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Abstract

In this paper, a novel approach to classifier ensemble creation is presented.

While other ensemble creation techniques are based on careful selection of

existing classifiers or preprocessing of the data, the presented approach au-

tomatically creates an optimal labelling for a number of classifiers, which

are then assigned to the original data instances and fed to classifiers. The

approach has been evaluated on high-dimensional biomedical datasets. The

results show that the approach outperformed individual approaches in all

cases.

Keywords: Ensemble learning, Diversity, Hidden Markov Random Fields,

Simulated annealing, Bioinformatics

1. Introduction

Classification is a fundamental task in machine learning. In numerous

application fields very complex data needs to be classified which is often a

difficult task for a single machine learning classifier [1] [2]. There are tremen-

dous amount of research on improving the classification performance in such

cases. One highly investigated field for this problem is ensemble learning [3],

where multiple prediction are fused the produce a more efficient classifica-
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tion approach. One fundamental requirement for the creation of classifier

ensembles is diversity among them [4], that is, the classifiers included in the

ensemble need to complement each other to provide more generalization ca-

pabilities than a single learner. Bagging [5] uses randomly selected training

subsets with possible overlap (bootstrapping [6]) to ensure diversity among

the member of the ensemble. Other diversity creation techniques may in-

volve disjoint random sampling (random subspace methods [7], for example,

some variants of Random Forest algorithms [8]), while Adaboost [9] based

techniques aims to increase the accuracy of a weak learner iteratively (boost-

ing [10]) using targeted sampling: each iteration considers the misclassified

instances of the training data to be more important, and drives the iteration

process to include them in the current training set. Another approach to cre-

ate diverse ensembles is ensemble selection [11], where diversity of classifiers

trained on the same dataset is measured and an optimal subset is selected.

A more comprehensive review on the above described techniques can be

found in [12]. The relationship of classifier diversity and ensemble accuracy

is highly investigated in the ensemble learning community. Although the

definite connection between diversity measures and ensemble accuracy is an

open question [13], a decomposition of majority voting error into good and

bad diversity is proposed in [14].

In this paper, a novel approach for ensemble creation based on this the-

oretical result is presented. The proposed approach takes the predictions

of a single classifier on a training set. Then, an optimal labelling compli-

menting the predictions of the classifiers are created. Thus, an optimal but

false labelling set is created for a number of classifiers. The data with each
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Figure 1: Flowchart of ensemble creation via false labelling

false labelling is trained to a classifier thus forming an ensemble. We de-

fine a Markov Random Field problem to create an optimal ensemble with

this method. The approach has been tested on high-dimensional biomedical

datasets where a large improvement over a single learner is achieved. Other

aspects of the algorithm including its performance comparison with different

number of ensemble members is also discussed. The outline of the proposed

algorithm can be seen in Figure 1.

The rest of the paper is organized as follows: section 2 contains the math-

ematical background behind the proposed method, while section 3 defines an
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optimization problem to solve it and proposes an implementation for it. Sec-

tion 4 contains our experimental details, while the results are presented and

discussed in section 5. Finally, conclusions are drawn in section 6.

2. Ensemble creation via false labelling

The presented false labelling based ensemble creation are presented is re-

stricted to binary classification problems. In this section, the mathematical

background behind the algorithm is presented. Moreover, an optimization

problem is defined to provide an efficient solution for the false labelling prob-

lem. For the basic machine learning and ensemble definitions, we relied on

the classic literature [3] and [14].

Let Ω = {−1,+1} be a set of class labels. Then, a function

D : Rn → Ω (1)

is called a classifier, while a vector ~χ = (χ1, χ2, . . . , χn) ∈ Rn is called a

feature vector. A dataset T ∈ {Rn × Ω}l can be defined as follows:

T = {〈~χ0, ω0〉, 〈~χ1, ω1〉, . . . , 〈~χk, ωk〉}, (2)

where ~χi ∈ Rn, ωk ∈ Ω, i = 1, . . . , k are feature vectors and labels, respec-

tively.

Let D1, D2, . . . , DL be classifiers and dt (~χ) ∈ Ω, t = 1, . . . , L their output

on the feature vector ~χ. Then, the output of the majority voting ensemble

classifier Dmaj : Rn → Ω can be defined as follows:

dmaj (~χ) = sign

(
1

L

L∑
t=1

dt (~χ)

)
. (3)
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The creation of an ensemble Dmaj of L classifiers (equation 1) starts by

training a base classifier on the half of the training dataset (equation 2) T

(T0). We take the output Corig of the classifier Dorig on the other half of the

training set (T1) and create L−1 optimal labellings for a the remaining base

classifiers Di, i = 2, . . . , L. Then, we train these classifiers on T1 with their

respective false labellings Cifalse.

The outline of the ensemble creation method is summarized in algorithm

1, while the mathematical formulation is presented in the rest of the section.

Algorithm 1 Outline of ensemble creation via false labelling

Require: a dataset T 6= ∅, a label set C 6= ∅, a classifier Dorig, the number

of ensemble members L > 2 (L is odd).

Ensure: an ensemble of trained classifiers Dmaj.

1: Split T into T0 and T1 randomly.

2: Train Dorig on T0.

3: Corig ← Dorig (T1)

4: Ccl ← F (Corig) = {C2false, C3false, . . . , CLfalse}

5: for i← 2, . . . , L do

6: Train a classifier Di on LC
(
T1, Cifalse

)
, Cifalse ∈ Ccl.

7: end for

8: return {Dorig, D2, . . . , DL}

2.1. Ensemble creation

The proposed ensemble creation depends on the output of one classifier

Dorig for a given training dataset T .
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First, we split T into two equal parts T (0) and T (1) randomly. We train

Dorig on T (1) and classify all ~χ1
j ∈ T (0), j = 1, . . . , k/2 element of T (1):

C1orig = {ωj|ωj = Dorig

(
~χ1
j

)
, ~χ1

j ∈ T 1, j = 1, . . . , k/2}. (4)

Then, we create a majority voting classifier ensemble of L members:

Dmaj = {D1 = Dorig, D2, . . . , DL}. (5)

To train D2, . . . , DL, we will define a false labelling function F : Ωk/2 →

Ωk/2·(L−1). That is

F
(
C1orig

)
= {C2false, C3false, . . . , CLfalse}, (6)

where Cifalse = {ωfi,j|ω
f
i,j ∈ Ω, i = 2, . . . , L, j = 1, . . . , k/2.}. To apply the

new labels to the existing dataset, we define the label changing operation

LC : {Rn × Ω× Ω}l → {Rn × Ω}l in the following way:

LC (T, C) = {〈~χj, ωfj 〉|〈~χj, ωj〉 ∈ T, ω
f
j ∈ C}, (7)

where T is a dataset and C is a label set. Finally, we train Di, i = 1, . . . , L on

LC
(
T, Cifalse

)
, where Cifalse ∈ F

(
C1orig

)
. Then, the false labelling ensemble is

created.

2.2. Selection of the false labelling function

To define an optimal false labelling function F (see equation 6), we recite

the decomposition of the majority voting error described in [14]. The ma-

jority voting error can be split into three terms: the individual error of the

classifiers , the disagreement of the classifiers when they classified the input

correctly (”good diversity”) and the disagreement of the classifiers when they
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classified the input incorrectly ( ”bad diversity”). The majority voting error

decomposition is the basis for defining the energy function for our method.

Let y (~χ) be the true class label for the feature vector ~χ. Then, the

zero-one loss for dt (~χ) is defined as follows [14]:

et (~χ) =
1

2
(1− y (~χ) dt (~χ)) (8)

Then, the average individual zero-one loss is [14]

eind (~χ) =
1

L

L∑
t=1

et (~χ) (9)

and the ensemble zero-one loss is:

emaj (~χ) =
1

2
(1− y (~χ) dmaj (~χ)) (10)

The disagreement between dt and the ensemble is the following [14]:

δt (~χ) =
1

2
(1− dt (~χ) dmaj (~χ)) . (11)

The classification error of an ensemble is defined [14] as follows:

Emaj =

∫
~χ

eind −
∫
~χ+

1

L

L∑
t=1

δt (~χ) +

∫
~χ−

1

L

L∑
t=1

δt (~χ) (12)

Based on equations 10-12, an optimization problem can be defined to find

such an optimal labelling.

3. Optimization via Hidden Markov Random Fields

To solve the optimization problem, an approach based on Hidden Markov

Random Fields (HMRF) in presented. HMRF is a powerful framework for
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solving large-scale optimization problems, since there are multiple methods

for solving HMRF problems near optimally in normal time, which would be

a challenging task to find exact false labellings for real-life applications.

In this section, we briefly summarize the basis for Hidden Markov Random

Field (HMRF) optimization based on [15]. Let

Ak/2,L−1 = ai,j =


ωf1,1 ωf1,2 · · · ωf1,k/2

ωf2,1 ωf2,2 · · · ωf2,k/2
...

...
. . .

...

ωfL−1,1 ωfL−1,2 · · · ωfL−1,k/2


be a matrix containing a false labelling setup and Corig = bi,j a vector con-

taining the labellings of Dorig and Ctraining = ci,j the labels assigned originally

the training instances. All ai,j is a variable which can contain a possible label

and at the end of the optimization process, each row contain a false labelling

for a classifier Di.

Let Λ = {0, 1} be a set of labels. Then, we assign each ai,j, i = 1, . . . , k/2j =

1, . . . , L− 1 a label ωij . Let X be a labelling field. X is a Markov Random

Field if P (X = ω), for all ω ∈ Λ and P
(
ωai,j |ωak,l , ai,j 6= ik

)
= P

(
ωai,j |ωak,l , ak,l ∈ Nai,j

)
,

where Nai,j is a neighbourhood of ai,j.

The optimal labelling for the A variables with the HMRF optimization,

one can use the the Hammersley-Clifford Theorem [16] to calculate the global

energy for a labelling by summarizing the local energies for each variable.

That is, during the optimization process, the global energy would be a func-

tion of the changes in the states of the ai,j variables.

We define the following three neighbourhoods for the optimization pro-
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cess:

N1
ai,j

= {am,j|m ∈ {1, k/2},m 6= i} ∪ {bi}, (13)

and a neighbourhood of a single variable containing the labelling for all of

the feature vectors for the same classifier

N2
ai,j

= {ai,l|l ∈ {1, L− 1}, l 6= j} ∪ {bi}, (14)

which is a neighbourhood of a single variable containing the labelling of the

other classifiers for the same feature vector, and

N3
ai,j

= {ak,l|k ∈ {i− q, i+ q}, l ∈ {j − q, j + q}}, (15)

which is a neighbourhood of a variable containing labelling of its close clas-

sifiers for inputs in a q · q part of A. First, we consider the individual classi-

fication error the individual classifiers:

Uind (ai,j) =

∑
{ak,l|ak,l ∈ N1

ai,j
∧ ak,l = ωi}

k/2
, (16)

where ωi is the actual label assigned to the feature vector in the training set.

Out next criteria for the optimization process is to give a labelling, where

the number of correct votes is exactly 50%+1 in all cases. Let

o = L/2 + 1.

Then, we define the function Evotes in the following way:

Ugood (ai,j) =

∑
{ak,l|ak,l ∈ N2

ai,j
∧ ak,l = bi} − o

o
. (17)

That is, we sum the correct labellings for a given input and subtracting the

optimal number of votes from it. In this way, the Evotes will be minimal if
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the number of correct votes is less than or equal to the number of optimal

votes. Thus, we maximize the disagreement for bad diversity and minimize to

good diversity [14]. To ensure classification accuracy (and avoid having lower

numbers of votes resulting from negative values of Evotes), we also define

Ubad (ai,j) = −
∑
{ak,l|ak,l ∈ N3

ai,j
} ∧ {ak,l 6= bi} − o
o

, (18)

which is the disagreement term for bad diversity.

Finally, we must ensure that the votes are unevenly distributed among

the classifiers to have less correlation between variables:

Usmoothness (ai,j) =

β ifai,j = ak,l

−β otherwise.

, (19)

for all ak,l ∈ N2
ai,j

. In this way we ensure low correlation between the label sets

assigned to the classifiers. In summary, the global energy U is the following:

U =

k/2∑
i=0

L−1∑
j=0

Eind (ai,j) + Egood (ai,j) + Ebad (ai,j) +

Esmoothness (ai,j) .

(20)

The optimization of the HMRF configuration can be done by optimizing U .

Since simulated annealing [17], an efficient algorithm for finding approximate

global solutions for large state-spaces.

In summary, simulated annealing measures energy values from different

states of the variables. Each state is accepted as a better solution if provided

a more optimal energy value or accepted by a function, which uses a random

number to decide it. This step is important in avoiding stuck in local op-

tima, as do other stochastic approaches like stochastic gradient search. The

algorithm for simulated annealing can be found in algorithm 2.
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Algorithm 2 Solving the optimization problem with simulated annealing.

Require: An initial temperature T , a minimal temperature Tmin and a tem-

perature change quotient q.

Require: A function changeState changing variable values from their cur-

rent state.

Require: An acceptance function accept. E.g.

accept (u, ubest, T, ) =


true, exp

(
e− ei
T

)
> r,

false, otherwise,

(21)

where r is a random number.

Ensure: An approximation of the optimal false labelling.

1: A = am,n ← {0}.

2: u← U(A)

3: lbest ← A

4: ubest ← u

5: s← 0

6: while T ≥ Tmin do

7: A← changeState (A)

8: u← U(A)

9: if u ≥ ubest or accept(u, ubest, T ) then

10: lbest ← A

11: ubest ← u

12: end if

13: T ← T · q

14: end while

15: return lbest
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After the optimization process, the lbest state of A is the optimal false

labelling, which can be used to train the classifiers.

4. Methodology

The proposed approach has been evaluated on high-dimensional biomedi-

cal datasets containing gene expressions or proteomics data downloaded from

the the Keng Ridge repository [18]. The description of the datasets including

the number of instances, the number of features per instance and the status

of the patient by disease is summarized in Table 1. As it can be seen, the

datasets contain a large number of features for a small number of instances

thus making it challenging classification problems. Thus, the datasets are

bootstrapped for training to ensure the number of instances per class are

similar for better comparison of the methods.

The datasets were splitted into two equal partitions randomly 10 times

to have a fair comparison. The false-labelling ensembles are tested with

3, 5, 7, 9, 11, 13, 15 members with Naive Bayes [19] base classifiers for

each problem. The implementation of the classifiers was done using Weka

[20]. To measure the accuracy of the ensembles, the classification accuracy

of each cross-validation round is measured and their mean and standard

deviation is calculated. For a comparison, we also show the results for a

Naive Bayes classifier, which serves base classifiers in the ensembles, and

three state-of-the-art ensemble approaches, namely Adaboost, Bagging and

Random Forest.
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5. Results and discussion

The validity of the optimization technique can be seen in Figures 2(a) and

2(b). As it can be seen in this example, the accuracy of the ensemble has

increased steadily through iteration converging to an accuracy of 1, while the

correlation of the labels of the ensemble members has been decreased at the

same time. Figure 2(c) shows the optimization time through iterations. As

it can be seen, in earlier iterations, the optimization procedure increases the

energy function with less changes in the labelling spending less time, while

in later iterations most of the combinations needs to be tested to increase

energy, which require more time.

The mean accuracy and their standard deviations on the datasets for the

ensembles can be found in table 2. Each column contains the classification

accuracy of the respective ensembles Di, i ∈ {3, 5, 7, 9, 11, 13, 15}. The re-

sults for the Naive Bayes, Adaboost, Bagging and Random Forest classifiers

can be found in table 3. The values in bold for each dataset contain the

best performing method. As it can be seen, for each dataset, the proposed

approach provides the best values. However, the number of ensembles mem-

bers varies among the best results. To have a deeper insight on the choice

of optimal ensemble size, each investigated ensemble is compared to the best

performing among the Naive Bayes, Adaboost, Bagging and Random Forest

classifiers. Figures 4-10 show the difference between the respective ensem-

ble and the best performing other method, where each positive value means

that the respective ensemble performed better than the best among the other

classifiers, while a negative value shows otherwise. As it can be seen, only

the ensembles with 5 and 9 members remain above the other methods all
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the time. From table 4 we can see that the sum of the all differences are the

highest for the D5 ensemble. That is, based on these experiments, a false

labelling ensemble with 5 member can be recommended to generate.

Statistical analysis of the classifiers is also performed. First, Friedman-

test [21] was performed to check whether the results of the proposed en-

semble based classifiers, the Naive Bayes, Adaboost, Bagging and Random

Forest are from the same distribution. This hypothesis was rejected with p

= 3.8499e-026. Then, we applied post-hoc analysis to reveal the differences

among the investigated classifiers. To recognize these differences, Tukey’s

multiple comparison test [22] is also performed. The test revealed that the

proposed ensembles consisting of 5-15 member (D5, . . . , D15) were all signif-

icantly different from the four classifiers they were compared to, while D3

were significantly different from all but Adaboost. The Friedman ranking

also revealed D5 to be the best performing classifier among the investigated

ones. For a visual representation of the Tukey test, see Figure 3, where a

confidence interval for the sample mean differences are shown.

6. Conclusion

In this paper, a novel classifier ensemble creation approach is presented.

The presented approach automatically creates an2 optimal labelling for a

number of classifiers based on the output of a classifier, which are then as-

signed to the original data instances and fed to classifiers. The approach

has been evaluated on high-dimensional biomedical datasets and compared

to state-of-the-art classifiers. The results shown improvement in classifica-

tion accuracy. The possible ensemble size is also investigated, with having

16
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Figure 4: Comparison of the D3 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Figure 5: Comparison of the D5 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Figure 6: Comparison of the D7 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Figure 7: Comparison of the D9 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Figure 8: Comparison of the D11 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Figure 9: Comparison of the D13 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Figure 10: Comparison of the D15 ensemble and the best performing classifiers from Naive

Bayes, Adaboost, Bagging and Random Forest.
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Table 4: Difference of the respective ensembles and the best performing methods from

table 3.

Dataset D3 D5 D7 D9 D11 D13 D15

breastCancer-train 0.01 0.11 0.08 0.02 0.01 0.08 0.04

breastCancer-test 0.14 0.16 0.14 0.07 0.08 0.07 0.08

centralNervousSystem 0.14 0.14 0.14 0.12 0.09 0.06 0.1

colonTumor 0.08 0.12 0.11 0.06 0.07 0.07 0.06

DLBCL-Stanford 0.05 0.07 0.06 0.05 0.04 0.02 0.02

DLBCLOutcome 0.11 0.1 0.11 0.1 0.07 0.04 0.05

DLBCLTumor 0.05 0.06 0.07 0.05 0.05 0.02 0.07

DLBCL-NIH-train 0 0.03 0.08 0.14 0.14 0.08 0.1

DLBCL-NIH-test 0.14 0.18 0.17 0.15 0.14 0.13 0.12

OC0 -0.01 0.05 0.04 0.06 0.05 0.04 0.06

OC1 -0.01 0.04 0.06 0.05 0.02 0.09 0.06

OC2 0.01 0.08 0.07 0.05 0.08 0.05 0

OC3 0.02 0.04 0 0.05 0.05 0.05 0.08

OC4 0 0.03 -0.01 0.01 0.03 0 0.06

OC5 0.08 0.09 0.08 0.11 0.09 0.07 0.07

OC6 0 0.03 0.03 0 0 0 -0.03

OC7 -0.01 0.01 0.04 0.03 0.02 0.05 0.04

OC8 -0.07 0 -0.02 0.03 0 0.04 -0.01

OC9 0.01 0.05 0.04 0.06 0.05 0.03 0.02

prostate-tumorVSNormal-train -0.03 0.06 0.06 0.06 0.01 0.05 0.01

prostate-tumorVSNormal-test 0.06 0.04 0.04 0.02 -0.01 -0.04 -0.02

prostate-outcome 0.11 0.09 0.02 0.01 0.03 0.02 0.04

sum 0.88 1.58 1.41 1.3 1.11 1.02 1.02
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5 ensemble members as an accurate choice. The presented approach is the

first ensemble creation algorithm which creates diversity among classifiers

using an artificially created labelling, a technique which can hopefully reused

to create more robust algorithms in problems where individual classifier ac-

curacy can be very varying. In the future, the ensemble creation method

could be extended to handle unbalanced or multiclass classification problems

efficiently.
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