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We report the discovery of strong correlations between protein coding regions and the prediction errors
when using the simple recurrent network to segment genome sequences. We are going to use SARS gen-
ome to demonstrate how we conduct training and derive corresponding results. The distribution of pre-
diction error indicates how the underlying hidden regularity of the genome sequences and the results are
consistent with the finding of biologists: predicated protein coding features of SARS genome. This implies
that the simple recurrent network is capable of providing new features for further biological studies
when applied on genome studies. The HA gene of influenza A subtype H1N1 is also analyzed in a similar
way.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

DNA consists of nucleotides. Certain locations of the DNA pos-
sess special meanings. The beginning and the end of a gene are
two important locations. Segment is the basic unit, or building
block to interpret DNA. The intron, exon and transcription factor
are sections of DNA and play different roles in the transcription
process. A gene is also a segment that can be used for making pro-
tein. The collection of segmented DNA can be further analyzed to
show how the genes regulate each other and how those segments
works. However, the reason that the segments can only exist at
certain locations and the rules behind them are still unclear.

There are ways to accomplish the segmentation. One way to lo-
cate the beginning and the end of a segment is to search a similar
sequence in the database. The idea behind this technique is that
there exist similar patterns in different DNA sequences. In other
words, the patterns in a strand of DNA sequence may have high
possibility to be found in the strand of other DNA sequences.
Researchers have dedicated to locate functional regions for dec-
ades. Statisticians try to locate the regions which satisfy the
assumption of statistical models. Bernaola-Galvan et al. [1] provide
a segmentation algorithm based on the Jensen–Shannon entropic
divergence. This algorithm is used to decompose long-range corre-
lated DNA sequences into statistically significant, compositionally
homogeneous patches. Fujiwara et al. [2] developed a hidden Mar-
kov model that represents known sequence characteristics of mito-
ll rights reserved.
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chondrial targeting signals to predict the existence of the
mitochondrial targeting signals. The signal is the presequence that
directs nascent proteins bearing it to mitochondria. Hidden Mar-
kov model were also used in extracting motifs for predicting the
binding sites of unknown transcription factors, without a priori
knowledge, from functionally related DNA sequences [3]. Machine
learning methods are capable of building the models automatically
and, then, the huge number of combinations of features can be
tested [17,18]. For example, Sonnenburg et al. [4] use the kernel
weight to determine the exon start. García-Pedrajas et al. [5] devel-
oped the methods to cope with class imbalance problems for deci-
sion tree and support vector machine [6,7] in the problems of
translation initiation site recognition.

A theory proposed that DNA sequences have language structures
[8,9]. There are also attempts [11,12] to study the relationship be-
tween biological sequences and the Chomsky hierarchy [10]. The
simple recurrent network (SRN) [13] is a hyper-Turing machine
[14]. It has been shown [13,15] that it can learn arbitrary underlying
grammars and automata from the presentation of sentences. Such
automata-like structure is extremely difficult to reach by any statis-
tical ways, for example, hidden Markov model. It is also argued [16]
that Elman network can accommodate quasi-regular structure and
makes use of this structure for predictions and inferences. Such qua-
si-grammartical structure cannot be analyzed by any rule-based
systems. We expect that the DNA sequence could contain such kind
structures. So, this network is a potential candidate to analyze DNA
sequence. Specifically, the large prediction errors indicate the seg-
mentation points [13]. We show an example to reveal such quasi-
regular structures in the end of Section 3.

http://dx.doi.org/10.1016/j.knosys.2011.09.001
mailto:cyliou@csie.ntu.edu.tw
http://dx.doi.org/10.1016/j.knosys.2011.09.001
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SARS genome is used in the first experiment. Then we employ
two types of SRN to analyze influenza A virus. One type uses the
perceptrons in the hidden layer and the other type uses self-orga-
nizing neurons in the hidden layer. The former can be trained by
the back-propagation algorithm (BP). The later can be trained by
the self-organizing rule. We did extensive simulations to find suit-
able parameters for SRN. The reason why we analyze the influenza
A virus is that its subtype H1N1 was the cause of human influenza
in 2009. Its HA (Hemagglutinin) region is responsible for binding
the virus to the cell and causes infection [19]. Since hemagglutinin
is the major surface protein of the influenza A virus and is essential
to the entry process into a cell, it is the primary target of neutral-
izing antibodies.
2. Architecture

A simple recurrent network (or called Elman network) [13] is a
three-layer neural network with the addition of a set of ‘‘context
neurons’’ in the first layer, see Fig. 1. These context neurons assem-
ble an inside self-reference layer. In each iteration, the previous
state of the hidden layer saved in the context layer together with
the input layer activates the hidden layer. This network maintains
a stream of states which allows it to perform the sequence-predic-
tion task. This network is proposed to model temporal human
behaviors [13], like language. It can discover the underlying struc-
ture of words.

Elman generated sentences of varied lengths from fixed words.
Those sentences were concatenated and formed a stream of words.
Each word was represented as a combination of letters, and each
letter was represented by a 5-bit randomly assigned binary vector.
The network processed the concatenated binary vectors sequen-
tially and was trained to predict the next letter by using the binary
vector of the next letter as the desired output. Elman found that
after training, the prediction error is very high at the beginning
of a word and declines with the rest letters received. This implies
that SRN has learned the various structures of words and is able
to segment words from a sequence of letters.

Biologists use biotechnology (ex. polymerase chain reaction) to
interact with a virus genome and look for interesting and meaning-
ful regions (segments) of the sequence. Since genetic information is
saved in the DNA sequence, we plan to use SRN to segment the se-
quence in a computational way. Based on the results Elman studied
[13], we expect that SRN can learn the genome structure and detect
the boundary of the protein coding region according to the predic-
tion error. We further compare our findings with the protein cod-
ing regions found by other researchers.
Fig. 1. The structure of the recurrent neural network used in the analysis of DNA
sequence.
Consider a genome sequence {x(t), t = 0,1,2, . . .}, where
x(t) 2 {A(adenine),C(cytosine),T(thymine), G(guanine)}. Instead of
using 2 bits to encode the four nucleotides, we use 4 bits to prevent
non-uniform similarity (cosine or Euclidean distance) for each
nucleotide pair because any nucleotide can be joined by ester
bonds to the preceding nucleotide without bias. The four nucleo-
tides are A � [1,�1,�1,�1]T, C � [�1,1,�1,�1]T, T � [�1,�1,1,
�1]T, and G � [�1,�1,�1,1]T. Each positive bit indicates one nucle-
otide. The number of dimensions of the context layer, which is the
same as that of the hidden layer, is N. The number of dimensions of
output layer is the same as that of the input layer. From extensive
experiments, we set 20 hidden neurons in the first part of this
work. The network has M = 4 input neurons, N = 20 hidden neu-
rons, N = 20 context neurons, and M = 4 output neurons. Let the
weight matrix W contain the set of synaptic weights that connects
the input layer, context layer and the hidden layer, W 2 RN�(M+N+1).
The weight matrix U contains the set of weights that connects the
hidden layer and the output layer, U 2 RM�(N+1). The initial values
of all synaptic weights in W and U are randomly assigned within
the range [�0.2,0.2]. The network is trained to predict the next
nucleotide vector. For example, the input nucleotide at time t = 0
is x(0), and its desired output will be x(1). The input at time t = 1
is x(1), and the desired output will be x(2). The sequence of nucle-
otides is presented to the network one after another. For the con-
venience of mathematical expression, let the desired output
d(0),d(1),d(2), . . . denote the input data at the next time step,

dð0Þ ¼ xð1Þ; dð1Þ ¼ xð2Þ; . . . ð1Þ

The error signal at the output of neuron i at time t is defined by

eiðtÞ ¼ diðtÞ � yout
i ðtÞ: ð2Þ

The total error is obtained by summing over all neurons in the out-
put layer,

fðtÞ ¼ 1
2

X4

i¼1

e2
i ðtÞ: ð3Þ

The input layer yin(t) consists of the input data at time t and the
context layer which copies the activation of the hidden layer at
the previous time step,

yinðtÞ ¼
xðtÞ

yhidðt � 1Þ

� �
: ð4Þ

The initial activation of the context layer is set to zero, y in(0) =
[x(0)T,0 . . .0] T. The induced local field vhid

i ðtÞ produced at the input
of the activation function associated with hidden neuron i is

vhid
i ðtÞ ¼

XMþN

j¼0

wijyin
j ðtÞ; i 2 f1; . . . ;Ng; ð5Þ

where the synaptic weight wi0 (corresponding to the fixed input
yin

0 ¼ �1) is the bias. The induced local field vout
i ðtÞ with the output

neuron i is

vout
i ðtÞ ¼

XN

j¼0

uijyhid
j ðtÞ; i 2 f1; . . . ;Mg ð6Þ

where the synaptic weight ui0 is the bias and yhid
0 ¼ �1. Hence the

function signal yhid
i appearing at the output of neuron i in the hidden

layer at time t is

yhid
i ¼ f ðvhid

i ðtÞÞ: ð7Þ

The yout
i appearing at the output of neuron i in the output layer is

yout
i ¼ f ðvout

i ðtÞÞ: ð8Þ



Table 1
Information on the 11 SARS genomes.

No. Accession no. Length (bps)

1 AY274119.3 29751
2 NC_004718.3 29751
3 AY597011.2 29926
4 AY278491.2 29742
5 AY278554.2 29736
6 AY278741.1 29727
7 AY283794.1 29711
8 AY283795.1 29705
9 AY283796.1 29711
10 AY283797.1 29706
11 AY283798.2 29711

Fig. 2. Recorded 300 learning curves. The colors of curves indicate their converged
mean square errors. 287 curves reach to values lower than 1.8.
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In this work, we adopt the antisymmetric function, tanhðxÞ ¼ e2x�1
e2xþ1,

as the activation function of each neuron,

f ðxÞ ¼ tanhðxÞ; ð9Þ

and its derivative is

f 0ðxÞ ¼ ð1þ xÞð1� xÞ: ð10Þ
Fig. 3. The averaged prediction errors of the SARS ‘‘AY274119.3’’ genome. Each vertical b
by Gaussian function. This function is plotted on the top left corner. S1 to S30 indicate th
Five segments belong to coronavirus. The rest ten segments are still unknown.
Hence, the output of each neuron is in the range [�1,1]. The initial
error is equal to f(0) = 2. We expect that the nucleotide with a very
large error could be the boundary of a protein coding region. The
synaptic weights W and U are adjusted by the back-propagation
algorithm [20] which performs gradient descent in error space.
These weights are updated slightly in the direction that reduces er-
ror as much as possible to accomplish the expectation
d(t) = x(t + 1) = E(x(t)) � x(t + 1). The correction for the weight in
W is Dwij and it is proportional to the partial derivative,

DwijðtÞ ¼ �gðtÞ @fðtÞ
@wij

: ð11Þ

where g is a learning rate function. g will be reduced to zero
exponentially,

gðtÞ ¼ g0 � e�
a�ðt�t0Þ

t1�t0 ; ð12Þ

where iteration t starts from t0. g0 is the initial value of the rate. Set
g0 = 0.5 and a = 6 in this work. The correction for the weight in U is
Duij,

DuijðtÞ ¼ �gðtÞ @fðtÞ
@uij

: ð13Þ
3. Analysis of SARS genomes

The SARS-CoV RNA has been detected frequently in respiratory
specimens and convalescent-phase serum specimens from the pa-
tients having antibodies that react with SARS coronavirus. There is
strong evidence that this virus is etiologically associated with the
outbreak of SARS [21–23]. The genome has been analyzed by seek-
ing the genes in the database. We select 11 complete genomes of
SARS-CoV recorded in GenBank [24]. The accession numbers and
their lengths (number of basepairs or bps in brief) are listed in Ta-
ble 1. Note that the original record is a single-stranded positive
sense RNA. Every selected sequence is the cDNA converted from
and in the image shows a value that is averaged over an interval of 501 nucleotides
e beginning points and ending points of biologically identified 15 segments in [25].



Fig. 4. (a) There are 100 bins in the histogram. Each bin has an interval of length 40 base pairs. (b) The error peaks marked by green color that are near the boundaries of the
protein coding regions. The boundaries are marked by blue vertical lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Comparison of the segmentation locations.

Index Coding region Product Head Tail Closest Pt.

1 ATGGAGAGCCT. . . Replicase 1A 265 254
. . . CATCAACGTTT 13392 13388

2 TTTAAACGGGT. . . Replicase 1B 13392 13388
. . . TTAACAACTAA 21485 21543

3 ATGTTTATTTT. . . Spike glycoprotein 21492 21543
. . . ATTACACATAA 25259 25374

4 ATGGATTTGTT. . . ORF 3 25268 25374
. . . TGCCTTTGTAA 26092 26110

5 ATGATGCCAAC. . . ORF 4 25689 25891
. . . AGGTACGTTAA 26153 26148

6 ATGTACTCATT. . . Small envelope E protein 26117 26110
. . . TTCTGGTCTAA 26347 26287

7 ATGGCAGACAA. . . Membrane glycoprotein M 26398 26421
. . . TAGTACAGTAA 27063 27027

8 ATGTTTCATCT. . . ORF 7 27074 27027
. . . ATTATCCATAA 27265 27317

9 ATGAAAATTAT. . . ORF 8 27273 27317
. . . AGACAGAATGA 27641 27504

10 ATGAATGAGCT. . . ORF 9 27638 27504
. . . CCAAAGTCTAA 27772 28027

11 ATGAAACTTCT. . . ORF 10 27779 28027
. . . TACAACACTAG 27898 28027

12 ATGTGCTTGAA. . . ORF 11 27864 28027
. . . GAACAAATTAA 28118 28162

13 ATGTCTGATAA. . . Nucleocapsid protein 28120 28162
. . . CTCAGGCATAA 29388 29443

14 ATGGACCCCAA. . . ORF 13 28130 28162
. . . CGGCAAAATGA 28426 28396

15 ATGCTGCCACC. . . ORF 14 28583 28593
. . . ATTGCTGCTAG 28795 28638

Table 3
List of short segments that have lengths less than 7.

Short segments

CG CGAGG CGAGTT CGTCTC
CGA CGCAC CGATAC CGTCTG
CGC CGCAG CGATTT CGTGAA
CGT CGCTT CGCAAT CGTGTA
CGAA CGGTT CGCGTG CGTGTT
CGAC CGTAG CGCTAC CGTTTA
CGAT CGTCA CGGCCA CGTTTT
CGCA CGTTA CGGTAC
CGCC CGTTG CGTACC
CGTG CGTTT CGTAGT
CGTT CGACTC CGTATA
CGAGA CGAGCT CGTCAG
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its RNA. There is one-to-one correspondence between cDNA and
RNA bases. We will use the cDNA sequence to train the network.

The network processes all 11 genome sequences which are con-
catenated in a long single sequence. We apply the BP algorithm to
adjust its synaptic weights for 1000 epochs. The learning rate is re-
duced by (12) during the 1000 epochs. After training, we present
the sequence again and record the prediction errors for all nucleo-
tides. We repeat this training procedure for 300 times, hence, we
obtain 300 trained SRNs and get 300 different prediction error se-
quences. Fig. 2 plots the 300 learning curves during the training
processes. Each error point in a curve is the average error of all
nucleotides in the 11 sequences. The network initially outputs
[�1,�1,�1,�1] for each input nucleotide pattern and the training
makes the output to fit the next nucleotide in the sequence. There-
fore, the training error is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ie

2
i ðtÞ

q
¼ 2 at the beginning. The learn-

ing curve does not decrease monotonously because the algorithm
updates the weights immediately after presenting one input nucle-
otide pattern. This figure shows that after 1000 epochs, the 300
networks reached to a local or global minimum in the weight
space. Each procedure takes roughly 35 min and the whole exper-



Fig. 5. Tree derived from short segments as listed in Table 3. The nodes which are the ends of protein coding regions are marked in blue color. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Setting of parameters (a).

# Samples # Hidden neurons Avg. Leng.

50 10 1725.58
50 20 1725.58
50 30 1725.58
50 40 1725.58
50 50 1725.58

Table 5
Setting of parameters (b).

# Samples # Hidden neurons Avg. Leng.

50 20 1725.58
100 20 1723.62
150 20 1720.68
200 20 1722.32
250 20 1721.62

Table 6
Setting of parameters (c).

# Samples # Hidden neurons Avg. Leng.

50 20 400
50 20 800
50 20 1200
50 20 1600
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iment takes 175 hours per machine. Note that we use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ie
2
i ðtÞ

q
to

be the error in this figure.
In Fig. 3, we plot the averaged prediction error for each nucleo-

tide along the genome of ‘‘AY274119.3’’. Error magnitude is repre-
sented by the gray level, white represents the largest error and
black represents no error. These prediction errors are the averaged
error values obtained after the 300 training procedures. To give a
clear picture, we further smooth the predicted errors over an inter-
val of 501 nucleotides using a Gaussian function plotted on the top
left corner of this figure. This genome has been analyzed in [25], its
results are also illustrated in Fig. 3 by green color. The white verti-
cal band near the 13 kB shows that this region has large errors and
it is also detected by Marra as the boundary of S2 and S3. Note that
kB is the abbreviation of kilo-basepairs. The large region from 26 to
29.5 kB corresponds to the fragments detected in [25,26]. Marra’s
research shows that there are overlaps of the segments in this area
[25]. For this genome, the maximal mean of prediction error is
2.1647, the minimal mean of prediction error is 1.1435, and the
median of the mean is 1.7063.

Suppose that the 500 nucleotides which have the highest pre-
diction errors are the boundaries of 501 segments. Fig. 4(a) plots
the histogram of their length information. The shortest segment,
which is ‘‘CG’’, has only 2 base pairs. The longest segment has
364 base pairs. Note that all 500 peaks are cytosine. Most segments
have short lengths. The segment which has a long length implies
that this portion of the genome has fewer mutations than other
parts. Some of the short segments are codons. These segments
may reveal the structural information in the genome sequence.
We plot several predicted segmentation points which near the pro-
tein coding region in Fig. 4(b). The blue vertical lines on the bottom
of Fig. 4(b) indicate the boundaries of the segments obtained by
[25]. There are five hits among thirteen known protein coding
regions.

Table 2 lists the detailed 15 genes of the identified SARS genome
by the research [25]. The ‘‘head’’ means the beginning of a gene and
the ‘‘tail’’ means the end of a gene along the genome location. The
‘‘Closest Pt.’’ indicates the closest point, segmented by SRN, to the
head or tail point. The ‘‘ORF’’ means the open reading frame. The
work [25] focuses on the segments which begin with the start co-
don ‘ATG’ and end with the stop codon ‘TGA’, ‘TAA’, ‘TAG’. It then
searches the biological meaning of such segments in various dat-
abases. Fig. 4(b) shows two biologically identified protein coding
regions, spike glycoprotein and small envelope E protein. They be-
long to coronavirus and have nucleotides ATGTTTATTTT . . .ATT-
ACACATAA and ATGTACTCATT . . .TTCTGGTCTAA. These two
regions are marked by S5, S6, S11, and S12 in this figure. The
SRN finds the stop codon ‘TAAA’ in three cases and the start codon
‘CGAAC’ in all four cases.

Among the 501 segments, we list all short segments of lengths
shorter than seven base pairs, <7, in Table 3 and construct a tree
from them, see Fig. 5. From this tree, we see the number of nodes
doesn’t grow exponentially with tree layers. This means those seg-
ments aren’t composed from ‘‘A’’, ‘‘C’’, ‘‘T’’, ‘‘G’’ arbitrarily. They fol-
low certain structural rules and need further biological studies.

We assume DNA sequences are structured like languages which
are quasi-regular: they allow the combination of some members of
syntactic categories, but not others. For example, the sentences: ‘‘I
gave food to the orphanage’’ and ‘‘I gave the orphanage food’’ are
both correct. However, if we replace ‘‘gave’’ with ‘‘donated’’, the
sentence ‘‘I donated the orphanage food’’ is wrong. From the tree
in Fig. 5, we find the combinations of nodes are not symmetrical.
It means that SRN has the capability to extract quasi-regular rule
from DNA sequences.



Fig. 6. The networks are trained by back-propagation. (a1) The learning curves with different numbers of hidden neurons. (a2) The histogram of the converged errors from
(a1). (b1) The learning curves with different numbers of training DNA sequences. (b2) The histogram of the converged errors from (b1). (c1) The learning curves of different
lengths of training DNA sequences. (c2) The histogram of the converged errors from (c1).
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4. Analysis of H1N1 sequences

After analyzing the genome of SARS-CoV, we are going to ana-
lyze another virus: influenza A subtype H1N1. There are thousands
of samples of this virus and it mutates frequently. We download
5580 DNA sequences of the segment HA of this virus [27], whose
function is to produce hemagglutinin. They contain duplicate se-
quences. We do not exclude identical sequences because redun-
dancy may contain useful evolution information. The minimum
length of these sequences is 1664 bps. The maximum length of
these sequences is 1846 bps. These sequences are not aligned.
The original nucleotide sequences will be used in the training of
SRN.

We randomly selected 50 sequences in a preliminary study to
find suitable experiment settings. The longest sequence has
1791 bps and the shortest sequence has 1696 bps. The test settings
are listed in the Tables 4–6. All simulations are repeated for 50
times with different initial weights. We try three different kinds
of conditions and each of them changes only one variable. Firstly,
Table 4 shows the setting with different number of hidden neurons
listed in the column ‘‘# hidden neurons’’. Fig. 6(a) plots the results
of the training. The learning curves in Fig. 6(a1) shows that when
we use dense neurons in the hidden layer we will get small errors.
Each learning curve is the average over 50 repeated simulations.
Fig. 6(a2) shows the histogram of the converged errors for all 50 re-
peated simulations. Secondly, we use different number of se-
quences to train the network and plot their learning curves.
Table 5 lists the number of randomly chosen sequences in different
simulations and the average lengths. Fig. 6 (b1) plots the learning
curves averaged over 50 simulations with different number of se-
quences. These curves show that when the number of sequences
increases, the durations for convergence do not increase much.
This phenomenon reveals that most sequences have similar hidden
structures. Small group of sequences contain sufficient information
to represent the rest sequences. Fig. 6(b2) shows the distribution of
the converged errors. We randomly select 50 sequences and cut
the rest portions of these sequences from the beginning. Table 6
lists the different lengths of those sequences. Note that the



Fig. 7. This figure plots the averaged errors along the closest sequence. (a) The averaged prediction errors of the best trained SRN with lowest converged error. (b) The
averaged prediction errors of the best 15 trained SRNs that have smallest 15 converged errors. (c) The averaged prediction errors over all 50 simulations. (d) All prediction
errors of the 50 simulation. The performance of these 50 trained networks are sorted from top to bottom.

Fig. 8. The plots show all the 50 learning curves of two methods. (a) The learning curves by BP. (b) The learning curves by self-organizing rule.
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randomly chosen 50 sequences in different simulations are not the
same. Fig. 6(c1) plots the learning curves of different lengths of se-
quences. Fig. 6(c2) shows the distribution of the converged errors.

The computational complexity for training SRN is O(PM(t1 � t0)
(n1 � n0)), where P is the number of sequences. Processing all 5580
sequences is costly. From Fig. 6(b), we see that a suitable subset of
the 5580 sequences can do the training task. We employ DISOM
(Distance Invariant Self-Organizing Map) [28,29] to select the sub-
set sequences. DISOM can sort the sequences and find their dis-
tances to the grandmother virus. We select the 1032 sequences
sampled from January to May 2009 to simplify the computation.
These 1032 sequences are all different. We use ClusterW2 [30] to
align the 1032 sequences. The lengths of aligned sequences are
all 1710 bps. The DISOM is employed to project high dimensional
data onto a three dimensional space. The 100 viruses closest to
the cluster center in this space are retrieved. There are 137 such se-
quences because some sequences are identical.
We set 40 neurons in the hidden layer and the context layer of
the network. The network is trained by the back-propagation algo-
rithm. The experiments are repeated 50 times. We plot the aver-
aged error in Fig. 7 marked by BP for the sequence that is closest
to the cluster center.
4.1. Analysis H1N1 using unsupervised simple recurrent network

For comparison, we further use the unsupervised SRN [31,32] to
process the H1N1 sequences. The results are plotted in Fig. 7
marked by SOR. This unsupervised SRN was proposed by Voegtlin.
The self-organizing neurons are used in the hidden layer and con-
text layer; see Fig. 1. The topology of these neurons is a grid square
map. These neurons use time-delay feedback to represent the
information hidden in time. This recursive feedback makes this
network different from the original self-organizing map [33]. The



Fig. 9. Hierarchical clustering diagram of the activations of hidden layer in influenza analysis. Each intensity indicates a cluster. The intensities are assigned according to the
levels of the leaf nodes. The plots show the results of supervised (a) and unsupervised learning (b) for different trained networks. (1–3) are the trees constructed from the
activations of the hidden neurons that have the minimum converged error, minimum 15 converged errors, and all 50 trained networks respectively.
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synaptic weights are updated according to the self-organizing rule
[33].

The 137 sequences are used to train this unsupervised network.
After extensive trials, we set the network with 8 � 8 hidden neu-
rons and use it to analyze H1N1 virus. The results are marked by
SOR in Fig. 7. The training procedure is repeated 50 times. All 50
learning curves are recorded in Fig. 8(b). The learning 50 curves
for the SRN with 40 hidden neurons and trained by BP are also
plotted in Fig. 8(a). The BP learning curves show that the SRN tries
to find information and rules in time and the rules compete against
each other. We see that the curve jumps up and down rapidly. But
the learning curve obtained by the self-organizing rule is relatively
well behaved. The sequence closest to the center is used for calcu-
lating the prediction errors and these errors are plotted and
marked with SOR in Fig. 7. There are 50 converged errors. We sort
these 50 errors from top to bottom and show their prediction er-
rors in Fig. 7(d). Note that Fig. 7(d) plot the smoothed prediction
errors by a Gaussian low pass filter with a window size of 31.
Stronger intensity indicates higher error in the figure. In supervised
BP learning, the nucleotides in the high error regions are less pre-
dictable. In unsupervised learning, the high error regions show the
nucleotides are away from the statistical center in time domain.
The best converged error is plotted on the top of the image
Fig. 7(d).
4.2. Clustering hidden activations

In order to visualize the structure in time, we employ the hier-
archical clustering method [34] to classify the activations of the
hidden layer of SRN. This method was used in Elman’s work [13]
to group the meanings of words. It aggregates the clusters, which
have minimum distances, and constructs a binary tree by merging
clusters. After constructing the tree, one can cut the leaf nodes by
setting a threshold distance. In the communication between Plate
and Elman, they have noticed that the activation of hidden neurons
is affected by the input, ‘‘. . . The hidden unit activation patterns are
highly dependent upon preceding inputs. . . ’’, see line 2 of page 199
in [13]. In Fig. 9, we generate the dendrogram with no more than
eight leaf nodes instead of four in order to visualize more informa-
tion. Setting eight clusters in this case means each one of the four
clusters, corresponding to the four nucleotides, is further divided
into two groups. The colors of the 8 leaf nodes are listed on the
top of this figure. The cluster intensities are assigned by the levels
of the leaf nodes. This is because nodes in the same cluster should
have similar intensities. For example, in Fig. 9(a1), the node 5 has
an intensity black which corresponds to grey code 1. Node 7 has an
intensity as that of code 2 and node 6 has an intensity code 3 and
so on. Similar structures can be found in the two different methods.
Group (1,7,2) in (a2) is similar to group (5,4,6) in (b2). Without



Fig. 10. This figure shows the results of mapping the hidden activations in two dimensional space. The 8 colors are 8 clusters by hierarchical clustering method. The grey links
show the transits of hidden states.
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considering the link length, (a2) is isomorphic to (b2), this is be-
cause there is a bijective mapping from nodes (5,6,1,7,2,3,8,4)
in (a2) to nodes (3,2,5,4,6,1,8,7) in (b2). This means these two
methods catch similar structure in time.
4.3. Visualizing hidden activations in two dimensional space

The hierarchical clustering process confines the representation
of the relations in a tree-like structure. We use Isomap [35] and
multidimensional scaling (MDS) [36] to visualize the hidden acti-
vations in a two dimensional space, see Fig. 10. The colors of leaf
nodes obtained from hierarchical clustering are kept in this figure.
The grey links between points show the adjacent temporal rela-
tions along the genome sequence. One activation follows the other
activation if there is a link between them. In Isomap, the number of
neighborhoods are set to 60, 300, 350 in Fig. 10 (a1), (b1) and (c1)
respectively. The number of neighborhoods are also set to 60, 300,
350 in Fig. 10 (a2), (b2), and (c2). Fig. 10 (a1–a4) are obtained from
the best trained networks. We see that the best trained SRN, in
Fig. 10(a1) and (a3), can resolve the activations according to their
appearances in the genome sequence. This is, in some sense, simi-
lar to the polysemous of a word. Fig. 10(b1–b4) are obtained from
the best 15 trained networks. Fig. 10(c1–c4) are obtained from all
50 trained networks.

The residual variances in Fig. 11 show how much information is
captured with respect to dimensionality by the two dimension
reduction algorithms, Isomap and MDS. The residual variances of
Isomap may not decrease monotonously for SRN trained by the
BP algorithm. The residual variance decreases as the dimensional-
ity is increased for SRN trained by the self-organizing rule. Four
dimensions are enough to catch most variances of the hidden acti-
vations for the H1N1 sequences.
5. Summary

This work presents a new technology to study genome se-
quences. Without any prior biological knowledge and only pro-
cessing the ATCG sequences, the result is strikingly consistent
with the findings from biologists. This implies that we can use this
new technology to study more complicated genomes which are
still a mystery to biologists. The underlying structures detected
by SRN provide new types of features for further biological studies.
By ranking the errors, this technology provides the priorities for
biologists to choose which part of the genomes is worth to study.



Fig. 11. The residual variances of Isomap (circles), MDS (cross) in different
dimensions for the hidden activations of the trained SRN, Isomap 1 and MDS 1
are plots for the best trained network. Isomap 15 and MDS 15 are for the best 15
trained networks. Isomap 50 and Isomap 50 are for all 50 trained networks. Each
curve is normalized within zero and one in the y-axis.
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The results of the proposed segmentation method can be used in
distinguishing an artificial DNA segment from an natural segment,
because the nucleotides joined together in the natural environ-
ment may be different from the one joined in the laboratory.
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