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Abstract: Currently, workflow technology is widely used to facilitate the working process in enterprise information 

systems (EIS), and it has the potential to reduce design time, enhance product quality and decrease product cost. However, 

significant limitations still exist: as an important task in the context of workflow, many present resource allocation 

operations are still performed manually, which are time-consuming. This paper presents a data mining approach to address 

the resource allocation problem (RAP) and improve the productivity of workflow resource management. Specifically, an 

Apriori-like algorithm is used to find the frequent patterns from the event log, and association rules are generated 

according to predefined resource allocation constraints. Subsequently, a correlation measure named lift is utilized to 

annotate the negatively correlated resource allocation rules for resource reservation. Finally, the rules are ranked using the 

confidence measures as resource allocation rules. Comparative experiments are performed using C4.5, SVM, ID3, Naïve 

Bayes and the presented approach, and the results show that the presented approach is effective in both accuracy and 

candidate resource recommendations. 
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1. Introduction 

Workflow is now an embedded technology in many 

enterprise information systems (EIS, e.g. PLM, ERP, 

CRM, SCM and B2B applications etc.). Workflow 

resource allocation serves as an indispensable link 

between workflow activities and resources, and it directly 

determines the execution quality of the workflow activities 

[1-3].  

Based on our investigation, most of the resource 

allocation tasks in present workflow management systems 

are usually performed using a role-based approach [2, 4, 

5]. That is, to divide the workflow resources (actors) into 

different candidate groups based on their role and the 

organization properties. Once the workflow cases are 

originated, the workflow engine assigns the works to 

proper resource groups [4, 6]. Such resource allocation is 

somewhat coarse-grained and may fail in some situations. 

For example, in the manufacturing enterprises, a 

manufacturing process sheet work might be predefined to 

be undertaken by the resources with the role “process 

planning designer”. Actually, some of the processes 

planning works have to be further assigned to a smaller 

group of one or more qualified designers instead of all the 

process planning designers. Thus, the present resource 

allocation methods may make inappropriate staff 

assignments and the final quality of the products may 

suffer from it. Therefore, in some industries such as the 

manufacturing enterprises, most of run-time workflow 

resource allocation works are still performed manually by 

the administrators. The number of administrators is 

usually small, whereas the activities are of great 

abundance in some cases. That makes it a time-consuming 

work to allocate the workflow resources manually.  

Fortunately enough, contemporary workflow 

applications usually record the business events in event 

logs. These logs typically contain information about 

mailto:tyliu@live.com
mailto:chengyalong.seu@gmail.com
mailto:nzh2003@seu.edu.cn


- 2 - 
 

events referring to a case, an activity, and an originator 

[7-10]. The case (also referred to as process instance) is a 

work that is being handled, e.g. a process planning sheet 

design, a compressor design, an NC programming, etc. As 

the atomic element of the case, an activity is an instance of 

a workflow task. An originator is a resource (usually a 

person) that executes the activity[6]. In this paper, a 

Process refers to a workflow template of the case, a Task 

represents a series of similar activities, and a Resource 

refers to a task performer.  

This paper presents an Apriori-like algorithm [11, 12] 

to find frequent patterns from the workflow logs, which 

are used to generate rules according to a “resource 

allocation rule constraint”. All the negative correlated 

rules are annotated with a rule evaluation measure referred 

to as “correlation measures”. Then, the selected rules are 

ranked in a descending sequence by their confidence, and 

the final rules are then recommended to workflow 

administrators at workflow run-time. 

The major contributions of this paper are as follows: 

First, it designs a closed-loop workflow framework for a 

more intelligent and finer-grained resource management. 

Second, it proposes an association rule mining approach to 

find the logics between workflow resources and the 

activities, which would help decision-making in resource 

allocation.  

The remainder of this paper is presented as follows: In 

Section 2, we design a closed-loop workflow architecture 

for optimizing resource allocation. Later on, we study the 

workflow event models and their relationships in Section 

3, and then propose our mining approach in Section 4. In 

Section 5, we empirically compare some classification 

algorithms (C4.5, SVM, ID3, and Naïve Bayes) with our 

approach. In Section 6, we discuss some possible 

improvements. Finally, we discuss the related works in 

workflow resource allocation in Section 7, and conclude 

this paper in Section 8. 

 

2. A closed-loop workflow framework for resource 

allocation 

Our work is based on a National Defense Project 

named Agile Process Preparation System (APPS) for a 

large radar-manufacturing corporation [13] in Nanjing, 

Jiangsu, China. APPS is a process-aware information 

system, and it applies a workflow module to manage the 

works of CAX units (e.g. CAD, CAM, CAPP, etc.). This 

workflow module manages the resources 

(performers/actors) using a closed-loop approach. The 

framework of the approach is illustrated in Fig. 1.  

Step 3. Rules generation Step 1. Resource allocation

Step 2. Task Execution and log generation
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5316 5 68 Tom 207 2007-10-15 21:06

5317 1 68 Tony 207 2007-10-22 20:04

5318 1 66 Tony 209 2007-10-23 13:56

5319 1 66 Susan 209 2007-10-23 13:56

5320 2 66 Tony 209 2007-10-23 13:56

5321 2 66 Susan 209 2007-10-23 13:56

5322 3 66 Tony 209 2007-10-23 13:56
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Fig. 1 Overview of the approach 

The closed-loop workflow resource allocation 

approach mainly includes three steps: 

Step 1: The execution history of the workflow 

activities is recorded in a transaction log referred to as 

workflow log. 

Step 2: The system utilizes an Apriori-like association 

rule mining algorithm to extract the resource allocation 

knowledge from the workflow log. 

Step 3: Once a new workflow activity is originated, the 

system automatically recommends the administrator with 

a default resource and other proper candidates according 

to the mined association rules. The workflow 

administrator may simply approve the default assignment 

or choose another resource in the candidate list for the 

work considering the reality.  

 

3. From workflow log to Resource Allocation 

Rules 
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Our goal is to distill resource allocation rules with high 

prediction accuracy out of the workflow event log. A 

workflow event typically includes three primary kinds of 

information: the workflow process information, the 

workflow task information and the resource information. 

The association rule involving these three dimensions 

without repeated predicates falls in the multi-dimensional 

association rules mining domain[14].  

3.1. Models and entities in workflow 

3.1.1. Workflow model 

To illustrate, we use a product planning process 
66p , 

and the workflow diagram consistent to the process is 

depicted in Fig. 2.  
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Fig. 2 A sample process 66p  modeled using WF-NET  

Fig. 2 shows a simplified workflow process 66p  modeled with 

WF-NET[4]. This process includes five tasks (A, B, C, D, and E), a 

parallel routing (the AND-Split and the AND-Join), and two selective 

routings (OR-Split 1P  and OR-Join 6P ). 

Table 1 A Part of the Workflow Log 

Table 1 is an event log sample consistent with the process 66p . This 

sample mainly includes some entities of WfMS: resource and task, case, 

and process, the “EventID” is the identity of the log and the “CaseID” 

referred to the identity of the instances of 66p . 

EventID ActID FlowID Staff CaseID SetDate

5313 1 66 Tony 203 2007-10-15 21:06

5314 1 66 Sam 204 2007-10-15 21:09

5315 4 66 Mary 203 2007-10-15 21:10

5316 1 66 Sam 205 2007-10-15 21:11

5317 1 66 Tony 205 2007-10-15 21:13

5318 1 66 Tony 206 2007-10-16 13:46

5319 2 66 Tom 204 2007-10-16 13:47

5320 1 66 Sam 203 2007-10-16 13:49

5321 4 66 Susan 203 2007-10-16 13:50

5322 1 66 Mary 206 2007-10-16 13:51

5323 2 66 Mary 204 2007-10-16 13:52

5324 3 66 Tony 204 2007-10-16 13:53

5325 3 66 Tom 204 2007-10-16 13:54

5326 1 66 Sam 206 2007-10-16 13:55

5327 2 66 Tom 205 2007-10-16 13:56

5328 5 66 Susan 203 2007-10-16 14:02

5329 4 66 Sam 206 2007-10-23 14:04

5330 2 66 Mary 205 2007-10-23 14:05

5331 1 66 Susan 204 2007-10-23 14:06

5332 1 66 Mary 206 2007-10-23 14:08

5333 3 66 Sam 205 2007-10-23 14:10

5334 3 66 Susan 205 2007-10-23 14:13

5335 2 66 Tony 206 2007-10-23 14:14

5336 3 66 Susan 206 2007-10-23 15:31

5337 3 66 Tom 206 2007-10-23 15:33

5338 4 66 Sam 204 2007-10-23 15:37

5339 3 66 Susan 206 2007-10-23 15:38

5340 5 66 Tom 205 2007-10-23 15:42

5341 5 66 Susan 205 2007-10-23 15:43

5342 5 66 Tom 204 2007-10-23 15:44

5343 5 66 Susan 206 2007-10-23 15:47

5344 5 66 Tom 205 2007-10-23 15:50  

 

This process is modeled in a Petri-net-like model 

referred to as WF-NET. Entities in this diagram are: 

process, task, and routing, etc [4, 15]. First, in Task A, the 

system automatically searches the database for similar 

cases. If there are cases meeting the requirements, the 

process would be submitted to Task D, and the designer 

will download the case documents and alter them. If there 

is no well-suited case, the work would be passed through a 

parallel routing to both Task B and Task C, and new 

design tasks will be assigned to corresponding designers 

for Task B and co-designer for Task C. When both the 

Task B and C are finished, the designed document will be 

archived in Task E and the whole design process ends. 

Note that, we do not consider iteration routings, like the 

directed line from place 6P  to Task A. 

A workflow log generates as the works transact from 

one step to another consistent with the control flow of the 

process in Fig. 2. Note that we filter out some notions such 

as time stamps, event types, which are not helpful here. 
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Neither do we consider the ordering of the events 

corresponding to different cases.  

We consider workflow logs as a sequence of distinct 

workflow activities, where subsequences, such as the 

cases (a case is an instance of a process.), can be observed 

by usually long gaps between consecutive queries. For 

example, as is shown in Table 1, assume that a workflow 

log consists the following workflow transaction events: 

1 1 2 4: ( , , )e p t r , 
2 2 1 3: ( , , )e p t r , 

3 1 2 9: ( , , )e p t r , 

4 2 1 7: ( , , )e p t r , 
5 3 3 10: ( , , )e p t r . This sequence can be 

divided into activity set view according to process id and 

task id: Activity Set 1 (
1 2,p t ): (

1e , 
3e ) ; Activity Set 2 

(
2 1,p t ): (

2e , 
4e ); Activity Set 3 (

3 3,p t ): (
5e ), where 

each Activity corresponds to a same pair of process and 

task. Thus, we get a schematic view of the sample of the 

workflow log in Table 2: 

 

Table 2 A schematic view of the workflow log 

Case ID Log events 

1 (A, Tony), (B, Susan), (C, Tom), (E, Mary) 

2 (A, Tony), (D, Jim), (E, Mary) 

3 (A, Tony), (B, Susan), (C, Tom), (E, Mary) 

4 (A, Tony), (D, Jim), (E, Mary) 

5 (A, Tony), (B, Sam), (C, Sam), (E, Tony) 

6 (A, Jim), (B, Susan), (C, Sam), (E, Tony) 

 

For convenience, we define some models used in the 

mining process by adopting some notions defined in Ref. 

[15]. 

Definition 1. (Workflow Process) 

A process indicates the working tasks and the orders in 

which this should be done. Let 1 2{ , ,..., }
PnP p p p  be a 

set of processes, where ip  is a process. A task is an 

atomic unit of a process, let T be a set of tasks 

1 2( ) { , ,..., }
ii i nT T p t t t  , {1,2,..., }Pi n . Let R  be the 

set of performers/originators (i.e., staffs, resources, or 

agents), 1 2{ , ,..., }
rnR r r r . 

Here, 
Pn P , and ( )i in T p , and ( )iT p  is the 

task set of the process 
ip . 

rn  is the number of the 

resource units, 
rn R . 

Fig. 2 shows a simplified workflow process. In the 

theory of workflow modeling [4, 16], routing determines 

the control flow of the process, the order of the 

performances of the tasks, and is usually performed 

automatically. In Fig. 2, there are 5 tasks need to be 

assigned manually in 
66p , 

66 1 2 3 4 5Pr ( ) { , , , , } { , , , , }TasksIn ocess p t t t t t A B C D E  .  

The task and process entities fall in the control flow 

aspect of WfMS, and the performer/originator entities fall 

in the organizational model prospect. There are some other 

entities in the organizational prospect like the 

organizational unit, the organization and the role. However, 

we do not take into account such information in this paper. 

 

3.1.2. Workflow log 

To handle cases is the primary objective of a workflow 

system, where the tasks of similar cases are organized in 

the same ways, namely workflow processes. In other 

words, a case is an instance of some process. The 

transaction events generate as the cases run in the 

workflow system. A workflow log is a collection of 

transaction events of the task executions. Workflow log 

records the information such that: (1) each event refers to 

an activity, which is a task in the process, (2) each event 

refers to a case, which is an instance of process, (3) each 

event refers to a performer, a workflow resource (probably 

a staff, or just a printer) executing the activity. Therefore, 

we abstract the event log as a set of quadruples: 

( , , , )case task resource timestamp  

The tuple indicates that a resource executes the task of 

an instance of process at a specific time. In this paper, we 

focus on who execute what task in which process and do 

not care much about the execution time and the sequence 

of the tasks (cases). What interests us is thus the 

co-occurrence of processes, tasks, and resources. As a case 

is an instance of a process, we can easily get the process 
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identities with case identities. Let’s denote the sets 

1 2{ , ,..., }KP p p p , 
1 2{ , ,..., }MT t t t , 

1 2{ , ,..., }NR r r r  

to be the sets of K processes, M tasks and N resources in 

log L . With the log data pretreatment (omit the time 

information and get the process information from the 

cases), we can translate each quadruple to a triple of 

( , , )process task resource .  

Consider a sample of the workflow transaction log in 

our workflow management system shown in Table 1. 

Typically, the log contains thousands of records, where 

each record refers to a certain workflow activity. An 

activity is an execution composed of a process, a task, and 

a resource, probably a staff.  

Definition 2. (Event log) 

Let E P T R    be the set of (possible) events, an 

event : ( , , )s i j ke p t r  logs a workflow activity comprised 

of a process 
ip , a task jt  and a resource 

kr  (the 

originator). C E   is the set of possible event 

sequences (traces describing a case). ( )L B C  is an 

event log, here ( )B C  is the set of all bags (multi-sets) 

over C. Each element of L  denotes a case. 

It means that the task t  of process p  is executed by 

resource r . In WfMS, 1 2{ , ,..., }
rnR r r r , and rn  is the 

number of the resource units, rn R . 

3.2. Resource allocation rules representation 

In this work, there is a multidimensional data 

warehouse with four interrelated relations as is shown 

below: 

 Workflow_log (EventID, ProcessID, TaskID, 

ResourceID, EventType, CaseID), 

 Process (ProcessID, ProcessName, ), 

 Task (TaskID, TaskName, ProcessID, TaskType, 

Desription, ), 

 Resource (ResourceID, ResourceName, 

HasOrgEntity, HasRoleEntity), 

Where Process, Task, Resource are three dimension 

tables. These tables are linked to the Workflow_log table 

via three keys: ProcessID, TaskID and ResourceID. The 

correlated star schema of our warehouse is depicted in Fig. 

3. 

The log for mining must meet the requirements 

brought forth in [15] before process mining. The log data 

is preprocessed to get qualified for process mining, these 

pre-processing include revising or eliminating the faulty or 

unsound data. Faulty or unsound data mainly refer to those 

incomplete data, which are short of the necessary data 

items such as the activity, process, case or originator. 

Therefore, before mining, some preparations are necessary. 

First, if the log data comes from different data sources, 

then corresponding translation is essential for a unified 

data format and easier to process in the following steps, 

these works are some data processing methods such as 

coding, simplification, etc. 

In the workflow log in Table 1, the EventID, the ActID 

and the CaseID are the # of the workflow events, the 

workflow activities and the workflow process cases, 

respectively. The Resource is the name of the originators. 

The log segment includes 33 events, involves 5 activities, 

5 resources, 4 cases and a process 66p .  

In this paper, the attributes in the workflow log are all 

nominal. Instead of searching on only one attribute like 

process, we need to run through multidimensional 

attributes including process, task and resource, treating 

each attribute-value pair as an itemset. We use the 

multidimensional data shown in the star schema in Fig. 3 

to construct a data cube [17-19]. The generalization of 

group by, roll-up and cross-tab ideas is to aggregate the 

dimensions. In Fig. 3, it is a 3-dimensional data cube, and 

the traditional GROUP BY generates the 3-dimensional 

data cube core. The lower-dimensional aggregates appear 

as points, lines, planes, or cubes hanging off the data cube 

core. 
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(task)(process)

(process,resource,task)

(resource,task)(process,task)
(process,resource)

(resource)

 

Fig. 3 The 3-D data cube[14] 

 

Data cubes are well suited for mining 

multidimensional association rules. Fig. 3 shows the 

lattice of cuboids defining a data cube for the dimensions 

process, task and resource. An association rule has the 

form like LHS RHS , that is, from Left Hand Side 

(LHS) to Right Hand Side (RHS). By using the data cube, 

we may get several different multidimensional rules. 

Let us now see an example of a single frequent 

3-itemset 3 1 1 9:{ , , }F p t r , which is derived from the event 

log using the algorithm in section 4.1. The nonempty 

subsets of 3F  are 1 1{ , }p t , 1 9{ , }t r , 1 9{ , }p r , 1{ }p , 

1{ }t , 9{ }r . Thus, we can get the association rule in 

different forms:  

1 1 9p t r  , 

1 9 1p r t  , 

1 9 1t r p  , 

1 1 9p t r  , 

9 1 1r p t  , 

1 9 1t r p  , 

1 9p r , 

1 9t r , 

1 1p t , 

1 1t p  

9 1r t  

9 1r p  

Whereas some of the rules are of no help to resource 

allocations, e.g., the rules in the form of 1 1t p  means 

that the task 1t  of process 1p  is frequent performed in 

the system. Hence, we have to use the dimension/level 

constraints[20] to filter out the rules with little interest. 

 

Definition 3. (Resource Allocation Rule Constraint) 

For an activity of Task Y in Process X, and the 

Resource Z, our research objective in this paper is to find 

the resource allocation rule as follows called PTR (process, 

task to resource) metarule: 

( ,"1... ") ( ,"1... ")

( ," ... ")

p
X

p tprocess X n task Y n

resource Z Terry Mary




   (1) 

If we filter the rules using constraints in Definition 3, 

then only the rule 
1 1 9p t r   is qualified output. We 

can get a list of the rules by iterating this step to all of the 

frequent itemsets in the event log. “Find the execution of 

what task may promote the working frequency of the 

resources in the same case (the instance of a process)” is 

an association rules mining query, which can be expressed 

in a data mining query language (DMQL) as follows: 

 

Mine multi-dimensional association rules as 

Process+(A, A.ProcessName) and  

Task+(B, B.TaskName, ?[C], _, _)   Resource+(C, 

C.ResourceName, ?[D], ?[E])  

from Workflow_log 

Where P.ProcessID=A 

Group by A, B 

Having  

With minimum support=min_sup and minimum 

confidence=min_conf and minimum lift=min_lift  

 

This mining query allow the generation of association 

rules in the form as below: 

 

Process (9, “Process Planning File Design”) and Task 

(1, “Search for similar file”, 9, “others”, “Search for 

similar file template in the file database.”)   

Resource(3, Tom, “1,2,5”, “2,6,7,9”) [conf:(0.59); 

sup:(0.032); lift:(5)] 

 

The rules mean that if a work activity of the Task 1 in 

Process 9 is to be executed, there is a 59% probability that 

the work will be performed by Resource 3, Tom. A further 

indication of the rule is that, 3.2% of all the workflow 

events fulfilled all the criteria, and the lift measure of this 

rule is 5, indicating it a positively correlated association 

rule. 

 

4. Generate, annotate and rank: A three-stage 
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approach to mine resource allocation rules 

We have introduced some basic terms in resource 

allocation rules mining in previous subsections. In order to 

mine the multidimensional association rules from the 

event logs, in this subsection, we present a three-stage 

approach to get the useful rules. 

Stage 1. Generated raw resource allocation rules: Find 

all frequent 3-itemsets, and generate resource allocation 

rules using the rule constraint in Definition 3, and by 

definition, each of the itemsets should satisfy the 

minimum support and minimum confidence. 

Stage 2. Annotate the rules by Negative Correlation 

Annotation algorithm. 

Stage 3. Make a rule sequence by confidence of the 

rules using resource allocation rules sorting method. 

 

4.1. Frequent resource allocation rules generation  

In association rules mining domain, an itemset I is 

frequent only if its support value satisfies the minimum 

support threshold min_sup. The term support here is also 

referred to as relative support, and it indicates the 

occurrence frequency of the itemset[14]. For association 

rules mining in the form of p t r  , we define the term 

support as

( , , )
sup( )

( )

count p t r
p t r

count L
        (2) 

As is shown in Eq.(2), the support measure is the 

percentage of transactions in L  that contain the itemset 

( , , )p t r , The function ( )count L  returns the number of 

records in the log, and the ( , , )count p t s  returns the 

count of event logs corresponding to the process p , task 

t  and resource r .  

Frequent itemset mining leads to the discovery of 

associations and correlations among items in large 

transactional data sets. However, this can be a 

time-consuming procedure. In this paper, we use the 

Apriori algorithm to find frequent patterns. Apriori is a 

classical algorithm proposed by R. Agrawal and R. Srikant 

in 1994 for mining association rules, and is proved to be 

efficient and scalable for both artificial and real world data 

sets[11, 12]. The high performance of this algorithm is 

based on the priori knowledge that all nonempty subsets of 

a frequent itemset must also be frequent, and here we use 

its contraposition. 

We apply the Apriori algorithm along with the 

“Resource Allocation Constraint”. According to Definition 

3, the frequent itemset should be 3-dimentional, and the 

frequent itemsets must satisfy min_sup threshold. We can 

get the mining algorithm below: 

 

Mining Multidimensional association rules[14] from 

workflow event logs. 

Algorithm: Frequent-pattern generation. Find frequent 

itemsets using an iterative level-wise approach based on Apriori 

candidate generation. 

Input: 

 L, the workflow event log; 

 min_sup, the minimum support count threshold. 

Output: 
3F , frequent 3-itemsets in L. 

Method: 

(1) 1 _ _1 ( );F find frequent itemsets L   

(2) for -1( 2; ; ){kk F k    

(3)   1_ ( ) ;k kC apriori gen F   

(4)   for each transaction t L  {//scan L for counts 

(5)   ( , ) ;t kC subset C t //get the subsets of t that are 

candidates 

(6)   for each candidate tc C  

(7)     .c c o u n t ; 

(8)   } 

(9)   { | . m i n _ s u p }k kF c C c count     

(10) } 

(11) return 33
L L ; //Generate frequent 3-itemsets with 

dimension constraints. 

 

Procedure 1_ ( ; ( 1) )kapriori gen F frequent k itemsets    

(1) for each itemset 1 1kl F   

(2)   for each itemset 2 1kl F   

(3)     if ( 
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(4)        
1 2 1 2

1 2 1 2

( [1] [1]) ( [2] [2]) ...

( [ 2] [ 2]) (( [ 1] [ 1])

l l l l

l k l k l k l k

   

      
 

(5)       )  

(6) then { 

(7)       
1 2;c l l   //joint step: generate candidates 

(8)       if has_infrequent_subset( c ,
1kF 

) then 

(9)         delete c ; //prune step: remove unfruitful 

candidate 

(10)       else add c  to 
kC ; 

(11)     } 

(12) return 
kC ; 

 

Procedure has_infrequent_subset ( :  ;c candidate k itemset  

1 : ( 1)kF frequent k itemsets   ); // use the prior knowledge 

(1) for each ( 1)k  -subset s of c  

(2)   if 1ks F   then  

(3)     return TRUE; 

(4) return FALSE; 

 

Once that the frequent 3-itemsets from the log have 

been found, it is straightforward to generate strong rules 

from them. Strong rules are those who both satisfy 

minimum support threshold (min_sup) and minimum 

confidence threshold (min_conf) . The rule p t r   has 

confidence c in the transactions log set L, where c is the 

percentage of transactions in L containing p t  that also 

contain r . It is a conditional probability:  

( ) ( | )

( )

( )

confidence p t r P r p t

support_count p t r

support_count p t

   

 




    (3) 

To convert the frequent itemsets into strong resource 

allocation rules, we use the constraint in Definition 3 to 

confine the dimension and form of the mined rules, and 

we may get a list of these “qualified in form” rules below: 

 

Rule 1: process=8 task=1 655 ==> resource=19 655    conf:(1) 

Rule 2: process=7 task=1 206 ==> resource=17 199    conf:(0.97) 

Rule 3: process=5 task=8 296 ==> resource=4  276    

conf:(0.93) 

 

4.2. Negatively correlated rules annotation 

In the previous sections, we discussed the method of 

finding the frequent executors for the workflow tasks. 

However, the rules mined with the support-confidence 

framework discussed above may disclose some not so 

interesting event relationships[21, 22]. Let us examine the 

attached rules:  

Rule 1: ProcessID=1 TaskID=2 ==> ResourceID=4   conf:(0.59) 

[support_count=967]  

Rule 2: ProcessID=1 TaskID=2 ==> ResourceID=17  conf:(0.20) 

[support_count=328]  

Rule 3: ProcessID=1 TaskID=2 ==> ResourceID=13  conf:(0.13) 

[support_count=213]  

As illustrated in the list, all of the rules are above the 

support/confidence threshold. However, Rule 2 would be 

misleading when 
1 2 17 17( ) 0.20 ( ) 0.40P p t r P r     . 

Therefore, by definition, LHS( 1 2p t ) and RHS( 17r ) are 

actually negatively correlated as the existence of LHS 

actually decreases the likelihood of RHS.  

Furthermore, in the resource allocation rules mined 

from the workflow logs (in the form of p t r  ), 

 

 

( )

1 1

( )

1 1

(

1

sup_ ( )
sup( )

sup_ ( )
sup_ ( )

sup_ ( )

sup( )
sup_ ( )

sup( )

( ) sup_ ( )

p i

p i

L

n T p
i j

i j

i j i j

L

n T p
i j

i j

i j i j

L

T p

i j i j

j

count r
r

N

count p t r
count p t

count p t

N

p t r
count p t

p t

N

conf p t r count p t

 

 





  
   



  
   



  



 

 

)

1

p in

i

LN



 

(4) 

And in addition,  

  
( )

1 1

sup_ ( ) =
p i

n T p

i j L

i j

count p t N
 

   (5) 

 

Therefore, 

 

 

 

( )

1 1

( )

1 1

( ) sup_ ( )

sup( )

sup_ ( )

p i

p i

n T p

i j i j

i j

n T p

i j

i j

conf p t r count p t

r

count p t

 

 

  





 

 

(6) 
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So the support value sup( )r  actually equals to the 

arithmetic mean values of all the confidence values in 

{ ( ) | 1,2,3,..., , 1,2,3,..., ( )}i j p iconf p t r i n j T p    .  

Divide the both sides of Equ.(6) with sup( )r  and we 

get: 

 

 

( )

1 1

( )

1 1

( )
sup_ ( )

sup( )
1

sup_ ( )

p i

p i

n T p
i j

i j

i j

n T p

i j

i j

conf p t r
count p t

r

count p t

 

 

  
 

 




 

 

 (7) 

It means that when 
( )

1
sup( )

i jconf p t r

r

 
 , it is pretty 

sure that in some other activity, say ( x yp t , where x i  

and y j ), 
( )

1
sup( )

x yconf p t r

r

 
 , and therefore, 

( ) sup( ) ( )x y i jconf p t r r conf p t r      . 

Therefore, in a holistic view we claim that the resource 

17r  is actually more suitable for some other work 

( x yp t ). When the primary resource 4r  is unavailable, 

and if the administrator unwisely selects the secondary 

resource 17r  for 1 2p t  from Rule 2, the conflict would 

occur when x yp t  requires 17r . In the context of data 

mining, the division equation 

( ) / sup( )conf LHS RHS RHS  is named lift measure by 

definition[14, 23]: 

 

( ) ( , )

sup( ) ( ) ( )

( )

conf LHS RHS P LHS RHS

RHS P LHS P RHS

lift LHS RHS




 

 (8) 

Lift is a correlation measure used to find out 

uninteresting rules. A rule LHS RHS is negatively 

correlated if ( ) 1lift LHS RHS  , else, it is positively 

correlated. In this paper, we annotate the negatively 

correlated rules and recommend them to the administrators 

as alternative resource candidates, along with the positive 

ones. 

The negatively correlation annotation indicates that, 

although it is appropriate to assign the annotated resources 

to the workflow activity, it is better to keep them in 

reserve for their primary works.  

The negatively-correlated-rule-annotation algorithm is 

as follows: 

 

Annotate negatively correlated resource allocation rules in 

the strong rules 

Algorithm: Negative correlated association rules annotation. 

Annotate the rules with negative correlation. 

Input: 

 S, the candidate strong resource allocation rule set;  

Output: AR , resource allocation rule with negative correlation 

annotation; 

Method: 

(1)  for each resource allocation rule rl S  { //Scan L for 

counts 

(2) if ( ) 1lift rl   then 

(3)   annotate rl  as negative correlated; // Annotate the 

negative correlated rules 

(4) else add rl  to AR ; 

 

4.3. Rules confidence ranking: sort rules by 

confidence 

In association rule mining area, a major method to sort 

a collection of association rules is the most-confident 

selection method[24, 25]. The most-confident rule 

selection method always chooses the highest confidence 

among all the association rules whose support value is 

above the min_sup threshold. Hence, we use the 

confidence measure to sort the resulting rules to generate 

the resource allocation rules list for decision support. 

When the PTR rules are generated, the rules are then 

divided into different sets by their LHS. Suppose that for a 

specific rule set with the LHS ( 3 6p t ), the mined strong 

PTR rules are: 

 

Rule 1: ProcessID=3 TaskID=6 ==> ResourceID=7      conf:(0.26) 

[support_count=426]  

Rule 2: ProcessID=3 TaskID=6 ==> ResourceID=11     conf:(0.54) 

[support_count=885]  

Rule 3: ProcessID=3 TaskID=6 ==> ResourceID=13     conf:(0.10) 

[support_count=164]  
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In this example, the confidence values of Rule 1, Rule 

2, and Rule 3 are 0.26, 0.54 and 0.10, respectively. Then 

we get the ranked rule list by the confidence measure in 

descendant order:  

 

Rule 2: ProcessID=3 TaskID=6 ==> ResourceID=11     conf:(0.54) 

[support_count=885]  

Rule 1: ProcessID=3 TaskID=6 ==> ResourceID=7      conf:(0.26) 

[support_count=426]  

Rule 3: ProcessID=3 TaskID=6 ==> ResourceID=13     conf:(0.10) 

[support_count=164]  

 

With most-confident selection method, the system then 

automatically chooses the resource 
11r  from rule 2 as 

default recommendation for the administrator. Note that in 

our approach, the system will also recommend the 

resources suggested by rest of the list, 
7r  and 

13r  (from 

Rule 1 and Rule 3) as alternatives. For N different test 

cases, let C be the number of correct predictions, then the 

resource prediction accuracy of the activity ( 3 6p t ) is: 

C
precision

N
         (6) 

The rationale of most-confident selection method is 

that the testing data will share the same characteristics as 

the training data [25, 26]. Thus, if a rule has a high 

confidence in the training data, then this rule would also 

show a high accuracy in the testing data.  

 

5. Experiment and evaluation 

5.1. Experiment setup 

Our work is based on the workflow history data from a 

PDM system named KM PDM 

(http://www.kmsoft.com.cn/Contents-119.aspx) deployed 

in a large electronic manufacturing enterprise[13] in 

Nanjing, China. We import the event data of 10 processes 

from the KM PDM database using SQL queries. Given the 

workflow log data, the first step is to clean the raw data. 

We filter out noise logs with no originators and those logs 

performed automatically or allocated to originators at 

design-time (The existence of these event logs will not 

help us in mining the run-time resource allocation rules). 

Finally, we get a log with 75934 items. 

5.2. Training Data overview 

Table 3 shows the execution frequency counts of the 

training log, each column of the table shows the task 

sequence number in the process, and each row 

corresponds to a process. As we can see, the columns of 

the table are the processes, and the rows represent the # of 

the tasks in processes, and the numbers in the cells are the 

frequency counts of the corresponding process and task. 

There are 10 processes and 141 tasks in the training 

dataset.  

 

Table 3 Process-task distribution in training data 

            Process

Task
1 2 3 4 5 6 7 8 9 10

1 717 1020 281 380 609 642 206 655 755 1118

2 478 568 1109 720 561 879 589 869 608 248

3 335 284 764 798 562 208 253 777 922 183

4 240 786 671 335 502 535 567 173 776 398

5 278 182 722 483 811 616 718 730 310 642

6 715 197 370 690 424 421 677 690 262 976

7 207 275 1201 507 85 784 395 715 563 565

8 446 304 1189 441 296 792 628 953 837 619

9 258 741 613 269 773 1053 829 1048 314 204

10 644 226 281 467 0 166 178 160 376 461

11 1095 407 583 559 0 521 798 447 187 459

12 258 588 479 915 0 0 845 862 398 0

13 1168 524 429 319 0 0 813 0 718 0

14 810 377 798 0 0 0 828 0 307 0

15 985 456 0 0 0 0 0 0 318 0

16 957 1378 0 0 0 0 0 0 490 0

 

Fig. 4-6 demonstrates the basic properties of the 

workflow log in this paper. The X-axes are the # of the 

resources, activities and processes; the vertical axis 

represents the occurrence frequency or relative frequency.  

Fig. 4 illustrates the occurrence frequencies of the 

resources in the training dataset.  

Fig. 5 shows the frequency counts distribution of each 

activity. The vertical axis represents the perform times of 

each activity.  

Fig. 6 illustrates the relative frequency distribution of 

the processes.  

Note that in Fig. 5, we re-denote the workflow tasks 

with the term “activity” to illustrate the properties in 

2-dimentional figures, and the id of the activities are:  

_ max( _ ) _ _activity id task id process id task id   
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Fig. 4 Frequency counts of resources of the training dataset 
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Fig. 5 Frequency counts of activities of the training data 
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Fig. 6 Process distribution in the training data 

 

5.3. Parameters selection 

The measure min_sup has a strong effect on the quality 

of the rules mined. On one hand, if min_sup is set too high, 

those possible rules that cannot satisfy the min_sup 

threshold but with high confidence may be excluded, and 

this directly affect the prediction accuracy of the rules. On 

the other hand, when min_sup is set too low, the mining 

process will be time-consuming [24, 25, 27]. Therefore, 

for the support value, we have to balance efficiency 

against quality. From our experiments, we observe that for 

our training set, once min_sup is lowered to 0.001%, the 

rules mined are more accurate than the classifier built by 

C4.5.  
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Fig. 7 Overall accuracy under different min_sup thresholds 
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Fig. 8 Number of strong rules under different min_sup thresholds 

 

From Fig. 7 and Fig. 8, we can see that when min_sup 

threshold is lowered to 0.001%, the overall accuracy of the 
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rules will go to the upper limit, 61.453%. Therefore, in 

this paper, we set min_sup=0.001%. We also set a limit of 

20,000 on the total number of candidate rules in memory 

(including those dropped-off rules that do not satisfy either 

min_sup or min_conf). 

 

5.4. Experiment results 

After the preparations made above, we use the Apriori 

algorithm to generate association rules from the workflow 

log. Fig. 9 illustrates the large 3-itemsets (3)L  found in 

the proceeding of association rules mining: 
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Fig. 9 Large 3-itemsets (3)L  in the data cube found in the training set 

After we get the large itemsets, we process the data 

with the 3-stage method referred in Section 4. For activity 

105 6 9( )act p t , we find in the log the rule list as: 

Stage 1. Generate the association rules: With these 

large itemsets we can get the association rules above 

min_sup threshold and under the resource allocation 

constraint in Definition 3. 

 

Rule 1: process=6 task=9 1053 ==> resource=4 541  conf:(0.5138) 

Rule 2: process=6 task=9 1053 ==> resource=17 209 conf:(0.1985) 

Rule 3: process=6 task=9 1053 ==> resource=19 99  conf:(0.0940) 

Rule 4: process=6 task=9 1053 ==> resource=5 64   conf:(0.0608) 

Rule 5: process=6 task=9 1053 ==> resource=6 56   conf:(0.0532) 

Rule 6: process=6 task=9 1053 ==> resource=12 10  conf:(0.0095)  

Rule 7: process=6 task=9 1053 ==> resource=2  8  conf:(0.0076) 

Rule 8: process=6 task=9 1053 ==> resource=8  7  conf:(0.0066) 

Rule 9: process=6 task=9 1053 ==> resource=9  7  conf:(0.0066) 

Rule 10: process=6 task=9 1053 ==> resource=20 7   conf:(0.0066) 

Rule 11: process=6 task=9 1053 ==> resource=7  6  conf:(0.0057) 

Rule 12: process=6 task=9 1053 ==> resource=10 6   conf:(0.0057) 

Rule 13: process=6 task=9 1053 ==> resource=18 6   conf:(0.0057) 

 

Stage 2. Annotate the rules: annotate the negatively 

correlated rules with mark “*”. 

Stage 3. Sort the rules in precedence: sort the rules 

with the confidence measure. 

The final rule list can be:  

 

Rule 1: process=6 task=9 1053 ==> resource=4 541  conf:(0.5138) 

lift:7.4014 

Rule 2: process=6 task=9 1053 ==> resource=17 209 conf:(0.1985) 

lift:4.6118 

Rule 3: process=6 task=9 1053 ==> resource=19 99  conf:(0.0940) 

lift:1.8338 

*Rule 4: process=6 task=9 1053 ==> resource=5 64   conf:(0.0608) 

lift:0.8017 

*Rule 5: process=6 task=9 1053 ==> resource=6 56   conf:(0.0532) 

lift:0.7523 

*Rule 6: process=6 task=9 1053 ==> resource=12 10  conf:(0.0095) 

lift:0.1387 

*Rule 7: process=6 task=9 1053 ==> resource=2  8  conf:(0.0076) 

lift:0. 1565 

*Rule 8: process=6 task=9 1053 ==> resource=8  7  conf:(0.0066) 

lift:0. 1605 

*Rule 9: process=6 task=9 1053 ==> resource=9  7  conf:(0.0066) 

lift:0. 1901 

*Rule 10: process=6 task=9 1053 ==> resource=20 7   conf:(0.0066) 

lift:0. 1315 

*Rule 11: process=6 task=9 1053 ==> resource=7  6  conf:(0.0057) 

lift:0.1091 

*Rule 12: process=6 task=9 1053 ==> resource=10 6   conf:(0.0057) 

lift:0.1357 

*Rule 13: process=6 task=9 1053 ==> resource=18 6   conf:(0.0057) 

lift:0.1315 

 

According to the rules above, the system predict 

resource 4r  as the originator of the activity, 

105 6 9( )act p t . Fig. 10 shows the prediction accuracy of 

all the activities using the most-confidence selection 

method:  
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Fig. 10 Accuracy of different activities 

In the most confident selection method discussed in 

section 4.3, resource 
4r  is the default originator for 

105 6 9( )act p t , and can be also viewed as a class label. 

Thus we can get a subset of most confident resource 

allocation rules, and build a classifier for each workflow 

activity. We make some comparison experiments between 

this Apriori-based classifier and the classification 

algorithms in [2, 28] using the data mining tool 

WEKA[29]. For the Apriori-based classifier[25], we set 

the parameters as: min_conf=0.05, min_sup=0.0001%, 

and rules number upper limit=10000; the others are four 

classification algorithms applied in Refs. [2, 28]: SVM, 

C4.5, ID3 and Naïve Bayes, considering the 

characteristics and variation of the training dataset, we set 

the test mode as 10-fold cross-validation. 

Table 4 lists the number of correct predictions, mining 

time, and overall prediction accuracy of the algorithms.  

Table 4 Overall prediction accuracy of different 

methods 

Methods 

Correct 

predictions 

counts 

Time 

elapsed(s) 

Overall 

prediction 

accuracy 

(%) 

Apriori 46663 20 61.452 

SVM 46643 9268 61.426 

C4.5 46656 17 61.443 

ID3 45285 14 59.637 

Naïve 

Bayes 
28920 9 38.086 

From Table 4, we conclude that except Naïve Bayes, 

other algorithms achieve an overall accuracy about 60%, 

and the values are very close. Naïve Bayes performs best 

in mining time, and the training/testing time of SVM is 

extremely long.  

The performance of the proposed classifier based on 

the most confident selection method is reasonable 

compared with those in [2, 28]. However, the overall 

prediction accuracy of around 60% also implies that about 

40% of all the system-assigned workflow activities need 

manual reassignments. Therefore, the rules with highest 

accuracy to the testing data are not always the best choice. 

Take 105 6 9( )act p t  for example, Rule 1 is of a 

confidence 51%, and the sum of top 3 positively 

correlated rules reaches up to 80.63%.  

Therefore, instead of suggesting one best prediction 

for each class of workflow activities, the system also 

recommend other strong resource allocation rules to the 

workflow administrators as candidates: when the 

resources with high confidence are unavailable at the 

moment, the remaining candidates (including the 

annotated resources) in the list could be the alternatives. 

In addition, with the assistance of the negatively 

correlated rules annotations, the administrators can 

have a holistic view of the resources’ work priorities. 

They can make assignments following the positively 

correlated rules in priority, and turn to negatively 

correlated ones only when all the prior resources are 

heavily occupied.  

 

5.5. Special events and further discussion 

Note that in Fig. 10, there are weak-predicated cases 

like the activity #71 (12.9%), #83 (28.4%) and #140 

(26.4%) etc., in fact, these activities have some common 

features. Through further analysis, we find the reasons as 

follows: firstly, the task is probably of relatively small 

number of training samples, like #71 and #140 (refer to 
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Fig. 5), the inadequacy of training samples leads to a weak 

prediction. Another reason is, each work has been evenly 

assigned to many resources (like the activity #83, usually 

with more than 5 actors), therefore, there is actually no 

strict No. 1 actor for these activities and it usually does not 

matter which resource to reform the task. 

In the proposed approach, the rules of different forms 

from the PTR rules are eliminated from the resource 

allocation recommendation list. However, we find some of 

these intermediate products of interestingness. Following 

are two examples: 

Let us see a strong RP rule (resource to process): 

17 3 , 0.73r p conf  , this rule implies that 73% of the 

work of resource 
17r  locates in process 

3p , so we may 

infer that resource 17r  is skilled in the tasks in 3p . 

Besides, the TP rule (task to process) 

16 2 , 0.49t p conf   indicates that about half of the 

tasks 16t  are in process 2p , which just conforms with 

the statistic results in Table 3. 

These “by-products” have no distinct contribution to 

workflow resource allocation, but still of reference values 

to the workflow administrators. 

 

6. Related work 

The workflow technology provides a broad support to 

manage the works running in information systems. Such 

generic information systems that are configured on the 

basis of process models are referred to as process-aware 

information systems (PAISs, e.g., workflow management 

systems, ERP systems, CRM systems, PDM systems), and 

are now widely used in manufacturing enterprises.  

Nowadays, a hot topic in the workflow context is to 

find and use the knowledge in the workflow management 

procedures[30-34]. Current PAISs usually record all kinds 

of events, the omnipresence of event logs in PAISs is a 

motivator of process mining. Process mining is a 

state-of-art technology in discovering useful information 

(e.g., knowledge of process control flow or organizational 

structures) from event logs [15, 35]. For different mining 

perspectives, the result varies: the control flow mining is 

in the process perspective; and so are the organizational 

architecture and relationships of the workflow systems. 

As far as we know, despite of the great efforts spent on 

the control flow and data aspect of workflow, the 

organizational aspect of processes have been often 

neglected. To date, there has been a relatively small body 

of researches in workflow resource allocation. However, 

in order to fully understand workflow, it is very important 

to find the relationship between the processes and the 

resources[2], e.g. by whom the activities should be 

performed.  

The target of the allocation of the workflow tasks to 

resource is to find the logic between the workflow process, 

the activity, and the resources. In the organizational aspect 

of process mining, according to [15, 35], there are four 

measures: measures based on (possible) causality, 

measures based on joint cases, measures based on joint 

activities, measures based on special event types. To the 

best of our knowledge, related researches so far have 

made classification as a popular choice to discover 

resource allocation knowledge from the workflow logs, 

and most of the recent research activities in resource 

allocation fall into process mining[9] in the organizational 

perspective, namely organizational mining, related work is 

as follows: 

Ref. [2] discussed an approach to semi-automating the 

run-time staff assignment in workflow management 

systems. In order to reduce the amount of manual staff 

assignments, Y. Liu et al. apply the machine learning 

technology to the workflow event log from three 

enterprises to learn the kinds of activities that each staff 

undertakes. In Ref. [1], Ly et al. shows that the task of 

mining staff assignment rules using history data and 

organizational information can be considered as a 

inductive learning problem, and they adapt a decision 

learning approach to derive staff assignment rules.  

In Ref. [28], Rinderle and van der Aalst develop a 

framework for the complete life-cycle support for staff 
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assignment rules. Ref. [36] uses Hidden Markov Models 

to allocate the proficient staffs for a whole business 

process based on the workflow event log. In Ref. [37], 

Andrzejak et al. present a closed-loop workflow 

framework in control flow aspect, that implements a 

general closed control loop of planning – execution – 

result validation – re-planning, and generates workflows. 

In our previous work in Refs.[38], we present a 

closed-loop workflow management framework: we apply 

a statistic approach to derive resource allocation 

knowledge from the workflow log to assist assigning the 

resources for the upcoming workflow tasks. The mined 

staff assignment information is then feedback to construct 

a closed-loop in workflow resource management. 

As is shown in the previous works mentioned above, 

researchers concentrate on finding the suggestion with the 

highest accuracy for a class of workflow activities. 

However, these best suggestions may not always be the 

best choices, sometimes the best prediction comes from 

the administrator’s judgments, according to the real-time 

situation of the system. Our approach is different from that 

of Refs. [1, 2, 28, 36] in that we not only give the best 

prediction for each activity, but also give a 

recommendation of candidate predictions. Such strategy 

makes it an easier way for the administrators to reach for 

applicable alternatives when the default prediction fails. 

The idea of automatic resource allocation can also be 

found in the literature on advanced manufacturing 

technologies, typically, the Advanced Planning and 

Scheduling (APS)[39]. APS refers to a manufacturing 

process management (MPM) by which the production 

resources (including materials and production capacity) 

are optimally allocated to meet the manufacturing 

demands. In Ref. [40], Stadtler discusses the essence of 

SCM and advanced planning in the form of two 

conceptual frameworks: The house of SCM and the supply 

chain planning matrix. In Ref. [39], Lee et al. present a 

model for advanced planning and scheduling (APS) that 

requires an absolute due date with outsourcing in a 

manufacturing supply chain. The proposed model 

considers alternative process plans for job types, with 

precedence constraints for job operations. Another 

research about advanced resource planning is proposed by 

Vandaele et al.[41, 42]. They propose a decision support 

module for the manufacturing planning and control system 

called advanced resource planning (ARP). The ARP 

module provides a parameter-setting process, with the 

ultimate goal of yielding realistic information about 

production lead times for scheduling purposes, sales and 

marketing, strategic and operational decision making, and 

suppliers and customers.  

 

7. Conclusions and future work 

We have presented a decision-making approach using 

data mining technology to make recommendations to 

workflow initiators. In the closed-loop workflow resource 

allocation framework, the association rules mining 

algorithms are applied to the workflow event log for 

mining resource allocation rules. Our current research is 

oriented towards developing more productive WfMS in 

resource management along the following lines: (a) 

implementing the proposed framework in a web-based 

architecture, (b) association rules mining to generate 

strong resource allocation rules, (c) using the negative 

correlation measures to annotate the negative correlated 

rules, (d) ranking the rules to make decision support for 

resource allocation.  

To illustrate, we make some comparison experiments 

on the log data distract from a manufacturing enterprise, 

experiment results show an overall accuracy of over 50%, 

and we made a comparison between the presented 

approach and the classification algorithms and analyzed 

their performances. Feasibility evaluation via a case study 

suggests that the proposed approach would be useful in 

supporting workflow resource allocation. 

Then we discuss the advantages and limitations of the 

method. Along with the administrators’ awareness of the 

workload of the resources, and professional knowledge to 

different product design tasks, our approach can well 

handle most of the resource allocation problems in PAISs.  
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Our future work includes two main parts: (1) compare 

some other machine learning approaches like inductive 

learning programming (ILP) with our present method to 

find some more efficient and effective approaches. (2) find 

the resource allocation rules from different organizational 

levels and dimensions (e.g. the roles and the 

organizational units).  

 

Acknowledgement 

This work is funded by certain ministry of China under 

Grant 51318010103 and Grant 9140A18010111JW0602. 

We are also very grateful to anonymous referees for their 

valuable comments. 

 

References 

[1] L. Ly, S. Rinderle, P. Dadam, and M. 

Reichert, "Mining Staff Assignment Rules 

from Event-Based Data," in Business 

Process Management Workshops, ed, 2006, 

pp. 177-190. 

[2] Y. Liu, J. Wang, Y. Yang, and J. Sun, "A 

semi-automatic approach for workflow staff 

assignment," Computers in Industry, vol. 59, 

pp. 463-476, 2008. 

[3] Z. Huang, W. M. P. van der Aalst, X. Lu, 

and H. Duan, "An adaptive work 

distribution mechanism based on 

reinforcement learning," Expert Systems 

with Applications, vol. 37, pp. 7533-7541, 

2010. 

[4] W. van der Aalst and K. van Hee, Workflow 

Management: Models, Methods, and 

Systems vol. 1: The MIT Press, 2004. 

[5] W. M. P. van der Aalst, A. H. M. ter 

Hofstede, B. Kiepuszewski, and A. P. Barros, 

"Workflow Patterns," Distributed and 

Parallel Databases, vol. 14, pp. 5-51, 2003. 

[6] N. Russell, W. M. P. van der Aalst, A. H. M. 

ter Hofstede, and D. Edmond, "Workflow 

Resource Patterns: Identification, 

Representation and Tool Support," in 

Advanced Information Systems Engineering. 

vol. 3520, O. Pastor and J. Falcão e Cunha, 

Eds., ed: Springer Berlin / Heidelberg, 2005, 

pp. 216-232. 

[7] J. E. Cook and A. L. Wolf, "Discovering 

models of software processes from 

event-based data," ACM Trans. Softw. Eng. 

Methodol., vol. 7, pp. 215-249, 1998. 

[8] W. M. P. van der Aalst, B. F. van Dongen, J. 

Herbst, L. Maruster, G. Schimm, and A. J. 

M. M. Weijters, "Workflow mining: A 

survey of issues and approaches," Data & 

Knowledge Engineering, vol. 47, pp. 

237-267, 2003. 

[9] W. M. P. van der Aalst and A. J. M. M. 

Weijters, "Process mining: a research 

agenda," Computers in Industry, vol. 53, pp. 

231-244, 2004. 

[10] W. M. P. van der Aalst, H. A. Reijers, A. J. 

M. M. Weijters, B. F. van Dongen, A. K. 

Alves de Medeiros, M. Song, and H. M. W. 

Verbeek, "Business process mining: An 

industrial application," Information Systems, 

vol. 32, pp. 713-732, 2007. 

[11] R. Agrawal and R. Srikan, "Fast Algorithms  

for Mining Association Rules " in Proc. 

20th Int. Conf. Very Large Data Bases, 1994, 

pp. 487-499. 

[12] Z. Zheng, R. Kohavi, and L. Mason, "Real 

world performance of association rule 

algorithms," presented at the Proceedings of 

the seventh ACM SIGKDD international 

conference on Knowledge discovery and 

data mining, San Francisco, California, 

2001. 

[13] (2009). Nanjing Research Institute of 

Electronics Technology (Home page). 

Available: http://www.nriet.com/ 

[14] J. Han and M. Kamber, Data 

Mining:Concepts and Techniques: Morgan 

Kaufmann, 2006. 

[15] W. M. P. van der Aalst, Song, M., "Mining 

Social Networks: Uncovering Interaction 

Patterns in Business Processes," Business 

Process Management: Second International 

http://www.nriet.com/


- 17 - 
 

Conference, BPM 2004, Potsdam, Germany, 

June 17-18, 2004; Proceedings, 2004. 

[16] W. M. P. van der Aalst and A. H. M. ter 

Hofstede, "YAWL: yet another workflow 

language," Information Systems, vol. 30, pp. 

245-275, 2005. 

[17] S. Chaudhuri and U. Dayal, "An overview 

of data warehousing and OLAP 

technology," SIGMOD Rec., vol. 26, pp. 

65-74, 1997. 

[18] J. Gray, S. Chaudhuri, A. Bosworth, A. 

Layman, D. Reichart, M. Venkatrao, F. 

Pellow, and H. Pirahesh, "Data Cube: A 

Relational Aggregation Operator 

Generalizing Group-By, Cross-Tab, and 

Sub-Totals," Data Mining and Knowledge 

Discovery, vol. 1, pp. 29-53, 1997. 

[19] M. Kamber, J. Han, and J. Y. Chiang, 

"Metarule-Guided  Mining  of 

Multi-Dimensional  Association  Rules  

Using  Data  Cubes " in KDD-97, 1997, p. 

4. 

[20] H. Jiawei, L. V. S. Lakshmanan, and R. T. 

Ng, "Constraint-based, multidimensional 

data mining," Computer, vol. 32, pp. 46-50, 

1999. 

[21] T. Wu, Y. Chen, and J. Han, 

"Re-examination of interestingness 

measures in pattern mining: a unified 

framework," Data Mining and Knowledge 

Discovery, vol. 21, pp. 371-397, 2010. 

[22] S. Brin, R. Motwani, and C. Silverstein, 

"Beyond market baskets: generalizing 

association rules to correlations," SIGMOD 

Rec., vol. 26, pp. 265-276, 1997. 

[23] L. Geng and H. J. Hamilton, 

"Interestingness measures for data mining: 

A survey," ACM Comput. Surv., vol. 38, p. 9, 

2006. 

[24] P.-N. Tan, V. Kumar, and J. Srivastava, 

"Selecting the right interestingness measure 

for association patterns," presented at the 

International Conference on Knowledge 

Discovery and Data Mining, Edmonton, 

Alberta, Canada 2002. 

[25] B. Liu, W. Hsu, and Y. Ma, "Integrating 

Classification and Association Rule 

Mining," in Knowledge Discovery and Data 

Mining, 1998, pp. 80-86. 

[26] Q. Yang, T. Li, and K. Wang, "Building 

Association-Rule Based Sequential 

Classifiers for Web-Document Prediction," 

Data Mining and Knowledge Discovery, vol. 

8, pp. 253-273, 2004. 

[27] E. R. Omiecinski, "Alternative interest 

measures for mining associations in 

databases," Knowledge and Data 

Engineering, IEEE Transactions on, vol. 15, 

pp. 57-69, 2003. 

[28] S. Rinderle-Ma and W. M. P. v. d. Aalst, 

"Life-Cycle Support for Staff Assignment 

Rules in Process-Aware Information 

Systems," Department of Technology 

Management, Eindhoven University of 

Technology, 2007. 

[29] Ian H.Witten and E. Eibe Frank, Data 

Mining: Practical Machine Learning Tools 

and Techniques 2005. 

[30] W. M. P. van der Aalst, M. Rosemann, and 

M. Dumas, "Deadline-based escalation in 

process-aware information systems," 

Decision Support Systems, vol. 43, pp. 

492-511, 2007. 

[31] G. Greco, A. Guzzo, G. Manco, and D. 

Sacca, "Mining and reasoning on 

workflows," Knowledge and Data 

Engineering, IEEE Transactions on, vol. 17, 

pp. 519-534, 2005. 

[32] P. W. H. Chung, L. Cheung, J. Stader, P. 

Jarvis, J. Moore, and A. Macintosh, 

"Knowledge-based process management--an 

approach to handling adaptive workflow," 

Knowledge-Based Systems, vol. 16, pp. 

149-160, 2003. 

[33] S. Thompson, N. Giles, Y. Li, H. Gharib, 

and T. D. Nguyen, "Using AI and semantic 

web technologies to attack process 

complexity in open systems," 



- 18 - 
 

Knowledge-Based Systems, vol. 20, pp. 

152-159, 2007. 

[34] M. Wang, H. Wang, and D. Xu, "The design 

of intelligent workflow monitoring with 

agent technology," Knowledge-Based 

Systems, vol. 18, pp. 257-266, 2005. 

[35] W. M. P. van der Aalst, H. A. Reijers, and M. 

Song, "Discovering Social Networks from 

Event Logs," Computer Supported 

Cooperative Work (CSCW), vol. 14, pp. 

549-593, 2005. 

[36] H. Yang, C. Wang, Y. Liu, and J. Wang, "An 

Optimal Approach for Workflow Staff 

Assignment Based on Hidden Markov 

Models," in On the Move to Meaningful 

Internet Systems: OTM 2008 Workshops, ed, 

2008, pp. 24-26. 

[37] A. Andrzejak, U. Hermann, and A. Sahai, 

"FEEDBACKFLOW-An Adaptive 

Workflow Generator for Systems 

Management," in Autonomic Computing, 

2005. ICAC 2005. Proceedings. Second 

International Conference on, 2005, pp. 

335-336. 

[38] T. Liu, H. Yi, Z. Ni, and X. Liu, "A 

Closed-loop Workflow Management 

Technique Based on Process Mining," in 

Mechatronics and Machine Vision in 

Practice, 2008. M2VIP 2008., Auckland, 

New zealand, 2008, pp. 435-440. 

[39] Y. H. Lee, C. S. Jeong, and C. Moon, 

"Advanced planning and scheduling with 

outsourcing in manufacturing supply chain," 

Computers & Industrial Engineering, vol. 

43, pp. 351-374, 2002. 

[40] H. Stadtler, "Supply chain management and 

advanced planning--basics, overview and 

challenges," European Journal of 

Operational Research, vol. 163, pp. 

575-588, 2005. 

[41] N. Vandaele and L. De Boeck, "Advanced 

Resource Planning," Robotics and 

Computer-Integrated Manufacturing, vol. 

19, pp. 211-218, 2003. 

[42] I. Van Nieuwenhuyse, L. De Boeck, M. 

Lambrecht, and N. J. Vandaele, "Advanced 

resource planning as a decision support 

module for ERP," Computers in Industry, 

vol. In Press, Corrected Proof. 

 

 


