xN2} | t i+1
b11

[xN1/x0][w1/x1][xN1 := xN2 ])

= λxN2 .U(X ∪{xN1 ,xN2} | t i+1
b11

[x0 := xN1 ][x1 := w1][xN1 := xN2 ])

Then t i+1
a11

[xN2/x]' t i+1
b11

[x0 := xN1 ][x1 := w1][x0 := xN2 ].

Suppose λxN2 .t
i+1
a11

[xN2/x] −→ λxN2 .t
i+1
a21

where t i+1
a11

[xN2/x] −→
t i+1
a21

.

By the induction hypothesis, U ∪{xN2};V ∪{xN2};X ∪{xN1 ,xN2} `
t i+1
b11

[x0 := xN1 ][x1 := w1][x0 := xN2 ]−→∗ t i+1
b21

and t i+1
a21
' t i+1

b21
.

Hence U ;V ;X ∪{xN1 ,xN2} ` λxN2 .t
i+1
b11

[x0 := xN1 ][x1 :=w1][x0 :=

xN2 ]−→∗ λ̂xN2 .t
i+1
b21

and λxN2 .t
i+1
a21
' λ̂xN2 .t

i+1
b21

.

Case 2. (m > 1). Let xN /∈X .

We have U ;V ;X ` (λx0.t i+1
b11

)[x1 :=w1][x2 :=w2]...[xm :=wm]−→x

(λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm].

By Lemma 340, U ;V ` (λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 :=

w2]...[xm := wm] wb. By Lemma 336, (λxN .t i+1
b11

[x0 := xN ][x1 :=

w1])[x2 := w2]...[xm := wm]⊆U .

Then (λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm] ≺x

(λx0.t i+1
b11

)[x1 := w1][x2 := w2]...[xm := wm].

Provably we have λx.t i+1
a11

=U((λx0.t i+1
b11

)[x1 :=w1]...[xm :=wm])=

U((λxN .t i+1
b11

[x0 := xN ][x1 := w1])[x2 := w2]...[xm := wm]).

Given λx.t i+1
a11
−→ λx.t i+1

a21
, by the induction hypothesis, U ;V ;X ∪
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{xN} ` (λxN .t i+1
b11

[x0 := xN ][x1 :=w1])[x2 :=w2]...[xm :=wm]−→∗

t i+1
b2

and λx.t i+1
a21
' t i+1

b2
.

Case 4. (t i
a1
= n). This case is vacuous because n 6−→i.

Case 5. (t i
a1
= t i

a11
+ t i

a12
). This case is analogous to the (t i

a1
= t i

a11
t i
a12

) case.

Case 6. (t i
a1
= 〈t i+1

a11
〉). We proceed by cases on t i

a1
−→ t i

a2
. The only case is (code-i).

Then 〈t i+1
a11
〉 −→ 〈t i+1

a21
〉 where t i+1

a11
−→ t i+1

a21
.

Let U ;V ` t i
b1

wb. Let VAR(t i
b1
)⊆X . Let V ⊆U ⊆X .

We proceed by cases on t i
b1
∈ RTERMi

sus.

Case i. Suppose t i
b1

is in substitution normal form. We have U ;V ` t i
b1

wb, VAR(t i
b1
) ⊆X ,

FV (t i
b1
)⊆ V and V = U .

Case a. Let t i
b1
= 〈t i+1

b11
〉.

Then t i+1
a11
' t i+1

b11
.

We have U ;V ` t i+1
b11

wb, FV (t i+1
b11

)⊆ V and V = U .

By the induction hypothesis, U ;V ;X ` t i+1
b11
−→∗ t i+1

b21
and t i+1

a21
' t i+1

b21
.

Hence U ;V ;X ` 〈t i+1
b11
〉 −→∗ 〈t i+1

b11
〉 and 〈t i+1

a21
〉 ' 〈t i+1

b21
〉.

Case ii. Suppose t i
b1

is in not substitution normal form. We have U ;V ` t i
b1

wb, VAR(t i
b1
)⊆X

and FV (t i
b1
)⊆U .

Case a. Let t i+1
b1

= 〈t i+1
b11
〉[x1 := w1]...[xm := wm].

We have U ;V ` t i+1
b11

[x1 :=w1]...[xm :=wm]wb and FV (t i+1
b11

[x1 :=w1]...[xm :=

wm])⊆U .

By (code-subst) and (subst-subst), we have U ;V ;X ` 〈t i+1
b11
〉[x1 :=w1]...[xm :=

wm]−→x∗ 〈t i+1
b11

[x1 := w1]...[xm := wm]〉.
Then 〈t i+1

b11
[x1 := w1]...[xm := wm]〉 ≺x 〈t i+1

b11
〉[x1 := w1]...[xm := wm].

Provably we have 〈t i+1
a11
〉=U(〈t i+1

b11
〉[x1 :=w1]...[xm :=wm]) =U(〈t i+1

b11
[x1 :=

w1]...[xm := wm]〉).
Given 〈t i+1

a11
〉−→〈t i+1

a21
〉, by the induction hypothesis, U ;V ;X ` 〈t i+1

b11
[x1 :=

w1]...[xm := wm]〉 −→∗ t i
b2

and 〈t i+1
a21
〉 ' t i

b2
.

Case 7. (t i+1
a1

=∼t i
a11

). This case is analogous to the (t i
a1
= 〈t i+1

a11
〉) case.

Case 8. (t i
a1
=!t i

a11
). This case is analogous to the (t i

a1
= 〈t i+1

a11
〉) case.

Lemma 351 (Simulation: (Substitutional) MetaML simulates Suspended MetaML.). If t i
a1
' t i

b1
, U ;V ;X `

t i
b1
−→i t i

b2
, U ;V ` t i

b1
wb, VAR(t i

b1
)⊆X , V ⊆U ⊆X , and either t i

b1
is in substitution normal form and

FV (t i
b1
)⊆V =U , or t i

b1
is not in substitution normal form and FV (t i

b1
)⊆U , then t i

a1
−→i∗ t i

a2
and t i

a2
' t i

b2
.
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Proof. We proceed by induction on the structure of t i
b1
∈ RTERMi

sus.

Case 1. (t i
b1
= x). This case is vacuous because t i

b1
6−→i.

Case 2. (t i
b1
= t i

b11
t i
b12

). Let t i
a1
= t i

a11
t i
a12

. We have t i
a11
' t i

b11
and t i

a12
' t i

b12
.

We also have U ;V ` t i
b11

wb, U ;V ` t i
b12

wb, FV (t i
b11

)⊆ V , FV (t i
b12

)⊆ V and V = U .

We proceed by cases on U ;V ;X ` t i
b1
−→ t i

b2
.

Case i. (appL-i). Let U ;V ;X ` t i
b11

t i
b12
−→ t i

b21
t i
b12

where U ;V ;X ` t i
b11
−→ t i

b21
.

By the induction hypothesis, t i
a11
−→∗ t i

a21
and t i

a21
' t i

b21
.

We have t i
a11

t i
a12
−→∗ t i

a21
t i
a12

and t i
a21

t i
a12
' t i

b21
t i
b12

.

Case ii. (appR-i). Let t i
b11

= vi
b11

and U ;V ;X ` vi
b11

t i
b12
−→ vi

b11
t i
b22

where U ;V ;X `
t i
b12
−→ t i

b22
.

By Lemma 348, t i
a11

= vi
a11

.

By the induction hypothesis, t i
a12
−→∗ t i

a22
and t i

a22
' t i

b22
.

We have vi
a11

t i
a12
−→∗ vi

a11
t i
a22

and vi
a11

t i
a12
' vi

b11
t i
b22

.

Case iii. (app). Let t0
b11

=(λx.t0
b111

)[x1 :=w1]...[xm :=wm], t0
b12

= v0
b12

and U ;V ;X ` (λx.t0
b11

)[x1 :=

w1]...[xm := wm] v0
b12
−→ t0

b11
[x := v0

b12
][x1 := w1]...[xm := wm].

By Lemma 348, we know t0
a12

= v0
a12

.

Let xN /∈X . We have (λx.t0
b111

)[x1 := w1]...[xm := wm] ∼α (λxN .t0
b111

[xN/x0])[x1 :=

w1]...[xm := wm].

We have:

t0
a11

= U((λx.t0
b111

)[x1 := w1]...[xm := wm])

= U((λx.t0
b111

)[w1/x1]...[wm/xm])

= U(λxN .t0
b111

[xN/x0][w1/x1]...[wm/xm])

= λxN .U(t0
b111

[xN/x0][w1/x1]...[wm/xm])

= λxN .U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm])

Observe that

λxN .U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm]) v0
a12

−→ U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm][v0
a12

/xN ]

and

U ;V ;X ` (λx.t0
b111

)[x1 := w1]...[xm := wm] v0
b12

−→ t0
b111

[x0 := v0
b12

][x1 := w1]...[xm := wm] .

Since U ;V ` (λx.t0
b111

)[x1 := w1]...[xm := wm] wb, we have xi /∈ V .

Hence xi /∈ FV (v0
b12

).

We have:
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U(t0
b111

[x0 := v0
b12

][x1 := w1]...[xm := wm])

= U(t0
b111

[v0
b12

/x0][w1/x1]...[wm/xm])

= U(t0
b111

[xN/x0][v0
b12

/xN ][w1/x1]...[wm/xm])

= U(t0
b111

[xN/x0][w1/x1]...[wm/xm][v0
b12

/xN ])

= U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm][U(v0
b12

)/xN ]

= U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm])[v0
a12

/xN ]

We get:

U(t0
b111

)[xN/x0][U(w1)/x1]...[U(wm)/xm][v0
a12

/xN ]

' t0
b111

[x0 := v0
b12

][x1 := w1]...[xm := wm]

Case 3. (t i+1
b1

= λx.t i+1
b11

). Let t i+1
a1

= λx.t i+1
a11

.

Let xN /∈X ∪VAR(t i+1
a1

). We have λx.t i+1
a11
∼α λxN .t i+1

a11
[xN/x].

We also have λxN .t i+1
a11

[xN/x] =U(λx.t i+1
b11

) = λxN .U(t i+1
b11

[x := xN ]).

Then t i+1
a11

[xN/x]' t i+1
b11

[x := xN ].

We proceed by cases on U ;V ;X ` t i+1
b1
−→ t i+1

b2
. The only case is (lambda-(i+1)-t).

Let U ;V ;X ` λx.t i+1
b11
−→ λ̂xN .t i+1

b11
[x := xN ].

We have λxN .t i+1
a11

[xN/x]−→∗ λxN .t i+1
a11

[xN/x] and λxN .t i+1
a11

[xN/x]' λxN .t i+1
b12

[x := xN ].

Case 4. (t i+1
b1

= λ̂x.t i+1
b11

). Let t i+1
a1

= λx.t i+1
a11

. We have t i+1
a11
' t i+1

b11
.

We also have U ∪{x};V ∪{x} ` t i+1
b11

wb, x /∈ V , FV (t i+1
b11

)⊆ V ∪{x} and V = U .

We proceed by cases on U ;V ;X ` t i+1
b1
−→ t i+1

b2
.

Case i. (lambda-(i+1)-r). Let U ;V ;X ` λ̂x.t i+1
b11
−→ λ̂x.t i+1

b12
where U ∪{x};V ∪{x};X `

t i+1
b11
−→ t i+1

b12
.

By the induction hypothesis, t i+1
a11
−→∗ t i+1

a12
and t i+1

a12
' t i+1

b12
.

We have λx.t i+1
a11
−→∗ λx.t i+1

a12
and λx.t i+1

a12
' λ̂x.t i+1

b12
.

Case ii. (lambda-(i+1)-v). Let t i+1
b11

= vi+1
b11

and U ;V ;X ` λ̂x.vi+1
b11
−→ λx.vi+1

b11
.

We have λx.t i+1
a11
−→∗ λx.t i+1

a11
and λx.t i+1

a11
' λx.vi+1

b11
.

Case 5. (t i
b1
= t i

b11
+ t i

b12
). This case is analogous to the (t i

b1
= t i

b11
t i
b12

) case.

Case 6. (t i
b1
= 〈t i+1

b11
〉). Let t i

a1
= 〈t i+1

a11
〉. We have t i+1

a11
' t i+1

b11
.

We also have U ;V ` t i+1
b11

wb, FV (t i+1
b11

)⊆ V , and V = U .

We proceed by cases on U ;V ` t i
b1
−→ t i

b2
. The only case is (code-i).

Let U ;V ;X ` 〈t i+1
b11
〉 −→ 〈t i+1

b12
〉 where U ;V ;X ` t i+1

b11
−→ t i+1

b12
.

By the induction hypothesis, t i+1
a11
−→∗ t i+1

a12
and t i+1

a12
' t i+1

b12
.

We have 〈t i+1
a11
〉 −→∗ 〈t i+1

a12
〉 and 〈t i+1

a12
〉 ' 〈t i+1

b12
〉.

Case 7. (t i+1
b1

=∼t i
b11

). This case is analogous to the (t i
b1
= 〈t i+1

b11
〉) case.
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Case 8. (t i
b1
=!t i

b11
). This case is analogous to the (t i

b1
= 〈t i+1

b11
〉) case.

Case 9. (t i
b1
= t i

b11
[x1 := w1]...[x2 := w2]).

We proceed by cases on U ;V ;X ` t i
b1
−→ t i

b2
. The only case is (inj-subst) in which U ;V ;X `

t i
b1
−→x t i

b2
.

It is provable that t i
a1
= t i

a2
=U(t i

b1
) =U(t i

b2
). We have t i

a1
−→∗ t i

a2
and t i

a2
' t i

b2
.

D.2.7 Soundness and Completeness

Theorem 352 (Soundness of Suspended MetaML w.r.t. (Substitutional) MetaML). If t0
a1
' t0

b1
, /0; /0 ` t0

b1
wb,

FV (t0
b1
) = /0 and t0

a1
−→0∗ v0

a2
in Substitutional MetaML, then . t0

b1
−→∗ v0

b2
in Suspended MetaML and

v0
a2
' v0

b2
.

Proof. We proceed by induction on the length of t0
a1
−→0∗ v0

a2
.

Case 1. (0). Let t0
a1
= v0

a2
. By Lemma 349, /0; /0; VAR(t0

b1
) ` t0

b1
−→0∗ v0

b2
and v0

a2
' v0

b2
. We have . t0

b1
−→∗

v0
b2

.

Case 2. (n+1). Let t0
a1
−→0 t0

a2
−→0(n) v0

a2
.

We have /0; /0 ` t0
b1

wb and FV (t0
b1
) = /0.

No matter whether t0
b1

is in substitution normal form, by Lemma 350, we have /0; /0; VAR(t0
b1
) `

t0
b1
−→0∗ t0

b2
and t0

a2
' t0

b2
. Then . t0

b1
−→∗ t0

b2
.

By Lemma 340, /0; /0 ` t0
b2

wb. By Lemma 336, FV (t0
b2
) = /0.

By the induction hypothesis, . t0
b2
−→∗ v0

b2
and v0

a2
' v0

b2
.

We have . t0
b1
−→∗ v0

b2
.

Theorem 353 (Completeness of Suspended MetaML w.r.t. (Substitutional) MetaML). If t0
a1
' t0

b1
, /0; /0 `

t0
b1

wb, FV (t0
b1
) = /0 and . t0

b1
−→∗ v0

b2
in Suspended MetaML, then t0

a1
−→0∗ v0

a2
in Substitutional MetaML

and v0
a2
' v0

b2
.

Proof. We proceed by induction on the length of . t0
b1
−→∗ v0

b2
.

Case 1. (0). Let t0
b1
= v0

b2
. By Lemma 348, t0

a1
∈ VALUE0

sub. Let v0
a2
= t0

a1
. We have t0

a1
−→0∗ v0

a2
and

v0
a2
' v0

b2
.

Case 2. (n+1). Let . t0
b1
−→ t0

b2
−→(n) v0

b2
.

We have /0; /0; VAR(t0
b1
) ` t0

b1
−→0 t0

b2
, /0; /0 ` t0

b1
wb and FV (t0

b1
) = /0.

No matter whether t0
b1

is in substitution normal form, by Lemma 351, t0
a1
−→0∗ t0

a2
and t0

a2
' t0

b2
.

By Lemma 340, /0; /0 ` t0
b2

wb. By Lemma 336, FV (t0
b2
) = /0.

By the induction hypothesis, t0
a2
−→0∗ v0

a2
and v0

a2
' v0

b2
.

We have t0
a1
−→0∗ v0

a2
.
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Theorem 354 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:SusSOS(t).

Proof. We first show that if evalMetaML:SubSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:SusSOS(t) = a.

Case 1. If evalMetaML:SubSOS(t) = function, then t −→0∗ λx.t ′
0

in Substitutional MetaML. Observe

that t ' t. By Theorem 352, . t −→∗ v in Suspended MetaML and λx.t ′
0 ' v. Then v =

(λx0.t ′′
0
)[xi := wi] and U((λx0.t ′′

0
)[xi := wi])= λx.t ′

0
. We have evalMetaML:SusSOS(t)= function.

Case 2. If evalMetaML:SubSOS(t) = code, then t −→0∗ 〈v1〉 in Substitutional MetaML. Observe that t '
t. By Theorem 352, . t −→∗ v′ in Suspended MetaML and 〈v1〉 ' v′. Then v′ = 〈v′′1〉 and

U(〈v′′1〉) = 〈v1〉. We have evalMetaML:SusSOS(t) = code.

Case 3. If evalMetaML:SubSOS(t) = n, then t −→0∗ n in Substitutional MetaML. Observe that t ' t. By The-

orem 352, . t −→∗ v in Suspended MetaML and n' v. Then v= n. We have evalMetaML:SusSOS(t)=

n.

We then show that if evalMetaML:SusSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:SubSOS(t) = a.

Case 1. If evalMetaML:SusSOS(t) = function, then . t −→∗ (λx.t ′
0
)[xi := wi] in Suspended MetaML. Ob-

serve that t ' t. By Theorem 353, t −→0∗ v in Substitutional MetaML and v' (λx.t ′
0
)[xi := wi].

Then v=U((λx.t ′
0
)[xi := wi])= λx.U(t ′

0
)[U(wi)/xi]. We have evalMetaML:SubSOS(t)= function.

Case 2. If evalMetaML:SusSOS(t) = code, then . t −→∗ 〈v1〉 in Suspended MetaML. Observe that t ' t.

By Theorem 353, t −→0∗ v′ in Substitutional MetaML and v′ ' 〈v1〉. Then v′ = 〈v′′1〉 and v′ =

U(〈v1〉). We have evalMetaML:SubSOS(t) = code.

Case 3. If evalMetaML:SusSOS(t) = n, then . t −→∗ n in Suspended MetaML. Observe that t ' t. By The-

orem 353, t −→0∗ v in Substitutional MetaML and v' n. Then v= n. We have evalMetaML:SubSOS(t)=

n.

We observe that evalMetaML:SubSOS(t) is undefined if and only if evalMetaML:SusSOS(t) is undefined. Therefore,

evalMetaML:SubSOS(t) is Kleene equal to evalMetaML:SusSOS(t).

D.3 Equivalence of MetaML and Environmental MetaML

We demonstrate the equivalence of the substitutional structural operational semantics of MetaML and the

structural operational semantics of Environmental MetaML. We use subscripts “sub” and “env” to differentiate

the syntax of (Substitutional) MetaML from the syntax of Environmental MetaML.
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D.3.1 Well-boundness Judgement

Definition 355 (Well-boundness Judgement). Let the well-boundness judgement ` wb be a ternary relation

on the power set of variables, the power set of variables and the set of configurations.

` wb ⊆ P(VAR)×P(VAR)×CONF

U ;V ` x wb where x ∈U

U ;V ` c1 wb U ;V ` c2 wb

U ;V ` c1 c2 wb

U ∪{x};V ` c wb

U ;V ` λx.c0 wb
where x /∈ V

U ∪{x};V ` c wb

U ;V ` λx.vi+1 wb
where x /∈ V

U ∪{x};V ∪{x} ` c wb

U ;V ` λx.ci+1 wb
where ci+1 /∈ VALUEi+1 and x /∈ V

U ;V ` t wb
U ;V ` 〈t〉 wb

U ;V ` t wb
U ;V `∼ t wb

U ;V ` t wb
U ;V `!t wb

U ;V ` n wb

U ;V ` t1 wb U ;V ` t2 wb

U ;V ` t1 + t2 wb

U ;V ` t wb
U ;V `Gt, εH wb

U ;V ` ρm(xmk) wb U ∪{xmk};V `Gt, (ρi
m−1
1 ;ε)H wb

U ;V `Gt, (ρi
m
1 ;ε)H wb

where VAR(Gt, ρi
m
1 H)⊆ dom(ρi) for any ρi,

ρi(y j) = y j for any ρi and y j ∈ V ,
and xmk ∈ FV (Gt, (ρi

m−1
1 ;ε)H).

U ;V `Gt, ρiH wb
U ;V `It, ρiJ wb

Lemma 356. If U ;V ` c wb, then FV (c)⊆U .

Proof. By structural induction on U ;V ` c wb.

Lemma 357. If V ;V ` ci
0 wb, VAR(ci

0)⊆X , V ⊆X and V ;X ` ci
0 −→i∗ c′i0 , then V ;V ` c′i0 wb.

Proof. We proceed by induction on the structure of V ;V ` ci
0 wb and the structure of V ;X ` ci

0 −→i∗ c′i0 .
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Case 1. V ;V ` x wb where x ∈ V .

This case is vacuous because V ;X ` x 6−→.

Case 2.

V ;V ` c1 wb V ;V ` c2 wb

V ;V ` c1 c2 wb .

In this case, c0 = c1 c2.

We proceed by cases on V ;X ` ci
0 −→i∗ c′i0 .

Case i.

V ;X ` c1 −→i c′1
V ;X ` c1 c2 −→i c′1 c2.

By induction hypothesis, V ;V ` c′1 wb. Then V ;V ` c′1 c2 wb.

Case ii.

V ;X ` c2 −→i c′2
V ;X ` v1 c2 −→i v1 c′2.

This case is analogous to the previous case.

Case iii. V ;X `Iλx0.t0, (ρ1; ...ρn;ε)J v0 −→0 Gt0, (ρ1[x0 7→ v0]; ...,ρn;εH.

Then c1 = Iλx0.t0, (ρ1; ...ρn;ε)J and c2 = v0.

Given V ;V `Iλx0.t0, (ρ1; ...ρn;ε)J wb, the following holds:

(1) V ;V ` ρn(xni) wb,

(2) V ∪{xni};V ` ρn−1(x(n−1)i) wb,

...

(n) V ∪{xni ,x(n−1)i , ...,x2i};V ` ρ1(x1i) wb,

(n+1) V ∪{xni ,x(n−1)i , ...,x2i ,x1i ,x0};V ` t0 wb, and

(n+2) x0 /∈ V .

We also have

(n+3) V ;V ` v0 wb, which implies FV (v0)⊆ V .

(n+4) ρi(y j) = y j for any y j ∈ V .

To show V ;V `Gt0, (ρ1[x0 7→ v0]; ...,ρn;εH wb, it is sufficient to show that

(1) U ;V ` ρn(xni) wb and U ;V ` FV (v0) wb,

(2) U ∪{xni}∪FV (v0);V ` ρn−1(x(n−1)i)wb and U ∪{xni}∪FV (v0);V `FV (v0)wb,

...

(n) U ∪{xni ,x(n−1)i , ...,x2i}∪FV (v0);V ` ρ1(x1i) wb and U ∪{xni ,x(n−1)i , ...,x2i}∪
FV (v0);V ` v0 wb,

(n+2) U ∪{xni ,x(n−1)i , ...,x2i ,x1i ,x0}∪FV (v0);V ` t0 wb,

(n+3) x0 /∈ V , and

(n+4) ρi(y j) = y j for any y j ∈ V .

All of (1)-(n+4) above hold.
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Case 3.
V ∪{x};V ` c wb
V ;V ` λx.c wb where c ∈ CONF0 or c ∈ VALUEi+1, and x /∈ V .

This case is vacuous because V ;X ` λx.c 6−→.

Case 4.
V ∪{x};V ∪{x} ` ci+1 wb

V ;V ` λx.ci+1 wb
where ci+1 /∈ VALUEi+1 and x /∈ V

.

In this case, c0 = λx.c. We proceed by cases on V ;X ` c0 −→ c′0.

Case i.
V ∪{x};X ` c−→i+1 c′

V ;X ` λx.c−→i+1 λx.c′

To show V ;V ` λx.c′ wb, it is sufficient to show that

• x /∈ V , and

• V ∪{x};V ∪{x} ` c′ wb.

Given V ;V ` λx.c wb, we have V ∪{x};V ∪{x} ` c wb and x /∈ V . By the induction

hypothesis, we have V ∪{x};V ∪{x} ` v′ wb.

Case 5.
V ;V ` c wb

V ;V ` 〈c〉 wb.

In this case, c0 = 〈t〉. We proceed by cases on V ;X ` c0 −→ c′0.

Case i.
V ;X ` c−→i+1 c′

V ;X ` 〈c〉 −→i 〈c′〉
By induction hypothesis, V ;V ` c′ wb. Then V ;V ` 〈c′〉 wb.

Case 6.
V ;V ` c wb

V ;V ` ∼c wb.

This case is analogous to the previous case.

Case 7.
V ;V ` c wb
V ;V `!c wb.

This case is analogous to the previous case.

Case 8.

V ;V ` c1 wb V ;V ` c2 wb

V ;V ` c1 + c2 wb .

This case is analogous to the V ;V ` c1 c2 wb case.

Case 9. V ;V ` n wb.

This case is vacuous because n 6−→.

Case 10.
V ;V ` t wb

V ;V `Gt, εH wb

In this case, c0 = Gt, εH. We proceed by cases on V ;X ` c0 −→ c′0.

Case i. V ;X `Gw, εH−→i w
(den-env)

In this case, t = w. Given V ;V `Gw, εH wb, we get V ;V ` w wb.
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Case ii. The other (*-env) cases are trivial.

Case 11.

V ;V ` ρm(xmk) wb V ∪{xmk};V `Gt, (ρi
m−1
1 ;ε)H wb

V ;V `Gt, (ρi
m
1 ;ε)H wb

where VAR(Gt, ρi
m
1 H)⊆ dom(ρi) for any ρi,

ρi(y j) = y j for any ρi and y j ∈ V ,

and xmk ∈ FV (Gt, (ρi
m−1
1 ;ε)H).

In this case, c0 = Gt, (ρi
m
1 ;ε)H.

We proceed by cases on V ;X ` c0 −→ c′0.

Case i. V ;X `Gλx.t i+1, (ρi
m
1 ;ε)H−→i+1 λxN .Gt i+1, (ρ1[x 7→ xN ][xN 7→ xN ];ρi[xN 7→ xN ]

m
2 ;ε)H

where xN /∈X

Given V ;V `Gλx.t i+1, (ρi
m
1 ;ε)H wb, the following holds:

(1) V ;V ` ρm(xmk) wb,

(2) V ∪{xmk};V ` ρm−1(x(m−1)k
) wb,

...

(m) V ∪{xmk ,x(m−1)k
, ...,x2k};V ` ρ1(x1k) wb,

(m+1) V ∪{xmk ,x(m−1)k
, ...,x2k ,x1k ,x};V ` t i+1 wb,

(m+2) x /∈ V , and

(m+3) ρi(x j) = x j for any x j ∈ V .

To show V ;V ` λxN .Gt i+1, (ρ1[x 7→ xN ][xN 7→ xN ];ρi[xN 7→ xN ]
m
2 ;ε)H wb, it is suffi-

cient to show that

• xN /∈ V , and

• V ∪{xN};V ∪{xN} `Gt i+1, (ρ1[x 7→ xN ][xN 7→ xN ];ρi[xN 7→ xN ]
m
2 ;ε)H wb, which

can be shown by

(1) V ∪{xN};V ∪{xN} ` ρm(xmk) wb and V ∪{xN};V ∪{xN} ` xN wb,

(2) V ∪{xN}∪{xmk};V ∪{xN} ` ρm−1(x(m−1)k
) wb and V ∪{xN}∪{xmk};V ∪

{xN} ` xN wb,

...

(m) V ∪ {xN} ∪ {xmk ,x(m−1)k
, ...,x2k};V ∪ {xN} ` ρ1(x1k) wb and V ∪ {xN} ∪

{xmk ,x(m−1)k
, ...,x2k};V ∪{xN} ` xN wb,

(m+1) V ∪{xN}∪{xmk ,x(m−1)k
, ...,x2k ,x1k ,x};V ∪{xN} ` t i+1 wb,

(m+2) x /∈ V , and

(m+3) ρi(x j) = x j for any x j ∈ V ∪{xN}.

All above hold.

Case ii. V ;X `Gx, (ρi
m
1 ;ε)H−→i Gρ1(x), (ρi

m
2 ;ε)H.

Given n V ;V `Gλx.t i+1, (ρi
m
1 ;ε)H wb, the following holds:

(1) V ;V ` ρm(xmk) wb,

(2) V ∪{xmk};V ` ρm−1(x(m−1)k
) wb,

...
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(m) V ∪{xmk ,x(m−1)k
, ...,x2k};V ` ρ1(x1k) wb,

(m+1) V ∪{xmk ,x(m−1)k
, ...,x2k ,x1k};V ` x wb, which means x∈V ∪{xmk ,x(m−1)k

, ...,x2k ,x1k},
and

(m+2) ρi(x j) = x j for any x j ∈ V .

To show V ;V `Gρ1(x), (ρi
m
2 ;ε)H wb, it is sufficient to show that

(1) V ;V ` ρm(xmk) wb,

(2) V ∪{xmk};V ` ρm−1(x(m−1)k
) wb,

...

(m) V ∪{xmk ,x(m−1)k
, ...,x2k};V ` ρ1(x) wb,

(m+1) ρi(x j) = x j for any x j ∈ V .

All above hold.

Case iii. The other (*-env) cases are trivial.

Remark 358. The above proof uses the following two properties.

1. If U ;V ` t wb, then U ∪W ;V ` t wb.

2. If U ;V ` t wb and xN /∈U ∪V ∪Var(t), then U ∪{xN};V ∪{xN} ` t wb.

D.3.2 Unload Function

Definition 359 (Unload Function). Let i ∈ N. Define the unload function U to be a total function from the

union of the set of runtime terms and the set of configurations in Environmental MetaML to the set of terms

in (Substitutional) MetaML.
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U : P(VAR)× (RTERMi
env∪CONFi

env)→ TERMi
sub

U(Z | x) = x

U(Z | n) = n

U(Z | λx.ci+1) = λx.U(Z | ci+1)

U(Z | ci
1 ci

2) = U(Z | ci
1)U(Z | ci

2)

U(〈Z | ci+1〉) = 〈U(Z | ci+1)〉
U(∼Z | ci+1) = ∼U(Z | ci+1)

U(Z |!ci) = !U(Z | ci)

U(Z | ci
1 + ci

2) = U(Z | ci
1)+U(Z | ci

2)

U(λx.t i) = λx.U(t i)

U(t i
1 t i

2) = U(t i
1)U(t i

2)

U(〈t i+1〉) = 〈U(t i+1)〉
U(∼t i+1) = ∼U(t i+1)

U(!t i) = !U(t i)

U(t i
1 + t i

2) = U(t i
1)+U(t i

2)

U(Z |Gt i, εH) = U(Z | t i)

U(Z |Gλx.t i+1, (ρ1;ρ∗2 )H) = U(Z ∪{xN} | λxN .Gt i+1, (ρ1[x 7→ xN ];(ρ2[xN 7→ xN ])
∗H)

where xN /∈Z

U(Z |Gt i, (ρ1;ρ∗2 )H) = U(Z |Gt i[w1i/x1i], ρ∗2H)

U(Z |Iλx.t0, ρ∗J) = U(Z |Gλx.t0, ρ∗H)

Remark 360. U(Z | t) may be omitted to U(t) if Z is clear by the context.

Proposition 361. U(Z | t i
s) = t i

s.

Proposition 362. U(Z | t[wi/xi]) =U(Z | t)[U(Z | wi)/xi].

D.3.3 Bisimulation Relation

Definition 363 (Bisimulation Relation). Define the bisimulation relation ' to be a binary relation between

the set of terms in (Substitutional) MetaML and the set of configurations in Environmental MetaML.

'⊆ TERMi
sub×CONFi

env

t i ' ci if and only if t i =U(Z | ci) where VAR(ci)⊆Z

D.3.4 Closure Descendant Relation

Definition 364 (Closure Descendant Relation). For any c1,c2 ∈ CONFenv, c1 ≺x c2 if and only if c2 −→ c1

is an instance of rule (*-env). We call ≺x the closure descendant relation.
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Proposition 365 (Well-foundedness of Closure Descendant Relation). The closure descendant relation ≺x

is well-founded.

The proof is analogous to the proof of Lemma 322.

D.3.5 Canonisation

Lemma 366 (Canonisation of (Substitutional) MetaML). If t i
a1
' vi

b1
, then t i

a1
∈ VALUEi

sub.

Proof. We proceed by structural induction on vi
b1
∈ VALUEi

env.

Case 1. (vi+1
b1

= x). Then t i+1
a1

=U(x) = x and x ∈ VALUEi+1
sub .

Case 2. (vi+1
b1

= vi+1
b11

vi+1
b12

). Then t i+1
a1

= U(vi+1
b11

vi+1
b12

) = U(vi+1
b11

) U(vi+1
b12

). Let t i+1
a1

= t i+1
a11

t i+1
a12

. By the

induction hypothesis, t i+1
a11
∈ VALUEi+1

sub and t i+1
a12
∈ VALUEi+1

sub . Then t i+1
a11

t i+1
a12
∈ VALUEi+1

sub .

Case 3. (vi+1
b1

= λx.vi+1
b11

). Then t i+1
a1

= U(λx.vi+1
b11

) = λx.U(vi+1
b11

). Let t i+1
a1

= λx.t i+1
a11

. By the induction

hypothesis, t i+1
a11
∈ VALUEi+1

sub . Then λx.t i+1
a11
∈ VALUEi+1

sub .

Case 4. (v0
b1
=Iλx.t0

b11
, (ρ1,ρ2, ...ρm)J). Then t0

a1
=U(Iλx.t0

b11
, (ρ1,ρ2, ...ρm)J)=U(Gλx.t0

b11
, (ρ1,ρ2, ...ρm)H).

We have t0
a1
= λx.U(t0

b11
)[U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi] ∈ VALUE0

sub.

Case 5. (vi
b1
= 〈vi+1

b11
〉). Then t i

a1
=U(〈vi+1

b11
〉) = 〈U(vi+1

b11
)〉. Let t i

a1
= 〈t i+1

a11
〉. By the induction hypothesis,

t i+1
a11
∈ VALUEi+1

sub . Then 〈t i+1
a11
〉 ∈ VALUEi

sub.

Case 6. (vi+2
b1

=∼vi+1
b11

). This case is analogous to the (vi
b1
= 〈vi+1

b11
〉) case.

Case 7. (vi+1
b1

=!vi+1
b11

). This case is analogous to the (vi
b1
= 〈vi+1

b11
〉) case.

Case 8. (vi
b1
= n). Then t i

a1
=U(n) = n and n ∈ VALUEi

sub.

Case 9. (vi+1
b1

= vi+1
b11

+ vi+1
b12

). This case is analogous to the (vi+1
b1

= vi+1
b11

vi+1
b12

) case.

Lemma 367 (Canonisation of Environmental MetaML). If vi
a1
' ci

b1
, V ;V ` t i

b1
wb, FV (t i

b1
)⊆V , VAR(t i

b1
)⊆

X and V ⊆X , then V ;X ` ci
b1
−→i∗ vi

b2
and vi

a1
' vi

b2
.

Proof. We proceed by simultaneous induction on the structure of vi
a1
∈ VALUEi

sub and on the closure des-

cendant relation ≺x ci
b1

.

Case 1. (vi+1
a1

= x). We proceed by cases on ci+1
b1
∈ CONFi+1

env .

Case i. (ci+1
b1

= x). Then x−→∗ x and x' x.

Case ii. (ci+1
b1

= Gx0, ρi
+mH). We proceed by cases on m.

Case a. (m = 1). Given x'Gx0, ρ1H, we have:
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x

= U(Gx0, ρ1H)

= U(Gx0[w1i/x1i], εH)

= U(x0[w1i/x1i])

= U(w1p) where x0 ≡ x1p

We have x' w1p.

Then by (var-env), we have:

V ;X ` Gx0, ρ1H

−→ w1p where ρ1(x0) = w1p

Since x' w1p, we have w1p = x. We have x ∈ VALUEi+1
env .

Case b. (m > 1). Given x'Gx0, (ρ1;ρ2; ...;ρm)H, we have:

x

= U(Gx0, (ρ1;ρ2; ...;ρm)H)

= U(Gx0[w1i/x1i], (ρ2; ...;ρm)H)

= U(Gw1p1 , (ρ2; ...;ρm)H) where x0 ≡ x1p1

We have x'Gw1p1 , (ρ2; ...;ρm)H.

Then by (var-env), we have:

V ;X ` Gx0, (ρ1;ρ2; ...;ρm)H

−→ Gw1p1 , (ρ2; ...;ρm)H where ρ1(x0) = w1p1

Then Gw1p1 , (ρ2; ...;ρm)H≺x Gx0, (ρ1;ρ2; ...;ρm)H.

By Lemma 357, V ;V `Gw1p1 , (ρ2; ...;ρm)H wb.

By Lemma 356, FV (Gw1p1 , (ρ2; ...;ρm)H)⊆ V .

By the induction hypothesis, we have V ;X ` Gw1p1 , (ρ2; ...;ρm)H −→
vi+1

b2
and x' vi+1

b2
.

Case 2. (vi+1
a1

= vi+1
a11

vi+1
a12

). We proceed by cases on ci+1
b1
∈ CONFi+1

env .

Case i. (ci+1
b1

= ci+1
b11

ci+1
b12

). Given vi+1
a11

vi+1
a12
' ci+1

b11
ci+1

b12
, we have:

vi+1
a11

vi+1
a12

= U(ci+1
b11

ci+1
b12

)

= U(ci+1
b11

)U(ci+1
b12

)

Then vi+1
a11
' ci+1

b11
and vi+1

a12
' ci+1

b12
.

We have V ;V ` ci
b11

wb, V ;V ` ci
b12

wb, FV (ci
b11

)⊆ V and FV (ci
b12

)⊆ V .

By the induction hypothesis, V ;X ` ci+1
b11
−→∗ vi+1

b21
, vi+1

a11
' vi+1

b21
, V ;X ∪VAR(vi+1

b21
)`

ci+1
b12
−→ vi+1

b22
and vi+1

a12
' vi+1

b22
.

Hence V ;X ` ci+1
b11

ci+1
b12
−→∗ vi+1

b21
vi+1

b22
and vi+1

a11
vi+1

a12
' vi+1

b21
vi+1

b22
.

Case ii. (ci+1
b1

= Gt i+1
b11

t i+1
b12

, (ρ1;ρ2; ...;ρm)H). Given vi+1
a11

vi+1
a12
'Gt i+1

b11
t i+1
b12

, (ρ1;ρ2; ...;ρm)H,

we have:
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vi+1
a11

vi+1
a12

= U(Gt i+1
b11

t i+1
b12

, (ρ1;ρ2; ...;ρm)H)

= U((t i+1
b11

t i+1
b12

)[w1i/x1i]...[wmi/xmi])

= U((t i+1
b11

[w1i/x1i]...[wmi/xmi]) (t i+1
b12

[w1i/x1i]...[wmi/xmi]))

= U(t i+1
b11

[w1i/x1i]...[wmi/xmi])U(t i+1
b12

[w1i/x1i]...[wmi/xmi])

= U(Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H)U(Gt i+1
b12

, (ρ1;ρ2; ...;ρm)H)

Then vi+1
a11
'Gt i+1

b11
, (ρ1;ρ2; ...;ρm)H and vi+1

a12
'Gt i+1

b12
, (ρ1;ρ2; ...;ρm)H.

We have V ;V ` Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H wb, V ;V ` Gt i+1
b12

, (ρ1;ρ2; ...;ρm)H wb,

FV (Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H)⊆ V and FV (Gt i+1
b12

, (ρ1;ρ2; ...;ρm)H)⊆ V .

By the induction hypothesis, V ;X `Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H−→∗ vi+1
b21

, vi+1
a11
' vi+1

b21
,

V ;X ∪{vi+1
b21
} `Gt i+1

b12
, (ρ1;ρ2; ...;ρm)H−→∗ vi+1

b22
and vi+1

a12
' vi+1

b22
.

Hence V ;X `Gt i+1
b11

t i+1
b12

, (ρ1;ρ2; ...;ρm)H−→∗ vi+1
b21

vi+1
b22

and vi+1
a11

vi+1
a12
' vi+1

b21
vi+1

b22
.

Case 3. (v0
a1
= λx.t0

a11
). We proceed by cases on c0

b1
∈ CONF0

env.

Case i. (c0
b1
= Iλx0.t0

b11
, (ρ1;ρ2; ...;ρm)J). Then Iλx0.t0

b11
, (ρ1;ρ2; ...;ρm)J ∈ VALUE0

env.

Case ii. (c0
b1
= Gλx0.t0

b11
, (ρ1;ρ2; ...;ρm)H). Given λx.t0

a11
' Gλx0.t0

b11
, (ρ1;ρ2; ...;ρm)H, we

have:

λx.t0
a11

= U(Gλx0.t0
b11

, (ρ1;ρ2; ...;ρm)H)

= U(Iλx0.t0
b11

, (ρ1;ρ2; ...;ρm)J)

Then λx.t0
a11
'Iλx0.t0

b11
, (ρ1;ρ2; ...;ρm)J.

By (lam-0-env) we have:

Gλx0.t0
b11

, (ρ1;ρ2; ...;ρm)H−→Iλx0.t0
b11

, (ρ1;ρ2; ...;ρm)J

Case iii. (c0
b1
= GIλx0.t0

b11
, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H).

Given λx.t0
a11
'GIλx0.t0

b11
, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H, we have:

λx.t0
a11

= U(GIλx0.t0
b11

, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H)

= U(Iλx0.t0
b11

, (ρ1;ρ2; ...;ρl;ρl+1, ...,ρm)J)

Then λx.t0
a11
'Iλx0.t0

b11
, (ρ1;ρ2; ...;ρl;ρl+1, ...,ρm)J.

By (clov-0-env) we have:

GIλx0.t0
b11

, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H−→
Iλx0.t0

b11
, (ρ1;ρ2; ...;ρl;ρl+1, ...,ρm)J

Case iv. (c0
b1
= Gx0, (ρ1;ρ2; ...;ρm)H) This is analogous to the (ci+1

b1
= Gx0, ρi

+mH) subcase

of the (vi+1
a1

= x) case.
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Case 4. (vi+1
a1

= λx.vi+1
a11

). We proceed by cases on ci+1
b1
∈ CONFi+1

env .

Case i. (ci+1
b1

= λx.vi+1
b11

). Then λx.vi+1
b11
∈ VALUEi+1

env .

Case ii. (ci+1
b1

= λx.ci+1
b11

where ci+1
b11

/∈ VALUEi+1
env ). Given λx.vi+1

a11
' λx.ci+1

b11
, we have:

λx.vi+1
a11

= U(λx.ci+1
b11

)

= λx.U(ci+1
b11

)

Then vi+1
a11
' ci+1

b11
.

We have V ∪{x};V ∪{x} ` ci+1
b11

and FV (ci+1
b )⊆ V ∪{x}.

By the induction hypothesis, we have V ∪{x};X ` ci+1
b11
−→∗ vi+1

b12
and vi+1

a11
' vi+1

b12
.

Hence V ;X ` λx.ci+1
b11
−→∗ λx.vi+1

b12
and λx.vi+1

a11
' λx.vi+1

b12
.

Case iii. (ci+1
b1

= Iλx0.t0
b11

, (ρ1;ρ2; ...;ρm)J). Then Iλx0.t0
b11

, (ρ1;ρ2; ...;ρm)J ∈ VALUEi+1
env .

Case iv. (ci+1
b1

= Gλx0.t i+1
b11

, (ρ1;ρ2; ...;ρm)H).

Let xN /∈X ∪VAR(vi+1
a1

). Then λx.vi+1
a11
∼α λxN .vi+1

a11
[xN/x].

By (lam-(i+1)-env) we have:

V ;X `Gλx0.t i+1
b11

, (ρ1;ρ2; ...;ρm)H−→ λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→
xN ]; ...;ρm[xN 7→ xN ])H

By Lemma 357, V ;V ` λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H wb.

By Lemma 356, FV (λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H)⊆V .

Then V ∪{xN};V ∪{xN} `Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H wb

and FV (Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H)⊆ V ∪{xN}.
We have:

λxN .vi+1
a11

[xN/x]

= U(X |Gλx0.t i+1
b11

, (ρ1;ρ2; ...;ρm)H)

= λxN .U(X ∪{xN} |Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H) where xN /∈X

Then vi+1
a11

[xN/x]'Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H.

By the induction hypothesis, we have Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→
xN ])H−→∗ vi+1

b12
and vi+1

a11
' vi+1

b12
.

Hence V ;X `Gλx0.t i+1
b11

, (ρ1;ρ2; ...;ρm)H−→ λxN .vi+1
b12

and λxN .vi+1
a11

[xN/x]' λxN .vi+1
b12

.

Case v. (ci+1
b1

= GIλx0.t0
b11

, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H).

Given λx.vi+1
a11
'GIλx0.t0

b11
, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H, we have:

λx.vi+1
a11

= U(GIλx0.t0
b11

, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H)

= U(Iλx0.t0
b11

, (ρ1;ρ2; ...;ρl;ρl+1; ...;ρm)J)
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Then λx.vi+1
a11
'Iλx0.t0

b11
, (ρ1;ρ2; ...;ρl;ρl+1; ...;ρm)J.

By (clov-0-env) we have:

GIλx0.t0
b11

, (ρ1;ρ2; ...;ρl)J, (ρl+1, ...,ρm)H−→
Iλx0.t0

b11
, (ρ1;ρ2; ...;ρl;ρl+1; ...;ρm)J

Case vi. (ci+1
b1

=Gx0, (ρ1;ρ2; ...;ρm)H). This is analogous to the (ci+1
b1

=Gx0, ρi
+mH) subcase

of the (vi+1
a1

= x) case.

Case 5. (vi
a1
= 〈vi+1

a11
〉). We proceed by cases on ci

b1
∈ CONFi

env.

Case i. (ci
b1
= 〈ci+1

b11
〉). Given 〈vi+1

a11
〉 ' 〈ci+1

b11
〉, we have:

〈vi+1
a11
〉

= U(〈ci+1
b11
〉)

= 〈U(ci+1
b11

)〉

Then vi+1
a11
' ci+1

b11
.

We have V ;V ` t i+1
b11

wb and FV (t i+1
b11

)⊆ V .

By the induction hypothesis, V ;X ` ci+1
b11
−→∗ vi+1

b21
and vi+1

a11
' vi+1

b21
.

Hence V ;X ` 〈ci+1
b11
〉 −→∗ 〈vi+1

b21
〉 and 〈vi+1

a11
〉 ' 〈vi+1

b21
〉.

Case ii. (ci
b1
=G〈t i+1

b11
〉, (ρ1;ρ2; ...;ρm)H). Given 〈vi+1

a11
〉 'G〈t i+1

b11
〉, (ρ1;ρ2; ...;ρm)H, we have:

〈vi+1
a11
〉

= U(G〈t i+1
b11
〉, (ρ1;ρ2; ...;ρm)H)

= 〈U(Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H)〉

Then vi+1
a11
'Gt i+1

b11
, (ρ1;ρ2; ...;ρm)H.

By (code-env), we have:

V ;X ` G〈t i+1
b11
〉, (ρ1;ρ2; ...;ρm)H

−→ 〈Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H〉

We have V ;V ` 〈Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H〉 wb and FV (〈Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H〉) ⊆
V .

By the induction hypothesis, V ;X ` Gt i+1
b11

, (ρ1;ρ2; ...;ρm)H −→∗ vi+1
b21

and vi+1
a11
'

vi+1
b21

.

Hence V ;X `G〈t i+1
b11
〉, (ρ1;ρ2; ...;ρm)H−→∗ 〈vi+1

b21
〉 and 〈vi+1

a11
〉 ' 〈vi+1

b21
〉.

Case iii. (v0
a1

= 〈v1
a11
〉 and c0

b1
= Gx0, (ρ1;ρ2; ...;ρm)H). This is analogous to the (ci+1

b1
=

Gx0, ρi
+mH) subcase of the (vi+1

a1
= x) case.

Case 6. (vi+2
a1

=∼vi+1
a11

). This case is analogous to the (vi
a1
= 〈vi+1

a11
〉) case.

Case 7. (vi+1
a1

=!vi+1
a11

). This case is analogous to the (vi
a1
= 〈vi+1

a11
〉) case.
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Case 8. (vi
a1
= n). We proceed by cases on ci

b1
∈ CONFi

env.

Case i. (ci
b1
= n). Then n−→∗ n and n ∈ VALUEi

env.

Case ii. (ci
b1
= Gn0, (ρ1;ρ2; ...;ρm)H). Given n'Gn0, (ρ1;ρ2; ...;ρm)H, we have:

n

= U(Gn0, (ρ1;ρ2; ...;ρm)H)

= n0

Then n' n0.

By (num-env), we have:

Gn0, (ρ1;ρ2; ...;ρm)H

−→ n0

Case iii. (ci
b1
= Gx0, (ρ1;ρ2; ...;ρm)H). This is analogous to the (ci+1

b1
= Gx0, ρi

+mH) subcase

of the (vi+1
a1

= x) case.

Case 9. (vi+1
a1

= vi+1
a11

+ vi+1
a12

). This case is analogous to the (vi+1
a1

= vi+1
a11

vi+1
a12

) case.

D.3.6 Bisimulation

Lemma 368 (Simulation: (Substitutional) MetaML simulates Environmental MetaML.). If t i
a1
' ci

b1
, V ;X `

ci
b1
−→ ci

b2
, V ;V ` ci

b1
wb, FV (ci

b1
)⊆ V ; VAR(ci

b1
)⊆X and V ⊆X , then t i

a1
−→∗ t i

a2
and t i

a2
' ci

b2
.

Proof. We proceed by structural induction on ci
b1
∈ CONFi

env.

Case 1. (ci
b1
= vi

b1
). This case is vacuous because ci

b1
6−→i.

Case 2. (ci
b1
= ci

b11
ci

b12
). Let t i

a1
= t i

a11
t i
a12

. We have t i
a11
' ci

b11
and t i

a12
' ci

b12
.

We also have V ;V ` ci
b11

wb, V ;V ` ci
b12

wb, FV (ci
b11

)⊆ V and FV (ci
b12

)⊆ V .

We proceed by cases on V ;X ` ci
b1
−→ ci

b2
.

Case i. (appL-i). Let V ;X ` ci
b11

ci
b12
−→ ci

b21
ci

b12
where V ;X ` ci

b11
−→ ci

b21
.

By the induction hypothesis, t i
a11
−→∗ t i

a21
and t i

a21
' ci

b21
. We have t i

a11
t i
a12
−→∗ t i

a21
t i
a12

and t i
a21

t i
a12
' ci

b21
ci

b12
.

Case ii. (appR-i). Let ci
b11

= vi
b11

and V ;X ` vi
b11

ci
b12
−→ vi

b11
ci

b22
where ci

b12
−→ ci

b22
. By

Lemma 366, t i
a11

= vi
a11

. By the induction hypothesis, t i
a12
−→∗ t i

a22
and t i

a22
' ci

b22
. We

have vi
a11

t i
a12
−→∗ vi

a11
t i
a22

and vi
a11

t i
a12
' vi

b11
ci

b22
.

Case iii. (app). Let c0
b11

=Iλx.t0
b11

, (ρ1;ρ2; ...;ρm)J, c0
b12

= v0
b12

and V ;X `Iλx.t0
b11

, (ρ1;ρ2; ...;ρm)J v0
b12

−→Gt0
b11

, (ρ1[x 7→ v0
b12

];ρ2; ...;ρm)H.

By Lemma 366, we know t0
a12

= v0
a12

.
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Let xN /∈ X . We have Iλx.t0
b11

, (ρ1;ρ2; ...;ρm)J ∼α IλxN .t0
b11

[xN/x], (ρ1[xN 7→
xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])J.

We have:

t0
a11

= U(IλxN .t0
b11

[xN/x], (ρ1[xN 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])J)

= U(GλxN .t0
b11

[xN/x], (ρ1[xN 7→ xN ];ρ2[xN 7→ xN ]; ...;ρm[xN 7→ xN ])H)

= U((λxN .t0
b11

[xN/x])[w1i/x1i][w2i/x2i]...[wmi/xmi])

= U(λxN .t0
b11

[xN/x][w1i/x1i][w2i/x2i]...[wmi/xmi])

= λxN .U(t0
b11

[xN/x][w1i/x1i][w2i/x2i]...[wmi/xmi])

= λxN .U(t0
b11

)[xN/x][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi]

Observe that

λxN .U(t0
b11

)[xN/x][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi] v0
a12

−→ U(t0
b11

)[xN/x][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi][v0
a12

/xN ]

and

V ;X ` IλxN .t0
b11

[xN/x], (ρ1;ρ2; ...;ρm)J v0
b12

−→ Gt0
b11

[xN/x], (ρ1[xN 7→ v0
b12

];ρ2; ...;ρm)H .

Since V ;V `Iλx.t0
b11

, (ρ1;ρ2; ...;ρm)J wb, we have

AV (Iλx.t0
b11

, (ρ1;ρ2; ...;ρm)J)∩V = /0.

Hence AV (Iλx.t0
b11

, (ρ1;ρ2; ...;ρm)J)∩FV (v0
b12

) = /0.

We have:

U(Gt0
b11

[xN/x], (ρ1[xN 7→ v0
b12

];ρ2; ...;ρm)H)

= U(t0
b11

[xN/x][v0
b12

/xN ][w1i/x1i][w2i/x2i]...[wmi/xmi])

= U(t0
b111

[xN/x0][w1i/x1i][w2i/x2i]...[wmi/xmi][v0
b12

/xN ])

= U(t0
b111

)[xN/x0][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi][U(v0
b12

)/xN ]

= U(t0
b111

)[xN/x0][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi][v0
a12

/xN ]

We get:

U(t0
b111

)[xN/x0][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi][v0
a12

/xN ]

' Gt0
b11

[xN/x], (ρ1[xN 7→ v0
b12

];ρ2; ...;ρm)H

Case 3. (ci+1
b1

= λx.ci+1
b11

). Let t i+1
a1

= λx.t i+1
a11

. We have t i+1
a11
' ci+1

b11
.

We also have V ∪{x};V ∪{x} ` ci+1
b11

wb, x /∈ V and FV (ci+1
b11

)⊆ V ∪{x}.
We proceed by cases on ci+1

b1
−→ ci+1

b2
. The only case is (lambda-(i+1)).

Let V ;X ` λx.ci+1
b11
−→ λx.ci+1

b12
where V ∪{x};X ` ci+1

b11
−→ ci+1

b12
. By the induction hypothesis,

t i+1
a11
−→∗ t i+1

a12
and t i+1

a12
' ci+1

b12
. We have λx.t i+1

a11
−→∗ λx.t i+1

a12
and λx.t i+1

a12
' λx.ci+1

b12
.

Case 4. (ci
b1
= ci

b11
+ ci

b12
). This case is analogous to the (ci

b1
= ci

b11
ci

b12
) case.
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Case 5. (ci
b1
= 〈ci+1

b11
〉). Let t i

a1
= 〈t i+1

a11
〉. We have t i+1

a11
' ci+1

b11
.

We also have V ;V ` ci+1
b11

wb and FV (ci+1
b11

)⊆ V .

We proceed by cases on V ;X ` ci
b1
−→ ci

b2
. The only case is (code-i).

Let V ;X ` 〈ci+1
b11
〉 −→ 〈ci+1

b12
〉 where V ;X ` ci+1

b11
−→ ci+1

b12
.

By the induction hypothesis, t i+1
a11
−→ t i+1

a12
and t i+1

a12
' ci+1

b12
.

We have 〈t i+1
a11
〉 −→ 〈t i+1

a12
〉 and 〈t i+1

a12
〉 ' 〈ci+1

b12
〉.

Case 6. (ci+1
b1

=∼ci
b11

). This case is analogous to the (ci
b1
= 〈ci+1

b11
〉) case.

Case 7. (ci
b1
=!ci

b11
). This case is analogous to the (ci

b1
= 〈ci+1

b11
〉) case.

Case 8. (ci
b1

= Gt i
b1
, (ρ1;ρ2; ...;ρm)H). We proceed by cases on V ;X ` ci

b1
−→ ci

b2
. The cases are

(lam-0-env), (lam-(i+1)-env), (clov-env), (den-env), (var-env), (num-env), (app-env), (code-env),

(run-env), (splice-env). It is provable that t i
a1
= t i

a2
=U(ci

b1
) =U(ci

b2
) holds for each of the above

cases. We have t i
a1
−→∗ t i

a2
and t i

a2
' ci

b2
.

Lemma 369 (Simulation: Environmental MetaML simulates (Substitutional) MetaML.). If t i
a1
' ci

b1
, t i

a1
−→

t i
a2

, V ;V ` ci
b1

wb, FV (ci
b1
)⊆ V , VAR(ci

b1
)⊆X and V ⊆X , then V ;X ` ci

b1
−→∗ ci

b2
and t i

a2
' ci

b2
.

Proof. We proceed by simultaneous induction on the structure of t i
a1
∈ TERMi

sub and on the closure descend-

ant relation ≺x ci
b1

.

Case 1. (t i
a1
= x). This case is vacuous because x 6−→.

Case 2. (t i
a1
= t i

a11
t i
a12

). We proceed by cases on ci
b1
∈ CONFi

env.

Case i. Let ci
b1
= ci

b11
ci

b12
, t i

a11
=U(ci

b11
) and t i

a12
=U(ci

b12
).

We have t i
a11
' ci

b11
, t i

a12
' ci

b12
, V ;V ` ci

b11
wb, V ;V ` ci

b12
wb, VAR(ci

b11
) ⊆ X ,

VAR(ci
b12

)⊆X , FV (ci
b11

)⊆ V and FV (ci
b12

)⊆ V .

We proceed by cases on t i
a1
−→ t i

a2
.

Case a. (appL-i). Let t i
a11

t i
a12
−→ t i

a21
t i
a12

where t i
a11
−→ t i

a21
.

By the induction hypothesis, V ;X ` ci
b11
−→∗ ci

b21
and t i

a21
' ci

b21
.

Hence V ;X ` ci
b11

ci
b12
−→∗ ci

b21
ci

b12
and t i

a21
t i
a12
' ci

b21
ci

b12
.

Case b. (appR-i). Let t i
a11

= vi
a11

and vi
a11

t i
a12
−→ vi

a11
t i
a22

where t i
a12
−→ t i

a22
.

By Lemma 367, V ;X ` ci
b11
−→∗ vi

b11
.

Then V ;X ` ci
b11

ci
b12
−→∗ vi

b11
ci

b12
.

By the induction hypothesis, V ;X ∪VAR(vi
b11

) ` ci
b12
−→∗ ci

b22
and t i

a22
'

ci
b22

.

Then V ;X ∪VAR(vi
b11

) ` vi
b11

ci
b12
−→∗ vi

b11
ci

b22

Hence V ;X ` ci
b11

ci
b12
−→∗ vi

b11
ci

b22
and t i

a11
t i
a22
' vi

b11
ci

b22
.
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Case c. (app-0). Let t0
a11

= λx.t0
a111

, t0
a12

= v0
a12

and λx.t0
a111

v0
a12
−→ t0

a111
[v0

a12
/x].

Given λx.t0
a111
' c0

b11
, by Lemma 367, V ;X ` c0

b11
−→∗ v0

b11
and λx.t0

a111
'

v0
b11

. Then V ;X ` c0
b11

c0
b12
−→∗ v0

b11
c0

b12
.

Given v0
a12
' c0

b12
, by Lemma 367, V ;X ` c0

b12
−→∗ v0

b12
and v0

a12
' v0

b12
.

Then V ;X ∪{v0
b11
} ` c0

b12
−→∗ v0

b12
.

We have V ;X ` c0
b11

c0
b12
−→∗ v0

b11
v0

b12
.

By Lemma 357, V ;V ` v0
b11

wb, V ;V ` v0
b12

wb. By Lemma 356, FV (v0
b11

)⊆
V and FV (v0

b12
)⊆ V .

We proceed by cases on v0
b11

in λx.t0
a111
' v0

b11
. The only possible case is

v0
b11

= Iλx0.t0
b111

, (ρ1,ρ2, ...,ρm)J.

Let xN /∈X ∪VAR(t0
a11

t0
a12

)∪VAR(v0
b11

v0
b12

).

We have λx.t0
a111
∼α λxN .t0

a111
[xN/x] and Iλx0.t0

b111
, (ρ1,ρ2, ...,ρm)J ∼α

IλxN .t0
b111

[xN/x0], (ρ1[xN 7→ xN ],ρ2[xN 7→ xN ], ...,ρm[xN 7→ xN ])J.

We have:

λxN .t0
a111

[xN/x]

= U(IλxN .t0
b111

[xN/x0], (ρ1[xN 7→ xN ],ρ2[xN 7→ xN ], ...,ρm[xN 7→ xN ])J)

= U(GλxN .t0
b111

[xN/x0], (ρ1[xN 7→ xN ],ρ2[xN 7→ xN ], ...,ρm[xN 7→ xN ])H)

= U((λxN .t0
b111

[xN/x0])[w1i/x1i][w2i/x2i]...[wmi/xmi])

= U(λxN .t0
b111

[xN/x0][w1i/x1i][w2i/x2i]...[wmi/xmi])

= λxN .U(t0
b111

[xN/x0][w1i/x1i][w2i/x2i]...[wmi/xmi])

Then t0
a111

[xN/x]'
U(t0

b111
[xN/x0][w1i/x1i][xN/xN ][w2i/x2i][xN/xN ]...[wmi/xmi][xN/xN ]).

Observe that

λxN .t0
a111

[xN/x] v0
a12
−→ t0

a111
[xN/x][v0

a12
/xN ]

and
V ;X ∪VAR(v0

b11
v0

b12
) ` IλxN .t0

b111
[xN/x0], (ρ1,ρ2, ...,ρm)J v0

b12

−→ Gt0
b111

[xN/x0], (ρ1[xN 7→ v0
b12

],ρ2, ...,ρm)H .

Since FV (IλxN .t0
b111

[xN/x0], (ρ1,ρ2, ...,ρm)J v0
b12

)⊆ V , we have

FV (v0
b12

)⊆ V .

Since V ;V `IλxN .t0
b111

[xN/x0], (ρ1,ρ2, ...,ρm)J wb, we have

AV (IλxN .t0
b111

[xN/x0], (ρ1,ρ2, ...,ρm)J)∩V = /0.

We have:
U(Gt0

b111
[xN/x0], (ρ1[xN 7→ v0

b12
],ρ2, ...,ρm)H)

= U(t0
b111

[xN/x0][v0
b12

/xN ][w1i/x1i][w2i/x2i]...[wmi/xmi])

= U(t0
b111

[xN/x0][w1i/x1i][w2i/x2i]...[wmi/xmi][v0
b12

/xN ])

= U(t0
b111

)[xN/x0][U(w1i)/x1i][U(w2i)/x2i]...[U(wmi)/xmi][U(v0
b12

)/xN ]

= U(t0
b111

[xN/x0][w1i/x1i][w2i/x2i]...[wmi/xmi])[U(v0
b12

)/xN ]

= t0
a111

[xN/x][v0
a12

/xN ]
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We get:

t0
a111

[xN/x][v0
a12

/xN ]

' Gt0
b111

[xN/x0], (ρ1[xN 7→ v0
b12

],ρ2, ...,ρm)H

Case ii. Let ci
b1
= G(t i

b11
t i
b12

), ρ∗H.

We have V ;V `G(t i
b11

t i
b12

), ρ∗H wb, VAR(G(t i
b11

t i
b12

), ρ∗H)⊆X and FV (G(t i
b11

t i
b12

), ρ∗H)⊆
V .

By (app-env), we have G(t i
b11

t i
b12

), ρ∗H−→Gt i
b11

, ρ∗H Gt i
b12

, ρ∗H.

Then Gt i
b11

, ρ∗H Gt i
b12

, ρ∗H≺x G(t i
b11

t i
b12

), ρ∗H.

Given t i
a11

t i
a12
'G(t i

b11
t i
b12

), ρ∗H, we have t i
a11
'Gt i

b11
, ρ∗H and t i

a12
'Gt i

b12
, ρ∗H.

Suppose t i
a11

t i
a12
−→ t i

a2
, by the induction hypothesis, V ;X `Gt i

b11
, ρ∗H Gt i

b12
, ρ∗H−→∗

ci
b2

and t i
a2
' ci

b2
.

Case 3. (t i+1
a1

= λx.t i+1
a11

). We proceed by cases on t i+1
a1
−→ t i+1

a2
. The only case is (lambda-(i+1)).

Let λx.t i+1
a11
−→ λx.t i+1

a21
where t i+1

a11
−→ t i+1

a21
.

Let V ;V ` ci+1
b1

wb, FV (ci+1
b1

)⊆ V , VAR(ci+1
b1

)⊆X and V ⊆X .

We proceed by cases on ci+1
b1
∈ CONFi+1

env .

Case i. Let ci+1
b1

= λx.ci+1
b11

.

We have λx.t i+1
a11

=U(λx.ci+1
b11

) = λx.U(ci+1
b11

). Then t i+1
a11
' ci+1

b11
.

Suppose ci+1
b11

/∈ VALUEi+1
env . Otherwise by Lemma 366, t i+1

a1
∈ VALUEi+1

sub which means

t i+1
a1
6−→i+1.

We have V ∪{x};V ∪{x} ` ci+1
b11

wb, x /∈ V and FV (ci+1
b11

)⊆ V ∪{x}.
By the induction hypothesis, V ∪{x};V ∪{x} ` ci+1

b11
−→∗ ci+1

b21
and t i+1

a21
' ci+1

b21
.

Hence V ;V ` λx0.ci+1
b11
−→∗ λx0.ci+1

b11
and λx.t i+1

a21
' λx0.ci+1

b21
.

Case ii. Let ci+1
b1

= Gλx0.t i+1
b11

, (ρ1;ρ2; ...,ρm)H.

Let xN /∈X .

We have Gλx0.t i+1
b11

, (ρ1;ρ2; ...,ρm)H−→ λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...,ρm[xN 7→
xN ])H.

Then λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...,ρm[xN 7→ xN ])H≺x Gλx0.t i+1
b11

, (ρ1;ρ2; ...,ρm)H.

By Lemma 357, V ;V ` λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...,ρm[xN 7→ xN ])H wb.

By Lemma 356, FV (λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...,ρm[xN 7→ xN ])H)⊆V .

Provably we have λx.t i+1
a11

=U(Gλx0.t i+1
b11

, (ρ1;ρ2; ...,ρm)H)=U(λxN .Gt i+1
b11

, (ρ1[x0 7→
xN ];ρ2[xN 7→ xN ]; ...,ρm[xN 7→ xN ]))H). Given λx.t i+1

a11
−→ λx.t i+1

a21
, by the induc-

tion hypothesis, V ;X ∪{xN} ` λxN .Gt i+1
b11

, (ρ1[x0 7→ xN ];ρ2[xN 7→ xN ]; ...,ρm[xN 7→
xN ])H−→∗ ci+1

b2
and λx.t i+1

a21
' ci+1

b2
.

Case 4. (t i
a1
= n). This case is vacuous because n 6−→i.

Case 5. (t i
a1
= t i

a11
+ t i

a12
). This case is analogous to the (t i

a1
= t i

a11
t i
a12

) case.
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Case 6. (t i
a1
= 〈t i+1

a11
〉). We proceed by cases on t i

a1
−→ t i

a2
. The only case is (code-i).

Then 〈t i+1
a11
〉 −→ 〈t i+1

a21
〉 where t i+1

a11
−→ t i+1

a21
.

Let V ;V ` ci
b1

wb, FV (ci
b1
)⊆ V , VAR(ci

b1
)⊆X and V ⊆X .

We proceed by cases on ci
b1
∈ CONFi

env.

Case i. Let ci
b1
= 〈ci+1

b11
〉. Then t i+1

a11
' ci+1

b11
.

We have V ;V ` ci+1
b11

wb and FV (ci+1
b11

)⊆ V .

By the induction hypothesis, V ;X ` ci+1
b11
−→∗ ci+1

b21
and t i+1

a21
' ci+1

b21
.

Hence V ;X ` 〈ci+1
b11
〉 −→∗ 〈ci+1

b11
〉 and 〈t i+1

a21
〉 ' 〈ci+1

b21
〉.

Case ii. Let ci+1
b1

= G〈t i+1
b11
〉, (ρ1;ρ2; ...,ρm)H.

We have V ;V `Gt i+1
b11

, (ρ1;ρ2; ...,ρm)H wb and FV (Gt i+1
b11

, (ρ1;ρ2; ...,ρm)H)⊆ V .

By (code-env), we have V ;X `G〈t i+1
b11
〉, (ρ1;ρ2; ...,ρm)H−→〈Gt i+1

b11
, (ρ1;ρ2; ...,ρm)H〉.

Then 〈Gt i+1
b11

, (ρ1;ρ2; ...,ρm)H〉 ≺x G〈t i+1
b11
〉, (ρ1;ρ2; ...,ρm)H.

Provably we have 〈t i+1
a11
〉=U(G〈t i+1

b11
〉, (ρ1;ρ2; ...,ρm)H)=U(〈Gt i+1

b11
, (ρ1;ρ2; ...,ρm)H〉).

Given 〈t i+1
a11
〉−→〈t i+1

a21
〉, by the induction hypothesis, V ;X ` 〈Gt i+1

b11
, (ρ1;ρ2; ...,ρm)H〉−→∗

ci
b2

and 〈t i+1
a21
〉 ' ci

b2
.

Case 7. (t i+1
a1

=∼t i
a11

). This case is analogous to the (t i
a1
= 〈t i+1

a11
〉) case.

Case 8. (t i
a1
=!t i

a11
). This case is analogous to the (t i

a1
= 〈t i+1

a11
〉) case.

D.3.7 Soundness and Completeness

Theorem 370 (Soundness of Environmental MetaML w.r.t. (Substitutional) MetaML). If t0
a1
' c0

b1
, /0; /0 `

c0
b1

wb, FV (c0
b1
) = /0 and t0

a1
−→0∗ v0

a2
in Substitutional MetaML, then . c0

b1
−→∗ v0

b2
in Environmental

MetaML and v0
a2
' v0

b2
.

Proof. We proceed by induction on the length of t0
a1
−→0∗ v0

a2
.

Case 1. (0). Let t0
a1
= v0

a2
. By Lemma 367, /0; VAR(c0

b1
) ` c0

b1
−→0∗ v0

b2
and v0

a2
' v0

b2
. We have . c0

b1
−→∗

v0
b2

.

Case 2. (n+1). Let t0
a1
−→0 t0

a2
−→0(n) v0

a2
.

We have /0; /0 ` c0
b1

wb and FV (c0
b1
) = /0.

By Lemma 369, /0; VAR(c0
b1
) ` c0

b1
−→0∗ c0

b2
and t0

a2
' c0

b2
. Then . c0

b1
−→∗ c0

b2
.

By Lemma 357, /0; /0 ` c0
b2

wb. By Lemma 356, FV (c0
b2
) = /0.

By the induction hypothesis, . c0
b2
−→∗ v0

b2
and v0

a2
' v0

b2
.

We have . c0
b1
−→∗ v0

b2
.
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Theorem 371 (Completeness of Environmental MetaML w.r.t. (Substitutional) MetaML). If t0
a1
' c0

b1
, /0; /0 `

c0
b1

wb, FV (c0
b1
) = /0 and . c0

b1
−→∗ v0

b2
in Environmental MetaML, then t0

a1
−→0∗ v0

a2
in Substitutional

MetaML and v0
a2
' v0

b2
.

Proof. We proceed by induction on the length of . c0
b1
−→∗ v0

b2
.

Case 1. (0). Let c0
b1
= v0

b2
. By Lemma 366, t0

a1
∈ VALUE0

sub. Let v0
a2
= t0

a1
. We have t0

a1
−→0∗ v0

a2
and

v0
a2
' v0

b2
.

Case 2. (n+1). Let . c0
b1
−→ c0

b2
−→(n) v0

b2
.

We have /0; VAR(c0
b1
) ` c0

b1
−→0 c0

b2
, /0; /0 ` c0

b1
wb and FV (c0

b1
) = /0.

By Lemma 368, t0
a1
−→0∗ t0

a2
and t0

a2
' c0

b2
.

By Lemma 357, /0; /0 ` c0
b2

wb. By Lemma 356, FV (c0
b2
) = /0.

By the induction hypothesis, t0
a2
−→0∗ v0

a2
and v0

a2
' v0

b2
.

We have t0
a1
−→0∗ v0

a2
.

Theorem 372 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:SubSOS(t) is Kleene

equal to evalMetaML:EnvSOS(t).

Proof. We first show that if evalMetaML:SubSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:EnvSOS(t) = a.

Case 1. If evalMetaML:SubSOS(t) = function, then t −→0∗ λx.t ′
0

in Substitutional MetaML. Observe that

t ' t. By Theorem 370, . Gt, ρ
VAR(t)
init H −→∗ v in Environmental MetaML and λx.t ′

0 ' v. Then

v=Iλx0.t ′′
0
, (ρ1; ...;ρm)J and U(Iλx0.t ′′

0
, (ρ1; ...;ρm)J)= λx.t ′

0
. We have evalMetaML:EnvSOS(t)=

function.

Case 2. If evalMetaML:SubSOS(t) = code, then t −→0∗ 〈v1〉 in Substitutional MetaML. Observe that t ' t.

By Theorem 370, . Gt, ρ
VAR(t)
init H −→∗ v′ in Environmental MetaML and 〈v1〉 ' v′. Then v′ =

〈v′′1〉 and U(〈v′′1〉) = 〈v1〉. We have evalMetaML:EnvSOS(t) = code.

Case 3. If evalMetaML:Sub:−→(t) = n, then t −→0∗ n in Substitutional MetaML. Observe that t ' t. By

Theorem 370, .Gt, ρ
VAR(t)
init H−→∗ v in Environmental MetaML and n' v. Then v = n. We have

evalMetaML:SusSOS(t) = n.

We then show that if evalMetaML:EnvSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:SubSOS(t) = a.

Case 1. If evalMetaML:EnvSOS(t) = function, then . Gt, ρ
VAR(t)
init H −→∗ Iλx.t ′

0
, (ρ1; ...;ρm)J in Envir-

onmental MetaML. Observe that t ' t. By Theorem 371, t −→0∗ v in Substitutional MetaML and

v'Iλx.t ′
0
, (ρ1; ...;ρm)J. Then v=U(Iλx.t ′

0
, (ρ1; ...;ρm)J)= (λx.U(t ′

0
))[w1i/x1i]...[wmi/xmi].

We have evalMetaML:SubSOS(t) = function.

Case 2. If evalMetaML:EnvSOS(t) = code, then . Gt, ρ
VAR(t)
init H −→∗ 〈v1〉 in Environmental MetaML. Ob-

serve that t ' t. By Theorem 371, t −→0∗ v′ in (Substitutional) MetaML and v′ ' 〈v1〉. Then

v′ = 〈v′′1〉 and v′ =U(〈v1〉). We have evalMetaML:SubSOS(t) = code.
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Case 3. If evalMetaML:EnvSOS(t) = n, then .Gt, ρ
VAR(t)
init H−→∗ n in Environmental MetaML. Observe that

t ' t. By Theorem 371, t −→0∗ v in (Substitutional) MetaML and v ' n. Then v = n. We have

evalMetaML:SubSOS(t) = n.

We observe that evalMetaML:SubSOS(t) is undefined if and only if evalMetaML:EnvSOS(t) is undefined. Therefore,

evalMetaML:SubSOS(t) is Kleene equal to evalMetaML:EnvSOS(t).

D.4 Equivalence of Structural Operational Semantics and Reduction
Semantics of Environmental MetaML

We demonstrate the equivalence of the structural operational semantics of Environmental MetaML and the

reduction semantics of Environmental MetaML.

Lemma 373. If V |X ` ci
1 −→i ci

2 and E ∈ EXCTi( j, then X ` E i( j[ci
1] 7−→ j E i( j[ci

2].

Proof. Suppose that ci
1 −→i ci

2 and E ∈ EXCTi( j. We show there exists some E0 ∈ ECXTk( j and ck
01,c

k
02 ∈

CONFk such that E i( j[ci
1] = Ek( j

0 [ck
01] and E i( j[ci

2] = Ek( j
0 [ck

02] where ck
01 −→k ck

02. We proceed by

induction on the structure of the derivation of ci
1 −→i ci

2.

Case 1. (lambda-(i+1)). Let ci+1
1 = λx.ci+1

11 , ci+1
2 = λx.ci+1

21 and V ∪{x} |X ` ci+1
11 −→i+1 ci+1

21 . Let

E(i+1)( j
0 =E(i+1)( j[λx.�]. By the induction hypothesis, X `E(i+1)( j

0 [ci+1
11 ] 7−→ j E(i+1)( j

0 [ci+1
21 ].

Thus X ` E(i+1)( j[λx.ci+1
11 ] 7−→ j E(i+1)( j[λx.ci+1

21 ].

Case 2. (appL-i). Let ci
1 = ci

11 ci
12, ci

2 = ci
21 ci

12 and V |X ` ci
11 −→i ci

21. Let E i( j
0 = E i( j[� ci

12].

By the induction hypothesis, X ` E i( j
0 [ci

11] 7−→ j E i( j
0 [ci

21]. Thus X ` E i( j[ci
11 ci

12] 7−→ j

E i( j[ci
21 ci

12].

Case 3. (appR-i). Let ci
1 = vi

11 ci
12, ci

2 = vi
11 ci

22 and V |X ` ci
11 −→i ci

22. Let E i( j
0 = E i( j[vi

11 �].

By the induction hypothesis, X ` E i( j
0 [ci

12] 7−→ j E i( j
0 [ci

22]. Thus X ` E i( j[vi
11 ci

12] 7−→ j

E i( j[vi
11 ci

22].

Case 4. (app-0). Let c0
1 = I(λx.t0), (ρ,ρ∗)J v0 and c0

2 = Gt0, (ρ[x 7→ v0];ρ∗)H. We have X `
E0( j[c0

1] 7−→ j E0( j[c0
2] because X ` c0

1 R0 c0
2.

Case 5. (run-0). Let c0
1 =!〈v1〉 and c0

2 = Gv1, (ρ
VAR(X )
init ;ε)H. We have E0( j[c0

1] 7−→ j E0( j[c0
2] because

X ` c0
1 R0 c0

2.

Case 6. (run-i). Let ci
1 =!ci

11, ci
2 =!ci

21 and V |X ` ci
11 −→i ci

21. Let E i( j
0 = E i( j[!�]. By the induction

hypothesis, X ` E i( j
0 [ci

11] 7−→ j E i( j
0 [ci

21]. Thus X ` E i( j[!ci
11] 7−→ j E i( j[!ci

21].

Case 7. (code-i). Let ci
1 = 〈c

i+1
11 〉, ci

2 = 〈c
i+1
21 〉 and V |X ` ci+1

11 −→i+1 ci+1
21 . Let E(i+1)( j

0 = E i( j[〈�〉].
By the induction hypothesis, X `E(i+1)( j

0 [ci+1
11 ] 7−→ j E(i+1)( j

0 [ci+1
21 ]. Thus X `E i( j[〈ci+1

11 〉] 7−→ j

E i( j[〈ci+1
21 〉].
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Case 8. (splice-1). Let c1
1 = ∼〈v1〉 and c1

2 = v1. We have X ` E1( j[c1
1] 7−→ j E1( j[c1

2] because X `
c1

1 R1 c1
2.

Case 9. (splice-(i+1)). Let ci+1
1 =∼ci

11, ci+1
2 =∼ci

21 and V |X ` ci
11−→i ci

21. Let E i( j
0 =E(i+1)( j[∼�].

By the induction hypothesis, X ` E i( j
0 [ci

11] 7−→ j E i( j
0 [ci

21]. Thus X ` E(i+1)( j[∼ci
11] 7−→ j

E(i+1)( j[∼ci
21].

Case 10. (plusL-i). Let ci
1 = ci

11+ci
12, ci

2 = ci
21+ci

12 and V |X ` ci
11 −→i ci

21. Let E i( j
0 = E i( j[�+ci

12].

By the induction hypothesis, X ` E i( j
0 [ci

11] 7−→ j E i( j
0 [ci

21]. Thus X ` E i( j[ci
11 + ci

12] 7−→ j

E i( j[ci
21 + ci

12].

Case 11. (plusR-i). Let ci
1 = vi

11+ci
12, ci

2 = vi
11+ci

22 and V |X ` ci
11 −→i ci

22. Let E i( j
0 = E i( j[vi

11+�].

By the induction hypothesis, X ` E i( j
0 [ci

12] 7−→ j E i( j
0 [ci

22]. Thus X ` E i( j[vi
11 + ci

12] 7−→ j

E i( j[vi
11 + ci

22].

Case 12. (plus-0). Let c0
1 = n1 +n2 and c0

2 = n where n = n1 +n2. We have X ` E0( j[c0
1] 7−→ j E0( j[c0

2]

because X ` c0
1 R0 c0

2.

Case 13. (lam-0-env). Let c0
1 = Gλx.t0, ρ∗H, c0

2 = Iλx.t0, ρ∗J and V | X ` c0
1 −→0 c0

2. We have

X ` E0( j[c0
1] 7−→ j E0( j[c0

2] because X ` c0
1 R0 c0

2.

Case 14. (lam-(i+1)-env). Let ci+1
1 =Gλx.t i+1, (ρ;ρ∗)H, ci+1

2 = λxN .Gt i+1, (ρ[x 7→ xN ][xN 7→ xN ];(ρ[xN 7→
xN ])

∗)H where xN /∈ X , and V | X ` ci+1
1 −→i+1 ci+1

2 . We have X ` E(i+1)( j[ci+1
1 ] 7−→ j

E(i+1)( j[ci+1
2 ] because X ` ci+1

1 R i+1 ci+1
2 .

Case 15. (clov-env). Let ci
1 = GIλx.t, ρ∗1J, ρ∗2H, ci

2 = Iλx.t, (ρ∗1 ;ρ∗2 )J and V |X ` ci
1 −→i ci

2. We

have X ` E i( j[ci
1] 7−→ j E i( j[ci

2] because X ` ci
1 R i ci

2.

Case 16. (den-env). Let ci
1 = Gω, εH, ci

2 = w and V |X ` ci
1 −→i ci

2. We have X ` E i( j[ci
1] 7−→ j

E i( j[ci
2] because X ` ci

1 R i ci
2.

Case 17. (var-env). Let ci
1 = Gx, (ρ;ρ∗)H, ci

2 = Gρ(x), ρ∗H and V |X ` ci
1 −→i ci

2. We have X `
E i( j[ci

1] 7−→ j E i( j[ci
2] because X ` ci

1 R i ci
2.

Case 18. (num-env). Let ci
1 =Gn, (ρ;ρ∗)H, ci

2 = n and V |X ` ci
1 −→i ci

2. We have X ` E i( j[ci
1] 7−→ j

E i( j[ci
2] because X ` ci

1 R i ci
2.

Case 19. (app-env). Let ci
1 = Gt1 t2, ρ∗H, ci

2 = Gt1, ρ∗H Gt2, ρ∗H and V |X ` ci
1 −→i ci

2. We have

X ` E i( j[ci
1] 7−→ j E i( j[ci

2] because X ` ci
1 R i ci

2.

Case 20. (code-env). Let ci
1 = G〈t i+1〉, ρ∗H, ci

2 = 〈Gt i+1, ρ∗H〉 and V | X ` ci
1 −→i ci

2. We have

X ` E i( j[ci
1] 7−→ j E i( j[ci

2] because X ` ci
1 R i ci

2.

Case 21. (run-env). Let ci
1 =G!t i, ρ∗H, ci

2 =!Gt i, ρ∗H and V |X ` ci
1−→i ci

2. We have X `E i( j[ci
1] 7−→ j

E i( j[ci
2] because X ` ci

1 R i ci
2.
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Case 22. (splice-env). Let ci+1
1 = G∼t i, ρ∗H, ci+1

2 =∼Gt i, ρ∗H and V |X ` ci+1
1 −→i+1 ci+1

2 . We have

X ` E(i+1)( j[ci+1
1 ] 7−→ j E(i+1)( j[ci+1

2 ] because X ` ci+1
1 R i+1 ci+1

2 .

Therefore, if V |X ` ci
1 −→i ci

2 and E ∈ EXCTi( j, then E i( j[ci
1] 7−→ j E i( j[ci

2].

Corollary 374. If V |X ` ci
1 −→i ci

2, then X ` ci
1 7−→i ci

2.

Proof. Suppose V |X ` ci
1 −→i ci

2. Let E = �i(i in Lemma 373. We get X ` �i(i[ci
1] 7−→i �i(i[ci

2].

Hence X ` ci
1 7−→i ci

2.

Lemma 375. If V |X ` ci
1 −→i ci

2 and E ∈ ECXTi( j, then X ∪VAR(E) ` E i( j[ci
1]−→ j E i( j[ci

2].

Proof. Suppose V |X ` ci
1 −→i ci

2 and E ∈ ECXTi( j. We proceed by induction on the structure of the

derivation E ∈ ECXTi( j.

Case 1. (E =�). Observe that ci
1 =�

i(i[ci
1] and ci

2 =�
i(i[ci

2]. We have X ∪VAR(�) `�i(i[ci
1]−→i

�i[ci
1]

Case 2. (E = E i( j
0 [� ci

0]). By (appL-i), V |X ∪VAR(ci
0) ` ci

1 ci
0 −→i ci

2 ci
0. By the induction hypo-

thesis, V |X ∪VAR(ci
0)∪VAR(E0) ` E i( j

0 [ci
1 ci

0] −→ j E i( j
0 [ci

2 ci
0]. Thus V |X ∪VAR(ci

0)∪
VAR(E0) ` E i( j

0 [� ci
0][c

i
1]−→ j E i( j

0 [� ci
0][c

i
2].

Case 3. (E = E i( j
0 [vi

0 �]). By (appR-i), V |X ∪VAR(vi
0) ` vi

0 ci
1 −→i vi

0 ci
2. By the induction hypo-

thesis, V |X ∪VAR(vi
0)∪VAR(E0) ` E i( j

0 [vi
0 ci

1] −→ j E i( j
0 [vi

0 ci
2]. Thus V |X ∪VAR(vi

0)∪
VAR(E0) ` E i( j

0 [vi
0 �][c

i
1]−→ j E i( j

0 [vi
0 �][c

i
2].

Case 4. (E = E(i+1)( j
0 [λx.�]). By (lambda-(i+1)), V |X ∪VAR(x) ` λx.ci+1

1 −→i+1 λx.ci+1
2 .

By the induction hypothesis, V |X ∪VAR(x)∪VAR(E0)`E(i+1)( j
0 [λx.ci+1

1 ]−→ j E(i+1)( j
0 [λx.ci+1

2 ].

Thus V |X ∪VAR(x)∪VAR(E0) ` E(i+1)( j
0 [λx.�][ci+1

1 ]−→ j E(i+1)( j
0 [λx.�][ci+1

2 ].

Case 5. (E = E i( j
0 [〈�〉]). By (code-i), V |X ` 〈ci+1

1 〉 −→i 〈ci+1
2 〉. By the induction hypothesis, V |

X ∪VAR(E0)`E i( j
0 [〈ci+1

1 〉]−→ j E i( j
0 [〈ci+1

2 〉]. Thus V |X ∪VAR(E0)`E i( j
0 [〈�〉][ci+1

1 ]−→ j

E i( j
0 [〈�〉][ci+1

2 ].

Case 6. (E = E(i+1)( j
0 [∼�]). By (splice-(i+1)), V |X ` ∼ci

1 −→i+1 ∼ci
2. By the induction hypothesis,

V |X ∪VAR(E0)`E(i+1)( j
0 [∼ci

1]−→ j E(i+1)( j
0 [∼ci

2]. Thus V |X ∪VAR(E0)`E(i+1)( j
0 [∼�][ci

1]−→ j

E(i+1)( j
0 [∼�][ci

2].

Case 7. (E = E i( j
0 [!�]). By (run-i), V | X `!ci

1 −→i!ci
2. By the induction hypothesis, V | X ∪

VAR(E0)` E i( j
0 [!ci

1]−→ j E i( j
0 [!ci

2]. Thus V |X ∪VAR(E0)` E i( j
0 [!�][ci

1]−→ j E i( j
0 [!�][ci

2].

Case 8. (E = E i( j
0 [�+ ci

0]). By (plusL-i), V |X ∪VAR(ci
0) ` ci

1 + ci
0 −→i ci

2 + ci
0. By the induction

hypothesis, V |X ∪VAR(ci
0)∪VAR(E0) ` E i( j

0 [ci
1 + ci

0] −→ j E i( j
0 [ci

2 + ci
0]. Thus V |X ∪

VAR(ci
0)∪VAR(E0) ` E i( j

0 [�+ ci
0][c

i
1]−→ j E i( j

0 [�+ ci
0][c

i
2].
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Case 9. (E = E i( j
0 [vi

0 +�]). By (plusR-i), V |X ∪VAR(ci
0) ` vi

0 + ci
1 −→i vi

0 + ci
2. By the induction

hypothesis, V |X ∪VAR(ci
0)∪VAR(E0) ` E i( j

0 [vi
0 + ci

1] −→ j E i( j
0 [vi

0 + ci
2]. Thus V |X ∪

VAR(ci
0)∪VAR(E0) ` E i( j

0 [vi
0 +�][c

i
1]−→ j E i( j

0 [vi
0 +�][c

i
2].

Therefore, if V |X ` ci
1 −→i ci

2 and E ∈ ECXTi( j, then V |X ∪VAR(E) ` E i( j[ci
1]−→ j E i( j[ci

2].

Corollary 376. If X ` ci
1 7−→i ci

2, then V |X ` ci
1 −→i ci

2.

Proof. Suppose X ` ci
1 7−→i ci

2. Let ci
1 = E j(i

0 [c j
01], ci

2 = E j(i
0 [c j

02] and X ` c j
01 R j c j

02. Observe that

X ` c j
01 R j c j

02 implies V ;X ` c j
01 −→ j c j

02. Let E = E j(i
0 in Lemma 375. We get V ;X ` E j(i

0 [c j
01]−→i

E j(i
0 [c j

02]. Hence V ;X ` ci
1 −→i ci

2.

Theorem 377. V |X ` ci
1 −→i ci

2 if and only if X ` ci
1 7−→i ci

2.

Proof. This theorem follows Corollaries 374 and 376 directly.

Theorem 378. V |X ` ci
1 −→i∗ ci

2 if and only if X ` ci
1 7−→i∗ ci

2.

Proof. We first show that if V |X ` ci
1 −→i∗ ci

2 then X ` ci
1 7−→i∗ ci

2. Suppose V |X ` ci
1 −→i(n) ci

2. We

proceed by induction on n.

Case 1. When n = 0, ci
1 = ci

2. We have X ` ci
1 7−→i∗ ci

2 immediately.

Case 2. Let V |X ` ci
1 −→i ci

3 −→i(n) ci
2.

Given V |X ` ci
1 −→i ci

3, by Corollary 374, X ` ci
1 7−→i ci

3.

Given V |X ∪VAR(ci
3)` ci

3−→i(n) ci
2, by the induction hypothesis, V |X ∪VAR(ci

3)` ci
3 7−→i∗

ci
2.

We get X ` ci
1 7−→i ci

3 7−→i∗ ci
2. Hence X ` ci

1 7−→i∗ ci
2.

Now we show that if X ` ci
1 7−→i∗ ci

2 then V |X ` ci
1 −→i∗ ci

2. Suppose X ` ci
1 7−→i(n) ci

2. We proceed

by induction on n.

Case 1. When n = 0, ci
1 = ci

2. We have V |X ` ci
1 −→i∗ ci

2 immediately.

Case 2. Let X ` ci
1 7−→i ci

3 7−→i(n) ci
2.

Given X ` ci
1 7−→i ci

3, by Corollary 376, V |X ` ci
1 −→i ci

3.

Given X ∪VAR(ci
3) ` ci

3 7−→i(n) ci
2, by the induction hypothesis, V |X ∪VAR(ci

3) ` ci
3−→i∗ ci

2.

We get V |X ` ci
1 −→i ci

3 −→i∗ ci
2. Hence V |X ` ci

1 −→i∗ ci
2.

Therefore, V |X ` ci
1 −→i∗ ci

2 if and only if X ` ci
1 7−→i∗ ci

2.

Theorem 379 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:EnvSOS(t) is Kleene

equal to evalMetaML:EnvRed(t).

Proof. We first show if evalMetaML:EnvSOS(t) = a where a ∈ ANSMetaML, then evalMetaML:EnvRed(t) = a.
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Case 1. If evalMetaML:EnvSOS(t) = function, then /0 | VAR(t) ` t −→0∗ Iλx.t ′
0
, ρ∗J. By Theorem 378,

VAR(t) ` t 7−→0∗ Iλx.t ′
0
, ρ∗J.

We have evalMetaML:EnvRed(t) = function.

Case 2. If evalMetaML:EnvSOS(t) = code, then /0 | VAR(t) ` t −→0∗ 〈v1〉. By Theorem 378, VAR(t) `
t 7−→0∗ 〈v1〉.
We have evalMetaML:EnvRed(t) = code.

Case 3. If evalMetaML:EnvSOS(t) = n, then /0 | VAR(t) ` t −→0∗ n. By Theorem 378, VAR(t) ` t 7−→0∗ n.

We have evalMetaML:EnvRed(t) = n.

We then show if evalMetaML:EnvRed(t) = a where a ∈ ANSMetaML, then evalMetaML:EnvSOS(t) = a.

Case 1. If evalMetaML:EnvRed(t) = function, then VAR(t) ` t 7−→0∗ Iλx.t ′
0
, ρ∗J. By Theorem 378,

/0 | VAR(t) ` t −→0∗ Iλx.t ′
0
, ρ∗J.

We have evalMetaML:EnvSOS(t) = function.

Case 2. If evalMetaML:EnvRed(t)= code, then VAR(t)` t 7−→0∗ 〈v1〉. By Theorem 378, /0 |VAR(t)` t −→0∗

〈v1〉.
We have evalMetaML:EnvSOS(t) = code.

Case 3. If evalMetaML:EnvRed(t) = n, then VAR(t) ` t 7−→0∗ n. By Theorem 378, /0 | VAR(t) ` t −→0∗ n.

We have evalMetaML:EnvSOS(t) = n.

We observe that evalMetaML:EnvSOS(t) is undefined if and only if evalMetaML:EnvRed(t) is undefined. Therefore,

evalMetaML:EnvSOS(t) is Kleene equal to evalMetaML:EnvRed(t).

D.5 Equivalence of Reduction Semantics and Abstract Machine (MEK
Machine) of Environmental MetaML

We demonstrate the equivalence of the reduction semantics of Environmental MetaML and the abstract

machine (the MEK machine) of Environmental MetaML.

Lemma 380. 〈i, E i(0, vi〉f 7−→∗mek 〈i, E i(0, vi〉b.

Proof. We proceed by induction on the structure of the derivation of vi ∈ VALUEi.

Case 1. (x ∈ VALUEi+1). We immediately have 〈i+1, E(i+1)(0, x〉f 7−→mek 〈i, E(i+1)(0, x〉b.

Case 2. (vi+1
1 vi+1

2 ∈ VALUEi+1). We have:
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〈i+1, E(i+1)(0, vi+1
1 vi+1

2 〉f
7−→mek 〈i+1, E(i+1)(0[� vi+1

2 ], vi+1
1 〉f

7−→∗mek 〈i+1, E(i+1)(0[� vi+1
2 ], vi+1

1 〉b by the induction hypothesis

7−→mek 〈i+1, E(i+1)(0[vi+1
1 �], vi+1

2 〉f
7−→∗mek 〈i+1, E(i+1)(0[vi+1

1 �], vi+1
2 〉b by the induction hypothesis

7−→mek 〈i+1, E(i+1)(0, vi+1
1 vi+1

2 〉b

Case 3. (Iλx.t0
1 , ρ∗J∈VALUE0). We immediately have 〈0, E0(0, Iλx.t0

1 , ρ∗J〉f 7−→mek 〈0, E0(0, Iλx.t0
1 , ρ∗J〉b.

Case 4. (λx.vi+1
1 ∈ VALUEi+1). We have:

〈i+1, E(i+1)(0, λx.vi+1
1 〉f

7−→mek 〈i+1, E(i+1)(0[λx.�], vi+1
1 〉f

7−→∗mek 〈i+1, E(i+1)(0[λx.�], vi+1
1 〉b by the induction hypothesis

7−→mek 〈i+1, E(i+1)(0, λx.vi+1
1 〉b

Case 5. (〈vi+1
1 〉 ∈ VALUEi). We have:

〈i, E i(0, 〈vi+1
1 〉〉f

7−→mek 〈i+1, E i(0[〈�〉], vi+1
1 〉f

7−→∗mek 〈i+1, E i(0[〈�〉], vi+1
1 〉b by the induction hypothesis

7−→mek 〈i, E i(0, 〈vi+1
1 〉〉b

Case 6. (∼vi+1
1 ∈ VALUEi+2). We have:

〈i+2, E(i+2)(0, ∼vi+1
1 〉f

7−→mek 〈i+1, E(i+2)(0[∼�], vi+1
1 〉f

7−→∗mek 〈i+1, E(i+2)(0[∼�], vi+1
1 〉b by the induction hypothesis

7−→mek 〈i+2, E(i+2)(0, ∼vi+1
1 〉b

Case 7. (!vi+1
1 ∈ VALUEi+1). We have:

〈i+1, E(i+1)(0, !vi+1
1 〉f

7−→mek 〈i+1, E(i+1)(0[!�], vi+1
1 〉f

7−→∗mek 〈i+1, E(i+1)(0[!�], vi+1
1 〉b by the induction hypothesis

7−→mek 〈i+1, E(i+1)(0, !vi+1
1 〉b

Case 8. (n ∈ VALUEi). We immediately have 〈i, E i(0, n〉f 7−→mek 〈i, E i(0, n〉b.
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Lemma 381. If X ` ci
1 R i ci

2 and VAR(E[c1]) = X , then 〈i, E i(0, ci
1〉f 7−→∗mek 〈i, E i(0, ci

1〉r 7−→mek

〈i, E i(0, ci
2〉f.

Proof. We proceed by cases on ci
1 R i ci

2.

Case 1. (app-0). Let i = 0, c0
1 = Iλx.t0

11, (ρ;ρ∗)J v0
12 and c0

2 = Gt0
11, (ρ[x 7→ v0

12];ρ∗)H. We have:

〈0, E0(0, Iλx.t0
11, (ρ;ρ∗)J v0

12〉f
7−→mek 〈0, E0(0[� v0

12], Iλx.t0
11, (ρ;ρ∗)J〉f

7−→mek 〈0, E0(0[� v0
12], Iλx.t0

11, (ρ;ρ∗)J〉b
7−→mek 〈0, E0(0[Iλx.t0

11, (ρ;ρ∗)J�], v0
12〉f

7−→∗mek 〈0, E0(0[Iλx.t0
11, (ρ;ρ∗)J�], v0

12〉b by Lemma 380

7−→mek 〈0, E0(0, Iλx.t0
11, (ρ;ρ∗)J v0

12〉r
7−→mek 〈0, E0(0, Gt0

11, (ρ[x 7→ v0
12];ρ∗)H〉f

Case 2. (run-0). Let i = 0, c0
1 =!〈v1

11〉 and c0
2 = Gv1, (ρ

VAR(X )
init ;ε)H. We have:

〈0, E0(0, !〈v1
11〉〉f

7−→mek 〈0, E0(0[!�], 〈v1
11〉〉f

7−→mek 〈1, E0(0[!�][〈�〉], v1
11〉f

7−→∗mek 〈1, E0(0[!�][〈�〉], v1
11〉b by Lemma 380

7−→mek 〈0, E0(0[!�], 〈v1
11〉〉b

7−→∗mek 〈0, E0(0, !〈v1
11〉〉r

7−→mek 〈0, E0(0, Gv1, (ρ
VAR(E[!〈v11〉])
init ;ε)H〉f

Case 3. (splice-1). Let i = 1, c1
1 =∼〈v1

11〉 and c1
2 = v1

11. We have:

〈1, E0(0, ∼〈v1
11〉〉f

7−→mek 〈0, E0(0[∼�], 〈v1
11〉〉f

7−→mek 〈1, E0(0[∼�][〈�〉], v1
11〉f

7−→∗mek 〈1, E0(0[∼�][〈�〉], v1
11〉b by Lemma 380

7−→mek 〈0, E0(0[∼�], 〈v1
11〉〉b

7−→∗mek 〈1, E0(0, ∼〈v1
11〉〉r

7−→mek 〈1, E0(0, v1
11〉f

Case 4. (plus-0). Let i = 0, c0
1 = n1 +n2 and c0

2 = n where n = n1 +n2. We have:

〈0, E0(0, n1 +n2〉f
7−→mek 〈0, E0(0[�+n2], n1〉f
7−→mek 〈0, E0(0[�+n2], n1〉b
7−→mek 〈0, E0(0[n1 +�], n2〉f
7−→mek 〈0, E0(0[n1 +�], n2〉b
7−→mek 〈0, E0(0, n1 +n2〉r
7−→mek 〈0, E0(0, n〉f where n = n1 +n2
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Case 5. (other cases). Let ci
1 = Gt i

11, ρ∗H and X `Gt i
11, ρ∗H R i ci

2. We have:

〈i, E i(0, Gt i
11, ρ∗H〉f

7−→mek 〈i, E i(0, Gt i
11, ρ∗H〉r

7−→mek 〈i, E i(0, ci
2〉f

Lemma 382. If ci = E j(i
1 [c j

1] and c j
1 R j c j

2, then 〈i, E i(0, ci〉f 7−→∗mek 〈 j, E i(0E j(i
1 , c j

1〉f.

Proof. Suppose ci =E j(i
1 [c j

1] and c j
1 R j c j

2. We want to show 〈i, E i(0, E j(i
1 [c j

1]〉f 7−→∗mek 〈 j, E i(0E j(i
1 , c j

1〉.
We proceed by induction on the structure of the derivation of E j(i

1 .

Case 1. (E i(i
1 =�i(i). We know 〈i, E i(0, ci〉f = 〈i, E i(0, ci

1〉f and 〈i, E i(0, ci
1〉f 7−→∗mek 〈i, E i(0, ci

1〉f.

Case 2. (E j(i
1 = E j(i

11 ci
11). We know 〈i, E i(0, ci〉f = 〈i, E i(0, E j(i

1 [c j
1]〉f = 〈i, E i(0, (E j(i

11 ci
11)[c

j
1]〉f.

We have:

〈i, E i(0, (E j(i
11 ci

11)[c
j
1]〉f

7−→mek 〈i, E i(0[� ci
11], E j(i

11 [c j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[� ci
11], E j(i

11 [c j
1]〉f 7−→∗mek

〈i, E i(0[E j(i
11 ci

11], c j
1〉f.

Case 3. (E j(i
1 = vi

11 E j(i
11 ). We know 〈i, E i(0, ci〉f = 〈i, E i(0, E j(i

1 [c j
1]〉f = 〈i, E i(0, (vi

11 E j(i
11 )[c j

1]〉f.
We have:

〈i, E i(0, (vi
11 E j(i

11 )[c j
1]〉f

7−→mek 〈i, E i(0[� E j(i
11 [c j

1]], vi
11〉f

7−→∗mek 〈i, E i(0[� E j(i
11 [c j

1]], vi
11〉b by Lemma 380

7−→mek 〈i, E i(0[vi
11 �], E j(i

11 [c j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[vi
11�], E j(i

11 [c j
1]〉f 7−→∗mek

〈i, E i(0[vi
11 E j(i

11 ], c j
1〉f.

Case 4. (E j((i+1)
1 = λx.E j((i+1)

11 ). We know 〈i+1, E(i+1)(0, ci+1〉f = 〈i+1, E i+1(0, E j((i+1)
1 [c j

1]〉f =
〈i+1, E(i+1)(0, (λx.E j((i+1)

11 )[c j
1]〉f. We have:

〈i+1, E(i+1)(0, (λx.E j((i+1)
11 )[c j

1]〉f
7−→mek 〈i+1, E(i+1)(0[λx.�], E j((i+1)

11 [c j
1]〉f

Since E j((i+1)
11 is a component of E j((i+1)

1 , by the induction hypothesis,

we have 〈i+1, E(i+1)(0[λx.�], E j((i+1)
11 [c j

1]〉f 7−→∗mek 〈i+1, E(i+1)(0[λx.E j((i+1)
11 ], c j

1〉f.
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Case 5. (E j(i
1 = 〈E j((i+1)

11 〉). We know 〈i, E i(0, ci〉f = 〈i, E i(0, E j(i
1 [c j

1]〉f = 〈i, E i(0, 〈E j((i+1)
11 〉[c j

1]〉f.
We have:

〈i, E i(0, 〈E j((i+1)
11 〉[c j

1]〉f
7−→mek 〈i, E i(0[〈�〉], E j((i+1)

11 [c j
1]〉f

Since E j((i+1)
11 is a component of E j(i

1 , by the induction hypothesis,

we have 〈i, E i(0[〈�〉], E j((i+1)
11 [c j

1]〉f 7−→∗mek 〈i, E i(0[〈E j((i+1)
11 〉], c j

1〉f.

Case 6. (E j((i+1)
1 =∼E j(i

11 ). We know:

〈i+1, E(i+1)(0, ci+1〉f
= 〈i+1, E(i+1)(0, E j((i+1)

1 [c j
1]〉f

= 〈i+1, E(i+1)(0, ∼E j(i
11 [c j

1]〉f

We have:

〈i+1, E(i+1)(0, ∼E j(i
11 [c j

1]〉f
7−→mek 〈i+1, E(i+1)(0[∼�], E j(i

11 [c j
1]〉f

Since E j(i
11 is a component of E j((i+1)

1 , by the induction hypothesis,

we have 〈i+1, E(i+1)(0[∼�], E j(i
11 [c j

1]〉f 7−→∗mek 〈i+1, E(i+1)(0[∼E j(i
11 ], c j

1〉f.

Case 7. (E j(i
1 =!E j(i

11 ). We know 〈i, E i(0, ci〉f = 〈i, E i(0, E j(i
1 [c j

1]〉f = 〈i, E i(0, !E j(i
11 [c j

1]〉f. We

have:

〈i, E i(0, !E j(i
11 [c j

1]〉f
7−→mek 〈i, E i(0[!�], E j(i

11 [c j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[!�], E j(i
11 [c j

1]〉f 7−→∗mek

〈i, E i(0[!E j(i
11 ], c j

1〉f.

Case 8. (E j(i
1 = E j(i

11 + ci
11). We know 〈i, E i(0, ci〉f = 〈i, E i(0, E j(i

1 [c j
1]〉f = 〈i, E i(0, (E j(i

11 +

ci
11)[c

j
1]〉f. We have:

〈i, E i(0, (E j(i
11 + ci

11)[c
j
1]〉f

7−→mek 〈i, E i(0[�+ ci
11], E j(i

11 [c j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[�+ci
11], E j(i

11 [c j
1]〉f 7−→∗mek

〈i, E i(0[E j(i
11 + ci

11], c j
1〉f.

Case 9. (E j(i
1 = vi

11+E j(i
11 ). We know 〈i, E i(0, ci〉f = 〈i, E i(0, E j(i

1 [c j
1]〉f = 〈i, E i(0, (vi

11+E j(i
11 )[c j

1]〉f.
We have:
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〈i, E i(0, (vi
11 +E j(i

11 )[c j
1]〉f

7−→mek 〈i, E i(0[�+E j(i
11 [c j

1]], vi
11〉f

7−→∗mek 〈i, E i(0[�+E j(i
11 [c j

1]], vi
11〉b by Lemma 380

7−→mek 〈i, E i(0[vi
11 +�], E j(i

11 [c j
1]〉f

Since E j(i
11 is a component of E j(i

1 , by the induction hypothesis, we have 〈i, E i(0[vi
11+�], E j(i

11 [c j
1]〉f 7−→∗mek

〈i, E i(0[vi
11 +E j(i

11 ], c j
1〉f.

Lemma 383. If E i(0
0 [ci

0] =E j(0
1 [c j

1] and X `E j(0
1 [c j

1] 7−→E j(0
1 [c j

2] where X ` c j
1 R j c j

2 and VAR(E1[E i(0
0 [ci

0]])=

X , then 〈i, E i(0
0 , ci

0〉f 7−→∗mek 〈 j, E j(0
1 , c j

2〉f.

Proof. If c j
1 is inside ci

0 (or the same as ci
0), E j(0

1 extends E i(0
0 (or is the same as E i(0

0 ). Otherwise, because

ci
0 is not reduced, it must be a value.

Case 1. Suppose c j
1 is inside ci

0 (or the same as ci
0). Let ci

0 = E j(i
2 [c j

1]. Then E j(0
1 = E i(0

0 E j(i
2 .

We have 〈i, E i(0
0 , ci

0〉f = 〈i, E i(0
0 , E j(i

2 [c j
1]〉f. By Lemma 382, 〈i, E i(0

0 , E j(i
2 [c j

1]〉f 7−→∗mek

〈 j, E i(0
0 E j(i

2 , c j
1〉f. By Lemma 381, 〈 j, E i(0

0 E j(i
2 , c j

1〉f 7−→∗mek 〈 j, E i(0
0 E j(i

2 , c j
1〉r 7−→mek

〈 j, E i(0
0 E j(i

2 , c j
2〉f.

Case 2. Otherwise, ci
0 ∈ VALUEi. By Lemma 380, X ` 〈i, E i(0

0 , ci
0〉f 7−→∗mek 〈i, E i(0

0 , ci
0〉b. We prove

the following statement by induction on the structure of the derivation of E i(0
0 ∈ ECXTi(0.

Statement: If E i(0
0 [ci

0] = E j(0
1 [c j

1] where ci
0 ∈ VALUEi and X ` E j(0

1 [c j
1] 7−→ E j(0

1 [c j
2] where

X ` c j
1 R j c j

2, then 〈i, E i(0
0 , ci

0〉b 7−→∗mek 〈 j, E j(0
1 , c j

2〉f.

Case i. (E0(0
0 =�0(0). This case is vacuous.

Case ii. (E i(0
0 = E i(0

2 [� ci
22]). We have:

〈i, E i(0
0 , ci

0〉b
= 〈i, E i(0

2 [� ci
22], ci

0〉b
7−→mek 〈i, E i(0

2 [ci
0 �], ci

22〉f

Case a. If X ` ci
22 R i ci

23, then ci
1 = ci

22 and ci
2 = ci

23.

By Lemma 381, 〈i, E i(0
2 [ci

0 �], ci
22〉f 7−→∗mek 〈i, E i(0

2 [ci
0 �], ci

2〉f.
Case b. If X ` ci

22 6R i and ci
22 ∈ VALUEi.

Case 1. If c22 ∈ VALUE0. We have:

〈0, E0(0
2 [c0

0 �], c0
22〉f

7−→mek 〈0, E0(0
2 [c0

0 �], c0
22〉b

7−→mek 〈0, E0(0
2 , c0

0 c0
22〉r

Then c0
1 = c0

0 c0
22. By Lemma 381, 〈0, E0(0

2 , c0
0 c0

22〉r 7−→mek

〈0, E0(0
2 , c0

2〉f.
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Case 2. If c22 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
2 [ci+1

0 �], ci+1
22 〉f

7−→∗mek 〈i+1, E(i+1)(0
2 [ci+1

0 �], ci+1
22 〉b by Lemma 380

7−→mek 〈i+1, E(i+1)(0
2 , ci+1

0 ci+1
22 〉b

We know ci+1
0 ci+1

22 ∈ VALUEi+1. Since E(i+1)(0
2 is a component

of E(i+1)(0
0 , by the induction hypothesis, 〈i+1, E(i+1)(0

2 , ci+1
0 ci+1

22 〉b 7−→∗mek

〈 j, E j(0
1 , c j

2〉f.

Case c. If X ` ci
22 6 R i and ci

22 /∈ VALUEi, then ci
22 = E j(i

3 [c j
1]. Hence E j(0

1 =

E i(0
2 [ci

0 E j(i
3 ]. We have:

〈i+1, E(i+1)(0
2 [ci+1

0 �], ci+1
22 〉f

〈i, E i(0
2 [ci

0 �], ci
22〉f

= 〈i, E i(0
2 [ci

0 �], E j(i
3 [c j

1]〉f
7−→∗mek 〈 j, E i(0

2 [ci
0 E j(i

3 ], c j
1〉f by Lemma 382

7−→∗mek 〈 j, E i(0
2 [ci

0 E j(i
3 ], c j

2〉f by Lemma 381

Case iii. (E i(0
0 = E i(0

2 [vi
21 �]).

Case a. If c0 ∈ VALUE0. We have:

〈0, E0(0
0 , c0

0〉b
= 〈0, E0(0

2 [v0
21 �], c0

0〉b
7−→mek 〈0, E0(0

2 , v0
21 c0

0〉r
Then c0

1 = v0
21 c0

0. By Lemma 381, 〈0, E0(0
2 , v0

21 c0
0〉r 7−→mek 〈0, E0(0

2 , c0
2〉f.

Case b. If c0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , ci+1

0 〉b
= 〈i+1, E(i+1)(0

2 [vi+1
21 �], ci+1

0 〉b
7−→mek 〈i+1, E(i+1)(0

2 , vi+1
21 ci+1

0 〉b
We know vi+1

21 ci+1
0 ∈VALUEi+1. Since E(i+1)(0

2 is a component of E(i+1)(0
0 ,

by the induction hypothesis, 〈i+1, E(i+1)(0
2 , vi+1

21 ci+1
0 〉b 7−→∗mek 〈 j, E j(0

1 , c j
2〉f.

Case iv. (E(i+1)(0
0 = E(i+1)(0

2 [λx.�]). We have:

〈i+1, E(i+1)(0
0 , ci+1

0 〉b
= 〈i+1, E(i+1)(0

2 [λx.�], ci+1
0 〉b

7−→mek 〈i+1, E(i+1)(0
2 , λx.ci+1

0 〉b

We know λx.ci+1
0 ∈ VALUEi+1. Since E(i+1)(0

2 is a component of E(i+1)(0
0 , by the

induction hypothesis, 〈i+1, E(i+1)(0
2 , λx.ci+1

0 〉b 7−→∗mek 〈 j, E j(0
1 , c j

2〉f.

Case v. (E(i+1)(0
0 = E i(0

2 [〈�〉]). We have:

〈i+1, E(i+1)(0
0 , ci+1

0 〉b
= 〈i+1, E i(0

2 [〈�〉], ci+1
0 〉b

7−→mek 〈i, E i(0
2 , 〈ci+1

0 〉〉b
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We know 〈ci+1
0 〉 ∈ VALUEi. Since E i(0

2 is a component of E(i+1)(0
0 , by the induction

hypothesis, 〈i, E i(0
2 , 〈ci+1

0 〉〉b 7−→∗mek 〈 j, E j(0
1 , c j

2〉f.

Case vi. (E i(0
0 = E(i+1)(0

2 [∼�]).

Case a. If c0 ∈ VALUE0. We have:
〈0, E0(0

0 , c0
0〉b

= 〈0, E1(0
2 [∼�], c0

0〉b
7−→mek 〈1, E1(0

2 , ∼c0
0〉r

Then c1
1 =∼c0

0. By Lemma 381, 〈1, E1(0
2 , ∼c0

0〉r 7−→mek 〈1, E1(0
2 , c1

2〉f.
Case b. If c0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , ci+1

0 〉b
= 〈i+1, E(i+2)(0

2 [∼�], ci+1
0 〉b

7−→mek 〈i+2, E(i+2)(0
2 , ∼ci+1

0 〉b
We know ∼ci+1

0 ∈ VALUEi+2. Since E(i+2)(0
2 is a component of E(i+1)(0

0 ,

by the induction hypothesis, 〈i+2, E(i+2)(0
2 , ∼ci+1

0 〉b 7−→∗mek 〈 j, E j(0
1 , c j

2〉f.

Case vii. (E i(0
0 = E i(0

2 [!�]).

Case a. If c0 ∈ VALUE0. We have:
〈0, E0(0

0 , c0
0〉b

= 〈0, E0(0
2 [!�], c0

0〉b
7−→mek 〈0, E0(0

2 , !c0
0〉r

Then c0
1 =!c0

0. By Lemma 381, 〈0, E0(0
2 , !c0

0〉r 7−→mek 〈0, E0(0
2 , c0

2〉f.
Case b. If c0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , ci+1

0 〉b
= 〈i+1, E(i+1)(0

2 [!�], ci+1
0 〉b

7−→mek 〈i+1, E(i+1)(0
2 , !ci+1

0 〉b
We know !ci+1

0 ∈ VALUEi+1. Since E(i+1)(0
2 is a component of E(i+1)(0

0 ,

by the induction hypothesis, 〈i+1, E(i+1)(0
2 , !ci+1

0 〉b 7−→∗mek 〈 j, E j(0
1 , c j

2〉f.

Case viii. (E i(0
0 = E i(0

2 [�+ ci
22]). We have:

〈i, E i(0
0 , ci

0〉b
= 〈i, E i(0

2 [�+ ci
22], ci

0〉b
7−→mek 〈i, E i(0

2 [ci
0 +�], ci

22〉f

Case a. If X ` ci
22 R i ci

23, then ci
1 = ci

22 and ci
2 = ci

23.

By Lemma 381, 〈i, E i(0
2 [ci

0 +�], ci
22〉f 7−→∗mek 〈i, E i(0

2 [ci
0 +�], ci

2〉f.
Case b. If X ` ci

22 6R i and ci
22 ∈ VALUEi.

Case 1. If c22 ∈ VALUE0. We have:
〈0, E0(0

2 [c0
0 +�], c0

22〉f
7−→mek 〈0, E0(0

2 [c0
0 +�], c0

22〉b
7−→mek 〈0, E0(0

2 , c0
0 + c0

22〉r
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Then c0
1 = c0

0+c0
22. By Lemma 381, 〈0, E0(0

2 , c0
0+c0

22〉r 7−→mek

〈0, E0(0
2 , c0

2〉f.
Case 2. If c22 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
2 [ci+1

0 +�], ci+1
22 〉f

7−→∗mek 〈i+1, E(i+1)(0
2 [ci+1

0 +�], ci+1
22 〉b by Lemma 380

7−→mek 〈i+1, E(i+1)(0
2 , ci+1

0 + ci+1
22 〉b

We know ci+1
0 +ci+1

22 ∈ VALUEi+1. Since E(i+1)(0
2 is a compon-

ent of E(i+1)(0
0 , by the induction hypothesis, 〈i+1, E(i+1)(0

2 , ci+1
0 +

ci+1
22 〉b 7−→∗mek 〈 j, E j(0

1 , c j
2〉f.

Case c. If X ` ci
22 6 R i and ci

22 /∈ VALUEi, then ci
22 = E j(i

3 [c j
1]. Hence E j(0

1 =

E i(0
2 [ci

0 +E j(i
3 ]. We have:

〈i+1, E(i+1)(0
2 [ci+1

0 +�], ci+1
22 〉f

〈i, E i(0
2 [ci

0 +�], ci
22〉f

= 〈i, E i(0
2 [ci

0 +�], E j(i
3 [c j

1]〉f
7−→∗mek 〈 j, E i(0

2 [ci
0 +E j(i

3 ], c j
1〉f by Lemma ??

7−→∗mek 〈 j, E i(0
2 [ci

0 +E j(i
3 ], c j

2〉f by Lemma 381

Case ix. (E i(0
0 = E i(0

2 [vi
21 +�]).

Case a. If c0 ∈ VALUE0. We have:

〈0, E0(0
0 , c0

0〉b
= 〈0, E0(0

2 [v0
21 +�], c0

0〉b
7−→mek 〈0, E0(0

2 , v0
21 + c0

0〉r
Then c0

1 = v0
21+c0

0. By Lemma 381, 〈0, E0(0
2 , v0

21+c0
0〉r 7−→mek 〈0, E0(0

2 , c0
2〉f.

Case b. If c0 ∈ VALUEi+1. We have:

〈i+1, E(i+1)(0
0 , ci+1

0 〉b
= 〈i+1, E(i+1)(0

2 [vi+1
21 +�], ci+1

0 〉b
7−→mek 〈i+1, E(i+1)(0

2 , vi+1
21 + ci+1

0 〉b

We know vi+1
21 + ci+1

0 ∈ VALUEi+1. Since E(i+1)(0
2 is a component of

E(i+1)(0
0 , by the induction hypothesis, 〈i+1, E(i+1)(0

2 , vi+1
21 +ci+1

0 〉b 7−→∗mek

〈 j, E j(0
1 , c j

2〉f.

Lemma 384. If v0 = E i(0[ci], then 〈i, E i(0, ci〉b 7−→∗mek v0.

Proof. Suppose v0 = E i(0[ci]. We know ci ∈ VALUEi. We proceed by induction on the structure of the

derivation of E i(0 ∈ ECXTi(0.

Case 1. (E0(0 =�0(0). Then v0 = c0. We have 〈0, �0(0, v0〉b 7−→mek v0.
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Case 2. (E i(0 = E i(0
1 [� ci

12]). Then v0 = E i(0
1 [ci ci

12]. We know ci ∈ VALUEi, ci
12 ∈ VALUEi and i≥ 1.

Let’s use i+1 instead of i. We have:

〈i+1, E(i+1)(0
1 [� ci+1

12 ], ci+1〉b
7−→mek 〈i+1, E(i+1)(0

1 [ci+1 �], ci+1
12 〉f

7−→∗mek 〈i+1, E(i+1)(0
1 [ci+1 �], ci+1

12 〉b by Lemma 380

7−→mek 〈i+1, E(i+1)(0
1 , ci+1 ci+1

12 〉f
7−→∗mek 〈i+1, E(i+1)(0

1 , ci+1 ci+1
12 〉b by Lemma 380

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , ci+1 ci+1

12 〉b 7−→∗mek v0.

Case 3. (E i(0 = E i(0
1 [vi

11 �]). Then v0 = E i(0
1 [vi

11 ci]. We know ci ∈ VALUEi and i≥ 1. Let’s use i+1

instead of i. We have:

〈i+1, E(i+1)(0
1 [vi+1

11 �], ci+1〉b
7−→mek 〈i+1, E(i+1)(0

1 , vi+1
11 ci+1〉f

7−→∗mek 〈i+1, E(i+1)(0
1 , vi+1

11 ci+1〉b by Lemma 380

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , vi+1

11 ci+1〉b 7−→∗mek v0.

Case 4. (E(i+1)(0 = E(i+1)(0
1 [λx.�]). Then v0 = E(i+1)(0

1 [λx.ci+1]. We know ci+1 ∈ VALUEi+1. We

have:

〈i+1, E(i+1)(0
1 [λx.�], ci+1〉b

7−→mek 〈i+1, E(i+1)(0
1 , λx.ci+1〉b

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , λx.ci+1〉b 7−→∗mek v0.

Case 5. (E(i+1)(0 = E i(0
1 [〈�〉]). Then v0 = E i(0

1 [〈ci+1〉]. We know ci+1 ∈ VALUEi+1. We have:

〈i+1, E i(0
1 [〈�〉], ci+1〉b

7−→mek 〈i, E i(0
1 , 〈ci+1〉〉b

Since E i(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i, E i(0
1 , 〈ci+1〉〉b 7−→∗mek v0.

Case 6. (E i(0 = E(i+1)(0
1 [∼�]). Then v0 = E(i+1)(0

1 [∼ci]. We know ci ∈ VALUEi and i ≥ 1. Let use

i+1 instead of i and i+2 instead of i+1. We have:
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〈i+1, E(i+2)(0
1 [∼�], ci+1〉b

7−→mek 〈i+2, E(i+2)(0
1 , ∼ci+1〉b

Since E(i+2)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+2, E(i+2)(0
1 , ∼ci+1〉b 7−→∗mek v0.

Case 7. (E i(0 = E i(0
1 [!�]). Then v0 = E i(0

1 [!ci]. We know ci ∈ VALUEi and i≥ 1. Let use i+1 instead

of i. We have:

〈i+1, E(i+1)(0
1 [!�], ci+1〉b

7−→mek 〈i+1, E(i+1)(0
1 , !ci+1〉b

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis,

we have 〈i+1, E(i+1)(0
1 , !ci+1〉b 7−→∗mek v0.

Case 8. (E i(0 = E i(0
1 [�+ ci

12]). Then v0 = E i(0
1 [ci + ci

12]. We know ci ∈ VALUEi, ci
12 ∈ VALUEi and

i≥ 1. Let’s use i+1 instead of i. We have:

〈i+1, E(i+1)(0
1 [�+ ci+1

12 ], ci+1〉b
7−→mek 〈i+1, E(i+1)(0

1 [ci+1 +�], ci+1
12 〉f

7−→∗mek 〈i+1, E(i+1)(0
1 [ci+1 +�], ci+1

12 〉b by Lemma 380

7−→mek 〈i+1, E(i+1)(0
1 , ci+1 + ci+1

12 〉f
7−→∗mek 〈i+1, E(i+1)(0

1 , ci+1 + ci+1
12 〉b by Lemma 380

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis, we have 〈i+1, E(i+1)(0

1 , ci+1+

ci+1
12 〉b 7−→∗mek v0.

Case 9. (E i(0 = E i(0
1 [vi

11 +�]). Then v0 = E i(0
1 [vi

11 + ci]. We know ci ∈ VALUEi and i ≥ 1. Let’s use

i+1 instead of i. We have:

〈i+1, E(i+1)(0
1 [vi+1

11 +�], ci+1〉b
7−→mek 〈i+1, E(i+1)(0

1 , vi+1
11 + ci+1〉f

7−→∗mek 〈i+1, E(i+1)(0
1 , vi+1

11 + ci+1〉b by Lemma 380

Since E(i+1)(0
1 is a component of E(i+1)(0, by the induction hypothesis, we have 〈i+1, E(i+1)(0

1 , vi+1
11 +

ci+1〉b 7−→∗mek v0.

Lemma 385. If v0 = E i(0[ci], then 〈i, E i(0, ci〉f 7−→∗mek v0.

Proof. Suppose v0 = E i(0[ci]. Then ci ∈ VALUEi. By Lemma 380, 〈i, E i(0, ci〉f 7−→∗mek 〈i, E i(0, ci〉b. By

Lemma 384, 〈i, E i(0, ci〉b 7−→mek v0. Hence 〈i, E i(0, ci〉f 7−→∗mek v0.

Lemma 386. If . E i(0[ci
1] 7−→∗ v0

2, then 〈i, E i(0, ci
1〉f 7−→∗mek v0

2.
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Proof. Suppose . E i(0[ci
1] 7−→(n) v0

2. We proceed by induction on n.

Case 1. When n = 0, v0
2 = E i(0[ci

1]. By Lemma 385, 〈i, E i(0, ci
1〉f 7−→∗mek v0

2.

Case 2. Let E i(0[ci
1]. 7−→E j(0

1 [c j
2]. 7−→(n) v0

2, where E i(0[ci
1] =E j(0

1 [c j
11] and VAR(E i(0[ci

1])` c j
11 R j c j

2.

By Lemma 383, 〈i, E i(0, ci
1〉f 7−→∗mek 〈 j, E j(0

1 , c j
2〉f. Given E j(0

1 [c j
2]. 7−→(n) v0

2, by the induc-

tion hypothesis, 〈 j, E j(0
1 , c j

2〉f 7−→∗mek v0
2. Hence we have 〈i, E i(0, ci

1〉f 7−→∗mek v0
2.

Theorem 387 (Soundness of MEK Machine w.r.t. Reduction Semantics of Environmental MetaML). For

any t0
1 ∈ PRGMMetaML, if . Gt0

1 , (ρ
VAR(t0

1 )
init ;ε)H 7−→∗ v0

2, then 〈0, �0(0, Gt0
1 , (ρ

VAR(t0
1 )

init ;ε)H〉f 7−→∗mek v0
2.

Proof. Suppose .�0(0[Gt0
1 , (ρ

VAR(t0
1 )

init ;ε)H] 7−→∗ v0
2, by Lemma 386, 〈0, �0(0, Gt0

1 , (ρ
VAR(t0

1 )
init ;ε)H〉f 7−→∗mek

v0
2.

Any machine configuration in the MEK machine can be translated to its corresponding representation

as a configuration at level 0 in Environmental MetaML.

Definition 388 (Translator). Define the translator Tmek→env to be a total function from the set of machine

configurations CFG to the set of level 0 configurations CONF0.

Tmek→env : CFG→ CONF0

Tmek→env(〈i, E i(0, ci〉f) = E i(0[ci]

Tmek→env(〈i, E i(0, vi〉b) = E i(0[vi]

Tmek→env(〈i, E i(0, ci〉r) = E i(0[ci]

Tmek→env(v0) = v0

Lemma 389. If C1 7−→mek C2, then . Tmek→env(C1) 7−→0∗ Tmek→env(C2).

Proof. We proceed by cases on C1 7−→mek C2.

Case 1. Reduce rules: Let C1 = 〈i, E i(0, ci
1〉r and C2 = 〈i, E i(0, ci

2〉f. Then . E i(0[c1] 7−→ E i(0[c2]

where VAR(C1) ` ci
1 R i ci

2. Hence . Tmek→env(C1) 7−→0 Tmek→env(C2).

Case 2. Focus rules: Let C1 = 〈i, E i(0, ci
1〉f and C2 = 〈i, E i(0, ci

2〉?. Then E i(0[c1] = E i(0[c2]. Hence

. Tmek→env(C1) 7−→0∗ Tmek→env(C2).

Case 3. Build rules:

Case i. (b-value-0). Let C1 = 〈0, �, v0〉b and C2 = v0. Then�[v0] = v0. Hence .Tmek→env(C1) 7−→0∗

Tmek→env(C2).

Case ii. (other rules). Let C1 = 〈i, E i(0, ci
1〉b and C2 = 〈i, E i(0, ci

2〉?. Then E i(0[c1] =

E i(0[c2]. Hence . Tmek→env(C1) 7−→0∗ Tmek→env(C2).
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Lemma 390. If C1 7−→∗mek C2, then . Tmek→env(C1) 7−→0∗ Tmek→env(C2).

Proof. Suppose C1 7−→(n)
mek C2. We proceed by induction on n.

Case 1. When n = 0, C1 = C2. Then Tmek→env(C1) = Tmek→env(C2). We have . Tmek→env(C1) 7−→0∗

Tmek→env(C2) immediately.

Case 2. Let C1 7−→mek C3 7−→(n)
mek C2.

Given C1 7−→mek C3, by Lemma 389, . Tmek→env(C1) 7−→0∗ Tmek→env(C2).

Given C3 7−→(n)
mek C2, by the induction hypothesis, . Tmek→env(C3) 7−→0∗ Tmek→env(C2).

Hence . Tmek→env(C1) 7−→0∗ Tmek→env(C2).

Theorem 391 (Completeness of MEK Machine w.r.t. Reduction Semantics of Environmental MetaML).
For any t0

1 ∈ PRGMMetaML, if 〈0, �, Gt0
1 , (ρ

VAR(t0
1 )

init ;ε)H〉f 7−→∗mek v0
2, then . Gt0

1 , (ρ
VAR(t0

1 )
init ;ε)H 7−→∗ v0

2.

Proof. If 〈0, �, Gt0
1 , (ρ

VAR(t0
1 )

init ;ε)H〉f 7−→∗mek v0
2, by Lemma 390, .Tmek→env(〈0, �, Gt0

1 , (ρ
VAR(t0

1 )
init ;ε)H〉f) 7−→∗

Tmek→env(v0
2). We have . Gt0

1 , (ρ
VAR(t0

1 )
init ;ε)H 7−→0∗ v0

2.

Theorem 392 (Kleene Equality of Evaluators). For any t ∈ PRGMMetaML, evalMetaML:EnvRed(t) is Kleene

equal to evalMetaML:MEK(t).

Proof. We first show if evalMetaML:EnvRed(t) = a where a ∈ ANSMetaML, then evalMetaML:MEK(t) = a.

Case 1. If evalMetaML:EnvRed(t) = function, then . Gt, (ρVAR(t)
init ;ε)H 7−→∗ Iλx.t ′

0
, ρ∗J.

By Theorem 387, 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek Iλx.t ′

0
, ρ∗J. We have evalMetaML:SubAbs(t)=

function.

Case 2. If evalMetaML:EnvRed(t) = code, then . Gt, (ρVAR(t)
init ;ε)H 7−→∗ 〈v1〉.

By Theorem 387, 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek 〈v1〉. We have evalMetaML:MEK(t) = code.

Case 3. If evalMetaML:EnvRed(t) = n, then . Gt, (ρVAR(t)
init ;ε)H 7−→∗ n.

By Theorem 387, 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek n. We have evalMetaML:MEK(t) = n.

We then show if evalMetaML:MEK(t) = a where a ∈ ANSMetaML, then evalMetaML:EnvRed(t) = a.

Case 1. If evalMetaML:MEK(t) = function, then 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek Iλx.t ′

0
, ρ∗J.

By Theorem 387, .Gt, (ρVAR(t)
init ;ε)H 7−→∗Iλx.t ′

0
, ρ∗J. We have evalMetaML:EnvRed(t)= function.

Case 2. If evalMetaML:MEK(t) = code, then 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek 〈v1〉.

By Theorem 391, . Gt, (ρVAR(t)
init ;ε)H 7−→∗ 〈v1〉. We have evalMetaML:EnvRed(t) = code.

Case 3. If evalMetaML:MEK(t) = n, then 〈0, �, Gt, (ρVAR(t)
init ;ε)H〉f 7−→∗mek n.

By Theorem 391, . Gt, (ρVAR(t)
init ;ε)H 7−→∗ n. We have evalMetaML:EnvRed(t) = n.

We observe that evalMetaML:EnvRed(t) is undefined if and only if evalMetaML:MEK(t) is undefined. Therefore,

evalMetaML:EnvRed(t) is Kleene equal to evalMetaML:MEK(t).
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