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Argumentation provides a sophisticated yet powerful mechanism for the formalization of commonsense
reasoning in knowledge-based systems, with application in many areas of Artificial Intelligence. Nowa-
days, most argumentation systems build their arguments on the basis of a single, fixed knowledge base,
often under the form of a logic program as in Defeasible Logic Programming or in Assumption-Based
Argumentation. Currently, adding new information to such programs requires a manual encoding, which
is not feasible for many real-world environments which involve large amounts of data, usually concep-
tualized as relational databases.

This paper presents a novel approach to compute arguments from premises obtained from relational
databases, identifying several relevant aspects. In our setting, different databases can be updated by
external, independent applications, leading to changes in the spectrum of available arguments. We pres-
ent algorithms for integrating a database management system with an argument-based inference engine.
Empirical results and running-time analysis associated with our approach show that it provides a pow-
erful alternative for efficiently achieving massive argumentation, taking advantage of modern DBMS
technologies. We contend that our proposal is significant for developing new architectures for knowl-
edge-based applications, such as Decision Support Systems and Recommender Systems, using argumen-
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tation as the underlying inference model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Argumentation represents a sophisticated device for the formal-
ization of commonsense reasoning, providing a practical, human-
like reasoning mechanism with the ability of suitably handling
incomplete and/or potentially inconsistent information. As such,
it has found application, and proven its value, in different areas
of Artificial Intelligence (AI) such as multi-agent systems, recom-
mender systems, and decision support systems among others
(see e.g., [1-4]).

Intuitively, an argument is a coherent set of statements through
which a claim is made, and support is offered for it, trying to influ-
ence an audience in a context of disagreement. Thus, the ultimate
acceptance of an argument will depend on a dialectical analysis
considering the arguments in favor and against the claim [2,5].
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Since the late 1980s, several frameworks (generically called
Argumentation Systems) have been developed for formalizing
argumentative reasoning; they provide different knowledge repre-
sentation and inference capabilities (e.g., see [6-14]). This research
activity was complemented with an increased interest in develop-
ing different implementations, having most of them a natural con-
nection with logic programming (see [15-18]), where rules and
facts are used to represent knowledge, and logical inference pro-
vides a mechanism for inferring conclusions. This type of systems,
where the structure of arguments is built from a specific knowl-
edge base, is referred to as Rule Based Argumentation System, or
RBAS (see Part I in [2]).

Clearly, RBAS are useful systems, but there are challenges for
their effective exploitation to solve real world problems. A major
difficulty is that inferences are performed from a local knowledge
base whose updating process is not straightforward [19] because it
is necessary to explicitly encode the new information in the pro-
gram. Therefore, providing tools for automatically updating the
knowledge base with information coming from external applica-
tions will add an interesting capability.
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A possible solution for such challenges comes from considering a
framework that integrates a RBAS with database technologies; this ap-
proach will improve the capabilities offered by traditional argumenta-
tion systems by connecting them with repositories stored in relational
databases. While for our formalization we will use as a basis a particu-
lar RBAS called Defeasible Logic Programming (DeLP) [11], this will not
represent any loss of generality. The resulting framework, called DBI-
DeLP (Database Integration for DeLP), integrates a database manage-
ment system (DBMS) and an argument-based inference engine. The
DBMS will provide the facts that the RBAS will take as premises for con-
structing the arguments over which it will reason. In such scenario, it is
possible to formalize processes that will feed the argumentative infer-
ence engine with supporting data coming from different databases, i.e.,
we could use the information stored in the databases together with the
rules in a DeLP program (the RBAS in question). Thus, arguments will
be created exploiting the interaction between rules and records in
databases.

We will present a formalization and an implementation for a pro-
cess capable of benefiting from the interaction just described. The pro-
posal is based on a preliminary approach presented in [20], where a
theoretical model for DBI-DeLP was first introduced. Here, we will ex-
tend and refine the concepts and definitions needed to further flesh-
out the DBI-DeLP framework. Furthermore, we will also include an
empirical analysis of the resulting framework, considering different
complexity issues associated with solving queries with DBI-DeLP pro-
grams, particularly those of the DeLP core proof procedure.

We have organized the paper as follows: Section 2 succinctly intro-
duces DeLP, the formalism behind DBI-DeLP; Section 3 outlines a pos-
sible structure to exploit information stored in databases by the
argumentation process; Section 4 presents an analysis on running-
time efficiency and complexity for DBI-DeLP; and Section 5 contains
our main conclusions identifying also lines for future research.

2. Background

In this section we give a brief summary of DeLP, which is a formal-
ism that combines Logic Programming and Defeasible Argumenta-
tion providing the declarative representation of information as
rules and a defeasible argumentation inference mechanism for war-
ranting the entailed conclusions. These rules are the key element for
introducing defeasibility and are used to represent a relation be-
tween pieces of knowledge that could be defeated after all things
are considered. Using these rules, reasoning is defeasible in a way
that is not explicitly programmed. The reader is referred to [11]
where a complete presentation of DeLP can be found.

In DeLP, knowledge is represented using facts, strict rules, and
defeasible rules. Facts are ground literals representing atomic infor-
mation or the negation of atomic information using strong negation
“~" (e.g., a, or ~a). Strict rules are denoted Head — Body, and repre-
sent a relation such that if Body can be obtained then Head should be
accepted. Defeasible Rules are denoted Head < Body and represent a
tentative relation that may be used when nothing could be posed
against it. Thus, a defeasible rule (or d-rule) expresses that reasons
to accept the d-rule’s antecedent Body give reasons to accept its conse-
quent Head. Finally, we introduce defeasible rules with empty bodies
that are called presumptions. Then, given a literal L, a presumption is
denoted “L<" and interpreted as if nothing is against L there are defea-
sible reasons to believe in it; so, presumptions are assumed to be true
if nothing could be posed against them. Recent research on the topic
of presumptions can be found in [21].

Definition 1 (Facts, Presumptions, Strict Rules and Defeasible
Rules). A literal L is a ground atom A or a negated ground atom
~A, where “~” represents the strong negation. Given a literal Lo
and a finite non empty set of literals Ly, ..., Ly:

- A fact is a literal Ly denoted “L—", or “Ly”

— A strict rule is denoted “L < L4, ..., L,"

- A defeasible rule is denoted “Lo < Ly, ..., L,"

- A presumption is a defeasible rule with empty body, denoted
“Lo<"

with n > 0.

Given a literal L, ~L represents the complement w.r.t. strong
negation, and the pair (L,~L) is said to be contradictory. Both strict
and defeasible rules are ground. Nevertheless, following the usual
practice in Logic Programming [17], we use schematic rules with
(meta-)variables in them, that stand for all possible grounded in-
stances of such rules. To distinguish these variables from other ele-
ments in a schematic rule, we adopt the notation of logic
programming, where variable names begin with uppercase letters,
and where constant and predicate names begin with lowercase let-
ters. For example,

child_restricted(Movie) < has_violence(Movie)

is a strict rule that represents that any movie that has violence is a
child restricted movie; and

good_movie(Movie) < genre(Movie, action),  performs_in(Movie, arnold)
represents a defeasible rule that can be interpreted as if there are no
reasons to believe otherwise, any action movie in which Arnold
Schwarzenegger stars is a good movie.

A DeLP program (or delp) is a pair (II, 4) where II is a set of
strict rules and facts, and 4 is a set of defeasible rules and pre-
sumptions. Formally:

Definition 2 (DeLP program). A delp P is a pair (I, 4) where

1. IT is a non-contradictory set of facts and strict rules,
2. A is a set of presumptions and defeasible rules.

Strong negation can appear in facts and presumptions, or gener-
ally in the head of strict and defeasible rules; therefore, it is impor-
tant to note that from a delp it is possible to obtain contradictory
literals. However, the set IT used to represent non-defeasible infor-
mation is non-contradictory, i.e., IT is such that no pair of contra-
dictory literals can be derived from I1. This is a methodological
restriction to avoid the problem of obtaining the full language
when IT is contradictory, i.e., ex falso quodlibet (see [22] for a sum-
mary); but this restriction does not apply to 4.

From a delp it is possible to infer tentative information. These
inferences, called defeasible derivations, are computed by back-
ward chaining applying the usual Selective Linear Definite (SLD)
inference procedure used in logic programming.

Definition 3 (Defeasible derivation). Let P = (I1, 4) be a delp and L
a ground literal. A defeasible derivation of L from P, denoted Pj~L,
consists of a finite sequence Ly, Ly,...,L,=L of ground literals,
where each literal L; is in the sequence because:

(a) there exists a fact L; or a presumption L;<, or

(b) there exists a rule R; in P (strict or defeasible) with head L;
and body By, By, . .., By and every literal of the body is an ele-
ment L; of the sequence appearing before L; (j < i).

Since contradictory literals can be derived, the derivation does
not provide a strong enough notion to characterize the final infer-
ences of the system. For this, when contradictory literals are de-
rived, DeLP builds arguments for the tentative conclusion and
then a dialectical process is used for deciding which literals are
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warranted. We will say that a literal L is warranted if there exists
an undefeated argument A for L; this will be denoted P~,L. An
argument for a literal L, denoted (A, L), is a minimal non-contradic-
tory set of d-rules A C 4, that allows to derive L. A sub-argument
of an argument (A,L) is a subset of the d-rules in A.

Definition 4 (Argument). Given a delp P, an argument A for a
grounded literal L, denoted (A,L), is a non empty set of defeasible
rules in A4 such that:

1. There exists a defeasible derivation for L from [T UA, i.e.,
ITUAKL,

2. IT UA is non-contradictory,

3. Ais minimal with respect to set inclusion in satisfying (1) and (2).

A sub-argument (B,Q) of (A,L) is an argument for Q such that
B C A

To establish if (A,L) is a non-defeated argument, counterargu-
ments against (A, L) are considered. A counterargument (C,R) of (A, L)
isanargument that disagrees with a sub-argument (B, Q) of (A,L),i.e.,
their conclusions R and Q are contradictory. A defeater for an argu-
ment (A,L) is a counterargument (C,R) that at least is as preferable
as (or is unrelated to) (A,L) under some comparison criterion.

In DeLP the comparison criterion is a modular part of the argu-
mentation inference engine, and it could be replaced. For instance,
we can use a criterion known as priority among rules, where an
argument defeats another when the former uses rules that are
marked as more important than the ones used by the latter. An
alternative is to use the generalized specificity criterion, where no
explicit order among rules or arguments need to be given, and
the comparison between two arguments is done syntactically
(see [11] for a discussion of the two criteria).

A counterargument can attack the conclusion of an argument or
an inner point of it, i.e., it can attack the conclusion of some sub-
argument of the argument. Since defeaters are arguments, there
may exist defeaters for them, defeaters for those defeaters, and so
on. Thus, a sequence of arguments called argumentation line can
arise. Clearly, for a particular argument (A,L) there might be more
than one defeater. Therefore, many argumentation lines could arise
from one argument. This leads to a tree structure called dialectical
tree (d-tree), denoted 7 (4 ;). In a dialectical tree every non-root node
is a defeater of its parent under the comparison criterion chosen to
decide defeat; therefore, every path from a leaf node to the root node
is a different argumentation line. Once the dialectical tree has been
computed, it is necessary to perform a bottom-up analysis of it to de-
cide whether the argument at the root is defeated or not, i.e., the lit-
eral that the argument supports is warranted from a delp P. Every
leaf of the tree is marked undefeated and every inner node is marked
defeated if it has at least one child node marked undefeated; other-
wise it is marked undefeated. Thus, the root node is warranted only
if all its attackers are defeated. More details about the warrant pro-
cedure can be found in [11].

Example 1. To briefly illustrate how queries are solved in DeLP,
consider the delp in Fig. 1 which represents information about the
stock market domain.

Suppose that we have to answer a query for buy_stock(acme)
based on this program. Then, applying the SLD procedure, DeLP
will find all rules that have buy_stock (and ~buy_stock) as its first
component, and try to build arguments based on them. So, it will
start using the rule

buy_stock(C) < good_price(C)

to build an argument in favor of buying stocks from “acme”, as there
is a fact saying that such stocks are at good price. Once that

argument is built the dialectical process will try to find counterar-
guments, either from ~buy_stock(C) (attack to the conclusion of
the previous argument) or from ~good_price(C) (attack to a sub-
argument). In the first case, it will use the rule

~ buy_stock(C) < good_price(C), risky_company(C)

to build an argument: good_price(acme) is obtained the same way as
before, and the rule

risky_company(C) < in_fusion(C, AC)

leads to risky_company(acme) using the fact that acme is in fusion
with steel, i.e, in_fusion(acme, steel). Then, we have the
counterargument

({~ buy_stock(acme)

< good_price(acme), risky_company(acme), risky_company(acme)

< in_fusion(acme, steel)}, ~ buy_stock(acme))

Now, DeLP cannot build a new counterargument attacking the
head of this last argument, as there is no other rule with buy_stock
in its head; instead, the dialectical process will try to find a coun-
terargument to the sub-argument:

({risky_company(acme) < in_fusion(acme, steel)}, risky_company(acme))
finding the argument for risky_company(acme) shown below which
plays that role:

({~ risky_company(acme) < in_fusion(acme, steel), strong(steel)},

~ risky_company(acme))

as the company that is merging with acme is steel, a company that
we know is strong. So, finally the conclusion is that we can buy
stocks from acme as they have good price, and the reason we previ-
ously had to avoid buying the stock is not valid since we know that
acme is not a risky company because it is in fusion with the com-
pany steel that is a strong company.

3. Defeasible argumentation over databases

As we have seen in the previous section, DeLP enables query
resolution by an argumentative process which deals with incom-
plete and potentially contradictory information. Several real-world
applications, such as recommender and decision-support systems
[23], multi-agent systems [24], etc., have been proposed using
DeLP as the implementation basis. However, many of these realis-
tic scenarios require massive updates of data; following the previ-
ous example, a rule-based movie recommender can improve its
recommendations if we feed it with updated information both
about the movies that can be recommended and the users for
which the recommendations are made.

Consider the stock market example presented in Example 1.
Clearly, to assess the status of a company in the stock market, it

buy_stock(C)
~buy_stock(C)

good_price(C).
good_price(C),
risky_company(C).
in_fusion(C, AC).
closing(C, AC)
in_fusion(C, AC),
strong(AC).

—
—
risky_company(C) —
risky_company(C) —
~risky_company(C) —
good_price(acme).
in_fusion(acme, steel).
strong(steel).

Fig. 1. A delp P for the stock market domain.
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might be useful to access databases from credit rating agencies (e.g.
Moody, Standard & Poor’s, The Fitch Group, etc.). Usually, the cred-
itworthiness of a company variates dynamically as the stock market
evolves. This variation is also reflected in the associated databases.
Thus, DeLP requires additional features to handle such data, since it
is not efficient to statically include new data into the program.

Two distinct problems involving the process of building argu-
ments arise in the previous setting. First, we have to establish
the connection with the information sources that will be used by
this process; second, we need to define an efficient way to feed that
information to the process.

Information sources may have different formats (raw text on
the World Wide Web, ontologies in the Semantic Web, CSV files,
etc.). In fact, recent research has exploited the use of ontologies
[25], and the Semantic Web [26], in formalizing argumentation
processes. In this context, however, relational databases are by
far the predominant choice for storing, organizing and accessing
structured data. In fact, several websites, such as the Internet Mo-
vie DataBase [27] and MovieLens [28], provide public datasets that
are supported by relational databases. To the best of our knowl-
edge there is currently no formal approach to integrate argumen-
tation with the relational database model. This paper presents a
framework that integrates Relational Databases technologies with
Defeasible Argumentation, called DBI-DeLP Framework. Our ap-
proach is based on DeLP, but it could also be extended to other
argumentation frameworks (e.g. ABA [13], or ASPIC [14]).

3.1. Enabling argumentation over relational databases

We start with the theoretical foundations of DBI-DeLP. In character-
izing the framework, it is necessary to consider the possible presence of
contradictory information tied to the use of several databases. Given a
database D, it might be the case that tuples t; € D; and t, € D, reflect
contradictory knowledge, what makes D inconsistent. Another possi-
ble scenario is to have two consistent databases D; and D,, such that
t; € Dy and t, € D, are contradictory. In such scenarios, t; and t, cannot
be accepted simultaneously. To handle such data we adopt the notion
of presumption [11,21] for representing “defeasible” information,
avoiding in that manner inconsistencies not allowed in the strict
knowledge available, as required by DeLP.

Example 2. Consider the database in Fig. 2 with information about
the time and places where employees of a certain company have
been. As we can see, the database is clearly inconsistent as its
records show that the employee Gregory was in Zone 1 and in Zone 2
at the same time. If we decide to use facts to represent this
information, we obtain the following:

has been(“Gregory”, “Zonel”, “11 : 00", “02/14/2012"),
and has been(“Gregory”, “Zone2”, “11 : 00”7, “02/14/2012").

This scenario is incorrect because contradictory information is
obtained when we represent in a natural way that it is not possible
to be in two places at the same time using the following rule:
~ has_been(Employee, Zone, Time)

— has_been(Employee, Different_Zone, Time),
Different_Zone # Zone

Then, the set

I1 = {~ has_been(Employee, Zone, Time)

— has_been(Employee, Different_Zone, Time),
Different_Zone # Zone.,

has_been(“Gregory”, “Zonel”, “11 : 007, “02/14/2012”),
has_been(“Gregory”, “Zone2”, “11 : 007, “02/14/2012”)}

is inconsistent.

/—[ Security Database ]—\

Employee Security Cameras

id name employee | zone timestamp

il Gregory i i 11:00 02/14/2012

2] Chase 4 il 09:00 02/14/2012

3 Cameron 4 3 11:00 02/15/2012

4 Eric 1 2 11:00 02/14/2012
2 il 09:00 02/14/2012

- )

Fig. 2. A database with logs from security devices.

We have introduced presumptions in the context of DeLP as a
device to represent information that is tentative and can be as-
sumed as valid whenever no contradiction arises; that is how we
will use the information coming from external sources. Given a
database D, we call operative presumptions those tentative facts
associated with the information stored in D. Formally:

Definition 5 (Operative Presumption). Let X be a set of predicates,
pred the predicate name for some x € X, L an atom of the form
pred(ty, ..., tn),and D={Dy, ..., D,} a set of databases. An operative
presumption (OP) for a database D, and the predicate x is a
presumption “L<" such that there exists a tuple
tup = (q%,...,q%) € D, with 1 <k < n, where g =t; for all i. OPs
are also denoted as “L < true”.

The set of all OPs for given sets of predicates X and set of dat-
abases D={Dq, ..., D;} is defined as:

n
Opsetx‘[) = UOPSC[’X'D[

i=1

where OPsety p, is the set of all OPs for database D; and every pred-
icate X' € X.

Example 3. Assume we have the database in Fig. 3 with informa-
tion about certain drugs that were administered to patients to treat
an illness affecting them. The database contains the tuples (xavier,
pneumonia, penicillin, great) and (jean, pneumonia, penicillin, bad), with
the outcomes of the treatment for Pneumonia with Penicillin in
some patients. From that information we can obtain the following
OPs:

treated(xavier, pneumonia, penicillin, great) < true.

treated(jean, pneumonia, penicillin, bad) < true.

Unlike the situation of Example 2, the information shown in this
example is not contradictory as different patients may have differ-
ent reactions to the same medicine. But contradiction still could
appear in other ways; suppose that we have in our program two
conflicting defeasible rules: d-rule (a) states that if a certain drug
has been successfully administered to some patient presenting
symptoms of a particular disease, then the drug should be recom-
mended for new cases of the same disease; on the other hand, d-
rule (b) concludes the contrary, motivated by unsuccessful
instances of the drug application. Formally

(a) treat_with(Disease, Drug) < treated(_, Disease, Drug, great).
(b) ~ treat_with(Disease, Drug) < treated(_, Disease, Drug, bad).

Based on these rules and the retrieved OPs we have reasons
both in favor of starting the treatment of pneumonia with penicillin
and also reasons against doing that. So, even if we use consistent
information from relational databases, contradictory conclusions
can be obtained. In these scenarios, defeasible argumentation
introduces methods allowing us to obtain coherent answers
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/—L Drugs Database ]—\

id name id name id | name
1 Penicillin 1 Pneumonia il Logan
2 Amoxicillin 2 Asthma 2 Xavier
3 Adrenaline 3 Lupus 3 Scott
4 Corticoid 4 Jean

Disease-Drug-patient

il il 2 Great
4 2 1 Ok
4 3 3 Great
1 1 4 Bad
2 il 2

K Regular /

Fig. 3. Database containing information of disease treatments.

enriching our reasoning capabilities, e.g. by giving prevalence to
rule (b) over rule (a), from the information available we decide
we should not treat pneumonia with penicillin when some reaction
is bad.

We extend DeLP programs to include information as OPs ob-
tained from databases; thus, a DBI-DeLP program, or dbi-delp, inte-
grates a delp as defined in Section 2 and a set X of OPs. As we will
show in Section 3.3, such OPs are retrieved on demand when re-
quired by the DBI-DeLP server for solving a particular query and
discarded after the query is solved. Formally:

Definition 6 (DBI-DeLP Program). Let D={Dy,...,D,} be a set of
databases, P = (II, 4) a delp, X the set of every predicate in the
rules of P. A dbi-delp P’ is a triplet (I, 4,X) where X = OPsetxp is
the set of OPs for (X,D).

Now we describe the process used to answer queries from a dbi-
delp. In Definition 3 of Section 2 we have outlined how DeLP con-
structs arguments to solve queries by a backward chaining process.
That is, when DeLP is searching for an argument in support of a lit-
eral L, the argument construction might involve a strict or defeasi-
ble rule having L in the head; then, DeLP tries to prove the literals
in the body of this rule. These literals in the body are called Target
Goals (TG), as they will be the next goals of the inference procedure.

Definition 7 (Target Goals). Given a strict rule L — Ly,..., Ly, or a
defeasible rule L < Ly, ..., L,; every literal L; (1 <i < n) in the body
of the rule is called Target Goal (TG). The set of all TG is called
TGset.

The TGs are a key element in DBI-DeLP, as they are the connec-
tion between the rules in the program and the records in dat-
abases. In the rest of this section we will show how these
elements relate to each other.

Next, we introduce an example to clarify how TGs arise by
means of the backtracking performed by the SLD resolution. The
example also shows the different components of a TG.

Example 4. Consider the dbi-delp with the set 4 shown in Fig. 4.
Consider the query ~ buy_stock (acme)?; to answer it, the dialectical
process can use the rule:

~ buy_stock(C) < good_price(C), risky_company(C)

There, good_price(acme) and risky_company(acme) become TGs.
Also, when the server tries to obtain risky_company(acme), new
TGs appear: in_fusion(acme, AC), strong(AC) and closing(acme). As
we can see, all TGs have the form pred (ty,...,t;;), where pred is a

predicate name and ty,...,t, is a list of its parameters. For
instance, for the TG in_fusion(acme, AC), the predicate name is
in_fusion, while acme (a constant) and AC (a variable) are the
parameters.

The SLD procedure then tries to prove every TG by using all
available knowledge, i.e., all the rules, facts and presumptions in
the dbi-delp. For the purpose of this work, we focus on how pre-
sumptions can be obtained from the available databases. To do
so, a search for presumptions (using condition (a) of Definition 3)
is launched to retrieve from the databases information offering
support to the literal (if any). For this, we begin by identifying
the data sources; i.e., the databases, and the tables and fields in
it, that are expected to have useful data for the TG. The triplet
[database, table, field]! in the data source is called a Parameter
Source (PS). Formally,

Definition 8 (Parameter Source). Given a set D of available
databases {Dq, ..., Dy}, a PS is a triplet [D;, T,F] where D;c D, T is
a table in D; and F is a field in T. The set of every PS is called PSS.

Each potential data source of useful information for a given TG
is linked to the corresponding TG through a Pertinence Relation.

Definition 9 (Pertinence Relation). Given a set D of available
databases {Dq,...,D,}, let PSS be the set of all PS for D and
TGset the set of all TG. The Pertinence Relation PR C TGset x PSS is
such that if (TG, PS)e PR then PS is a pertinent source for TG.

We assume that the Pertinence Relation is given as an input to
the system; in Section 3.2.3 we show how this relation is imple-
mented through a particular structure.

Intuitively, if a data source is pertinent for a TG then we can use
that data source to support that TG, i.e., we can obtain the neces-
sary OPs from this source. But before we can actually obtain the
presumptions, we need to find out where to look for them. To do
so, we use the Data Sources Retrieval function (DSR) which returns,
according to the Pertinence Relation, all the pertinent data sources
for a given TG, i.e., the fields in tables we need to look when search-
ing for support to the TG. The DSR retrieves one set of [database,
table, field] triplets, which we refer to as a data source, for any
source prone to contain information for a TG, or an empty set if
the TG cannot be proven using the available databases. Intuitively,
every [database, table, field] triplet in a data source for a TG indi-
cates the field, table and database from which we can obtain data
for a parameter in the literal TG.

Definition 10 (Data Source Retrieval). Given a set D of available
databases {Dy, ..., D,}, let PSS be the set of every PS for D, TGset be
the set of every TG, and TG € TGset. Let DS € PSS be a set of
PS. Let PR be the Pertinence Relation for TGset over PSS. The
Data Source Retrieval DSR: TGset —2™° is such that
DSR(TG)={TG € TGset:(TG,DS) € PR}.

Example 5. Suppose that we have available the database shown in
Fig. 5 and the TG is performs_in(Movie, Actor). Then

DSR(performs_in(Movie, Actor)) = {{[movies, title], [actors, name|} }

as {[movies, title], [actors, name]} is pertinent to the TG per-
forms_in(movie, actor). In fact, by looking in the title field of table Mo-
vie and the name field of the Actors table we can find out if a certain
actor took part in the cast of a given film. 2

! To ease reading, we will omit the database for those cases in which the pair [table,
field] can unequivocally identify the data source.

2 Actually, we have to look in the corresponding fields of the SQL JOIN made over
the three presented tables.
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buy_stock(C)
~buy_stock(C)

good_price(C).
good_price(C),
risky_company(C).
in_fusion(C, AC).
closing(C, AC)
in_fusion(C, AC),
strong(AC).

A= risky_company(C)
risky_company(C)
~risky_company(C)

AL Lk

Fig. 4. A dbi-delp for the stock market.

For example, the queries

performs_in(commando, stallone)?

performs_in(demolitionman, bullock)?

are both answered positively. Notice that the pertinency relation
does not guarantee that a given database will in fact support the
literal; e.g. we cannot use the database in Fig. 5 to support per-
forms_in(the one, jet li), as there is no tuple in the database indicating
that Jet Li performs in the movie The One. Instead, the pertinency
relation indicates that the data source is a suitable candidate as it
may have the required data (in this case, adding the value the one
to the Movies table and jet li to the Actors table and linking them
in the Movie-Actor table).

As it can be seen in the previous example, we handle the DSR as
an abstract function. In Sections 3.2.3 and 3.3 we show how to
instantiate this function using specific information from the dat-
abases. Once we know which data sources are pertinent, we have
to retrieve from them the data and make it available to the DeLP
core which builds answers to the query using this data, along with
the rest of the dbi-delp. This retrieval is made by the application of
the Presumption Retrieval Function (PRF). Intuitively, the goal of
the PRF is to feed the argumentation process with relevant data ob-
tained from the pertinent data sources.

Definition 11 (Presumption Retrieval Function). Let D ={D,,
...,Dy} be a set of available databases, TGset be the set of all
target goals and OPset be the set of all operative presumptions. Let
TG = pred(ty, ..., t;,) € TGset, and let PSS be the set of all parameter
sources. The PRF:TGset — OPset, is such that PRF(TG) = S where

1. pred(qy, ..., qm) < true in S iff there exists a tuple tup =(qy,
.., Qm) in the database D € D such that if ground(t;), then g;=

tpforall1 <i<n

2. there exists a P C PSS such that
e DSR(TG) =P, and
o for every g; € tup it holds g; belongs to field F in table T of

database D and [D,T,F] € P.

3. Sis C-maximal: there is no set S’ of OPset such that S C §' sat-

isfying (1) and (2) above.

Therefore, the PRF function retrieve database tuples from perti-
nent data sources with values equal to the corresponding grounded
values. For example, consider a database with the tuples (demolition
man, stallone), (demolition man, snipes) and (rambo, stallone), where
each tuple states that the actor in the first component has ap-
peared in the film associated with the second component. Given
the TG performs_in(demolition man, Actor), for the PRF we have

PRF(performs_in(demolition man, Actor))
= {performs_in(demolition man, stallone)

< true, performs_in(demolition man, snipes) < true}

unifying the non grounded parameter Actor with both stallone and
snipes. As we can see, performs_in (rambo, stallone) < true is not in S

/—[ Movies Database ]—\

Movie Actor
id title id name
1 Commando 1 Stallone
2 Rambo 2 Schwarzenegger
3 Terminator 3 Bullock
4 Demolition Man
Movie-Actor
movie_id |actor_id performance|
il il Great
2 1 Ok
3 2 Great
4 1 Great
4 3

Regular /

Fig. 5. Database with data about films’ casts.

o

as the tuple (rambo, stallone) does not match the value required for
the grounded parameter.

3.2. Implementing the components of the framework

Having introduced the fundamental theory for DBI-DeLP, we
move onto its implementation. We use a three-component archi-
tecture that captures the behaviors of the retrieval functions used
to obtain the pertinent datasources and the relevant data from
them.

To integrate DeLP with a database system we need to identify
the databases that can be used during the argumentation process.
We assume that our database system may involve several dat-
abases, which are accessed asynchronously. In running time, the
set of databases could change, adding new databases and/or
removing existing databases. To formalize this setting in a seam-
less way, we must maintain compatibility with external systems,
so that both the DeLP inference mechanism and the databases
schemes remain unchanged. To make this possible we introduce
a translation layer between DeLP and such schemes. The three
component architecture of our framework will facilitate achieving
the goals just outlined: the DBI-DeLP Server is in charge of per-
forming the argumentation process, the Domain Data Holder
(DDH) is used to store domain knowledge, and the Domain Data
Integrator (DDI) recovers data from the domain knowledge to sup-
port arguments and feeds it to the argumentation process. Next,
we present these components, describing their purpose and how
they relate to each other.

3.2.1. DBI-DeLP server

The DBI-DeLP Server component receives DeLP ground queries,
then it builds arguments and counterarguments based on its
knowledge base, and gives answers and explanations of how they
were obtained. We can say that all the system’s knowledge is
stored in this component as it maintains all the rules and facts of
the domain. Also, this component considers OPs that are used to
construct arguments (unlike the DDH, which only stores raw,
unprocessed data). Two modules are included in the DBI-DeLP ser-
ver to separate knowledge storage issues from the actual usage of
such knowledge: Domain Logic and DeLP Core.

Domain Logic. Through the Domain Logic we capture the do-
main knowledge available to the system, expressed as a dbi-delp.
For example, an Argument-based Movie Recommender System
[29] using DBI-DeLP could have strict rules such as:

child_restricted(Movie) < has_violence(Movie)

and defeasible rules such as:
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has_violence(Movie) < director(Movie, tarantino)

Dynamically, OPs such as:

film_genre(pirates_of the_caribbean, comedy) < true
film_genre(pirates_of the_caribbean, action) < true

could be added if different categorizations for the film Pirates of the
Caribbean are found in the domain data when required by a query
execution.

DeLP Core. This module is in charge of computing the final an-
swer by constructing dialectical trees and analyzing them. It re-
ceives a query like good_movie(commando)? from a client and tries
to build arguments for and against it using the Domain Logic. Final-
ly, it gives the resulting answer, which can be YEs if an argument in
favor is warranted, No if an argument against it is warranted, UNDE-
apep if neither arguments for nor against it can be warranted, and
Unknown if the query includes literals that are not in the program’s
language [11].

3.2.2. Domain data holder

This component is a massive and potentially contradictory set
of domain-related data that provides ground information during
the argument building process. In the current version of the
framework, data is stored in and accessed from independent
relational databases via an Open DataBase Connectivity (ODBC)
driver. There is no upper bound to the number of databases in-
cluded in the DDH, and the addition or removal of a database
has no effect on the others; nevertheless, the total knowledge
is altered, so if a previous query is issued again after this change
the resulting answer may be different. There are no restrictions
regarding how tables and fields should be named, or how the
database schema should be specified; however, since the server
needs to identify which tables and fields are necessary to include
in the SQL query to solve a given TG, the configuration of each
database regarding the TG should be provided, i.e., the PR for
it should be given.

3.2.3. Domain data integrator

As mentioned above, we leave unchanged the representational
structures of DeLP and only consult the databases for information.
We introduce an intermediate layer such that, given a particular
query, it takes the associated information from the database and
adapts it in a way that can be used by DeLP’s reasoning engine. This
layer allows the interaction between the DeLP Server and the DDH
by creating SQL queries to retrieve info datasets from the databases
during the argument building process.

The DDI transforms datasets into OPs used to build argu-
ments. Before the DDI can retrieve relevant datasets, it needs
information about the data sources that are pertinent to the tar-
get goals it is trying to validate; i.e., this component is in charge
of the execution of the DSR function. As stated before, the PR
used by the DSR is an input to the system, i.e., the PR is given
by the user. In the implementation of the DSR, we use an auxil-
iary database, the Predicate Translation Database or PTD, to
maintain the PR; this database maintains information about
the relation between TGs and pertinent data sources. Note that,
from a PS [D,T,F], the component D has a correspondence with
some DSN in the Predicates table of the PTD that indicates the
database, and the components T and F will correspond with
the table and field indicated in an associated record in the
Parameters table. Additionally, the PTD has other information
needed to perform the execution of the SQL Queries, e.g. the user
and password used to login to the DBMS.

ptdb.predicates

A |id :int(11)

name : varchar(100)
dsn : varchar(100)
user : varchar(100)
pass : varchar(100)

ptdb.parameters

A |id:int(12)

# | predicate_id:int(11)
field : varchar(100)
table : varchar(100)

ptdb.foreignKeys
ptdb.relatedTables 2 id:int(11)
2 |id :int(11) 1 # | predicate_id :int(11)

tablel : varchar(100)
field1 : varchar(100)
table2 : varchar(100)
field2 : varchar(100)

predicate_id : int(11)
table : varchar(100)

Fig. 6. The predicate translation database schema.

Thus, given a particular TG, the DDI uses the DSR function to re-
trieve the schema information from the PTD that the SQL query has
to follow for every pertinent data source to find relevant data in
them. The PTD keeps the four tables shown in Fig. 6:

- Predicates table: maintains the correspondence between predi-
cate names and data sources.

- Parameters table: maintains the equivalence between
a predicate’s parameter and a pair (table, field) in some
database.

- RelatedTables table: keeps information about the tables that
take part in the SQL JOINS needed to obtain information about
a particular predicate.

- ForeignKeys table: maintains a list of the pairs (primaryKey, for-
eignKey) for the SQL JOINS.

3.3. Processing of queries in DBI-DeLP

After describing the components of the framework, we show
how they relate to each other so data from relational databases
can be exploited to provide support for arguments built in the
dialectical process behind solving queries posed to the system.
We introduce the theoretical foundations used by the process,
and present the algorithms for their implementation. Finally,
we show an example of how the integration of the components
allows the use of data from relational databases to answer
queries.

Fig. 7 shows a general schema of the process of obtaining the
supporting data each time the DBI-DeLP Server receives a
query. It is important to remark that the process of answering
a query is considered as part of a closed transaction in the sense
of database theory [30,31]. Essentially, it involves building
arguments for and against the literal queried using the
dbi-delp of the Domain Logic, and when it is necessary to request
data stored in a database the DDI searches the DDH for useful
tuples that will be returned as OPs to be used by the DeLP
Core.

We developed algorithms implementing the DSR and the PRF
functions that have been defined. For the DSR function, the PTD
contains all pertinent data sources for each predicate we need to
retrieve from the databases; thus, the function obtains from the
PTD all the parameters necessary to connect to the databases in
the DDH, plus the names of the fields and tables that are necessary,
and the information for executing SQL joins to solve the query (see
Algorithm 1).
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Algorithm 1 (Data Source Retrieval Function).

1: function DSR (Predicate Name predName):DatasourcesList
2: Execute a SQL Query to the PTD of the form

3: “SELECT Id, DSN, User, Pass FROM predicates
WHERE name = predName”

4: for each DSN obtained do

5: dsn_id < present DSN Id

6: fieldsToRetrieve — Execute a SQL Query in the form

7: “SELECT Table, Field FROM parameters WHERE
predicate_id =dsn_id”

8: joinTables — Execute a SQL Query in the form

9: “SELECT Table FROM relatedTables WHERE
predicate_id =dsn_id”

10: joiningFields — Execute a SQL Query in the form

11: “SELECT Tables, Fields FROM foreignKeys WHERE
predicate_id =dsn_id”

12: DatasourcesList[i] < [Id, DSN, User, Pass,
fieldsToRetrieve, joinTables, joiningFields]

13: end for

14: return DatasourcesList

15: end function

Having defined how we obtain the pertinent datasources for the

TG we are trying to prove, we introduce the function that retrieve

relevant data from the DDH. Operationally, the PRF needs to exe-
cute SQL queries over the databases in the DDH and format the
resulting datasets to make it processable by the DeLP Core; for that
they use three other functions:

- obtainInstantiatedParameters: this function receives a list of
parameters in a TG and returns the ground ones; e.g. from direc-
tor(Movie, tarantino) it will return the list [tarantino], and from
film_genre(pirates of the caribbean, comedy)it will return [pirates of
the caribbean, comedy].
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- obtainInstantiatedFields: this function takes a list of fields and a
list of parameters and returns those fields corresponding to
instantiated parameters; e.g. receiving [[table.field1, table.field2],
[Movie, tarantino]] it will return [table.field2].

- generateOperativePresumption: this function receives a predicate
name and a list of values and returns an atom with the predi-
cate name and the values as parameters; i.e., receiving [film_-
genre, [‘Game of Thrones’, ‘Drama’]] returns the OP
film_genre(‘Game of Thrones’, ‘Drama’)<true.

Having outlined the auxiliary functions used in the algorithm, we
turn to the implementation of the PRF used by DBI-DeLP to obtain
OPs for a TG (see Algorithm 2). Note how the search for a TG is done
on each DSN listed as a possible support data holder. Also observe
that a part of the query could be statically built given the structural
information of the data sources. Nevertheless, the WHERE part of the
query depends on which parameters are instantiated in the TG,
leading to dynamically build the query considering these variable
conditions. Hence, given this dynamic nature of TGs it is not possible
to directly maintain in the PTD a mapping between a predicate and a
static SQL query, even though this would have been simpler.

Algorithm 2 (Presumption Retrieval Function).

1:function PRF (Target Goal L;):operativePresumptionsList
2: Decompose L; into its predicate name predName and a list
of parameters ty, ... ,t,

instantiatedParameters — obtainInstantiatedParame-
ters(ty, ... ,tn)
4: DataSourcesList — DSR(predName)
5: forifrom 1 to length(DataSourcesList) do
6: whereFields — obtainlnstantiatedFields(fieldsToRetri-
eve; ty, ..., tn)

Connect to database indicated by DSN; using user User;

and password Pass;

3:

7:

® =) PEDB

SQL Query

Pertinent
Data Sources

Acronyms in the Figure:

I I T OP: Operative Presumption
| —_— | TG: Target Goal
DDI DDI: Domain Data Integrator

DSR: Data Source Retrieval

SQL "

@ TG — PRF Queries @ Eunclion
PRF:  Presumption Retrieval
[l T¢ Function
DBI-DeLP Server Resulting || Resulting DDH PTD: Predicate Translation
OPs Data Sets Database
Domain Logic 9 9 9 5
DDH: Domain Data Holder
Strict || Defeasible oP _J L
S
Rules Rules ] 9 9
| DeLP Core | Several
DataBases
U ‘ New Data
Ground Answer for D )
queries queries 7
Results
explanations External
Aplications

Fig. 7. The DBI-DeLP argumentation process.
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8: results «— Execute a SQL Query in the form

9: “SELECT fieldsToRetrieve; FROM joinTables; ON
joiningFields;

10: WHERE whereFields=instantiatedParameters”

11: for each result res; obtained do

12: operativePresumptionList[i] —

generateOperativePresumption(predName, res;)
13: end for
14: end for
15: return operativePresumptionsList
16: end function

A special case of TG search can be performed when all the
parameters in the TG are grounded. In this case, we do not need
to retrieve every tuple supporting the TG: as it is fully grounded,
there is just one possible OP alternative. Thus, we just need to find
a tuple fulfilling the search conditions. To capture this particular
behavior, we could introduce two modifications in the algorithm.
First, we can break the loop in which every DSN is searched as soon
as the first result appears. Also, the SQL query on lines 9-10 of
Algorithm 2 may be changed to

SELECT fieldsToRetrieve FROM joinTables
ON joiningFields
WHERE whereFields = instantiatedParameters
LIMIT1

so that the DBMS stops the search after the first result.
3.4. A complete query processing example

With the framework introduced, we will demonstrate the com-
plete query solving process. For the sake of example, we will show
next how two dbi-delp that solve queries w.r.t. the same informa-
tion in the proposed framework, may end up obtaining different
conclusions.

Let us consider an example where we have a moderator and
several agents related to the movies domain that will determine
if a certain movie is recommendable for a particular user. We cap-
ture the recommending behavior of the agents using two dbi-delp
following different approaches; for instance, we will have a pro-
gram A representing a movie critic, and a program B representing
a family and childhood preservation service. These two programs

.- high_rating(Film ) —
A7\ high_rating(Film) «—

recommended(Film, User) —
~ recommended(Film, User) —

Aa= bad_cast(Film) —

child(User)
high_rating(Film)

T

recommended(Film, User) —

~ recommended(Film, User) —

Ap = gender_recommended(Film, User) —
gender_recommended(Film, User) —
gender_recommended(Film, User) —

child_restricted(Film)
child_restricted(Film)
Ip =

rating(Film, Excellent).
rating(Film, Very good).

clearly have different approaches to recommend a movie. In DBI-
DeLP, these differences can be expressed in terms of strict and
defeasible rules. Nevertheless, both programs will access the same
database, i.e., they have access to the same information about the
movies, but they will use different criteria considering different as-
pects. The programs are shown in Fig. 8 and they represent the
rules for the movie critic (A) and the organization (B). While we
present a reduced example with a few rules it is clear that in
real-world applications the program will be larger.

As for the X set, an extract of the data is depicted in Fig. 9. We can
see that the DDH has two databases: the Movies and Series database
stores information about films, while the System database stores
information about registered users of the recommender.

Here we can see one advantage of using database stored informa-
tion to develop these programs; otherwise, if we want them to have
updated information about several movies, we will need to include
manually in every agent the information for every film (consider
that data showed in Fig. 9 is only an extract, but obviously the
DDH can store information about millions of films).

Finally, the PTD needs to be set up as shown in Fig. 10 to prop-
erly translate the queries sent by the DeLP core into SQL queries
performed on the databases associated with the DDH.

So, given the presented scenario, the agents can build arguments
and give the moderator their vote on whether or not to recommend
the film to the user. Assume that the moderator receives the query
recommended(*‘Game of Thrones”, “Robb’’)?. Then, as said before, it
will send the query to every agent in the system. For the purpose
of this paper we will focus on the process carried out by the DeLP Ser-
ver that has the program A in its Domain Logic to determine if it rec-
ommends the film or not. Next, we give a description of the steps
that take place in the DBI-DeLP server when solving a query. The
steps in the example are presented in correspondence with the num-
ber of the steps in the DBI-DeLP process shown in Fig. 7.

1. Query recommended (*'Game of Thrones’, ““Robb'")? is received by
the DBI-DeLP server.
2. DeLP core searches for recommended(Film, User) as head of a rule,
finding
recommended(Film, User) <
genre(Film, Genre), likes(User, Genre),
high_rating(Film).
next the server tries to satisfy the first literal in the body, i.e., gen-
re(**Game of Thrones'’, Genre). There is no rule available to determine

}

genre(Film, Genre), likes(User, Genre), high_rating(Film).
genre(Film, Genre), likes(User, Genre), bad_cast(Film).
performance(Film,Actor, “bad”),

~ performance(Film,Actor2, “great”).

observation(Film, “Nudity").
observation(Film, “Violence").
age(User,Age), Age < 13.
rating(Film, Excellent).

high_rating(Film), gender_recommended(Film, User).
high_ rating(Film), gender_recommended(Film, User),
child(User), child_restricted(Film).

gender(User, “Male”), observation(Film, “Violence™).
gender(User, “Male”), observation(Film, “Epic”).
gender(User, “Female"), observation(Film, “Romance”).

Fig. 8. Two dbi-delp (114, 44) and (I1p, Ag) for movie recommendation.
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. System
Domain Data y User Prefe.rence
Database name gender user_id genre
Holder il Bran Male il 1 Fantasy
2 Gilly 23 Female 2 2 Comedy
3 S
J
Movies and Series Movie 7 e > Mo.we:;Genre 5
. i genre i movie_i genre_i
DataBase id name rating
1  Gameof Thrones Excellent 1 Fantasy 1 1 1
2 2 Drama 2 i 2
B 3
Tag Actor
performance id | movie_id tag id name
1 il 1 Robert Baratheon Great il i Nudity 1 Mark Addy
2 i 2 Ned Stark Great 2 1 Violence 2 Sean Bean
3 il 8 Khal Drogo Good 3 1 Fantasy 3 Jason Momoa
4 al 4 Daenerys Targaryen Great 4 1 Epic 4 Emilia Clarke
5 5 5

Fig. 9. The data maintained in the DDH databases.

the genre of the film Game of Thrones, so the DDH is searched by exe-

cuting PRF(genre(‘‘Game of Thrones”, Genre)).

3. DDI takes genre(*‘Game of Thrones’’, Genre) and decomposes it in
its predicate name genre and the list of its parameters [“Game of
Thrones”, Genre]. Then the DDI looks in the PTD for information
about pertinent data sources to the TG using DSR(genre).

4. The DBMS that manages the PTD answers those queries sent by
the DDI. That way the DDI knows which tables to look for infor-
mation, and how the fields are named. For this example the
result of DSR(genre) is that the Movies and Series database
may contain information about the genre predicate (and which
tables and fields we need to search).

5. Now that it knows where to look for information, the PRF exe-
cutes DSN-specific SQL queries to each DSN retrieved. In this
example, it will execute

SELECT movie.name, genre.genre FROM movie
JOIN movie — genre ON
movie.id = movie — genre.movie_id
JOIN genre ON movie — genre.movie_id = genre.id
WHERE movie.name = Game of Thrones

to the Movies and Series database. Notice that only grounded argu-

ments are used for WHERE conditions by the DDIL

6. The DBMS answers the query with the genres listed in the data-
base for Game of Thrones. For the given scenario, the list

[row(“GameofThrones”, “Fantasy”),

row(“GameofThrones”, “Drama”)]
is the answer. DDI takes that result and formats them as the OPs

genre(“GameofThrones”, “Fantasy”) < true,

genre(“GameofThrones”, “Drama”) < true

7. Once the PRF finishes its execution, all the results obtained are
sent to the DeLP core as a list of OPs. The DeLP core unifies the
second argument on each result with the second argument in
likes(User, Genre) and continues the procedure.

8. We get likes('Bran’’, “‘Fantasy’’), because is in the System data-
base, high_rating(‘‘Game of Thrones'") is obtained from the related
rule in I14 high_rating(Film) < rating(Film, Excellent), and the Mov-
ies and Series database states that the rating of Game of Thrones is
Excellent. The DeLP core attempts to build a counterargument
trying to find support for the head of the defeasible rule below
with the instantiation Film="‘Game of Thrones” and User =
“Bran"’,

~recommended(Film, User) < genre(Film, Genre),

likes(User, Genre), bad_cast(Film).

The TGs genre(Film, genre) and likes(User, Genre) are satisfied as be-
fore; but the server cannot obtain bad_cast(‘‘Game of Thrones'’) as
there is no actor in the film with a bad performance. Since a coun-
terargument against a sub-argument cannot be built, the DeLP Ser-
ver answers Yis to the query, stating the film Game Of Thrones is
recommended for user Bran.

A similar process can be followed by the DeLP Server with the
program B in its Domain Logic, but with a different result. In this
case, based on the sets IIz and Ap, the program gives a negative
recommendation to the user Bran for the film because he is not ma-
ture enough to watch it, as the system database states that he is
ten years old and the Movies and Series database states that there
are nude scenes and violence in Game of Thrones.

4. Time efficiency and complexity results

We have seen how defeasible argumentation frameworks like
DeLP can be combined with relational databases to perform argu-
mentation over massive amounts of data. Moreover, in Section 3.4
we have outlined how a DBI-DeLP based movie recommender sys-
tem can solve a query based on ground information available from
relational databases. A major issue in such a system is to satisfy
reasonable response-time requirements, specially in interactive
or multi-agent environments, where such time constraints play
an important role. Consequently, to determine whether DBI-DeLP
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predicates Table

id name dsn user pass

1 observation mov_series_db movUsr passMv
2 age system_db sysUsr passSys
3 rating mov_series_db movUsr  passMv
4 likes system_db sysUsr passSys
5 gender system_db sysUsr passSys
6 genre mov_series_db movUsr passMv
7 performance mov_series_db movUsr  passMv

relatedTables Table

-

id ppredicate_id table Predicate
1 1 Movie Translation
2 1 Tag Database
3 2 User

4 3 Movie

5 4 User

6 4 Preference

7 5 User id |predicate_id
8 6 Movie 1 1

9 6 Movie-Genre 2 4

10 6 Genre 3 6

11 7 Movie 4 6

12 7 Movie-Actor 5 7

13 7 Actor 6 7

\

parameters Table

id |predicate_id field table

il 1 name Movie

2 1 tag Tag

3 2 name User

4 2 age User

5 3 name Movie

6 3 rating Movie

7 4 name User

8 4 genre Preference
9 5 name User

10 5 gender User

11 6 name Movie
12 6 name Genre
13 7 name Actor
14 7 name Movie
15 7 performance Movie-Actor

foreignKeys Table

tablel fieldl
Movie id Tag movie_id
User id Preference  user_id
Movie id Movie-Genre movie_id
Movie-Genre genre_id Genre id
Movie id Movie-Actor movie_id
Movie-Actor actor_id Actor id

&

Fig. 10. The setup of tables in the predicate translation database.

is suitable as a tool for supporting the development of such appli-
cations, an empirical analysis of complexity and efficiency is re-
quired. Generally speaking, the process behind the use of
relational databases to support arguments involve two big
aspects. First, relevant data needs to be obtained from the
available databases. Second, that data must be used to build argu-
ments for a particular query. In this section we introduce analyses
of time efficiency and complexity of these aspects to determine if
the proposed approach is suitable to develop real-world
applications.

4.1. Empirical analysis

In a DBI-DeLP based application there are two main aspects to
consider regarding its time efficiency: how much time is consumed
searching the DDH for supporting information, and how much time
the proof procedure used by the DeLP Core takes to determine
which argument prevails (and thus which is the final answer for
a given query). Since these two aspects are influenced by different
elements, we have conducted experiments that focus on each as-
pect, as discussed next. For these experiments, we have created a
dataset using randomly generated data over the structure of three
related tables. The number of generated records depends on each
particular experiment, as it will be shown later. The rules and que-
ries used are such that they relate elements in the data stored in
the databases or in the program, according to each particular
experiment. Regarding the experimental environment, we used a
virtual machine with the following configuration:

- Operative System: Windows 7 32 bits
- Processor: Intel Core i5-2410 M @2.3 Ghz
- Memory: 1 Gb DDR3 1333 Mhz

4.1.1. Presumption search for target goals efficiency

Consider the query genre(*'Game of Thrones”, Genre)? in the
example of Section 3.4. Queries for a TG like this one will be com-
mon in any DBI-DeLP based application. Thus, a great part of the
total time the application dedicates to solve a query is spent
searching the DDH for relevant data by the PRF. So, this DDH search
by the PRF is a crucial aspect in the overall performance of the
system.

There are two main aspects that we must consider in the exper-
iment. First, the number of tables involved in the SQL query is sig-
nificant, as it determines if SQL JOINS among tables are needed to
solve the query or not. Second, the other variable of main concern
is the number of records in tables in the DDH: a search in a table
with 10,000 (10 K) records differs from another in a table with
10,000,000 (10 M) records. We focus on these two aspects in our
experiments. Nevertheless, there are other aspects that impact in
the time consumed by retrieving relevant data from databases,
although to a lesser extent, e.g. how many of the parameters of a
TG are grounded, as this limits the number of results obtained
allowing for a faster reply from the DBMS.

To measure the execution time of the function used to search
the DDH for argument supporting data, the same query was
launched while the number of records of tables in the DDH was in-
creased. Tables 1 and 2 show the time in which a single search of a
TG is completed by DBI-DeLP as the number of records in the
searched database increases. For the experiment in Table 1 we
have used a fully-grounded TG. In the table we can see that SQL
Queries take comparable time whether they are executed in an
external application such as MySQL Query Browser or in DBI-DeLP.
Thus, we can see that most of the time needed to obtain OPs is con-
sumed by the DBMS solving the MySQL query, with virtually no
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overhead introduced by the processing of resulting datasets by
DBI-DeLP.

As for the second experiment, Table 2 shows the time consumed
obtaining results for a TG with two parameters where the first one
is grounded and the second one is not, like genre(**Game of Thrones’,
Genre)?, when three tables are involved in solving it.

Based on the performed experiments addressing the efficiency
of the search of relevant data by the PRF, the results obtained seem
to suggest that the search for support in the DDH is in line with the
time constraints found in most real-world applications.

4.1.2. DeLP core proof procedure efficiency

Once obtained the information needed to support arguments,
we need to analyze the time used by the DeLP Core to establish
the answer for a received query.

As we have stated before, the proof procedure depends on the
construction of dialectical trees. Nevertheless, instead of measur-
ing the time it takes to construct the entire dialectical tree, for this
experiment we have chosen to measure the difference between
DeLP and DBI-DeLP in the time needed to construct a single argu-
ment. There are two reasons for such a choice. On the one hand, the
time needed to construct the dialectical tree depends directly on
the number of arguments in it, making it a crucial variable. On
the other hand, the only important difference between DeLP and
DBI-DeLP regarding the efficiency of the proof procedure is how
they differ in the task of constructing arguments; the rest of the
dialectical process is the same in both approaches, i.e., the cost of
building a dialectical tree in both approaches is the same, provided
that we discriminate the time needed to construct arguments. Con-
sequently, to establish differences in the time used for the proof
procedure in both approaches in the context of massive amounts
of information we contrast the time it takes to build an argument
in our approach against the time it takes to build the same argu-
ment in a standard, non-database DeLP system; since the differ-
ence in efficiency for that construction can be extrapolated to the
difference in efficiency concerning the dialectical tree construction
and analysis.

The main objective of this experiment is to analyze if our com-
bined method using argumentation-based inference with external
databases as provider of support is more suitable (in the context of
real-world environments, where massive amounts of data are
used) than the standard approaches used to develop RBAS where
data is directly encoded in the program.

Table 1
Execution time for a PRF over a fully-grounded TG without the need for SQL JOINS in
an unindexed table.

NR TDBI-DeLP TMySQL
10K 0.0189s 0.0116s
100K 0.0381s 0.0138s
500K 0.1469 s 0.1174s
1M 0.274s 0.3094 s
5M 1.2439s 1.7238s
10M 2.465s 3.0939 s

1K=1000, 1 M = 1,000,000, NR = Number of records, TDBI-DeLP = Execution time
in DBI-DeLP, TMySQ = Execution time of SQL in MySQL Query Browser.

Table 2

Execution time for a PRF with SQL Joins between 3 indexed tables.
No of records (Tables T1 - T2 - T3) Exec. time
50-500-50 K 0.081s
250 K-2.5 M-250 K 0.2129s
500 K-5 M-500 K 1.0369 s
1-10-1M 2.3859s

The experiment is designed as follows: we have two instances
of defeasible logic programs that can support the same arguments;
but, while one of them has all the information needed encoded as
presumptions in the program (a delp), the other has the same infor-
mation externally supported in a database (a dbi-delp). That is, the
entire set X of the dbi-delp is included in the delp in the set 4. Then,
we pose the same query to these programs so the same argument
is built, and we measure the time that takes to built this argument
in each case.

The obtained results are presented in Table 3. As shown in the
table, we made the experiment for different number of records
(or encoded presumptions in the standard approach), and we dis-
tinguish two cases:

e The best case, where the data needed to support the argument
is the first record in the database, and the first presumption in
the program.

o The worst case, where that data is found after searching all the
available knowledge.

We can see how the time needed to build an argument varies
while the number of records (or encoded presumptions) increases.
A graphic view of these results is visualized in Fig. 11.

From these empirical results it can be seen that, on the one
hand, in the rarely occurring best case the use of facts in the pro-
gram is faster than the use of external databases. On the other
hand, when analyzing the worst case it can be seen that the data-
base approach behaves considerably better than the classical ap-
proach. Moreover, in can be clearly seen from Fig. 11 that while
our approach has almost no variation when the number of records
increases, the other approach grows linearly.

The intuition behind these results is that, while we let the proof
procedure to be in charge of the structure of arguments (i.e., the
use of rules and derivations to obtain conclusions) as it is its main
function; we pass the responsibility of finding support for the use
of these rules to the DBMS. From the experiments becomes appar-
ent that for (very) small amounts of data the approach in which the
data is stored directly in the program is more efficient; this is due
to the overhead in the interaction between DeLP and DBMS. How-
ever, as the amount of data increases, this overhead is palliated by
the better performance on data search provided by the DBMS pro-
cedures w.r.t. the search performed by DeLP. This is because the
DBMS are specialized in managing large amounts of data, i.e., data
structures and procedures used by DBMSs to store and handle data
are more efficient than the ones used to manage data when this
data is directly included in the program.

4.2. Running-time analysis

To complete the study of the implementation of the DBI-DeLP
framework we want to study the tractability of the process that

Table 3

Time needed to built an argument.
No of records WC; (ms) BC; (ms) WC,; (ms) BC, (ms)
100 K 196 130 40 20
300K 50 130 91 20
500 K 150 110 140 20
750 K 160 176 181 20
1M 190 90 250 20
125M 113 70 330 30
1,5M 150 130 411 31
2M 270 120 511 30
25M 166 150 681 41
3M 186 186 771 40

WC; = Worst Case (using DB), BC; =Best Case (using DB), WC, =Worst Case
(without using DB), BC; = Best Case (without using DB).
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Fig. 11. Efficiency of the proof procedure.

it will use to build arguments and solve queries; again, this can be
separated in two parts: the cost of searching for useful data in the
DDH and the analysis of how arguments are built based on this
data (and the rest of the Domain Logic). In this work we have only
conducted the study of the first part, i.e., the function used to find
useful data for a TG in the databases that integrate the DDH. A
study on the complexity of the process used to built arguments
by DeLP (and DBI-DeLP) can be found in [32]. The complexity anal-
ysis for the PRF used in DBI-DeLP, using the proposed implementa-
tion, follows:

1. Decompose an atom in its predicate name and its parameter list
and obtain the instantiated parameters in the predicate; both
actions are dependent on the number p of parameters, so both
are in O(p).

2. Then, the DSR function is used to find information about all dat-
abases having useful data for the predicate being searched. The
complexity of the DSR depends on the number m of rows on the
predicate’s table of the PTD because the operations in the DSR
function are executed as many times as the number of relevant
databases found (for the TG) in the PTD. In particular, these
operations are executed m times since, in the worst case, every
entry in the predicate table of the PTD is related to the TG. Next
we outline the complexity of the DSR.

(a) The first query on the loop is for finding the parameter
source [database, table, field] corresponding to each param-
eter. To do this it is necessary to look in each of the k entries
in the parameters table. The pairs corresponding to the
instantiated parameters are put aside to be used as condi-
tions for the SQL query. This is also in O(k). Some presump-
tions are formed using information retrieved from just one
table in a database, but for other presumptions two or more
tables need to be related through a join to retrieve them.
Therefore, it is necessary to maintain information about
the tables and the key-fields involved in the join.

(b) The second query is used to obtain all tables that will be
involved on the search in the corresponding database; thus,
the time for this depends on the number [ of entries on the
relatedTables table.

(c) Next, DSR makes a query to retrieve the key-fields pairs on
which the join is made. It is in O(r), being r the number of
rows on the foreignKeys table.

3. The following query is the one made using the obtained query
format information, to retrieve from the database the informa-
tion that corresponds to the searched TG. The time spent on this

is in the order of the product of the entries of each table on the
join for the query. Suppose we have a query with a join of s tables,
each one with T; rows; then, the time is in the order of [];_,T:.
4. The retrieved tuples are transformed into OPs and added to the
OPs’ list, with a cost on the order of the number of retrieved
tuples, this is O(v).
Finally, all OPs retrieved from all databases are sent to the DeLP
Core.

Since steps (a)-(c) of the DSR function and the steps (3) and (4)
of the PRF are executed for every database that contains informa-
tion about the predicate, and as each database has a different con-
figuration, the time taken in the loop is different in each iteration.
Assuming the worst case, for a predicates table with m entries,
there will be m databases containing information for a predicate;
so, for steps (a)-(c) there will be in each one m different orders,
one for each database. For example, considering the time for all
the databases, step (a) running-time will be in the order of Z}ilnj.

In the worst case, the total time demanded for the search of pre-
sumptions about a predicate is

m S
02x«p+m+> (k+h+r+]]Ti+ %)
= i1
Now, let n be the number of entries of every table on the DDH.
In such case, all parameters m, k;, Ij, 1, Tj; and ¢; will be replaced by
n, and the running-time will be summarized into

2xp+n+y (n+n+n+][m) +n),

=1 i=1

which is in O(p + n**1), where p is the number of predicates’ param-
eters, s is the maximum number of tables implied in a join, and n
the maximum number of entries in any table on the DDH.

5. Conclusions and related work

Integration of Knowledge-Based Systems with large repositories
in the form of databases is been widely acknowledged as central in
the development of such systems in a real-world scale [33,34].
Thus, the problem of making inferences from large repositories of
data is one that has been addressed over the years by various ap-
proaches, e.g. Data Mining [35,36], Machine Learning [37], or
Deductive Databases [38,39]. In particular, the latter stands for sys-
tems where knowledge encoding is twofold: on the one hand, the
extensional database consists of data (or facts) usually encoded by
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a predicate with constant arguments in relational databases; on
the other hand, there are rules stating possible relations among
facts in the extensional database. This approach is known as “loose
coupling” [40]. Through the years, there have been many efforts in
this direction in the area of Logic Programming and Databases, e.g.
by interconnecting Prolog systems to relational databases [38,41-
44], in an approach that has some similarities with the one pre-
sented in this paper. In this area, Datalog [45] has become the de
facto standard for the development of deductive databases. As in
the approach proposed in this paper, deductive databases infer
new facts based on this encoded knowledge.

Nevertheless, there are several known issues in deductive dat-
abases, mainly related to the presence of inconsistency among its
inferences. A possible solution to this is to change the inference en-
gine to one that can deal with conflicting conclusions, like Defeasi-
ble Reasoning does.

Accordingly with the approach of integrating logic engines with
large repositories of data like relational databases to infer new infor-
mation, in this paper we have proposed an integration of defeasible
reasoning with database technologies. We have shown how DeLP
can be combined with relational databases to carry out argumenta-
tion processes over massive amounts of data. We have extended the
notion of a DeLP program to include information coming from dat-
abases. Also, we have formalized one function used to find suitable
information sources for a particular query from the universe of avail-
able databases, and another one that extracts that information and
adapts it to be used in the inference procedure. Regarding imple-
mentation of the concepts, we have introduced a three component’s
architecture for the framework and the interaction among them.
Additionally, we have presented algorithms that instantiate the
functions in the framework suiting the presented architecture.

This approach helps to spread the application of RBAS since other
systems may provide input data to our framework without requiring
a complexinterface. This can lead to definitions of new architectures
for Argument-based Recommender Systems (see [29]), as well as
Decision Support Systems (e.g. [46]). Moreover, in a Multi-agent Sys-
tem setting, databases may store community knowledge that agents
with argumentative capabilities [47] can share and use for their rea-
soning process. In particular, a recent line of research for Argument-
Based Recommender Systems has been started where DBI-DeLP
serves as the development framework. A first approach in this direc-
tion can be seen in [48]. Such recommenders are being developed to
consume data simultaneously from several real-world datasets, e.g.
the MovieLens [28] and Internet Movie DataBase [27] datasets,
stored in relational databases.

We have empirically studied the system and presented a run-
ning-time analysis of the processes used by DBI-DeLP to obtain
argument supporting data from relational databases, comparing
also the time needed to build an argument using a classic inter-
nally encoded facts approach and our proposal with external dat-
abases. The results obtained seems to show that the use of
relational databases to support massive defeasible argumentation
processes is more efficient than the approach where data is directly
included in the program. The difference in efficiency between both
approaches is mainly related to the fact that in our approach the
responsibility for finding support to build arguments partially lays
in the DBMS search engine managing the source of the information
which are usually better suited for these tasks.

The obtained results suggest that it is possible to use this ap-
proach to develop intelligent systems which can be used in mas-
sive information environments while still meeting reasonable
time constraints. Thus, DBI-DeLP seems to be a suitable framework
to develop real world knowledge-based systems combining the
knowledge representation provided by logic programming with
the ability of defeasible argumentation to model argument-based
inference procedures.

There have been other approaches to integrate relational dat-
abases with defeasible argumentation systems, although in differ-
ent directions from ours. In [49], the authors present a protocol
called PADUA that supports two agents debating a classification
by offering arguments based on association rules mined from indi-
vidual datasets. This research focuses on the use of association
rules which are mined from the databases, using argument-based
dialogs to classify examples; in contrast, our approach is focused
on the conceptualization of relational databases as massive infor-
mation sources for solving queries in an argumentative setting.
The PADUA protocol was later generalized to the PISA approach
[50], which involves solving classification problems by pooling
information from several agents. The PISA approach proposes an
argumentation from experience paradigm, whereby individual
agents argue for a given example to be classified with a particular
label according to their local data and arguments are generated
dynamically in the form of classification rules.

In [51], the authors present an argument-based framework
called A-MAIL to conceptualize inductive learning in a multi-agent
setting. Arguments are given by examples and rules (akin to the
presumptions and defeasible rules in DeLP) are automatically gen-
erated from repositories of data. Based on this approach, this pro-
posal was later generalized to a defeasible reasoning model of
inductive concept learning [52]. In contrast, our approach does
not deal with the problem of generating new knowledge from
existing databases (nor performing any kind of inductive reasoning
using machine learning techniques), being rather focused on
obtaining a suitable integration of relational database concepts
for performing argumentation efficiently.

In [53], the problem of using defeasible reasoning in a massive
data repository is addressed, but instead of using databases storing
information for supporting conclusions, their repository is the Web,
more specifically the Semantic Web. The paper presents a complete
system, also including a study of its performance showing that the
time consumed by the system is similar to the time obtained in
DBI-DeLP. Recently, several large-scale domain-dependent datasets
have been released, providing additional motivation for the devel-
opment of the framework proposed in this paper. For example, as
mentioned before, for a movie recommendation scenario websites
like the Internet Movie DataBase [27] and MovieLens [28] provide
public datasets (supported by relational databases) with users’
information and movies they like. Thus, using databases we proba-
bly will have access to the same repositories as those accessed by
the system in [53] with no loss in efficiency, giving further reasons
to choose a defeasible argumentation/relational databases architec-
ture in the development of new Knowledge-Based Systems.

Another work that focuses on the use of argumentation over the
massive repository that is the Web is the one by Janjua et al. [3],
where they develop a formal framework for Web-based IDSS (Intel-
ligent DSS) for reasoning over incomplete and conflicting informa-
tion that is based on DeLP as the argumentation engine. The main
focus of that work is in knowledge integration in IDSS scenarios,
and provide also mechanisms to make the results obtained by the
framework shareable, by means of the Argument Interchange For-
mat (AIF) [54]. Clearly their approach differs to ours, but both sys-
tems can complement each other. For instance, they acknowledge
that certain kinds of Web-based DSS have their key functionalities
supported be legacy systems working with databases, where a
framework like the one presented in this paper may help in the inte-
gration. Moreover, the framework presented in their paper, Web@-
KIDSS, stores certain information for profiling in databases
supported in MySQL. Thus, the database retrieval mechanisms pro-
vided by DBI-DeLP surely will be proven useful in such environment.

Another area where argumentation frameworks are supported
by real-world data stored in databases is Legal Case-Based Reason-
ing (LCBR) [55-57]. In this area, several argumentation-based
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approaches were developed in the last few years (see e.g. [58-60]).
Like in DBI-DeLP-based applications, case-based argumentation
systems tend to use relational databases to save and retrieve data,
which are translated in the form of cases. As in our approach, these
systems allow dynamic updates in their KBs, but LCBR systems are
also able to incorporate new knowledge from the current case
implicitly in their reasoning cycle. Nevertheless, it is clear that
the argumentation approaches in LCBR are focused on legal reason-
ing, while our framework can be used also to develop other types
of applications like Decision Support Systems or Recommender
Systems. Thus, LCBR approaches will certainly be more effective
than ours in a legal setting, but still our framework is more general
and will be useful in another areas.

There have been other approaches connecting case-based rea-
soning with argumentation in more general settings than those
of the legal one, which are connected to some extent with our pro-
posal but from different perspectives. In [61] the authors present
HerMmEs, a system that augments classical decision making ap-
proaches by supporting argumentative discourse among decision
makers. It is fully implemented in Java and runs on the Web, thus
providing relatively inexpensive access to a broad public. Ad-
vanced features of the system include enabling users to retrieve
data stored in remote databases in order to further warrant their
arguments, stimulating them to perform acts that best reflect their
interests and intentions. In contrast, our proposal aims at providing
a more general ontology for integrating argumentation and dat-
abases, whereas Hermes was intended as a tool for collaborative
decision making. In [62], the authors introduce an extension of
the basic mechanisms used in conventional argumentation frame-
works. This extension is called Argumentation System Based on
Ontologies (ASBO), and consists of a new and convenient style of
attack to arguments, making explicit the argumentation process
structure through an OWL-based ontology. In line with our pro-
posal, ASBO follows an engineering-oriented approach to material-
ize a software architecture which allows working with
argumentation in MAS. However, the focus is on persuasion dialogs
among agents, whereas our approach is defined in a more generic
setting oriented to integrating argumentation with relational dat-
abases, based on common basic elements in argumentation frame-
works obtained from RBAS (facts, rules, etc.). In [63], a case-based
approach to argumentation is presented, consisting of (1) an argu-
mentation framework for learning agents, and (2) an individual
policy for agents to generate arguments and counterarguments
(including counterexamples). This proposal is mainly focused on
a multi-agent learning perspective based on argumentation, and
does not consider primitives for accessing and retrieving informa-
tion from relational databases in the context of an argumentation
framework, as done in our approach. Finally, in [64] the authors de-
scribe a negotiation model that integrates case-based reasoning,
real time issues and argumentation. This model consists of two
important ideas: a real-time logical negotiation protocol and a
case-based negotiation model. The protocol integrates a real-time
Belief-Desire-Intention (BDI) model, a temporal logic model, and
communicative acts for negotiation. Contrasting with our proposal,
this approach aims at characterizing an agent able to negotiate
with its partners using an argumentation-based negotiation proto-
col, considering real-time constraints (e.g. for solving resource allo-
cation problems). This approach also differs from ours in not taking
into account the integration of relational databases as part of the
characterization of the negotiation protocol.

As for future work, there are several lines of research that we
plan to follow. We will describe them briefly.

One of the future goals is to enhance the presented framework
with semantic information about predicates allowing to automat-
ically obtain information about the different possible data sources.
One way this could be done is by using ontologies with semantic

definitions for every parameter in a predicate. In this way, such
ontologies may help us to identify and recognize the structure of
the different data sources, allowing the definition of processes that
could automatically fill the PTD. Additionally, this can help to add
new capabilities, e.g. data alignment among heterogeneous dat-
abases. Notice that the presented structure of the PTD is adequate
to maintain the information relating predicates and data sources
provided by such processes, making the addition and modification
of data sources easier. Also, the proposed framework is flexible en-
ough to allow the automatic generation of the necessary SQL que-
ries; thus, every modification in the PTD is reflected in the formed
queries directly, because they are constructed on the fly.

An alternate approach to cope with massive argumentation pro-
cesses is to take advantage of the power of Semantic Web technolo-
gies adapted for their use in such settings. In this sense, we plan to
develop methods to express relational databases in some Semantic
Web processable format, and then apply solutions already devel-
oped for defeasible reasoning in such settings, e.g. [25,53,26].

Another line of research we are following is the dynamic update of
the rules in the program based on the analysis of the information stored
in the DDH. In particular, as supporting information is searched in the
databases, counter-examples to already known rules may arise. We
plan to take advantage of such counter-examples to further refine
the available knowledge. While searching for support for some TG
the set of rules may be revised when data with values different to those
expected are found. For example; strict rules may be downgraded to
defeasible ones, or new refined defeasible rules may be formed by ana-
lyzing the characteristics of the newly found data [65]. To do this, we
can exploit mechanisms already developed for DelP to make the
knowledge base updates. For instance, we can take advantage of
the addition and removal of elements of knowledge from a delp pro-
vided by contextual queries proposed in [66].
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Appendix A
Table 4.

Table 4

Most important acronyms used through the paper.
Acronym Expansion
DBMS DataBase Management System
DBI-DeLP DataBase Integration for

Defeasible Logic Programming
dbi-delp database integrated
defeasible logic program

DDH Domain Data Holder
DDI Domain Data Integrator
DeLP Defeasible Logic Programming
delp defeasible logic program
DS Data Source
DSR Data Source Retrieval [function]
or Operative Presumption
PRF Presumption Retrieval Function
PR Pertinence Relation
PS Parameter Source
PTD Predicate Translation Database
RBAS Rule Based Argumentation Systems
SLD Selective Linear Definite [clause resolution]
TG Target Goal
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