
From Source Code to Runtime Behaviour:
Software Metrics Help to Select
the Computer Architecture.

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

Abstract The decision which hardware platform to use for a certain application is
an important problem in computer architecture. This paper reports on a study where
a data-mining approach is used for this decision. It relies purely on source-code
characteristics, to avoid potentially expensive program executions. One challenge
in this context is that one cannot infer how often functions that are part of the appli-
cation are typically executed. The main insight of this study is twofold: (a) Source-
code characteristics are sufficient nevertheless. (b) Linking individual functions with
the runtime behaviour of the program as a whole yields good predictions. In other
words, while individual data objects from the training set may be quite inaccurate,
the resulting model is not.

1 Introduction

The question which computer architecture is best suited for a certain application is
of outstanding importance in the computer industry. With the continuous refining
of computer architectures, this problem becomes even more challenging. Think of
the high degree and various forms of parallelism (multicores), heterogeneity due
to application-specific accelerators, interconnection technology on the chip, or the
memory hierarchy. The design space is huge and leads to a broad variety of proces-
sor architectures. It is not at all obvious which architecture is best suited for a spe-
cific application. For example, due to the branch-prediction unit, an application with
predictable branches benefits from a long pipeline, while a shorter pipeline is bet-

Frank Eichinger, Klemens Böhm
Institute for Program Structures and Data Organisation (IPD)
Universität Karlsruhe (TH), Germany, e-mail: {eichinger,boehm}@ipd.uka.de

David Kramer, Wolfgang Karl
Institute for Computer Science and Engineering (ITEC)
Universität Karlsruhe (TH), Germany, e-mail: {kramer,karl}@ira.uka.de

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

ter for unpredictable branch behaviour. The question which architecture yields the
best performance is particularly important for high-performance computing where
an expensive system is purchased for a few or even only one application.

Traditional approaches use experimental executions, simulations or analytical
models to identify the best computer architecture for a given application. For in-
stance, when a computing centre plans to procure a new cluster for a specific ap-
plication, one way to do so is to compare the runtime behaviour of this application
on different platforms. This obviously is time-consuming and expensive, and the
platforms in question must be available in the first place. Similar arguments apply
to state-of-the-art simulation approaches: In-depth simulation is time-consuming, in
particular with machine models that are sophisticated. Finally, due to the increasing
complexity of computer systems, establishing analytical models of the computer
architectures in question is extremely hard. This may lead to a relatively poor re-
liability of these models, compared to experimental executions and simulations. In
consequence, techniques are sought which help to decide between several platforms
for a specific application. Ideally, such techniques should not require any execution
or simulation and should be based on an analysis of the application in question.
Some approaches exist which can make a decision between several platforms [5, 8].
They rely on the assumption that similar programs perform alike when executed
on the same machine. However, in addition to measures deduced from the source
code, these approaches make use of runtime-related characteristics, such as branch
probabilities or instruction counts. To generate these characteristics, simulations or
program runs on real hardware are necessary.

This article reports on the results of a study that investigates another method
to determine the best computer architecture for a given application. The method
likewise assumes that similar applications have similar execution behaviour. But in
contrast to the previous work, we have consciously decided not to take any runtime-
related information of the application in question into account. In this current study
we characterise the application entirely by means of measures gained from the
source code. In other words, we hypothesise that there is a strong correlation be-
tween program properties encoded in the source code and the execution behaviour,
and that this correlation can be exploited. This hypothesis may appear to be unset-
tling – taking only source-code characteristics into account obviously is much less
informative than runtime behaviour! In particular, it is difficult to impossible to infer
how often a certain function is typically executed. Another issue is that source-code
metrics, i.e., existing measures that quantify characteristics of the source code, typ-
ically are defined on the function level rather than on the level of entire programs,
while we are interested in predictions for programs as a whole. Having said this,
the method examined here is a data-mining approach with the following distinctive
feature: It links individual functions with the runtime behaviour of the program as
a whole. Even though this approach clearly is simplistic, i.e., the characterisation
of individual functions may be very inaccurate, it yields a prediction accuracy for
entire programs which is surprisingly high. In retrospect, our explanation is as fol-
lows: Since applications typically consist of a large number of functions, there is a
lot of training data which, on average, compensates for that simplification. I.e., we

From Source Code to Runtime Behaviour

provide evidence that source-code characteristics alone are indeed helpful to predict
a good computer architecture. More specifically, our contributions are as follows:

Software Metrics. The software-engineering community has proposed a number
of software metrics in order to represent source-code characteristics and properties.
Originally, these metrics have been cast as quality measures rather than as perfor-
mance indicators. Preliminary investigations of ours have revealed that measures
based on the control flow of functions are particularly promising to predict runtime
behaviour. Consequently, we define and derive a number of metrics, such as graph
invariants, based on the control-flow graphs (CFGs) [1] of the functions. We use
these metrics in addition to more common ones.

Classification Framework. We propose a classification setting for our specific
context and evaluate it. This setting is not obvious: While most metrics are avail-
able at the function level, we want to choose the best architecture for a program as
a whole. Instead of potentially lossy aggregation approaches, we propose a frame-
work where we first learn at the function level before deploying classifier-fusion
techniques to come up with predictions at the program level.

Evaluation. Our case study features an evaluation using five systems from the
online database of the SPEC CPU 2000 and 2006 benchmark suites. The results are
that, for ‘relatively similar’ computer architectures to choose from, and with the run-
time behaviour of only few programs used as training data, our approach achieves
an average prediction accuracy of 78% when choosing between two systems.

Correlation of Software Metrics and Runtime Behaviour. Our main concern, from
a ‘research’ perspective, has been to confirm (and to exploit) the relationship be-
tween source-code properties and runtime behaviour, on different platforms. Besides
the fact that the approach investigated here does indeed yield a statement regarding
the computer architecture best suited, our evaluation shows that the correlation be-
tween source-code properties and runtime behaviour is remarkably strong.

Paper outline: Section 2 presents related work, Section 3 describes the process of
acquiring software metrics, before we describe the data-mining process in Section 4.
Section 5 presents our results, which are discussed in Section 6. Section 7 concludes.

2 Related Work

In the past, various approaches to predict the runtime or the runtime behaviour
of given applications have been proposed. Newer approaches propose the use of
machine-learning approaches for this prediction.

In [2, 16] the authors use multilayer neural networks to predict the performance
of the multigrid solver SMG 2000 on a BlueGene/L cluster. The parameter space
includes the cluster configuration as well as the size of the grid used. The training
set used consists of performance results on an actual platform using a collection
of random points from the parameter space. In contrast to our approach, these ap-
proaches can only be used to predict the performance of a parametrised application

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

on a cluster with different configurations. In addition, they require time-consuming
training-data generation.

Another possible use of neural networks is described in [6]. Here, İpek et al. use
neural networks to predict the performance of points in the design space. Neural
networks are used to approximate the design space and to create a model of it. The
model built predicts the performance of points with high accuracy and has been
applied to memory hierarchy and chip-multiprocessor design spaces.

To ease the generation of analytical models of complex high-performance sys-
tems, Kühnemann et al. have developed a compiler tool for automated runtime pre-
diction of parallel MPI programs [9]. The tool analyses the source code of MPI
programs to create an appropriate runtime-function model for the communication
overhead and for the computation. Properties of the underlying machine are needed
for proper prediction of the computation effort.

Another method for performance prediction is [8] from Joshi et al. They use in-
herent program characteristics to measure the similarity between programs. Instead
of using microarchitecture-dependent measures for characterisation, such as cycles
per instruction, cache-miss rate or runtimes, they use microarchitecture-independent
ones. These measures include the instruction mix, the size of the working set and
branch probabilities. To generate the measures, either simulation or execution of
the application is necessary. Based on [8], the authors exploit the similarity be-
tween programs for performance prediction of applications in the SPEC CPU 2000
benchmark suite [5]. They use microarchitecture-independent characteristics and
performance numbers from an application to build a so-called benchmark space.
To predict the performance of an application, the developer has to compute a point
in the benchmark space using the same characteristics. Comparing our approach to
[5] reveals that both approaches can predict the runtime-behaviour of an applica-
tion in question on given platforms and have advantages and disadvantages. [5] uses
runtime-related microarchitecture-independent characteristics in the prediction pro-
cess. The advantage is that predictions are likely to be more precise. A drawback is
that the execution of the application on an existing platform or a detailed simulation
is necessary. Saveedra and Smith [14] use a similar approach as proposed in [5],
but they use program and machine characteristics to estimate the performance of a
given Fortran program on an arbitrary machine. A drawback of all these approaches
is the usage of architecture-dependent characteristics which are time-consuming to
create. Our approach in turn does not require such characteristics.

Finally, [3] studies the same problem as this current paper, but with a different
approach based on graph mining and control-flow graphs. The technique described
here yields better results.

3 Software-Metric Data

In this study we try to predict the best-performing platform by means of standard
data-mining techniques. More precisely, we only use software characteristics de-

From Source Code to Runtime Behaviour

rived from the source code, but no runtime or platform-related information. In or-
der to use source-code metrics as input for data-mining algorithms, we describe
the software entities with feature vectors of software-metrics values. The software-
engineering community has been very active in defining metrics based on source
code [7]. These metrics are primarily used to quantify the quality and the maintain-
ability of applications and have not been intended to characterise runtime behaviour.
However, we deploy a number of these metrics as well as some metrics defined by
ourselves exactly to this end. Source-code metrics cover various aspects of soft-
ware, e.g., statements used, source-code quality, complexity and understandability.
We decided not to use any of the numerous metrics dealing with source-code size
and understandability, such as the various lines of code (LOC) measures or any
measure concerned with comments. These metrics strongly depend on the coding
scheme used and do not have any impact on the program complexity and therefore
on the runtime behaviour. Besides these measures, we do not exclude any other
metric a priori. This is because we are not aware of any previous experience in
predicting runtime behaviour based on source-code metrics. Even if some metrics
such as McCabe’s cyclomatic complexity [11] are debatable [15], we leave it to the
data-mining algorithm to decide which metrics are useful for our purpose.

CPU 2000 CPU 2006
177.mesa 176.gcc 255.vortex 400.perlbench 436.cactus-ADM 464.h264ref
179.art 181.mcf 256.bzip2 401.bzip2 445.gobmk 470.lbm
183.equake 186.crafty 300.twolf 403.gcc 454.calculix 481.wrf
188.ammp 197.parser 429.mcf 456.hmmer 482.sphinx3
164.gzip 253.perlbmk 433.milc 458.sjeng
175.vpr 254.gap 435.gromacs 462.lib-quantum

Table 1 SPEC benchmark programs used.

In order to derive source-code metrics from the benchmark programs, we employ
a standard tool from software engineering: RSM from M Squared Technologies
LLC. We derive the metrics and characteristics for every function in every program
from the SPEC CPU 2000 and 2006 benchmark suites. As these benchmarks have
been assembled with the intention to cover a broad variety of different domains, they
are a good basis for the classification of new programs. – The RSM tool does not
provide any metrics from Fortran source code. We therefore limit our experiments
to the C and C++ benchmark programs. Table 1 lists all 31 programs we use for our
experiments.

RSM delivers a huge variety of metrics, in particular counts, quality measures
and complexity measures.1 The ones we use for our purpose are listed in Table 2.
Counts refer to simple counts of statements and syntactical elements such as braces
and brackets. The quality measures refer to counts of certain kinds of program qual-
ity, which could also have an impact on execution behaviour. For example, one of

1 See the RSM documentation for details on specific metrics:
http://msquaredtechnologies.com/m2rsm/docs/rsm_metrics.htm

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

these counts is increased whenever a variable is assigned to a literal value. Finally,
the complexity measures describe the complexity of the function interface and the
cyclomatic complexity [11] of the underlying control-flow graph [1].

Counts memory free count notice 50 count freq sdev
abort count open brace count notice 50 percent freq sum
break count open bracket count notice 50 type loop depth max
case count open paren count notice 119 count loop depth mean
class count return count notice 119 percent loop depth sdev
close brace count switch count notice 119 type loop depth sum
close bracket count typedef count notice all count loops max
close paren count union count loops mean
const count while count Complexity Measures loops sdev
default count cyclomatic complexity loops sum
define count Quality Measures interface complexity nodes
do count notice 22 count interface params num pred max
else count notice 22 percent interface returns num pred mean
enum count notice 22 type total complexity num pred sdev
exit count notice 27 count num pred sum
for count notice 27 percent CFG Measures num succ max
goto count notice 27 type back edges max num succ mean
if count notice 28 count back edges mean num succ sdev
include count notice 28 percent back edges sdev num succ sum
inline function count notice 28 type back edges sum record count
literal strings count notice 44 count edges registers
macros count notice 44 percent freq max
memory alloc count notice 44 type freq mean

Table 2 Source code and control-flow-graph (CFG) measures used.

The set of metrics from RSM includes only a few measures regarding the struc-
ture and the complexity of the application. As observed in preliminary experiments,
measures based on the control flow of functions might be important when predicting
runtime behaviour. Therefore, we have decided to use more metrics than those pro-
vided by RSM and to derive measures from control-flow graphs [1]. Such graphs are
widely used in software engineering and are a common way of representing code
in compilers internally. Basic blocks of code without any jump statements are the
nodes, and the control dependencies between these blocks are the edges. We use the
front-end of the GNU Compiler Collection (gcc) to derive control-flow graphs of all
functions. From these graphs, we calculate some graph invariants, CFG Measures
(cf. Table 2), such as the number of nodes and edges of a control-flow graph, the
number of loops and the aggregated in- and out-degrees of the nodes of the graph.
We use these measures as further metrics generated purely from the source code.

The metrics used (cf. Table 2) are certainly not an exhaustive set of metrics de-
fined by the software-engineering community. For example, we do not take object-
oriented metrics for the C++ programs into account. (Most of our programs are C
programs.) However, our goal rather is to demonstrate and to make use of the cor-
relation of source-code properties and runtime behaviour and not to investigate the

From Source Code to Runtime Behaviour

usefulness of any metric possible. In Section 5 we will demonstrate that the metrics
used are well suited, and that the results are useful.

source code
of all functions

source code
metric extraction

control flow graph
metric extraction

merge
metrics

data
cleaning

metric vectors
for every function

Fig. 1 Metric-generation workflow.

Before actually using the data we do some data cleaning in order to ease the data-
mining process. We do this by eliminating measures containing null values in more
than 95% of all functions as well as measures displaying always the same value. We
deem these attributes irrelevant as they do not influence the quality predictions but
increase runtime. Figure 1 summarises the metric-generation process.

4 Data-Mining Process

A naı̈ve way to predict the runtime behaviour of a given program is to describe every
program using a set of metrics and to train a machine-learning algorithm on it. This
approach is not practical. One reason is that most source-code metrics are defined on
the function level rather than on the program level (cf. Section 3). The definition of
program-level metrics would certainly be possible, but would require new tools, and
– more important – such metrics would represent a very coarse view on the applica-
tion. As an example, a count of if-statements for an entire program would rather be
a statement on the total size of the program than on the complexity of its functions.
Another possibility would be aggregating function-level measures to the program
level. Such an approach, e.g., the arithmetic mean of counts of possibly thousands
of functions belonging to one program, would lead to imprecise predictions due to
the loss of potentially important fine-grained information. Another reason which op-
poses direct learning on program level is that suitable runtime information is usually
only available for a relatively small number of programs. Learning with such small
datasets typically is not feasible. This is because it is hard to generalise from tens
of programs in order to learn a hopefully universal prediction model. The limited
number of programs available is due to the huge costs of executing, say, hundreds
of programs on a number of different platforms. We for our part use 31 benchmark
programs (listed in Table 1) where the runtime information is available (cf. Sec-
tion 5). In the following we develop an approach which works well with a number
of programs of this magnitude. Note that we only make use of execution times (and
no further runtime-related measures) of the benchmark programs in our learning
dataset. To classify a program, no execution of the program is necessary – measures
are only derived from the source code.

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

To address the problems discussed when learning on the program level, we have
decided to perform machine learning on the function level. On the one side, this
approach is feasible since the software metrics are available at this level of detail.
On the other side, this approach leads to a new challenge: the labelling of the target
class, which is required for every tuple in the training set (i.e., for every function). As
we avoid executions or simulations in our scenario, we only know the target class at
the program level. We therefore resort to the following simplification: Each function
inherits the fastest platform from the program it is part of as its target class. Clearly,
this approach ignores the characteristics of the different functions. But nevertheless,
we hypothesise that it yields predictions of acceptable quality. The hope is that there
are not too many functions that are untypical for the performance of the program,
and a large number of functions in the training set will compensate those functions.

Program/Function Metric1 Metric2 · · · Metricn Platform
ProgramA/function1 3 7 · · · 34 System 5
ProgramA/function2 2 7 · · · 45 System 5

· · · · · · · · · · · · · · · System 5
ProgramA/function|A| 3 7 · · · 24 System 5
ProgramB/function1 3 4 · · · 42 System 2
ProgramB/function2 6 4 · · · 61 System 2

· · · · · · · · · · · · · · · System 2
ProgramB/function|B| 1 4 · · · 23 System 2

· · · · · · · · · · · · · · · · · ·
Table 3 Example learning dataset.

Table 3 is an example of the datasets used. The rows correspond to each func-
tion (functioni) of every benchmark program (ProgramA,ProgramB, ...). For our ex-
periments we use the benchmark programs listed in Table 1. The columns corre-
spond to the source-code metrics, which we compute for every function (Metric1,
..., Metricn). The column Platform contains the target class, which is the same for
all functions of a program. In the experiments we use all metrics enumerated in Ta-
ble 2. The example dataset in Table 3 contains System 2 and System 5 as examples
of two possible target platforms.

Using a dataset as in Table 3, we learn a prediction model to classify data without
class information (Platform). In other words, such a model can make predictions
for each function in isolation. To obtain a prediction for a program as a whole,
which consists of a number of functions, these predictions need to be integrated.
We for our part use the majority-vote technique, a standard scheme to combine
multiple classifications [10]. Experiments with other combination techniques such
as the usage of weights have lead to results which, on average, are not better than
majority vote in our specific context.

In summary, our prediction approach consists of two steps. In the first step we
learn a classification model (Figure 2). This is based on a training dataset as shown
in Table 3, consisting of source-code metrics at the function level (cf. Section 3) and
target systems derived from the execution times at the program level.

From Source Code to Runtime Behaviour

set of
benchmark
programs

derive metrics
for every function
in every program

apply same target class
to every function

of a program

learning on
function

level

classification
model

Fig. 2 Learning workflow.

In the second step we predict the platform best suited for applications with un-
known runtime behaviour (Figure 3). This prediction at the function level is based
on the same metrics as used for learning. Afterwards, we merge these results into
one overall prediction at the program level.

new
program

derive metrics
for every function

classify
every function

classification
model

majority
vote

prediction
for the program

Fig. 3 Prediction workflow.

Besides the selection problem studied here using classification and classifier fu-
sion techniques, the direct prediction of the runtime on a certain machine is a related,
but different problem. At first sight, this could be done similarly using regression
techniques. However, the runtime not only depends on the program given, but also
on the parameters used and the data processed. Such information is available for
certain configurations of, say, benchmark-program runs, but not for new programs
in general. Hence, we limit our study to that selection problem.

5 Experiments

In order to demonstrate the usefulness of our approach and to show the correlations
between properties observed in the source code and the runtime behaviour on dif-
ferent platforms, we perform a case study utilising the SPEC CPU benchmark pro-
grams as described in Section 3. As the SPEC CPU benchmarks are broad, i.e., cover
many application domains, we have purposefully decided to deploy this benchmark,
as opposed to any other set of training examples, e.g., home-grown programs.

The runtimes of the programs are published on the SPEC homepage2, and we
make use of this data. We decided to use a subset of the systems available, listed in
Table 4. For these systems, runtime data is available for both, the CPU 2000 and the
CPU 2006 benchmark. The systems cover single-, dual- and quadcore architectures
as well as different memory hierarchies and processors: Intel Xeon, Intel Pentium 4,

2 http://www.spec.org/benchmarks.html

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

Intel Pentium EE and AMD Opteron. There would have been a few more systems
available. As we want to run experiments where one system is fastest with some pro-
grams and another system is fastest with other programs, it would not be reasonable
to include systems performing (almost) always better than all other systems.

System Vendor & Processor Processor-Type & Memory
System 1 Bull SAS NovaScale B280 QuadCore

Intel Xeon E5335, 2.0 GHz 2 x 4 MB L2-Cache, 8 GB PC2-5300
System 2 Dell Precision 380 SingleCore

Intel Pentium 4 670, 3.8 GHz 2 MB L2-Cache, 2 GB PC2-4200
System 3 HP Proliant BL465c DualCore

AMD Opteron 2220, 2.8 GHz 2 x 1 MB L2-Cache, 16 GB PC2-5300
System 4 Intel D975XBX motherboard DualCore, HT

Intel Pentium EE 965, 3.7 GHz 2 x 2 MB L2-Cache, 4 GB PC2-5300
System 5 FSC CELSIUS V830 SingleCore

AMD Opteron 256, 3.0 GHz 1 MB L2-Cache, 2 GB PC3200

Table 4 Systems used for runtime experiments.

Based on the systems considered, we set up a number of experiments. We evalu-
ate the performance of our approach by predicting the fastest platform for a bench-
mark program. In each experiment, we take care that different processor models are
used, and that all systems are best suited for a significant number of programs. More
specifically, in order to ease data mining and the comparison of the results, the ex-
periments feature situations where the distribution of the systems being fastest is as
balanced as possible. Table 5 lists the experiments with the systems compared.

Experiment Platforms Processors
Experiment 1 System 5 vs. System 2 Opteron vs. Pentium 4
Experiment 2 System 3 vs. System 4 Opteron vs. Pentium EE
Experiment 3 System 3 vs. System 1 Opteron vs. Xeon
Experiment 4 System 3 vs. System 1 vs. System 4 Opteron vs. Xeon vs. Pentium EE

Table 5 Experiments.

Experiments 1, 2 and 3 are binary prediction problems where the task is to chose
one out of two platforms, Experiment 4 is a three-class prediction problem. We limit
ourselves to these experiments and do not run experiments where to choose between
all systems. This is because the training data from the 31 programs available would
not provide enough learning examples to choose from more than three systems.
In the following, we show that predictions with two or three target systems are
possible. We do not expect any difficulties when choosing from more systems when
more training examples are available.

We evaluate our approach using different learning algorithms such as neural net-
works, support vector machines and decision trees. As we have achieved the best
results using the C5.0 decision-tree algorithm (a variant of the well known C4.5 al-
gorithm [13]) implemented in the SPSS Clementine data-mining suite, we will focus

From Source Code to Runtime Behaviour

on the C5.0 classifier in the following. However, the results with other classifiers are
not significantly different.

We conduct all experiments using stratified 2-fold-cross-validation: We use half
of the programs for learning and the other half for testing, in two iterations. We
deem this evaluation scheme adequate for our dataset consisting of 31 programs
for learning and classification. We then derive the accuracy, i.e., the percentage of
programs with correct prediction, as well as the speedup. Here, the speedup is the
improvement in execution time over the average execution time on all systems in the
experiment. Averaging the execution time of the systems is a fair baseline, as it mim-
ics random selection of the underlying system. The speedup can be compared to the
highest possible speedup, speedupmax. This is the improvement in execution time
when selecting the fastest platform for each benchmark program. In our scenario,
the speedup measure is more significant than accuracy. To illustrate, predicting a
system slightly worse than the best one would decrease accuracy but would affect
the speedup only slightly. This is consistent with our goal to select fast architectures.
We have consciously decided not to consider any error or confidence level informa-
tion in our evaluation. This is because some decisions made by our majority-vote
scheme might be tight. This is natural in our setting where some individual functions
might be misclassified. We expect the large number of data tuples to compensate this
effect, as discussed before. Table 6 contains our experimental results.

Experiment accuracy speedup speedupmax
Experiment 1 74.19% 1.08 1.13
Experiment 2 77.42% 1.05 1.11
Experiment 3 83.87% 1.11 1.12
Experiment 4 67.74% 1.10 1.19

Table 6 Experimental results.

Experiment accuracy speedup speedupmax
Experiment 1a 64.52% 1.05 1.13
Experiment 2a 67.74% 1.03 1.11
Experiment 3a 83.87% 1.11 1.12
Experiment 4a 64.52% 1.10 1.19

Table 7 Results without quality measures.

There is a high accuracy in the range from 74% to 84% for binary classifications
(78% on average) and 68% for the three class case. This is signifficantly higher
than the a priori probability for selecting the larger class (55% for Experiments 1
and 2, 58% for Experiment 3 and 42% for Experiment 4). More important, the pre-
dictions actually improve the total execution time. On average, 63% of the highest
speedup possible is reached with the predictions of our approach. These results not
only are of practical relevance, i.e., the prediction of the system best suited. They
also confirm the hypothesis that there is a strong relationship between source-code
characteristics and runtime behaviour.

Looking at Experiments 1, 2 and 3, we investigate the impact of the individual
metrics used. Our motivation is not to learn more about individual metrics, but to
see if there are important categories (cf. Table 2) and less important ones. The C5.0
implementation used can assess which attributes occur most frequently close to the
root of the decision tree. Such an analysis of all trees generated reveals that the
following five attributes are the most important ones, in decreasing order: exit count,
notice 22 type, freq sum, edges and notice 27 percent. Therefore, attributes from

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

all categories in Table 2 turn out to be important to predict runtime behaviour. As
we did not expect a high impact of the quality measures (i.e., notice 22 type and
notice 27 percent), we run our experiments again, but without using the quality
measures. Table 7 contains the results.

The experiments show that the quality measures have an influence in Exper-
iments 1, 2 and 4 where the accuracy decreases, but are not relevant in Experi-
ment 3 where the same results are obtained. This behaviour can be explained as
follows: Quality measures are rarely used in the decision trees in Experiment 3, and
other metrics are more significant in this experiment. As one example of the quality
measures, the metric notice 27 percent indicates a high number of function-return
points (return-statements). Even if intended as a code-quality measure, this mea-
sure also quantifies the complexity of a function. This explains why this metric
indeed contributes to the classification results.

6 Discussion

The approach investigated here has turned out to be useful for a fast identification
of the best-suited architecture for a given application, in terms of runtime. Even for
an expert it would be difficult to impossible to determine a good architecture by
only looking at the source code. Up to now, traditional approaches such as bench-
marking are used to this end. But compared to our approach, benchmarking has two
disadvantages: First, it requires access to the systems in question, to actually run the
benchmark programs. Our approach in turn only requires execution times (and no
further runtime characteristics) for the benchmark programs used for learning – but
not for the program for which the best architecture shall be predicted. Further, as
long as one relies on standard benchmarks such as the SPEC benchmark used here,
the runtimes on various systems are available ‘for free’, e.g., in an online database.
This information can therefore be used to build the classification model. When ap-
plying the model, no runtime-related information is needed. Second, benchmarking
requires time, ranging from a few minutes up to several hours. Our approach, in
contrast, requires only a few seconds to determine the architecture best suited.

Since we have used only programs from the SPEC benchmark suites, our pre-
diction accuracy is actually better than it looks at first sight, as we now explain.
Applications can be roughly categorised into three classes: I/O-intensive, memory-
intensive, and compute-intensive. Most of the SPEC CPU benchmark programs used
here are compute-intensive, and none of the SPEC CPU 2006 programs used (cf. Ta-
ble 1) shows any significant I/O-activity [17]. Each benchmark program has a mem-
ory footprint of less than 1 GB [4], which is smaller than the main memory of the
systems we used. In addition, the platforms used for our experiments are relatively
similar. Each of them uses the same x86 instruction-set architecture and only dif-
fers in the implementation, e.g., the pipeline of the Pentium 4 670 in System 2 is
longer than the one in the AMD Opteron 256 of System 5. So we expect the pre-
diction accuracy to increase when not only compute-intensive benchmarks are used,

From Source Code to Runtime Behaviour

but also I/O-intensive or memory-intensive ones. It is also likely that our prediction
accuracy increases when using a broader variety of systems, e.g., systems with a
different instruction-set architecture like Itanium or PowerPC processors.

One potential way of improving our results further would probably be to make
use of the different degrees of importance of functions. A rule of thumb says that
10% of all functions are responsible for 90% of the workload. As we have explicitly
decided not to consider any runtime information in this study, our approach gives the
same importance to every function, even to functions which are never called during
an actual execution. In our current research – and in contrast to the main hypothesis
of this current study – we investigate whether (and by how much) the utilisation of
function-call frequencies can improve prediction quality.

7 Conclusions and Outlook

The question which platform yields the best performance for a certain application
is a fundamental issue in the computer industry. Traditional approaches to deal with
this issue make use of simulations, analytical models or experimental executions.
This means that either a simulation model, an analytical model or an existing system
must be available. Furthermore, these approaches are rather time-consuming. The
approach studied in this current paper in turn deploys data-mining methods in order
to do the prediction as follows: We generate metrics by analysing the source code
of the application in question. We use off-the-shelf benchmarks to generate training
data for a classifier, i.e., we extract those metrics for the benchmark programs. A
classifier then determines the best suited computer architecture based on a given set
of characteristics. A distinctive feature of our classification approach is that it works
with fine-grained software metrics on the function level, while it derives predictions
for entire programs. Its classification accuracy in our experiments has been 78% on
average. The approach can predict the runtime behaviour of benchmark programs
with previously unknown runtime behaviour on the target platforms, allowing to
choose the best platform.

The work described here is part of a larger effort aiming at the deployment of
data-mining techniques for system design and computer-architecture problems. On
one hand, we are currently trying to increase the classification accuracy further. For
example, we are currently investigating the usage of program-dependence-graph
[12] metrics. Such graphs can be derived from static source code and include data
dependencies, in addition to control dependencies as in control-flow graphs. We
reckon that such dependencies are relevant for execution performance, as data de-
pendencies affect pipelining and register usage, and the metrics used so far might not
sufficiently cover these aspects. Further, we are examining the impact of function-
call frequencies on prediction quality, as described in Section 6. On the other hand,
future investigations will try to reveal dependencies between source-code properties
and computer-architecture characteristics with our approach. Up to now, our objec-
tive has been to predict the fastest platform for a given application. We plan to inves-

Frank Eichinger, David Kramer, Klemens Böhm and Wolfgang Karl

tigate how to correlate the source-code related metrics with micro-architectural de-
tails, e.g., the cache architecture, and how to generate respective predictions. From a
computer-architecture point of view, this would be of enormous help when design-
ing processors for specific applications.

Acknowledgements

We are indebted to Nikolay Iakovlev, Markus Korte and Stephan Schosser for their
valuable contributions, suggestions and discussions.

References

1. Allen, F.E.: Control Flow Analysis. In: Proc. of a Symposium on Compiler Optimization,
SIGPLAN Notices, pp. 1–19 (1970)

2. Castillo, P.A., Mora, A.M., Guervós, J.J.M., Laredo, J.L.J., Moretó, M., Cazorla, F.J., Valero,
M., McKee, S.A.: Architecture Performance Prediction Using Evolutionary Artificial Neural
Networks. In: Proc. of the European Workshop on Bio-Inspired Heuristics for Design Au-
tomation (EvoHOT) (2008)

3. Eichinger, F., Böhm, K.: Selecting Computer Architectures by Means of Control-Flow-Graph
Mining. In: Proc. of the Int. Symposium on Intelligent Data Analysis (IDA) (2009)

4. Henning, J.L.: SPEC CPU 2006 Memory Footprint. SIGARCH Comput. Archit. News 35(1),
84–89 (2007)

5. Hoste, K., Phansalkar, A., Eeckhout, L., Georges, A., John, L.K., Bosschere, K.D.: Perfor-
mance Prediction Based on Inherent Program Similarity. In: Proc. of the Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT) (2006)

6. İpek, E., McKee, S.A., Singh, K., Caruana, R., de Supinski, B.R., Schulz, M.: Efficient Archi-
tectural Design Space Exploration via Predictive Modeling. ACM Trans. Archit. Code Optim.
4(4), 1–34 (2008)

7. Jones, C.: Applied Software Measurement. McGraw-Hill (2008)
8. Joshi, A., Phansalkar, A., Eeckhout, L., John, L.: Measuring Benchmark Similarity Using

Inherent Program Characteristics. IEEE Trans. Computers 55(6), 769–782 (2006)
9. Kühnemann, M., Rauber, T., Runger, G.: A Source Code Analyzer for Performance Prediction.

In: Proc. of the Int. Parallel and Distributed Processing Symposium (IPDPS) (2004)
10. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004)
11. McCabe, T.: A Complexity Measure. IEEE Trans. Software Eng. 2(4), 308–320 (1976)
12. Ottenstein, K.J., Ottenstein, L.M.: The Program Dependence Graph in a Software Develop-

ment Environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (1984)
13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
14. Saavedra, R.H., Smith, A.J.: Analysis of Benchmark Characteristics and Benchmark Perfor-

mance Prediction. ACM Trans. Comput. Syst. 14(4), 344–384 (1996)
15. Shepperd, M.: A Critique of Cyclomatic Complexity as a Software Metric. Software Engi-

neering Journal 3(2), 30–36 (1988)
16. Singh, K., İpek, E., McKee, S.A., de Supinski, B.R., Schulz, M., Caruana, R.: Predicting

Parallel Application Performance via Machine Learning Approaches. Concurrency and Com-
putation: Practice and Experience 19(17), 2219–2235 (2007)

17. Ye, D., Ray, J., Kaeli, D.: Characterization of File I/O Activity for SPEC CPU 2006.
SIGARCH Comput. Archit. News 35(1), 112–117 (2007)

