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Abstract A graph-based approach to document classification is deestin this
paper. The graph representation offers the advantage #ibivws for a much more
expressive document encoding than the more standard bagrdighrases ap-
proach, and consequently gives an improved classificationracy. Document sets
are represented as graph sets to which a weighted graphgnailgiorithm is applied
to extract frequent subgraphs, which are then further psekto produce feature
vectors (one per document) for classification. Weightedysaytth mining is used
to ensure classification effectiveness and computatidifialemcy; only the most
significant subgraphs are extracted. The approach is watldand evaluated using
several popular classification algorithms together witea world textual data set.
The results demonstrate that the approach can outperfastmepext classification
algorithms on some dataset. When the size of dataset indrdastner processing
on extracted frequent features is essential.
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1 Introduction

The most common document formalisation for text classificas thevector space
model founded on the bag of words/phrases representattm.nfain advantage
of the vector space model is that it can readily be employedlassification al-
gorithms. However, the bag of words/phrases representaisuited to capturing
only word/phrase frequency; structural and semantic médion is ignored. It has
been established that structural information plays an inaporole in classification
accuracy [14].

An alternative to the bag of words/phrases representaiargraph based repre-
sentation, which intuitively possesses much more expreggwer. However, this
representation introduces an additional level of compjarithat the calculation of
the similarity between two graphs is significantly more comagionally expensive
than between two vectors (see for example [16]). Some weskf@ example [12])
has been done on hybrid representations to capture botttstalelements (us-
ing the graph model) and significant features using the ventalel. However the
computational resources required to process this hybridefrare still extensive.

The computational complexity of the graph representatioriext mining is the
main disadvantage of the approach, which prevents thexplbéation of the ex-
pressive power that the graph representation possessesvdrk described in this
paper seeks to address this issue by applying weighted gnaphg analysis to the
problem. The intuition behind the approach is that in stashdiglequent subgraph
mining all generated subgraphs are assumed to have equattanpe. However it
is clear that, at least in the context of text mining, somegsajphs are more signifi-
cant than others.

The rest of this paper is organized as follows. In Section 2ief bverview of
previous work is presented. The graph representation afrdent sets is then dis-
cussed in Section 3. In Section 4 the weighted subgraph misimefined. The
proposed Weighted graph mining algorithm, a variation gbayScalled Weighted
gSpan (W-gSpan), is introduced in Section 5. A set of evalgagxperiments are
then presented in Section 6, followed by some concludingarksnin Section 7.

2 Related Work

Much early work on document graph representations for tessdication was di-
rected at Web documents. Geibel et al. in [7] demonstratatliths possible to
classify Web documents using document structure aloneetermwe shall demon-
strate that a much more powerful approach is to combinetstievith linguistic

and semantic information. For example Schenker [16] pregp@snumber of meth-
ods to represent Web documents as graphs so as to includeuttesal information

of the Web documents. The typical approach is to conducsifieation using some
similarity-based algorithm. However, approaches thatateeusing graph similar-
ity measures are computationally expensive (for exampigpeding the “maximum
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common subgraph” between two graphs is a NP hard problenHgbrid represen-

tations have been introduced to resolve the computatioreathead associated with
pure graph representations, see for example [12]. Suchchgdgpresentations are
reported to have better performance than pure graph basembdse However the
computational resources required to process these hylwithare still very high

due to: (i) the extremely high number of nodes and edges, lonber of edge labels
and high repetition of structural node labels, encountesed (ii) the consequent
exponential complexity of the search space.

The use of graphs for representing text has a very long kigtoNatural Lan-
guage Processing (NLP). However the work in NLP has focuseldmguage un-
derstanding techniques such as Part Of Speech (POS) tagafingr than text clas-
sification. Previous work [13, 20] has looked at the coll@rabf terms and their
frequencies as graphs, rather than the linguistic straatithe sentence. One other
study [6] has represented linguistic information as wellvasd order in a graph for
text classification, however the work was limited to very #rexts of between 8
to 13 tokens such as the titles of works. As such, we adoptghgeuof of linguis-
tic information, structure and semantics in a graph for tassification at a full
text scale. In order to achieve this scale of processingjskeeof frequent subgraph
mining is essential.

Frequent subgraph (and sub-tree) mining, using variousaphes, has been ex-
tensively studied [9, 10, 22, 8, 2]. However, the main batlek is the number of
unnecessary candidate frequent subgraphs generatedstastiédl amount of work
has been undertaken focusing on developing efficient grdpmgialgorithms us-
ing elegant search strategies, data structures or theibications. Some authors
have suggested the use of constraint based frequent shbgrajng to remove un-
wanted patterns. The weighted subgraph mining approaobcatid in this paper
integrates the weight constraints into the frequent suyddgraining process to re-
duce the search space by generating only the most significéertesting) patterns.

The frequent subgraph mining approach described in thismagplso influenced
by work on weighted pattern mining, especially Weightedad®sation Rules Mining
(WARM), see for example the work of [19, 17, 23, 24, 25]. A sfgpant issue in
WARM is that the “Downward Closure” (DC) property of itemgseon which many
ARM algorithms are based, no longer holds. One solutiondgk@mple [19]) is to
handle the weights as a post-processing step after mirengént itemsets, however
the weights are then not integrated into the ARM processeTab [17] proposed a
model of weighted support, which satisfies a weighted DC gtypYun et al. [23,
24, 25] introduced a series of concepts such as “weight fahgeight confidence”,
and “support confidence” for WARM in order to maintain the D@perty and push
the weight constraint deeply into the mining process. Altitothe ideas espoused
by WARM cannot be directly applied to weighted frequent sap mining; the
research described here is, at least in part, influencedi®pdlly of work.



Chuntao Jiang, Frans Coenen, Robert Sanderson, and Michele Zi

3 Graph Representation of Text Data

The graph representation advocated in this paper is deskciibthis section. The
representation serves to capture a range documents agpeetsd stem, (ii) word
Part Of Speech (POS), (iii) word order, (iv) word hypernyiw sentence structure,
(vi) sentence division and (vii) sentence order. There atg flifferent types of
nodes in the graph representation:

1. Structural Nodes that represent sentences (S) and their internatstes of
noun (NP), verb (VP) and prepositional phrases (PP). (Repted by triangles
in Figure 1.)

2. Part of SpeechNodes that represent the POS of a word, (eg. DT, JJ, NN} (Cir
cles.)

3. Token Nodes that represent the actual word tokens in the texttéiRgles.)

4. SemanticNodes that represent additional information about thedvgoich as its
linguistic stem and other broader concepts. (Ovals)

Note that each node has a unique identifier and a label. Ther@so five types of
edge in the graph:

1. hasChild Edges which record the structure of the text such as a senteav-
ing a noun phrase and a verb phrase or a noun phrase contaimiadjective.
(Unlabeled in Figure 1 for reasons of space.)

. isToken Edges which link the part of speech of a token to the tokesifits

. next Edges which record the order of the words and sentences iexih

. stem Edges which link to the linguistic stem of the word.

. hyp Edges which link to a broader concept.

abhwN

An example of these node and edge types is depicted in Figusarig the first 6
words in a well known English sentence. Employing the aboaplyrepresentation
each sentence in each text is encoded and linked togethetneitt” edges to form
one graph per text. Content based weightings were therhatld¢o each node in the
graph. The Structural elements, being intuitively unintgot to classification, were
given a static low weight of 1. The Part of Speech nodes wemngi static weight
of 10, Token nodes were weighted according to their frequéenthe dataset using
the TF - IDF method. Stems were half the value of the Token and Hypernyras o
quarter the value.

4 Weighted Frequent Subgraphs

In this section the weighted subgraph mining problem is fdlyndefined. As with
standard transaction graph mining approaches [9, 10, lw&ldommence with a
set oftransaction graphs B= {Gy1, Gy, --,Gn} and a functiorr (g, G) for arbitrary
graphsg andG. 1(g,G) = 1 (resp. 0), ifg is isomorphic to a subgraph .
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Fig. 1 Graph-based Text Representation Example

Definition 1. The support count of a graph (patteignwith respect to a database
D = {G1,Gy,---,Gn}, is the expressioscqg) = ¥ =11(g,Gi). The support ofy
with respect toD, sup(Q), is the ratio of the support count over the size of the
dataseD. Then:

scdg)
Tho @

It should be remarked thatqg) andsup(g), like most terms defined in this section
depend on the datadet To avoid cluttering notations, such dependence will akvay
be left implicit.

sup(g) =

Definition 2. Given a graply, if supg) is greater than or equal to some user defined
minimum threshold, theng is said to be frequent (iD). The frequent subgraph
mining problem is to find all the frequent subgraphs in thedaseD.

Since the purpose of this paper is to study weighted grapmmin the remain-
der of this section we define this concept precisely. From aowe assume that
graphs come with weights associated with either their eestor their edges. L&Y
be a function assigning a weight to any graph terms of the given weights for
its vertices (resp. edges). In our work, in particulerwill always be a sum of the
vertex (resp. edge) weights, but the definitions in thisiSadtold in a more general
setting.

Definition 3. Given a graply with the weightW(g), the weighted support @fwith
respect td, wsugg), is:
Wsu(g) =W(g) x SUKg). )

Definition 4. A graphg is said to be weighted frequent if and only if its weighted
support is greater than or equal to a given minimum suppeestiold (minwsup),
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wsugg) > minwsup 3
From (1), (2) and (3), a graphis weighted frequent if its support count satisfies:

minwsupx n
W(g)
Note thatscq(g) is always an integer. Hence we may define

scag) = (4)

sboundg) = {Wﬂ (5)
and we have
scdg) > sboundg). (6)

5 Weighted gSpan

The operation of the proposed weighted subgraph miningrigthgo (W-gSpan) is

described in this section. The section commences (SuBeegtl) with a discus-

sion of support-bound candidate subgraph pruning. Thiglievied in Sub-section
5.2 by a description of a number of different weighting metsias that are used
in this study. Sub-section 5.3 then gives the pseudo codeuoimm algorithm and

briefly decribes how W-gSpan is integrated into the clasgific process;

5.1 Support Bound based Pruning

Use of the DC property in any frequent set mining algorithm geeatly reduce the
search space. However, in the context of weighted frequmbiging the DC prop-
erty no longer holds. The W-gSpan algorithm therefore makes of an alternative
concept to prune non-interesting candidate subgraphs@aih the generation pro-
cess.

Let the maximum possible size of a subgraphntdleand the weight for a sub-
graph be defined as the sum of vertex weights (similar defitétmay be given if
the graph is edge-weighted). Giverkgatterngy with weights{cw, wp,--, ax},
any futuren-pattern containingy is denoted byg,, wherek < n < mL For the
additional @ — K) verticies, if the upper bounds of the weights are estimated
Way, 1, Way,,s "+, Way, then the upper bound of the weight of tgatterng, is given
by:

k n

wboung(gk) = Zlaﬁ— Z Wy (7)
= i-%1
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We may then define a lower bound of the support countlefattern included
in gn as

(8)

sbound|(gk) = [WW

of course the definition can be extended te k by settingsboung (gx) = sboundgy)
as defined in (5).

Definition 5. A k-subgraplyy is workableif scqgk) > sbound, (gk) for somen with
k < n <mL, andunworkableif scagx) < sbound(gx) for all n, with k <n <mL

Lemma 1. If a subgraph g is workable then it is possible fodo be a subgraph
of some weighted frequent n-subgraph. On the contrary, ifilageaph g is not
workable, then ghas no possibility of being a subgraph of any weighted fratjue
n-subgraph.

Proof. Let n be given withk < n < mL If scqgk) > sbound(gk), then due to
scagk) > scdgn), it is possible thascdgn) > sboundg,). So patterng, has a
chance to be weighted frequent in the future.

On the other hand, ifcdgk) < sbound(gk), then due tascqgk) > scdgn),
scdgn) < sboundgn). So patterrg, will not be weighted frequent in the future.

The Weighted gSpan algorithm will then use a simple conditio decide
whether or not to prune a particulipattern (in what followsnL is the maximum
length of a pattern):

if scagk) > sboundgy), gk is workable; otherwise we compusdound, (gk) (this gives
a lower bound orsbound| (gk)), if scagk) > sboundg, (g«), thengy is workable, elsey is
unworkable and pruned.

5.2 Weight Calculation

Given the notion of a weighted bound of a subgraph, as definedea methods for
calculating the weighting for a given subgraph are requivée can identify three
approaches for determining subgraph weightingsst(i)cture based (ii) content
basedand (iii) structure and contentbased. The distinction between the two is that
the structure base weighting approach does not requireduanaed knowledge of
the potential significance of subgraphs. Each approacts@ugsed in more detalil
below.

5.2.1 Structure Based Weight Calculation

In the structure base weighting approach weightings aretepurely from the
“structure” of subgraphs. The approach advocated heresischan the frequency
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counts of individual nodes and edges per graph in the graplJseng these fre-
quency counts we adopt Pearson’s Correlation Coefficies]t RCC, to measure
the weight of the edge (considering the nodes making up ay&-edbgraph as two
variables).Thus for two nodes and B, let the number of occurrences Afequal
@, the number of occurrences Bfequalgs and the number of co-occurrences of
A andB equalgng; and let the total number of transaction graphs within thieskt
be equal tan. The support values will then I A) = @a/n, supB) = @/n, and
sup(A, B) = gng/n. Using PCC the edge weighbfcc) can be derived as follows.

B supA,B) —supA)supB)
~ \/sup(A)sup(B)(1—sugA))(1—supB))
Many other measures of association exist, such as the Clar&ducosine or

Jaccard measure, that could equally well be used to deteratige weighting in a
structured based context.

Wpce %)

5.2.2 Content based Weight Calculation

In the content based weighting approach advanced knowlefdde nature of the
input set is utilised. The nature of the advanced knowledgetake two forms: (i)
weights that have been predefined (by for example a domaiergxpr (ii) class
labels associated with individual graph records (docus)ent

In the first case user supplied weightings can be attachedtljito either nodes
or edges. Thus given a set of user defined node weights wy, the weighting for
a subgraph can be calculated Py 4w . A similar calculation can be used in the
event of user supplied edge weights. We later refer to thishaugism as the “Node
Weight” method.

Alternatively we can calculate edge weights, given usemeéefinode weights,
as follows: if the nodes connecting edgeare a with weight w, andb with w;
the probability ofa’s occurrences ip,, the probability ofo’s occurrences ipy and
the probability of edge’s occurrences ip(a,b). The mutual information metric
betweera andb can then be defined asu(a, b) = p(a,b)log,(p(a,b)/pa/pv). The
weight for edges can then be calculated as:

2 X Wq X W
===~ b 10
(Zrrt) xmuab) (10

The weight for the subgraph is calculated in the same marsieefare. We refer to
this mechanism as the “Mu” method.

Alternatively knowledge of the class label can be used terd@ne the weight-
ing of a given subgraph. There are a numbefieature selectiotechniques that can
be utilised for this purpose, examples include Informatgain (IG), mutual infor-
mation(MI), andy? testing. For the work described here jrestatistic was adopted
to apply weightings to subgraphs according to their astiooiavith a given class
label. Using the two-way contingency table of an eégend a graph’s class label
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Ye, leta denote the number of timesandy, co-occurb denote the number of times
thee occurs withouty, ¢ denote the number of timgg occurs withouk, d denote
the number of times neithemory, occurs, andh is the total number of transaction
graphs. The edge-goodness measure is then defined to be:

n(ad—cb)
a+c)(b+d)(a+b)(c+d)

The x? statistic has a value of zero if edgand clasg are indepedent. For each
classy., we compute they? statistic between each edge and that category, and then
calculated the average value pf statistic for each edge. Let= {c1,Cp,---,Cm}
denote the set of categories for the transaction graphsetala(y:) denotes the
probability ofyc, then:

x2(eye) = ( (11)

Xa%vg(e) = Zl P (Ye)X?(eYe) (12)

After estimating edge weights for each generated subgtaghactual signifi-
cance of the subgraph is calculated in the same manner azb#fe refer to this
mechanism as the “Chi Squared” method.

5.2.3 Combined Content and Structure Based Weight Calcul&n

It is possible to combine the two approaches, content andtstie based weight
calculation. For example given a user defined weight for ngds wi,, then the
probability of ni's occurrences i, and the entropy for node, is entropy(n;) =
—plog(p) — (1—p)log(1—p). If we also make use of the “degree” (the number of
edges incident to the node) nfthe weight fom; can be calculated as:

wn, = Wy, X entropy(n;) x degre€n;) (13)

Thus, we refer to this mechanism as the “Entropy” method.

5.3 The Weighted gSpan Algorithm (W-gSpan)

The above weighting considerations were built into a vemebf the well known
gSpan frequent subgraph mining algorithm [22], Weighteplag§W-gSpan). How-
ever, the proposed weighing framework can equally well baieg to other fre-
quent subgraph (or sub-tree) mining algorithms. The pseode for the pruning
algorithm employed in W-gSpan is given in Algorithm 1.

After the W-gSpan algorithm is applied to identify weighfeequent subgraphs,
these subgraphs are then used to generate a set of binamnefeattors(one per
document). A standard classifier generator can then be geblesing such vectors.
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Algorithm 1 subgraph-minindéS s, ¢, F)
Require: Input:c = DFS codeGS= graph database,= support;
Ensure: Output:F = weighted frequent subgraph set;
1: G < aset of candidate subgraphs;
2: if c# min(c) then
3 return
4: end if
5: Insertcinto F;
6
7
8
9

G 0;
. ScanGSonce, and find every edggthatc can be right-most extended, and sauee into G;
. SortG in DF Slexicographic order;
. forall gx € Gdo
10:  if scqgk) > sboundgy) then
11: subgraph-minin@S s, ¢, F);
12:  elseifscagk) > min(sboung,(gk)),wheregk C gn then
13: subgraph-minin@S s, ¢, F);
14:  else
15: G—G—{ok};
16:  endif
17: end for
18: return

6 Experiments and Results

In order to evaluate the performance of the proposed grapédhi@xt classification
method experiments were conducted to:

e Investigate the performance of W-gSpan, in terms of exenuime and number
of frequent subgraphs detected.

e Investigate the overall performance of the graph basediéitzetion process for
text classification.

Note that the experiments were all run on a 1.86GHZ Intel CoRC with 2GB
main memory.

6.1 Description of Text Data Set

The experimental data consisted of three sets of docuniEht§f2, and D3) split
evenly between two classes. The documents were extracbed the Medline
dataset by their Medical Subject Heading (MeSH) fields, abahwo class (“poly-
merase chain reaction” and “magnetic resonance imagireg'\vas produced. The
text was divided into sentences using a regular expressiseditokenizer and then
each sentence was POS tagged using Tsuruoaka and Tsugiimtggger’[18], pro-
ducing a sequence of “word/POS” tokens plus the lemma (sehform) of each
word. This tagged output was then fed into a structural paveech produces a tree
with noun, verb and prepositional phrases. The nouns arub\ae then “looked
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up” in the WordNet thesaurus and up to five broader terms addedhe graph.
The properties of the (graph) data are given in Table 1.

Table 1 Graph Data Description

Text Dataset
[DI D2 D3

No. of graphs 200 400 1000
Maximal edge count |3002 2917 4047
Average edge count {1141 1131 1135
Distinct node label count0069 16456 2654

o

6.2 Performance of W-gSpan

The performance of the W-gSpan algorithm was evaluatedad tiee four different
weighting methods introduced in Sub-section 5.2 above:

e Pearson Correlation Coefficieqggc- w) for structure based weighting.

e Node Weight fiode- w) for content based node weighting (Edge weighting
would operate in a similar maner)

e Mutual information (ru- w) for content based edge weighting.

e Chi Square¢hs- w) for content based class label discrimination weighting.

e Node entropyént r o- w) for combined structure and content based node weight-

ing.

Experiments were also conducted with no weighting, butwas found to be ex-
tremely inefficient with poor outcomes, and thus are notudised further in this
evaluation.

The results of the performance experiments are presentéiduime 2. The run-
time values corresponding to different minimum supporshiolds are presented in
Figure 2(a). The number of identified frequent subgraphsffes), corresponding
to a range of minimum support thresholds, is presented €ig(s) and (c). There
is, naturally, a correlation between support threshold thechumber of identified
subgraphs: as the support threshold is increased, the marhidentified subgraphs
decreases. There is also a natural correlation betweeimeuaind the number of
identified frequent subgraphs: runtime increases with tivabver of identified fre-
quent subgraphs. From Figure 2(a) it can be observed that dlighting and node
weighting seem to work well in terms of run time efficincy, rewer node weight-
ing finds very few frequent subgraphs. The pcc weighting ésrttost effective in
terms of computational efficiency, and works well in termahafmber of features
generated. Entropy weighting suddenly increases thementihen the threshold is
below 10%.
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(a) Runtime of weighted subgraph mining algorithms (b) Output of weigted subgraph mining algorithms
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Fig. 2 Performance of weighted frequent subgraph mining on D1 dataset

6.3 Classification Accuracy Comparison

Three different classifier generator paradigms were usedoiate the graph-based
text classification process: (i) a classification assammatille miner, TFPC [3, 4], (ii)
a Naive Bayes Classifier (NBC) [21], and (iii) a decision totessifier, C4.5 [21].
Table 2 shows the accuracy figures obtained using a ranggpbstthreshold val-
ues (for the generation of frequent subgraphs), for thestbliassification paradigms
(with 10 folds cross validation) and using the five differeveighting strategies.
Experiments conducted with no weightings at all (on D1, D& B3 datasets) pro-
duced very poor results indicating, beyond doubt, that tbpgsed weighted graph
mining approach provides genuine benefits.

Using no weighting on D1 dataset, it was not possible to abtesults with a
support threshold below 85%. When comparing the differenghtag schemes,
pcc produced the best overall accuracy. Using a standagdobevords’ approach
with TFPC gave a best accuracy of 89%.

If the three classifier generators are compared, NBC pedasignificantly better
than the other two, however C4.5 did not work well with anyref permutations of
weighting and support threshold. If the three classifieesagaplied on D2 and D3,
the classification performance degrades. For exampleg BBCTC weighting with
support 10%, the accuracy of NBC on D2 is 76.5% and the acgwfadBC on D3
is 72.3%. In order to get better accuracies, further pracgsm extracted frequent
features is indispensable and how to model text data as nffisiest graphs with
less nodes and edges is also crucial.
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Table 2 Classification accuracy by different weighting methods on Dthskt

Support Threshold(%)
15 16 17 18 19 20 21 22 23 24 2%

pcc-weight [96.596 94595 94 93 92 93 915915915
chs-weight [91.591.589 87.586.586.590 91 90592 91
NBC mu-weight |97 96594594 94 93 92 93 91592 915
entro-weight76.575 95 95 94 92592 92592 93 925
node-weight80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5[80.5

pcc-weight [91.5 91 88.589.586.584.583584 84 84 84
chs-weight |{90.5 90 87.5 88.5 85.583.582583 83583 83
TFPC |mu-weight |92 91589 90 87 85 84 84584584 84
entro-weighf92 91589 90 87 85 84 84584584 84
node-weight54 54 54 54 54 54 54 80.580.580.580.5

pcc-weight [88.588 89.589 91 86.586.586.587 89 §8.5
chs-weight |[87.5 87 89.589 91 86 86.586.587.589.589.5
C4.5 mu-weight [88.588 89589 91 87 87 87 87 89 8B5
entro-weight88.5 88 89589 91 87 87 87 87 89 8B5
node-weight80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5[80.5

ClassifierMethod

7 Conclusion

An approach to text classification using a graph based reptatson has been de-
scribed. The graph representation of text allows both thecttre and content of
documents to be represented. Key constructs to supportleesdification can then
be identified using frequent subgraph mining. The disadgmof standard frequent
subgraph mining is that it is computationally expensivehtextent that any poten-
tial advantage of the graph representation of text cannoéakésed. To overcome
this disadvantage a weighted subgraph mining mechanisropeped, W-gSpan. In
effect W-gSpan selects the most significant constructs fhengraph representation
and uses these constructs as input for classification. Enpetal evaluation demon-
strates that the technique works well, significantly outtqrening the unweighted
approach in every case. A number of different weighting swe were consid-
ered coupled with three different categories of classiferegator. In terms of the
generated classification accuracy pcc-weighting outperdd the other proposed
weighting mechanisms. PCC-weighting also worked well im&of computational
efficiency and therefore represents the best overall wieig/strategies.
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