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Abstract

Evaluating open-response assignments in Massive Open Online Courses is a dif-
ficult task because of the huge number of students involved. Peer grading is
an effective method to address this problem. There are two basic approaches
in the literature: cardinal and ordinal. The first case uses grades assigned
by student-graders to a set of assignments of other colleagues. In the ordinal
approach, the raw materials used by grading systems are the relative orders
that graders appreciate in the assignments that they evaluate. In this paper
we present a factorization method that seeks a trade-off between cardinal and
ordinal approaches. The algorithm learns from preference judgments to avoid
the subjectivity of the numeric grades. But in addition to preferences expressed
by student-graders, we include other preferences: those induced from assign-
ments with significantly different average grades. The paper includes a report
of the results obtained using this approach in a real world dataset collected in
3 Universities of Spain, A Coruna, Pablo de Olavide at Sevilla, and Oviedo at
Gijon. Additionally, we studied the sensitivity of the method with respect to
the number of assignments graded by each student. Our method achieves sim-
ilar or better scores than staff instructors when we measure the discrepancies
with other instructor’s grades.
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1. Introduction

Massive Open Online Courses (MOOCs) have attracted thousands of stu-
dents from many parts of the world. These courses make university lectures
available online and most of the times are free or have a very low cost. It is pos-
sible to find MOOC:s of almost any kind of subject; even for highly experimental
subjects, where students can make real experiments with simulated materials
(microscopes, etc) or can take real data from remote controlled devices [Ll]. The
success of MOOC:s is based on the fact that several providers are spin-off from
the most reputable Universities. This is the case, for instance, of Academic
Earth, Coursera, edX, Khan Academy or Novoed.

The evaluation is an important part of the teaching process, and has to be
addressed in order to make MOOCs useful to provide a feedback to students
and to guarantee the quality of the titles given to graduates. The challenge is
to evaluate a very large number of assignments that cannot be automatically
evaluated in all cases. In some cases, the assignments include open-response
(open-ended) questions whose evaluation requires human intervention.

Since it is unpractical that an instructor evaluates all the assignments, or
even a set of Teaching Assistants (TA), researchers have been exploring the pos-
sibilities of using methods previously employed in Journals or Conferences: peer
grading or peer assessment [2, 8, 4, b, 6, [1]. The students of the course are asked
to evaluate a small set of anonymized assignments submitted by other students.
Additionally, these student-graders receive a set of detailed instructions (called
rubric) in order to uniform the assessment. However, students typically have
no experience in this task and then effective peer grading must deal with the
effects of inconsistent subjective evaluation.

Roughly speaking there are two kinds of methods to use peer grading in
practice: cardinal and ordinal approaches. In cardinal peer grading, each
grader returns a cardinal-valued assessment for each assignment. Grades are
then numbers or categorical labels with a straightforward numerical semantics.
This type of grades is really very useful since they transmit an accurate assess-
ment. Graders classify the assignments in an ordered scale that it is hopefully
assumed universally. The final grade given to an assignment is usually deter-
mined as the average (or median) of the corresponding peer-grades [3] given by
the evaluators.

However, the cardinal approach has severe shortcomings. Firstly, we have to
expect that assessments will be affected by some graders’ bias that would deviate
them with respect to the ideal ground truth. The presumed universality of the
semantics of cardinal grades is not so general. Some students tend to give very
high grades, while others (probably with different academic backgrounds) are
less generous with their assessments. A way to overcome this problem is to get
many grades for each assignment; then, the correct grade could be approximated



averaging all available grades. Moreover, assuming that each assignment was
graded by a big amount of students, it has been reported [4] that averages are
more consistently accurate with respect to the rubric than the staff grades. We
have confirmed this fact in the experiments reported at the end of the paper.
But unfortunately, we only can obtain a reduced number of assessments for each
assignment.

In addition to the existence of different scales, there is a second shortcoming
that has to be addressed in cardinal approaches: the batch effect. It has been
observed [B, 9, [10] that an item tends to receive a higher score when it is eval-
uated in a batch of worse items than when it is evaluated in a group of better
items. Fortunately, despite the graders’ biases, the ranking entailed by their
assessments is coherent with the ground truth. In other words, the grades can
be unreliable but the order is, in general, correctly assessed [11, 8, 9, 2.

The basic axiom of Ordinal peer grading methods is that the essential knowl-
edge provided by inexpert graders is the ordering of their bunch of assignments.
Notice that these orderings indicate a relative but not absolute quality assess-
ment. Thus, ordinal approaches are committed to take advantage of the robust-
ness of ordering against the alleged accuracy of cardinal grades.

In this paper we present an approach that tries to combine the strengths
of both views. The student-graders are asked to give cardinal grades. The
whole set of evaluations of each grader is considered as a relative ordering; from
them we obtain a set of pairs of preferences (also called preference judgments or
comparisons). In this way we avoid ties: we only consider pairs of assignments
with different grades. But in addition to student-graders we include a new
grader, we call it the Gaussian grader. This grader compares assignments with
significantly different average grades.

We would like to emphasize the role of the artificial Gaussian grader. On the
one hand, its preferences include somehow a calibration in the pure ordinal ap-
proach. The idea is that some assignments are clearly better than others. Then
their comparison has to be present in the learning task, even if the assignments
involved have not had any common grader.

On the other hand, the comparisons induced by the Gaussian grader make
harder the possibility of having islands in the grading network [4]. Notice that
any ordinal grading algorithm needs to have each assignment connected to the
rest through a chain of comparisons, otherwise the grades of each connected
component are unrelated with the others.

Finally, with the set of preference pairs of all graders we learn an utility
function that returns higher values to better assignments. This function can be
learned using preference learning methods like those presented by Herbrich et al.
[12] or by Joachims [10]. In this paper, as it was done in the work by Diez et al.
[, we use a factorization method [[13] to learn the utility function. This function
estimates the consensus ordering of the assignments computing a ranking that
can be easily transformed into a grading function for each assignment.

An additional advantage of this approach is that it is straightforward to
include additional features of the assignments or students involved in the evalu-
ation process. Both assignments and graders are represented by feature vectors.



If no other information is available, these features are just a binary codification
of their identity. But the representation can be enriched with any information
about the characteristics of the assignment, or previous academic history of the
students. About this issue we have to be aware of ethic considerations, for in-
stance not including features like gender or ethnicity; see [4]. But additional
features may be crucial for the success in some cases; see [14] and [15].

Other approaches perform preference learning by taking into account the
degree of preference of one item over another, as the work of Wang and Fan
[16]. This method starts from preference matrices given by users, where they
express their degrees of preference with respect to a pair of products. Thus, it
is, to some extent, a cardinal approach in contrast to ours, which is mainly an
ordinal approach that takes into account cardinal differences only when they are
statistically significant. Despite the drawbacks of cardinal approaches discussed
previously, this method is also hindered by a common characteristic of the peer
assessing tasks: each grader evaluates only a few assignments so the preference
matrices given by the graders will be very sparse. The consensus matrix, com-
puted as a weighted sum of the preference matrices, will be nearly zero and the
underlying ranking will hardly be better than any other chosen at random.

In the rest of the paper we review some related work, and then we make a
formal presentation of our approach. The paper is closed with the report of the
results obtained with two real word dataset obtained from a common assignment
for Computer Science students of 3 Universities of Spain: A Coruna, Pablo de
Olavide at Sevilla, and Oviedo at Gijon. Each dataset has 1327 grades given by
160 students to 175 assignments.

The experiments compare the performance of the factorization method pro-
posed here with a baseline that simply averages the grades given to each as-
signment. The comparison is established against the grades given by the staff
instructors of each university, that assessed the whole set of assignments, not
only those of their own Universities. Additionally, the experimental section
presents a study of the sensitivity of the method with respect to the number of
assignments that graders received to evaluate. We observe that the scores im-
prove with this number, and that our method achieves similar or better scores
than staff instructors when we measure the discrepancies with other instructor’s
grades.

2. Related Work

There are a number of related work in this area; some of them have just
been mentioned in the Introduction. However, probably the most similar work
is reported by Raman and Joachims [f]. In this paper, the authors present a
case study with real data from a Cornell University course. The assignments
are 42 posters and 44 reports done by groups of students. Each poster received
and average of 23.71 grades, while reports received 13.32 grades. The authors
propose to use the ordinal approach casting the learning problem as a rank
aggregation learning task.



The paper compares the performance of several probabilistic aggregation al-
gorithms and acknowledges that simply averaging the cardinal scores of the peer
graders performs surprisingly well. Probably the reason is that each assignment
receives a high number of grades in coherence with results reported for instance
by Piech et al. [4].

A very interesting result reported by Raman and Joachims [6] is that the
accuracy of the models learned are compared with the rankings achieved by a
set of TAs. The conclusion is that there is no evidence that TA grading would
have led to more accurate grading outcomes than peer grading.

Another probabilistic learning algorithm has been proposed for peer grade
estimation in [4]. The paper presents also a case study with 63199 peer grades of
a Coursera course about Human Computer Interaction. The method proposed
requires self-grading of the students and the evaluation of some assignments that
were previously graded by the instructor in order to estimate grader reliability.
These constraints were not included in the experiments reported in this paper.

Both papers, [4, 6], emphasize the relevance of assessing the accuracy of
graders. In fact, it is crucial to incentive students to make a good evaluation if
we want to obtain reliable data. A way to do this is to include the assessment
of students as graders as part of their final grade. On the other hand, we think
that the evaluation process itself may be an additional way for students to get
insight into the field covered in the assessment.

Shah et al. [B] use also a dataset of Human Computer Interaction (HCI) on
Coursera; in this case from the third offering of the course. The dataset used
has assignments submitted by 1879 students, and 7242 numerical grades were
collected by a peer grading experiment.

The authors acknowledge as a desideratum to seek for a trade-off between
the precision of cardinal scores and the robustness of ordinal evaluations for
peer grading. The computational method proposed in the paper is an ordinal
approach that searches for the solution of a non-convex optimization problem
that uses a logistic sigmoid. The experiments reported achieve a performance
similar to the performance of a method that simply computes the median of the
grades given to each assignment.

Another relevant paper about peer-grading in MOOCs was also written by
Shah et al. [15]. The authors present formal proofs about the errors in peer-
gradings when the grade is estimated averaging the grades given by student-
graders. There is a constant proportion of assignments erroneously graded.
The amount of assignments may become too high in MOOCs, and therefore the
procedure is unacceptable.

The proposal is to use methods that include some kind of dimensionality
reduction; in particular, the authors discuss clustering and featuring. Although
the proposals are very abstract, it is interesting to underscore that the factor-
ization method proposed in this paper is a suitable framework to implement
both approaches.

There is other kind of approaches to obtain computed aided assessments.
The focus is on providing an automatic feedback to students that have just
written a free-text answer in an online course. The general idea is to compare



students’ answers with some reference answers provided by the instructors. The
comparison method is_borrowed from the field of information retrieval. Ro-
drigues and Oliveira [17] compute a_cosine similarity after a preprocess. A
modification of the BLEU algorithm [1§] is used by Noorbehbahani and Kardan
[19]. An ensemble of Latent Semantic Analysis (LSA) and n-gram co-ocurrences
is the method proposed by He et al. [2(]. In turn, Pérez et al. [21] propose a
combination between BLEU and LSA.

Probably the use of information retrieval methods with a shallow natural lan-
guage processing would improve the approach presented in this paper. However,
the peer-assessment strategy has some pedagogical advantages since it requires
an additional reflexion of students about the contents of the assignments. Thus,
we think that it is valuable to explore this approach.

Finally, let us recall that factorization approaches have been used widely
since their success in recommender systems. The Netflix price was won by a
team that proposed a factorization algorithm, [22]. The scalability of these
algorithms was emphasized in [23]. However, recommenders was not the only
application tackled with a factorization approach; in [24], the authors presented
an algorithm for dimensionality reduction in Machine Learning. All these appli-
cation fields underscore the advantages of factorization versus other alternative
approaches in solving some learning tasks.

3. Learning Method

Let Gpy be a set of graders that provide their preference judgments, and
let A be a set of assignments. Each grader g has received a subset D, C A
of assignments to evaluate. The initial data to infer a grading function is the
collection of grades given by graders:

g(i) € 10,10],Yg € Gpy, i € D,. (1)

From these data we build a set of preference judgments Dp; given by triples of
a grader, and a pair of assignments evaluated by the grader and ordered by its
grade. In symbols,

nggPJ,VZ,]EDg,g(Z)>g(]):>[g,'L,j]EDPJ (2)

Pairs of assignments with the same grade are not used to build a preference
judgment, since only those assignments with different grades are useful to infer
a ranking. For example, if grader g assesses 4 assignments, p, ¢, r and s, giving
the following grades: g(p) =7, g(q) = 5, g(r) = 9, and g(s) = 5, we will con-
struct his/her preference judgments as {[g, p, ql, [9, 7, P, [9, P, s, [, 7 q], [g, 7, S| }-
Notice that there is no pair including ¢ and s since neither one is better than
the other.

The first step to learn a model for peer grading consists in adding some
preference judgments. For this purpose we invent a new grader called in the
following the Gaussian grader, Gg. This artificial grader considers pairs of as-
signments (7, j) such that the average of grades received by the first, p;, minus



the typical deviation o; is greater than the average of j grades plus the cor-
responding deviation. In symbols, we are going to consider the triple [Gg, 1, j]
whenever

(ki —03) > (5 + 05).

Then, we define an additional set of preference judgments with two more triples
for each assignment fetched from Gg judgments, we call this set Dg,. Exactly
one assignment better (if exists) and one assignment worse (if exists).

Vie A Jjor, (i —0i) > (Wi, +05,)

= [Gg,iaj—l] € DGg7 (3)
Vi€ A Jjia, (ujﬂ - Uj+1) > (i + 04)
= [vaj+177;] € DG’g~ (4)

After this step we have a dataset given by
D = Dpy UDg,. (5)
To complete the step, we add G¢g as a member of the set of graders G:
G =GpsU{Gyg}.

The next step in the learning process is to map both assignments and graders
into a common Euclidean space

¢g(g) :Q%Rkv QHW/;,,
ba(i) : A= RE, i V. (6)

From this dataset we could try to learn a utility function defined as:

F(9,7) = ~l64(9) — da(D)]|* =
= 7<¢9(g) — ¢a(i), Pa(g) — dali))
= — (W, W) + (Vi, Vi) — 2(W,, V)

= ZMTVZ - ‘/V;]TVV; - VzTVz (7)

This function is an estimation of a grade normalized for every grader and every
assignment. Somehow, this utility function allows us to complete the assessment
matrix. From a geometric point of view, f(g,4) is the opposite of the distance
from the Euclidean representation of the grade g and the assignment i. Nearer
representations mean higher assessments.

We define the final grade for each assignment as the average grade given by
every grader. In symbols, we extend the definition of the utility function f as



follows.

2

f( aZ = |g| Z¢g a

geg
= |glz¢g @bg() ¢a(l)>
9geg
:fﬁz(mmwm,wf?m,vn)
9€g
|;ZWTW |Q|ZWTW v,V (8)

geg

The aim of the learning process devised to make the assessment is to optimize
the mapping functions (é) in such a way that the final grades given by the
average (%) be as coherent with graders orderings as possible. We will follow a
maximum margin approach. Then, we define

err(W, V)= Y max(0,1- f(G,i) + f(G,))- (9)
lg,3,5]€D

We use matrices W and V to collect the columns used in mappings (B) The
idea is to ensure that the difference of grades is at least 1. To learn these param-
eters we use a Stochastic Gradient Descent (SGD in the following) algorithm to
minimize the previous equation adding a regularization term

argmin (err(W,V) +vr(W,V)). (10)
w,v

In this case, to implement regularization we use the square of the Frobenius
norm.

(W, V) = WL+ VI,

=S w7+ X vl (11)

Y €A

The parameters of the model are updated in the SGD as follows:

Oerr or
W W= (G + )

derr or
Va<—Va—7<aVa+yaVa). (12)

Let us remark that each [g, 7, j] € D fetched by the SGD gives rise to an update
of the representation of grader g (W), and of the assignments ¢ and j (V;,V}).



These updates are carried out only when the margin is violated, see (E) The
partial derivatives needed can be built from:

0f(G,a)
oW, |g|(V Wo).
0f(G,a)
Tov, [0l ZW
o _ow, 87" =2V, (13)

ow, T o,

In the preceding derivation of the learning algorithm it is implicit the per-
formance measure that we are using. The goal is to obtain a ranking with
£(G,9) (E) as coherent as possible with the rankings provided by real graders.
We exclude here the artificial Gaussian grader (Gg). That is, our performance
measure is the proportion of judgment pairs correctly orderer by f(G,) using
the student-graders as target.

The performance measure defined above is the area under the ROC curve
(AUC). It is also known as the concordance index (C-index), or the pairwise
ranking accuracy. This measure is called Kendall-T in the paper of Raman and
Joachims [6]. In symbols, the performance in Dp; is given by its AUC defined
by

err(f,[g,1,j]) = ]I[[f(gPJ; i) < f(Gps,J)]

n 5]1[[f(gpj,z') = f(Gps,7)]

. Z[g,i,j]EDpJ 67"7’(']07 [9727.7])
|Dp.l '

AUC(f,Dpy) = (14)
Notice that the AUC can be used to compare two different rankings. However,
it is not a symmetric measurement. One of the rankings has to be taken as the

ground truth; in the previous equations, the ordering of Dp; was considered as
the right order.

4. Detailed Description of the Assessment Process

Although the method presented in this paper has been formally described
in the preceding sections, let us now collect the steps followed in the real exper-
iment reported in the next section.

e All the students had to write an essay answering some questions. The
assignment included 3 basic questions about search in the course Intelli-
gence Systems for undergraduate Computer Sciences students. The first
and third questions were open-response, while the second one asked the
students to fill a table of scores and can not be considered open-response.



o All students had to anonymize their assignments and submit them using
EasyChair. The event created was called JRLO201/ (Joint Research in
Learning to Order 2014).

e Then each student, acting as a reviewer or grader, received about 10 as-
signment to evaluate. The assignation was done at random.

e At the same time, the students received a detailed rubric, spelling out how
to assess the assignments.

e Each question had to be graded in a numeric scale of integers form 0 to
10.

o Finally the students received the feedback from the anonymous reviewers
of their assignments.

The computational process followed by the data so collected can be summa-
rized as follows.

e From grades given by student-graders (m) we build the learning task Dp
using (P).
e The learning algorithm that has two steps:

— adds some new preferences suggested by the so-called Gaussian graders,
— uses a SGD to find a couple of matrices, W and V.

e The evaluation of the performance is computed with the whole set used
for training, the learning task Dp ;.

e The performance measure is the AUC (@)

e The ranking computed by (E) can be calibrated to transform percentiles
into valid grades. This can be done using a table of equivalences or using
grades provided by the staff for some assignments to make an interpola-
tion.

5. Experimental results

In this section we report an experimental comparison of the method intro-
duced in this paper. First we present the datasets used in the experiments,
and then we show the results obtained in a comparison with a baseline and the
evaluations of the instructors of the courses in our Universities.
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# of graders 160

# of assignment 175
# of evaluations 1326
evaluations per grader 8.29 + 1.45

evaluations per assignment 7.58 + 2.02

Table 1: Datasets description

5.1. Datasets

The data used in the experiments gathers assignments of 175 students from
our three Universities. A subset of 160 students participated as graders (see
Table [l) with a total of 1326 grades from 0 to 10. Each student received an
average of 8.29 assignments to evaluate, and a maximum of 11. Each assignment
received in average 7.58 grades. Let us point out that we had only 4.74% of the
total possible assessments.

The assignment given to the students comprises 3 questions. The topic
covered was searching methods, both informed and uninformed. We were using
the handbook by Russell and Norvig [25]. The first question was taken from this
handbook, and it asked the students to formalize 3 academic search problems:
graph coloring, monkey and bananas, and a water-jug puzzle. This was an easy
question for the students both to answer and to evaluate after the rules given
in the rubric.

On the other hand, the second and third questions used the Tools for Learn-
ing Artificial Intelligence [26]. Given a small graph of the Neighborhoods of
Vancouver, the students were asked to use a searching prototype to find the
shortest paths from a set of pairs of nodes. They had to use 3 beforehand fixed
algorithms. The second question of the assignment requested the students to fill
a table with the lengths of the best paths and the number of nodes expanded in
each search by each algorithm. The third (and last) question asked to discuss
the results achieved justifying the scores according to the optimality or not of
the algorithms used.

In these experiments we considered 2 datasets, those formed with the grades
given to the first and the third questions, we call it @1 and Q3 respectively.
We built the sets of preference judgments as was explained in Section f. We
avoided the second question since it has a mechanical assessment and thus it is
out of the scope of this paper. Table P shows the average and typical deviation
of grades for each question. Notice that the average grade in Q1 is considerably
higher than in Q3. Additionally, this table displays the average range of grades
received by the assignments and given by graders.

Let us highlight the extension of the range of grades received by the assign-
ments; this is an indication of the difficulty of the peer grading tasks. Figure
depicts the histograms of grades received by the assignments for each question.

11



Average Q1 Q3

grade 6.37 £ 3.08 4.84 + 3.39
range per grader 6.50 + 2.61 7.31 + 3.00
range per assignment 7.01 4+ 2.45 6.67 £ 3.25

Table 2: Description of grades in each dataset

Question 1 Question 1

#of assignments
#of assignments

3 4 5 6 7 8 9 1 2 3 4
average grade per assignment grade deviation per assignment

Question 3 Question 3

#of assignments
#of assignments

2 3 4 5 6 7 8
average grade per assignment grade deviation per assignment

1 2 3 4

Figure 1: Average grade and deviation per assignment

5.2. Scores and discussion
The SGD (@) was applied using a learning rate defined in terms of the
iteration it by

-
R T

The parameters used were the results of a search of the best scores in

k € {2,10,50}
vs € {10°: e =—-7,...,0}
ve{0}u{10°:e=—4,... —1}.

To evaluate the quality of the results, we used the AUC defined in (Q) We
compared the rankings obtained by the method proposed in this paper with
a baseline algorithm and the ranking induced by the assessments given by the

12



Instructors

Uniovi 0.649

UDC 0.659
Maximum assignments Models Averages
per grader

5 0.673 0.650

6 0.676 0.645

7 0.681 0.645

8 0.676 0.658

9 0.695 0.662

10 0.699 0.671

11 0.706 0.671

Table 3: Comparative AUCs (the higher the better) with respect to UPO in Q1

instructors of the Universities involved. The instructors evaluated the whole set
of assignments, not only those of their own students. As baseline, we employed,
as usual, the average of grades received by each assignment.

In the figures and tables of results, we use the acronyms of the Spanish
names of our Universities that appear in the email addresses: Pablo de Ola-
vide University (UPO), University of A Coruna (UDC), University of Oviedo
(Uniovi).

Let us recall that the AUC is not symmetric and then we need to fix a
ranking to compare with. In all cases we considered the ground truth the ranking
provided by the instructor of UPO. The reason is that she achieved better scores
with respect to the other instructors’ rankings than any other.

Additionally, we wanted to check the sensitivity of our method with respect
to the number of assignment supplied to student-graders to evaluate. For this
purpose, we built new datasets for each question sampling the original data with
different maximum number of assignments per grader: from 5 to 11.

The results are shown in Tables B and {, and they are depicted in Figure E
The scores may seem low; however, they are in line with other published results.
Raman and Joachims [§] consider two datasets; they received an average of 23.7
and 13.3 grades respectively. These numbers justify that simply averaging the
cardinal scores of the peer graders (the baseline used in this paper) performs
well. The ordinal methods discussed in the paper were compared with TA
(Teaching Assistant) grades. The AUCs range from 0.778 to 0.657. Notice that
in our case we only have an average of 1327/175 = 7.58, and the AUC with
respect to the best instructor ranges from 0.661 to 0.706.

Another important issue is that in general we can observe that the increment
in the number of assignment given to each student-grader gives rise to a better
performance both in the baseline and in the models learned.

The scores achieved with Q1 are clearly better for the models achieved by
our method than for the baseline. On the other hand, in Q3 the scores are

13



Instructors

Uniovi 0.795

UDC 0.650
Maximum assignments Models Averages
per grader

5 0.661 0.658

6 0.633 0.646

7 0.676 0.679

8 0.670 0.689

9 0.685 0.688

10 0.693 0.696

11 0.703 0.694

Table 4: Comparative AUCs (the higher the better) with respect to UPO in Q3

o. .
o. o.
o o Models o o Models
Averages Averages
o Uniovi o Uniovi
074 < UDC 074 < UDC
0. o.
o. ] o 4
/ ,/‘7’
o s o //
b ——

o. o.
064 064 N/

i i i i i i

6 7 8 9 10 1 6 1 1

Figure 2: AUCs with respect to UPO assessments of the other instructors, models and base-
lines using 5 to 11 maximum evaluations per student-grader. Left hand side, Q1, right Q3

indistinguishable, there is not a clear winner. The reason for this behavior is
the difficulty of the questions. Q1 is easier for the students than Q3. To express
formally a discussion of scores seem to be harder than giving a complete problem
formulation for academic toy search problems. Even the rubric provided to
student-graders was difficult to understand in the case of Q3. The consequence
is that the assessments of Q3 were more incoherent and therefore more difficult
to generalize than in the case of Q1.

This is an interesting point to be considered in peer-grading. The assign-
ments and rubric must be clear enough so as the student-graders can accomplish
their task satisfactorily.

6. Conclusions

We have presented a factorization method to implement peer assessment.
Our approach seeks a trade-off between cardinal and ordinal approaches. The

14



algorithm presented in Section E learns from preference judgments to avoid
the subjectivity of numeric grades. But in addition to preference judgments
expressed by student-graders, we included other preferences: those induced from
assignments with significantly different average grades.

The algorithm presented uses a maximum margin approach solved using
a SGD optimizer. It is fast and can be easily scalable to a large number of
students.In addition, our method lacks some constraints present in other state-
of-the-art approaches, such as the need of students’ self-grading or previous
grading by instructors. In fact, the last constrain makes those approaches in-
applicable to a very large number of assignments, which is one of the main
characteristics found in MOOCs.

The paper includes a report of the results obtained using this approach in a
real world dataset collected in 3 Universities of Spain, see Section f for details.
We compare the ranking obtained by our method with those given by a baseline
and the staff instructors. The baseline was the average of the scores of student-
graders. We found that when the assignments are not too hard for the students
and they thoroughly understand the rubric, the performance of our models is
better than the baseline and comparable with the rankings of the professional
graders. In other case, the baseline and the models are similar and still can be
comparable to those of the instructors.

We also checked that the number of assignments given to each student-grader
is important. In all cases the performance improves as this number increases.
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