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Abstract: The amount of battery storage into the power system network has been increasing in 

the recent years. The use of battery storage devices has been advocated as one of the main ways 

of improving the power quality and reliability of the power system, including minimization of 

energy imbalance and reduction of peak demand.  Higher peaks in demand will increase the 

electricity price and could cause blackouts and infrastructure damage. Lowering peak demand to 

reduce the use of carbon-intensive fuels and the number of expensive peaking plant generators is 

thus of major importance. Self-adaptive control methods for individual batteries have been 

developed to reduce the peak demand. However, these self-adaptive control algorithms of are not 

very efficient without sharing the energy among different batteries. This paper proposes a novel 

battery network system with optimal management of energy between batteries. An optimal 

management strategy has been implemented using a population-based constraint differential 

evolution algorithm. Taking advantage of this strategy the battery network model can remove 

more peak areas of forecasted demand data compared to the self-adaptive control algorithm 

developed for the New York City study case.    

Keywords: Optimisation; Constraint Optimisation; Self-adaptive Control; Distributed Network 

Model 



1. Introduction 

Battery energy storage has found a wide range of applications in various fields of science. 

Batteries can improve the power quality (mainly voltage depressions and power interruptions) 

and reliability of power system (Divya and Østergaard, 2009).   Battery storage could also play a 

vital role in deferring the need to improve the transmission and distribution capacity to meet ever 

growing power demand by effectively increasing the capacity of a given network by reducing 

peaks.  In recent years, the capital cost of battery storage technologies has significantly reduced, 

thus justifying a new study of its applications (Mercier et al. 2009).  For example, some of 

earliest commercial use of battery storage device were at Bewag, Germany (17MW/14MWh 

battery for frequency regulation) and at Southern California Edison Chino substation 

(10MW/40MWh for load leveling, rapid spinning reserve and instantaneous frequency control) 

(Daly, 1995; Taylor, 1996).  The earliest transportable battery (lead-acid), located at Phoenix 

distribution system is a multi-model battery (Tahllam and Eckroad, 1999). The battery switches 

between improving power quality (2MW up to 15s) and improving power management (200KW 

for 45 min) and uses a different mode for each model. The megawatt scale deployment of the 

Distributed Energy Storage system (DES) technology was also successfully carried out in the 

American electricity power grid in 2006 (Nguyen and Flueck, 2012; Nourai and Schafer, 2009). 

Higher peaks in demand will increase the electricity price and could cause blackouts and 

infrastructure damage. Lowering peak demand to reduce the use of carbon-intensive fuels and 

reduce the number of expensive peaking plant generators is thus of major importance. The 

Charleston storage project partially funded by the U.S Department of Energy (DOE) aimed to 

reduce the peak load on overloaded equipment in the distribution substation (Nourai and Schafer, 

2009). It has operated successfully for three winter and summer peak seasons. Realizing multiple 



benefits that DES technology has to offer, the utility continued to install three 2-MW, 14.4-MWh 

NaS DES units of larger capacity in their distribution system in 2008 providing peak shaving.  

The key feature of the new system is triggered peak shaving that does not allow the battery to be 

discharged unnecessarily during daily peak hours and only discharges the battery when the load 

of a nearby “bottleneck” on the grid exceeds a certain “trigger”.  This approach not only allows 

the battery to offer its peak shaving value but also increase the availability of the remaining 

storage energy to serve customers in the event of an outage. Despite the large number of 

investigations carried out to apply different storage technologies to power system, very few of 

them have been implemented in practice. One of the main reasons for this limited practical 

application is lack of practical experience and lack of availability of tools which could be used 

for optimal control of battery storage in the smart grid during planning.  Lately there has been 

some development of different types of optimal control algorithms in smart grid (Zhou et al., 

2010; Coppez et al., 2010; Vytelingum et al., 2010).   

Coppez et al. (2010) has classified battery storage optimisations based on hybrid renewable 

energy system in four categories: graph construction, probabilistic and deterministic techniques, 

genetic algorithms and artificial neural networks. Main issues like cell battery technology and 

optimisation techniques were reviewed. The authors stated that the reliability of supply of the 

system must be kept in mind to ensure that the load will be met by the supply at all times and 

economically the system must be optimized to ensure the lowest cost possible whist maintaining 

the system integrity. A common parameter used to measure the system integrity and reliability is 

Loss of Power Supply Probability (LPSP). LPSP must be monitored as the key parameter to 

ensure that in optimizing the system, the likelihood of the system supply not being able to meet 

the load at all times is kept very low.  Graphical construction is used to optimize in terms of two 



criteria (either
 
Photovoltaic (PV) and size of battery storage, or PV and wind turbine) (Borowy 

and Salameh, 1996).  However, some
 
important factors (such as the PV module slope angle and

 

the wind turbine installation height.) were completely neglected. Other techniques will prove 

more useful for a more complex system with high dimensional parameters because it is only 

useful for simple systems with few parameters.
 
Probabilistic techniques can be used in situations 

where actual hour by hour long-term data is not available and more general data needs to be used 

(Coppez et al., 2010). The probabilistic and
 
deterministic techniques are achieved by initially

 

creating a design space of feasible solutions which adhere to the maximum LPSP. The 

parameters such as the number of wind turbines, size of PV panels and size of battery storage are 

optimized using the objective function (e.g. cost of the system including PV modules, Batteries, 

wind turbines and the cost of design and installation).  Tina et al. (2006) presented a probabilistic 

approach based on the convolution technique to incorporate the fluctuating nature of the 

resources and load, thus eliminating the need for time-series data, to assess the long-term 

performance of a hybrid solar wind system for both–stand-alone and grid-connected applications. 

Performance of the hybrid system under study is assessed by employing probabilistic models for 

both PV array and wind turbines. Disadvantage of this probabilistic approach is that it cannot 

represent the dynamic changing performance of the hybrid system (Zhou et al., 2010). Ould Bila 

et al. (2010) show a case study of the optimisation of a wind, PV and battery distributed 

generation system in Senegal. A genetic algorithm (GA) was used to minimize the total cost of 

the system whist maintaining a low LPSP using the following parameters: number of PV 

modules, power output of wind turbines, battery capacity and number of inverters and regulators 

(Ould Bila et al., 2010).  The system is now functioning optimally. GAs were selected because 

they have shown to be highly applicable to cases of non-linear systems, where the location of the 



global optimum is a difficult task (Zhou et al., 2010).  A Neural Networks (NNs) was used to 

predict the fitness values of solutions in order to speed up the GA search process (Zhou et al., 

2008). This approach substantially decreases the time taken to calculate the optimal solution, 

while keeping the accuracy of each of the methods. The system includes the photovoltaic arrays, 

the lead-acid battery and a flywheel. The optimal sizing can be considered as a constrained 

optimization problem: minimization the total capacity of energy storage system, subject to the 

main constraint of the Loss of Power Supply Probability (LPSP) (Zhou et al., 2008). The GA 

spent 45 minutes but the combinatorial optimization by GA and  NNs) spent only 3-5 minutes on 

calculation. 

In addition, Vytelingum et al. (2010) developed a novel agent-based micro-storage management 

of energy storage devices in UK homes that adapts to market condition using game theory 

optimisation. They show that using demand-side management (i.e., directly controlling the 

storage profile of a number of homes) coupled with storage can increase savings made in the 

system.  In the UK electricity market, it is possible to achieve savings of up to 13% on average 

for a consumer on his electricity bill with a storage device of 4kWh. In spite of benefits in using 

the advanced agent-based model for the smart grid, the cost of micro-storage devices for all UK 

homes makes it impractical to apply the proposed method and the optimal control of storage 

details haven’t been given in the paper. A self-adaptive control model (SACM) of individual 

battery storage was developed by Rowe et al. (2012) to remove the peaks of forecasted demand.  

The SACM was applied to Bracknell, UK using individual battery. However, the self-adaptive 

control algorithm of individual battery is not very efficient to reduce peaks without sharing the 

energy among different batteries. This paper proposes a novel Battery Network Model (BNM) 

with optimal management between batteries in the network. Mathematically, the optimal 



management of battery network is a large scale constraint optimisation with the objective of 

maximally removing the peak areas of forecasted demand or actual demand.  

The optimisation methods can be broadly divided into two groups: linear and nonlinear 

optimisation methods. Linear optimisation’s characteristics are a linear objective function to be 

maximized (or minimized) and linear constraints (i.e. constraints are linear functions of the 

variables). For some nonlinear optimisation problems, due to non-convexity, the objective 

function may have many local optima, and an analytical expression of the objective function may 

not be available. Nonlinear optimisation methods may be classified into deterministic local 

optimisation methods (e.g., gradient methods or direct search methods) and stochastic global 

optimisation methods (examples are multiple local search, genetic algorithms, simulated 

annealing and tabu search) (Andersson, 2000; Holland, 1975; Press et al., 1992; Cvijovic, 1995). 

Stochastic optimisation refers to the minimisation (or maximisation) of a function in the presence 

of randomness in the optimisation process.  Genetic algorithms (GAs) (Holland, 1975) and 

particle swam optimisation (PSO) (Kennedy and Eberhart, 1995) and differential evolution (DE) 

(Storn and Price, 1995) are popular stochastic optimisations for better global optimisation 

frameworks to fully realize the full benefits to conducting mathematical model optimisation, 

because of their simplicity, global perspective, and inherent parallel processing (Deb, 2000; Liu, 

2009; Liu and Pender, 2012 ). 

In most cases of practical interest, global optimisation is very difficult. This is because of the 

omnipresence of local minimum, the number of which tends to increase exponentially with the 

size of the problem (Cvijovic, 1995). Conventional minimisation techniques, which are time 

consuming and tend to converge to whichever local minimum they first encounter in such cases. 

The solution in these cases may not be the global minimum but a local minimum sensitive to the 



starting point. Also these methods are unable to continue the search after a local minimum is 

reached. Mathematical models may have many local optima on the objective function surface, 

and in such cases local search is inappropriate because the estimated optimum will depend on the 

starting point of the search. Due to the high number of possible parameter combinations, 

computation becomes very expensive for complex models if using a method based on searching 

combinations of parameters (Shen, 2006). The particle swarm optimisation and differential 

evolution are two efficient stochastic optimisation methods minimizing an objective function that 

can model the problem’s objectives while incorporating constraints, and have three main 

advantages: global search regardless of the initial parameter values, fast convergence and a few 

control parameters. Both techniques have shown great promise in several real-world applications 

(Deb, 2001; Liu & Khu, 2007; Liu, 2009; Liu & Sun, 2011; Liu and Pender, 2012; Liu and 

Pender, 2013). Facts have proved that population based optimisations like GA, PSO and DE are 

suitable to handle complicated constrained optimisation problems (Coello Coello, 2002; Wang 

and Cai, 2012). Differential Evolution (DE) is used in the paper to optimize the high-dimensional 

battery network model parameters because of its robust search ability based on benchmark test 

functions and real applications among these algorithms (Storn and Price, 1997; Deb, et al., 2010; 

Vesterstroem and Thomsen, 2004; Liu and Sun, 2010).  

The rest of this paper structured as follows. Section 2 and 3 formulate a self-adaptive control  

approach for an individual battery and our proposed battery network approach. Section 4 

describes the constraint differential evolution algorithm for the battery network optimisation. 

Section 5 empirically studies this system for New York City peak demand reduction through 

simulation and optimisation. Finally, Section 5 presents conclusions on the work presented in 

this paper. 



2. Self-Adaptive Control  Model (SACM) of Individual Battery 

 
Rowe et al. (2012) presented a mathematical model that describes peak areas of actual demand or 

forecasted demand can be partially removed using an adaptive storage algorithm. The battery 

storage at t  and minimization function of peaks can be formulated as: 
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Where )( itB  is energy storage in the battery (kwh) at it , )(tpower  is the power value (kw) in 

Figure 1, cB is the capacity of the low battery, L is the number of peaks, )( itZ   is the charged 

or discharged area of the actual or forecasted demand curve in Figure 1 and )(*

itB  is the 

energy supply to remove the peak demand from battery storage at it . )(*

itB  is decided after 

optimisation process.  Figure 1 shows the forecasted or actual demand with five charged and 

discharged zones. The horizontal dash line indicates the actual supply threshold from generation 

or safety limit for the electrical facility. The threshold value depends on capacity of generation 

and the physical constraints of the network. The self-adaptive control algorithm of individual 

battery is not very efficient to reduce peaks without sharing the energy among different batteries. 

Thus, this paper proposes a novel battery network system with optimal management. 



 

 

 

 

  

 

Figure 1: battery storage algorithm 

 

3. Our Proposed Battery Network Model Algorithm 

The novel battery network modeling approach can be formulated based on the energy 

conservation law: 

 

 

 

  

Figure 2: battery network model 
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where M is the number of the connected nodes, njw  is the battery node nB  to borrow energy 

from its neighbor jB  or lend energy to its neighbor jB , 
 
and the dashed line indicates the weight 
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that can be positive or
 
negative.

 
The Q is the total number of sampled data, and the index l is 

different from index i in formula (6) and formula (1).
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(Index i is for peak areas only; N=3)    (10)  

      

Where n is the number of nodes and L is the total number of peaks.
  

The above is equivalent to 

minimizing the following formula because all the batteries should keep positive or zero during 

sharing the electricity:
 

If 
 

0)(1  ltB  or 0)(2  ltB  or  0)(3  ltB then 

)|)(|(|))(|(|))(|(
1 1

3

1

21 
 


Q

l

Q

l

l

Q

l

ll tBMintBMintBMinimizeBM    (11) 

                   If 0)(  ln tB  then 0)(  ln tB   3...1n  in the above formula (11). 

The formula shows that battery network algorithm can be easily extended to large scale networks 

because the same structure can be used with more batteries.  Storage  system models have been 

proposed to study the time scale-over a short time scale (minutes and / or seconds) and long time 

scale (days and / or hours) ( Bejan et al.,2012 ). We will simulate the battery network model 

around 1 day period for the case study in section 5.   

4. Constraint Differential Evolution Algorithm  

It is very difficult to converge towards to global optimum for high dimensional optimisation. 

This is not only because it is constraint problem, but also the curse of dimensionality may 

increase the convergence time of traditional optimisation methods (e.g. local optimisations) (Jin, 

2005). The robust constraint DE search algorithm in this paper is used to optimize the batteries 

network model parameters. The Constrained DE consists of two major components: the search 



algorithm and the constrained-handling technique. Thus, the performance of constrained DE is 

primarily dependent on these two components (Wang and Cai, 2012).  The aim of the search 

algorithm is to adjust the exploration and exploitation abilities of population, while the 

constraint-handling technique focuses how to incorporate the constraints into the DE 

evolutionary process. DE is a population-based direct-search algorithm for global optimisation 

(Storn and Price, 1997) which utilizes P D-dimensional parameter vectors. The standard DE 

works as follows: for each vector Gix , , Pi ,...,2,1 , a trail vector v is generated according to 

           
)( ,,,1, 321 GrGrGrGi xxFxv  ,                               (12) 

with ],1[,, 321 Prrr  , P is the Population size, G is the iteration index, integer and mutually 

different, ,0F and irrr  321 . F is a real and constant factor that controls the amplification of 

the differential variation )( ,, 32 GrGr xx  . In order to increase the diversity of the parameter vectors, 

the following vector is adopted: 
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Where D is the problem dimension and CR is a user-defined crossover rate.  The DE’s control 

variables (P, F and CR) are not difficult to choose in order to obtain good results (Storn and 

Price, 1997). F and CR are both generally in the range [0.5, 1.0].  rnbr(i) is a randomly chosen 

index from [1, D]. In order to decide whether the new vector u shall become a population 

member at generation 1G , it is compared to Gix , . If vector u yields a smaller objective function 



value than Gix , , 1, Gix is set to u , otherwise the old value Gix ,  is retained.  The reasonable choice 

for P between 5×D and 10×D has been suggested to have enough mutually different vectors with 

which to work (Storn and Price, 1997). The interesting empirical finding is that rising P does not 

substantially improve the convergence, independent of the number of parameters for some test 

cases. This is frequently occurred in real-world optimisation problems rather than artificial test 

functions (Storn and Price, 1997). As for F, F =0.5 is usually a good initial choice. If the 

population converges prematurely, then F and or P should be increased.  CR=0.9 or CR=1.0 is 

appropriate to first try since a large CR often speeds convergence.  

In most applications, the penalty function method is used (Deb, 2001). Usually, an exterior 

penalty term, which penalize infeasible solutions, is preferred. Based
 
on the constraint violation 

  ( ) or   ( ) (inequality and equality constraints), a bracket-operator penalty term is added to 

the objective function and a penalized function is formed: 
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Where )(xf is the objective function, s is the number of inequality constraints, (m-s) is the 

number of equality constraints, and
 jR

 
and

 kr  
are user-defined penalty parameters. The bracket-

operator < > denotes that absolute value of the operand, if the operand is negative.  Otherwise, if 

the operand is non-negative, it returns a value of zero.  A recent study suggested a modification 

by (Deb and Goel, 2000), which eliminates both the above difficulties by not requiring any 

penalty parameter:
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Here, maxf
 
is the objective function value of the worse feasible solution in the population. 

 

 

The general flow chart for the optimisation process using the constraint DE for the battery 

network is presented below and illustrated in Fig. 3. The optimisation process can be performed 

via an automatic process. In order to do so, the user may need to write two small programs for 

the process. The first program is used to change the parameters of input files of the network 

model and the second program is used to calculate and evaluate the objective function value. As 

the standard search progresses, the entire population tends to converge towards the global 

optimum. This process is continued until a satisfied condition is met. The termination criterion 

for the iterations is determined according to whether the max iteration or a designed value of the 

objective function is reached. 



 

5.  Experimental  Setup and Results 

In this section we discuss the experimental setup and simulated results with our storage control 

strategy. The SACM was introduced to reduce peak demand and this technique has shown great 

promise in real applications (Rowe et al., 2012). In this study, we investigate the performance of 

SACM and our proposed BNM with optimal management strategy on New York City, USA. The 

main objective is to examine whether the BNM would outperform better than SACM.  

Additionally, the experiment would also reveal whether the BNM would have any particular 

difficulties or preferences. In order to check the battery network model efficiency and visualize 

the model performance easily, three batteries have been applied for the case study. The system is 

composed of the following: wind power generation system, gas power generation system, three 

batteries and three energy supply areas, as Figure 4. The parameters njw  of the battery network 

Initialise population 

Run the BNM  

DE Operations  

Max iteration? 

Start 

Start 

End 

Stop 

Figure 3:  Outline of constraint DE for the battery network 

optimisation. 

 Constraint Operation  



models cannot, in general, be determined directly from mathematical analysis, and hence the 

parameter values must be estimated by optimisation. In order to minimize the function rP , it is 

necessary to minimize the function BM. In our research we used the constraint DE developed in 

Matlab. The lower and upper bounds weight parameters are equal to [- cB , + cB ]. The total 

number of parameters is equal to 20×3=60 using DE optimisation when we simulate 20 hours 

period using BNM. The relevant experimental parameters using the battery network with DE 

optimisation are listed in Table 1 and Table 2. For the battery network optimisation, an iteration 

limit of 3000 was employed as a stopping criterion for DE when a population size of 100 was 

used. The computational time of DE optimisation was about 1 hour on an Intel core 2 Quad CPU 

3.40GHz and 8GB of RAM. 

We report the results obtained from performing 10 random runs of the battery network 

algorithm.  Figure 5 shows the iteration versus objective function value produced by DE.  The 

DE converged towards to global optima after we ran the constraint DE for about 100 iterations. 

The left plots of Figure 6 show three actual normalized demand data randomly extracted from 

New York City demand data. In order to demonstrate the algorithm, 20 hours sampled data were 

used for the experiment.  From Tables 3, it is seen that the battery network model shows a much 

better result. The small standard deviations (STD) of the performance by the method BNM using 

DE optimisation imply that the model is stable. Thus, it is clear that the battery network model 

with DE optimal control considered here is capable of removing more peak areas efficiently than 

the self-adaptive control model for an individual battery. The above results indicate the average 

percent of peak areas using BNM is around 20.91 percent more than the SACM. This implies 

that we get a considerable advantage by using the BNM. This outcome may be easily explained. 

We assume three batteries are empty for analysis at beginning of simulation. During early hours, 



the battery (1) is fully charged since its actual demand is very low. However, the battery [3] and 

[2] need extra electricity supply to remove their peaks.  When the BNM is optimised, the 

constraint DE will give optimal weights of the whole simulated period for sharing the energy 

among the three batteries.  This process can balance batteries energy sharing during lt . Hence, 

performance studies in Table 3 and Figure 6 (b), (d) and (f) reflect the optimal management 

removing more peaks and head towards to the global optimum. The dot line denotes the battery 

charge ability and requirements to remove the peak demand, star line the self-adaptive control 

performance, the circle line the battery network performance in Figure 6 (b), (d) and (f).  The 

negative values in these plots indicate the energy requirements to remove the peaks. During the 

later hours, the BNM will achieve the similar bad performance as SACM. This is because the 

three actual demands are all high and there is no energy for sharing.  Overall, the results obtained 

also imply that the BNM is capable of removing the more peaks compared to SACM. The 

performance of BNM depends on forecasted demand data used for optimal management of 

batteries and the optimal management algorithm. The robust network modeling technique for 

energy sharing and the optimal control process are the key reasons for the improvements in cut 

of more peaks than the SACM.   

In the experiment, we assume that demand is perfectly predictable even though there is a small 

error between forecasted and actual demand data. The uncertainty analysis of input data of 

forecasted demand also needs to be studied in the future. 

 

 

 



Table 1: Experimental parameters using constraint DE 

Parameter Description Range 

F Control Parameter 0.5 

CR Crossover Rate 0.9 

G  The total iterations 3000 

P Population Size 100 

 

Table 2: Model Parameter Settings 

Model parameters Parameter description 
Suggested values 

(after normalize data) 

cB  Capacity of the low battery 0.1 (MWh) 

TS  
Actual supply threshold or 

limit for the safety  
0.65 

 

Table 3: Comparison of two models 

Model 

Percentage 

(%) for 

battery 1 

Percentage 

(%) for 

battery 2 

Percentage (%) 

for battery 3 

Three independent batteries using  

SACM  
30.40 18.13 7.82 

 

Average performance of the BNM for 10 

random runs 
40.17 51.86 27.05 

STD 1.2 2.6 1.6 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

                        Figure 4: The composition of the energy supply system of New York City 

 

Figure 5: constraint DE iteration process (F1=BM) 

 

 

Wind Power Generation System 

City Area [1] City Area [2] City Area [3] 

Battery [1] Battery [2] Battery [3] 
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(a) 

 
(b) 

 
(c)  
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(f) 

Figure 5:  Left plots are three actual demand data with the threshold (TS=0.65 for the 

normalized data); Right plots are battery supply ability and requirements, self-adaptive model 

and battery network model performance.  



5. Conclusions: 

The use of battery storage devices has been advocated as one of the main ways of improving the 

power quality and reliability as well as minimization of energy imbalance of electricity networks. 

Higher peaks in demand will also increase the electricity price of market and could cause 

blackouts and infrastructure damage.
 
The proposed novel battery network model using constraint 

differential evolution algorithm optimisation has been applied to New York City study case.  The 

DE for the optimal management is simple, robust, and converges fast, and finds the good 

solution in almost every run. In addition, it has few parameters to set and the same settings can 

be used for many different applications. The test results showed that the average percent of peak 

demand areas using the proposed novel BNM is around 20.91 percent more than the SACM. The 

evaluation scheme considers mathematical model performance measures of two different 

objectives: (1) peak reduction and (2) comparison to an advanced smart control algorithm 

(SACM).  Work is currently undergoing to include (i) large scale battery network applications, 

and (ii) uncertainty of input data of demand data. 
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