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Abstract 

  Based on the theory of three-way decisions proposed by Yao, Hu established three-way decision 

spaces on fuzzy lattices and partially ordered sets. At the same time, multiple three-way decision 

spaces and its corresponding three-way decisions were also established. How to choose a method for 

the transformation from multiple three-way decision spaces to a single three-way decision space? 

This is one of the main problems on multiple three-way decision spaces. In connection with the 

transformation question on multiple three-way decision spaces, this paper gives out an aggregation 

method from multiple three-way decision spaces to a single three-way decision space through an 

axiomatic complement-preserving aggregation function. These aggregation methods in the partially 

set [0,1] contain the weighted average three-way decisions, max-min average three-way decisions 

and median three-way decisions etc. These methods are generalized to three-way decisions over two 

groups of multiple three-way decision spaces. At last we illustrate aggregation methods of multiple 

three-way decision spaces through a practical example. 

Keywords: Partially ordered sets; Fuzzy sets; Rough sets; Three-way decisions; Three-way decision 

space. 

1. Introduction

Since three-way decisions (3WD) were proposed by Yao [37], many authors had studied 3WD [5,

16-17, 22, 38-40]. The existing studies focus mainly on the following four aspects. 

� Three-way decisions based on decision-theoretic rough sets are generalized to various fuzzy sets, 

such as Deng and Yao considered fuzzy sets [5]; Liang and Liu et al. discussed triangular fuzzy sets 

[18], Liang and Liu looked upon interval-valued fuzzy sets [16] and intuitionistic fuzzy sets [17]; 

Zhao and Hu also considered interval-valued fuzzy sets [47-48]; Hu analyzed hesitant fuzzy sets and 

interval-valued hesitant fuzzy sets [8] etc. 

� Three-way decisions based on decision-theoretic rough sets are generalized to more patterns, 

such as Qian and Zhang et al. introduced multigranulation into decision-theoretic rough sets [30]; To 

reduce boundary regions, Chen and Zhang et al. proposed multi-granular three-way decision based 

on the multiple-views of granularity [4]; Sang and Liang et al. considered decision-theoretic rough 

sets under dynamic granulation [31] etc. 
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� The theoretical frameworks on three-way decisions are studied, such as the domain of 

evaluation functions [38], construction and interpretation of evaluation functions [37-39], the mode 

of three-way decisions [39], the theory of three-way decision spaces [7, 11] and trisecting-and-acting 

framework of three-way decisions [42] etc. 

� The theory of three-way decisions has been applied to incomplete information system [20], risk 

decision making [15], classification [21] and clustering [43], investment [23], multi-agent [34], group 

decision making [19], recommender systems [46], face recognition [14] and social networks [26] etc. 

For theoretical development of three-way decisions, Hu systematically studied three-way decision 

models in rough sets and probabilistic rough sets, introduced axiomatic definitions for decision 

measurement, decision condition and decision evaluation function and established three-way decision 

spaces based on fuzzy lattices [7, 11] and partially ordered sets [8]. The so-called fuzzy lattice is a 

complete distributive lattice with an involutive negator (i.e. inverse order and involutive mapping). 

There are numerous popular fuzzy lattices used in classical logic and fuzzy logic such as crisp sets, 

fuzzy sets [44], shadowed sets [24-25], intuitionistic fuzzy sets [1-2], interval-valued fuzzy sets [45] 

and interval sets [35, 36]. A fuzzy lattice is also a partially ordered set. There are many partially 

ordered sets, which are not fuzzy lattices, such as hesitant fuzzy sets [33], interval-valued hesitant 

fuzzy sets [3], type-2 fuzzy sets [9] and interval-valued type-2 fuzzy sets [10]. 

At the same time, based on multi-granulation rough sets [27-31], multiple three-way decision 

spaces were further discussed in [7]. As a result of the classical single-granulation rough set theory, a 

multi-granulation rough set model (MGRS) has been developed [28, 29] which is a kind of 

information fusion strategy through fusing multiple granular structures. The following are some 

existing multi-granulation fusion strategies.  

(1) Pessimistic strategy [27, 30]. 

  (2) Optimistic strategy [28, 29, 30] 

  (3) Dynamic strategy [31]. 

In this paper, we consider two problems. The first problem is are these existing strategies 

reasonable? Another one is are there other reasonable strategies? This paper answers these problems 

through considering aggregation methods from multiple three-way decision spaces to a single 

three-way decision space which is referred to as the aggregation strategy. 

From Note 3.1 in [7], we can see that if 
1 2
, , ,

n
E E E⋯  are n decision evaluation functions, then 

1
( )( )

n

i
i

E A x
=
∧  and 

1
( )( )

n

i
i

E A x
=
∨  are not necessarily decision evaluation functions because they do not 

meet the third axiom, Complement Axiom. Are there some methods to construct a decision 

evaluation function from n decision evaluation functions 
1 2
, , ,

n
E E E⋯ ? Although 

1
( )( )

n

i
i

E A x
=
∧  and 

1
( )( )

n

i
i

E A x
=
∨  are not decision evaluation functions, 

1 1

1
( )( ) ( )( )

2

n n

i i
i i

E A x E A x
= =

 
∧ + ∨ 
 

 is a decision 

evaluation function over [0, 1]. And 
1

1
( )( )

n

i

i

E A x
n =

∑  is also a decision evaluation function in [0, 1]. 

There are three common properties in these functions, namely regularity, nondecreasing property and 

complement-preserving property. This is one of our motivations to consider the axiomatic definition 
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on complement-preserving aggregation function. Because general aggregation functions [6] satisfy 

regularity and nondecreasing property, aggregation functions satisfied complement-preserving 

property are referred to as a complement-preserving aggregation function in this paper. 

And then, through these complement-preserving aggregation functions we can establish 

transformation methods from multiple three-way decision spaces to a single three-way decision space. 

These transformation methods in partially ordered set [0, 1] include the weighted average three-way 

decisions, max-min average three-way decisions and median three-way decisions. These methods are 

generalized to bi-evaluation functions.  

Our method compensates for the defect of the multi-granulation rough sets which only consider 

two extreme models, the optimistic rough set [29] and the pessimistic rough set [27]. This paper 

presents more strategies for the aggregation of multi-granulation rough sets. There are the possible 

applications in the aggregation of the multi-granulation rough sets, the theory of multiple three-way 

decisions and so on. 

The rest of this paper is organized as follows. Section 2, as preliminaries, recalls the decision 

evaluation function axioms and three-way decision spaces based on partially ordered sets. Section 3 

first introduces the axiomatic definition on complement-preserving aggregation function and then 

gives out methods for the transformation from multiple three-way decision spaces to a single 

three-way decision spaces based on the axiomatic complement-preserving aggregation function. It 

also gives an example to illustrate these novel methods. In Section 4, these aggregation methods are 

generalized to three-way decisions over two groups of multiple three-way decision spaces and a 

practical example on evaluation of student performance is taken in order to illustrate the thoughts of 

the aggregation methods over two groups of multiple three-way decision spaces. Finally, Section 5 

concludes the paper.  

 

2. Preliminaries 

 

The basic concepts, notations and results of partially ordered sets [8], decision valuation functions 

[7, 8, 11] and three-way decision spaces [7, 8, 11] are briefly reviewed in this section. 

In this paper ( , )PP ≤  is a bounded partially ordered set with an involutive negator PN , the 

minimum 0P  and maximum 1P , which is written as ( , , ,0 ,1 )P P P PP N≤  [7]. In [0, 1], operator 

1cx x= −  ( [0,1]x∈ ) is applied. 

Let X and Y be two universes. ( , )Map X Y  is the family of all mappings from X to Y, i.e. 

( , ) { | : }Map X Y f f X Y= → . If ( ,{0,1})A Map U∈ , then A is a subset of U, i.e. ( ,{0,1})Map U  is 

the power set of U, which can also be written as 2U . If ( ,{0,1,[0,1]})A Map U∈ , then A is a 

shadowed set of U [24-25]. If ( ,[0,1])A Map U∈ , then A is a fuzzy set of U [44], namely 

( ,[0,1])Map U  is the fuzzy power set of U. If (2)( , )A Map U I∈ , then A is an interval-valued fuzzy 

set of U [45] and an interval-valued fuzzy set A with membership function [ ( ), ( )]A x A x− +  is also 

denoted as [ , ]A A− + . If (2)( , )sA Map U I∈ , then A is an intuitionistic fuzzy set of U [1-2]. 

Let ( , , ,0 ,1 )P P P PP N≤  be a bounded partially ordered set. If ( , )A Map U P∈ , then the 

complement of A is defined pointwise by the following formula 

( )( ) ( ( ))
P P

N A x N A x= . 

Then ( ( , ), , , , )
P P

Map U P N U⊆ ∅  is a bounded partially ordered set, where ( ) 0 ,
P

x x U∅ = ∀ ∈  and 
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( ) 1 ,
P

U x x U= ∀ ∈ , and for , ( , )A B Map U P∈ , PA B⊆  iff ( ) ( )PA x B x≤ , x U∀ ∈ . 

 

Let ( , , ,0 ,1 )
C C C CC P P P PP N≤  and ( , , ,0 ,1 )

D D D DD P P P PP N≤  be two bounded partially ordered sets in 

the following. Let U be a nonempty universe, on which a decision is to make. U is called a decision 

universe. Similarly, let V be a nonempty universe where a condition function is defined. V is named 

condition universe. 

Definition 2.1. [8]. Let U be a decision universe and V be a condition universe. Then a mapping 

: ( , ) ( , )
C D

E Map V P Map U P→  is called a decision evaluation function of U, if it satisfies the 

following three axioms. 

(E1) Minimum element axiom 

( )E ∅ = ∅ , i.e., ( )( ) 0 ,
DPE x x U∅ = ∀ ∈ . 

(E2) Monotonicity axiom 

, ( , ), ( ) ( )
C DC P PA B Map V P A B E A E B∀ ∈ ⊆ ⇒ ⊆ , i.e., ( )( ) ( )( ),

DPE A x E B x x U≤ ∀ ∈ . 

(E3) Complement axiom 

( ( )) ( ( )), ( , )
D CP P CN E A E N A A Map V P= ∀ ∈ , i.e., ( ( ))( ) ( ( ))( ),

D CP PN E A x E N A x x U= ∀ ∈ . 

( )E A  is called a decision evaluation function of U (for ( , )
C

A Map V P∈ ).  

Given universe U, the decision condition domain ( , )CMap V P , decision measurement domain 

DP  and decision evaluation function E, then ( , ( , ), , )
C D

U Map V P P E  is called a three-way decision 

space.  

In multiple three-way decision spaces, two extreme transformation methods are discussed in [7], 

i.e., optimistic and pessimistic three-way decisions of multiple three-way decision spaces. 

 

Definition 2.2. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then the optimistic three-way decisions of multiple 

three-way decision spaces are defined as follows. 

(1) Acceptance region： 

{ }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

op

n i i

i i

ACP E A ACP E A x U E A xα β α β α
= =

= = ∈ ≥∪ ∪ , 

(2) Rejection region： 

{ }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

op

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ ≤∩ ∩ , 

(3) Uncertain region： 

( )( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )
c

op op op

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

The pessimistic three-way decisions of multiple three-way decision spaces are defined as 

(1) Acceptance region： 

{ }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

pe

n i i

i i

ACP E A ACP E A x U E A xα β α β α
= =

= = ∈ ≥∩ ∩ , 

(2) Rejection region： 

{ }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

pe

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ ≤∪ ∪ , 



5 

 

(3) Uncertain region： 

( )( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )
c

pe pe pe

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

In rough set theory, three-way decisions are given by the lower and upper approximations. 

However, in a three-way decision space, three-way decisions are directly induced by decision 

evaluation function and the lower and upper approximations are induced by the three-way decisions. 

Fig 2.1 is a diagram showing that three-way decisions induced by the lower and upper 

approximations of rough sets and the lower and upper approximations are induced by the three-way 

decisions in 3WD spaces. 

 

Fig. 2.1. 3WDs induced by the lower and upper approximations of rough sets in rough set theory, and the lower and 

upper approximations are induced by the 3WDs in 3WD space. 

 

One of the important characteristics of three-way decision space is that the lower approximation 

and upper approximation of an object can be induced through three-way decisions. Similarly the 

optimistic and pessimistic three-way decisions over three-way decision spaces can also induce the 

corresponding lower approximation and upper approximation of an object.  

Defintion 2.3. If ( , )
C

A Map V P∈ , then 

1~ ( , ) 1~( , )
( , ) ( , )

op op

n n
apr E A ACP E Aα βα β

=  and 

( )1~ ( , ) 1~( , )
( , ) ( , )

cop
op

n napr E A REJ E Aα βα β =  

are referred to as the lower approximation and upper approximation of A with regard to optimistic 

three-way decisions over multiple three-way decision spaces respectively. 

1~ ( , ) 1~( , )
( , ) ( , )

pe pe

n n
apr E A ACP E Aα βα β

=  and 

( )1~ ( , ) 1~( , )
( , ) ( , )

cpe
pe

n napr E A REJ E Aα βα β =  

are referred to as the lower approximation and upper approximation of A with regard to pessimistic 

three-way decisions over multiple three-way decision spaces respectively. 

 

  In [7], the author discussed some properties of the optimistic / pessimistic three-way decisions 

over multiple three-way decision spaces and the lower / upper approximation with regard to the 

optimistic / pessimistic three-way decisions over multiple three-way decision spaces. 

 

3. The aggregation methods of multiple three-way decision spaces 

 

( ( ))cR A  negative region 

( ) ( )R A R A−  boundary region

( ( ), ( ))R A R A  

( )R A  positive region

( , ) ( )ACP Aα β  Acceptance region 

( , ) ( )REJ Aα β  Rejection region 

( , )UNC α β  Uncertain region

( )( , )( , )
( ), ( )apr A apr Aα βα β
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In this section, we give a transformation method from multiple three-way decision spaces to a 

single three-way decision space with complement-preserving aggregation, whose special cases in [0, 

1] contain the weighted average, the max-min average and median average. 

 

3.1. Complement-preserving aggregation functions 

 

The transformation method from multiple three-way decision spaces to a single three-way decision 

space relies on a complement-preserving aggregation function, such as 

1 1

1

2

n n

i i
i i

x x
= =

 
∧ + ∨ 
 

 and 
1

1 n

i

i

x
n =

∑ .  

In these functions, there are some common characteristics, e.g., regularity, nondecreasing property 

and complement-preserving property. This paper presents some complement-preserving aggregation 

functions through an axiomatic definition. The axiomatic definition on complement-preserving 

aggregation function is defined as follows. 

Definition 3.1. Let ( , , ,0 ,1 )P P P PP N≤  be a bounded partially ordered set. A mapping : nf P P→  

is called an n-ary complement-preserving aggregation function, if it satisfies the following 

conditions: 

(AF1) Regularity:  

( , , , )f x x x x=⋯ , 
i

x P∀ ∈ ; 

(AF2) Nondecreasing Property:  

f is a nondecreasing function for each variable over P , i.e. (1) (2)

i P i
x x≤  ( 1,2, , )i n= ⋯  

implies (1) (2)

1 1 1 1 1 1( , , , , , , ) ( , , , , , , )
i i i n P i i i n

f x x x x x f x x x x x− + − +≤⋯ ⋯ ⋯ ⋯ , ,
i i

x y P∀ ∈ ; 

(AF3) Complement-preserving Property:  

( ) ( )1 2 1 2( ), ( ), , ( ) ( , , , )
P P P n P n

f N x N x N x N f x x x=⋯ ⋯ , 
i

x P∀ ∈ . 

The family of all n-ary complement-preserving aggregation functions over P is denoted by ( )nAF P . 

General aggregation function satisfies nondecreasing property and boundary conditions, 

(0,0, ,0) 0f =⋯  and (1,1, ,1) 1f =⋯ . Detailed information about aggregation functions can be 

found in [6]. 

 

The following are examples of complement-preserving aggregation functions over [0, 1]. 

Example 3.1. Take [0,1]P =  and ( ) 1
P

N x x= − . Then the following functions are n-ary 

complement-preserving aggregation functions over [0, 1]. 

(1) 1 2

1

( , , , )
n

wa

n i i

i

f x x x a x
=

=∑⋯ ,
1 2
, , , [0,1]

n
x x x ∈⋯ , where 

1 2
, , , [0,1]

n
a a a ∈⋯  and 

1

1
n

i

i

a
=

=∑ . 

waf  is called a weighted average complement-preserving aggregation function. 

   Specially, 1 2 nx x x

n

+ + +⋯
, written as 1 2( , , , )aa

n
f x x x⋯ , is called an absolute average 

complement-preserving aggregation function. 31 2

1 22 2 2

n

n n

x xx x
− −

+
+ + +⋯ , written as 1 2( , , , )sa

n
f x x x⋯ , 

is called a stepwise average complement-preserving aggregation function. 

(2) 1 2

max{ } min{(1 ) }
( , , , )

2

i i i i
ma ii

n

a x a x
f x x x

+ − ⊥
=⋯

T

, 
1 2
, , , [0,1]

n
x x x ∈⋯ , where 

1 2
, , , [0,1]

n
a a a ∈⋯ , max 1i

i
a = , T  and ⊥  are t-norm and t-conorm over [0,1] respectively and 

are dual w.r.t ( ) 1
P

N x x= − . maf  is called a max-min average complement-preserving aggregation 
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function.  

  We verify that the function maf  satisfies complement-preserving axiom as follows. 

  
1 2

max{ (1 )} min{(1 ) (1 )}
(1 ,1 , ,1 )

2

i i i i
ma ii

n

a x a x
f x x x

− + − ⊥ −
− − − =⋯

T

 

        
( )max{1 (1 ) } min{1 )}

2

i i i i
ii

a x a x− − ⊥ + −
=

T

 

        
1 min{(1 ) } 1 max{ )}

2

i i i i
i i

a x a x− − ⊥ + −
=

T

 

        
max{ )} min{(1 ) }

1
2

i i i i
ii

a x a x+ − ⊥
= −

T

 

        1 21 ( , , , )ma

nf x x x= − ⋯ . 

  Specially, take 1
i

a = , 1,2, ,i n= ⋯ , then  

1 2

max{ } min{ }
( , , , )

2

i i
ma ii

n

x x
f x x x

+
=⋯ . 

(3) 
1 2

( , , , ) { }me

n i
f x x x Med x=⋯  

2

2 2

[ ] 1

1

,

,
2

n

n n

x n is an odd number

x x
n is an even number

+

+

′


= ′ ′ +



, 
1 2
, , , [0,1]

n
x x x ∈⋯   

and { }
i

x′  is an ordering of { }
i

x  from smallest to largest or from largest to smallest. mef  is called 

a median complement-preserving aggregation function. 

 

  It follows from the Example 3.1. (1) that if we consider 2 ([0,1])AF , then 

1 2
1 2 1 2 1 2

( , ) ( , ) ( , )
2

aa sa ma x x
f x x f x x f x x

+
= = = .  

 

In practical application, 
1 2

( , , , )wa

n
f x x x⋯  is used when different data are considered different 

significance; the equal weighted function 
1 2

( , , , )aa

n
f x x x⋯  is used when all data are of the same 

significance; 
1 2

( , , , )sa

n
f x x x⋯  is used when more recent data are considered more important than 

older data; 
1 2

( , , , )ma

n
f x x x⋯  is used when some datum xi is considered particularly significance; 

1 2
( , , , )me

n
f x x x⋯  is used when we consider the median of data. 

  In Example 3.1, all examples satisfy the following property. 

(AF4) 
i P i

x y< , {1,2, , }i n∀ ∈ ⋯  implies 
1 2 1 2

( , , ) ( , , , )
n P n

f x x x f y y y<⋯ ⋯ , ,
i i

x y P∀ ∈ . 

 

The following are some properties and constructions of complement-preserving aggregation 

functions. 

Theorem 3.1. Let ( , , ,0 ,1 )L L L LL N≤ be a fuzzy lattice and ( )
n

f AF L∈ . Then 

1 2
1 1

( , , , )
n n

i L n L i
i i

x f x x x x
= =
∧ ≤ ≤ ∨⋯ . 

Proof. Because 
1 1

n n

i L i L i
i i

x x x
= =
∧ ≤ ≤ ∨  for any 

1 2
, , ,

n
x x x L∈⋯  and the nondecreasing property of f, 

we have 
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1 2
1 1 1 1 1 1

, , , ( , , , ) , , ,
n n n n n n

i i i L n L i i i
i i i i i i

f x x x f x x x f x x x
= = = = = =

   
∧ ∧ ∧ ≤ ≤ ∨ ∨ ∨   
   

⋯ ⋯ ⋯ . 

It follows from the regularity of f that 
1 2

1 1
( , , , )

n n

i L n L i
i i

x f x x x x
= =
∧ ≤ ≤ ∨⋯ .    □ 

 

  The following theorems are simple and proofs are omitted. 

Theorem 3.2. Let 
0

2 ( )f AF P∈  and  

0 0 0 0

1 2 1 2 3( , , , )= ( ( ( ( , ), ) ), )n nf x x x f f f f x x x x⋯ ⋯ ⋯  

Then ( )nf AF P∈ . 

  Note in Example 3.1(1), stepwise average complement-preserving aggregation function 

31 2
1 2 1 2

( , , , )
2 2 2

sa n

n n n

x xx x
f x x x

− −

+
= + + +⋯ ⋯  are also thought to be a result of Theorem 3.2 as 

0 1 2
1 2( , )

2

x x
f x x

+
= .  

 

Theorem 3.3. Let 
0 ( )mf AF P∈ ，

( ) ( )k

nf AF P∈ ( 1,2, , )k m= ⋯  and ix P∀ ∈ ， {1,2, , }i n∈ ⋯ ， 

0 (1) (2) ( )

1 2 1 2 1 2 1 2( , , , )= ( ( , , , ), ( , , , ), , ( , , , ))m

n n n nf x x x f f x x x f x x x f x x x⋯ ⋯ ⋯ ⋯ ⋯  

Then ( )
n

f AF P∈ . 

  If we consider  

(1)

1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( ) / 3aaf x x x f x x x x x x= = + + , 

(2)

1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( ) / 4 / 2saf x x x f x x x x x x= = + +  and  

(0)

1 2 1 2 1 2( , ) ( , ) ( ) / 2aaf x x f x x x x= = + , 

then it follows from Theorem 3.3 that  

0 (1) (2)

1 2 3 1 2 3 1 2 3 1 2 3

7 5
( , , ) ( ( , , ), ( , , )) ( )

24 12
f x x x f f x x x f x x x x x x= = + +  

is a 3-ary complement-preserving aggregation function over [0, 1]. 

  It is easy to derive from Theorem 3.3 and Example 3.1 the following two statements. 

Let 
( ) ([0,1])k

nf AF∈ ( 1,2, , )k m= ⋯ . Then the following functions are n-ary 

complement-preserving aggregation functions over [0, 1]. 

(1) ( )

1 2 1 2

1

( , , , ) ( , , , )
m

k

n k n

k

f x x x a f x x x
=

=∑⋯ ⋯ ,
1 2
, , , [0,1]

n
x x x ∈⋯ , where 

1 2
, , , [0,1]

n
a a a ∈⋯  and 

1

1
n

i

i

a
=

=∑ .  

(2) 

( ) ( )

1 2 1 2

1 2

max{ ( , , , )} min{(1 ) ( , , , )}
( , , , )

2

k k

k n k n
kk

n

a f x x x a f x x x
f x x x

+ − ⊥
=

⋯ ⋯
⋯

T

, 

1 2
, , , [0,1]

n
x x x ∈⋯ , where 

1 2
, , , [0,1]

n
a a a ∈⋯ , max 1i

i
a = , T  and ⊥  are t-norm and t-conorm 

over [0,1] respectively and are dual w.r.t ( ) 1
P

N x x= − .  
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The following discussions are some relationships between complement-preserving aggregation 

functions under different partially ordered sets. 

Theorem 3.4. Let ([0,1])
n

f AF∈  and 

(2)

1 2 1 2 1 2( , , , ) ( , , , ), ( , , , )n n nf x x x f x x x f x x x
− − − + + + =  ⋯ ⋯ ⋯ , 

(2)
,i i ix x x I

− + = ∈  . 

Then (2) (2)

2 ( )f AF I∈ . 

Proof. Obviously (2)

1 2( , , , )nf x x x⋯  satisfies regularity and nondecreasing property. In the 

following we only verify that it is complement-preserving. For any 
(2)

,i i ix x x I
− + = ∈  , 

( ) ( )(2) (2)

1 2 1 1 2 21 , 1 , , 1 [1 ,1 ],[1 ,1 ], ,[1 ,1 ]n n nf x x x f x x x x x x
+ − + − + −− − − = − − − − − −⋯ ⋯  

        ( ) ( )1 2 1 2
1 ,1 , ,1 , 1 ,1 , ,1

n n
f x x x f x x x+ + + − − − = − − − − − − ⋯ ⋯  

        ( ) ( )1 2 1 2
1 , , , ,1 , , ,

n n
f x x x f x x x+ + + − − − = − − ⋯ ⋯  

        ( ) ( )1 2 1 2
1 , , , , , , ,

n n
f x x x f x x x− − − + + + = −  ⋯ ⋯  

        ( )(2)

1 2
1 , ,

n
f x x x= − ⋯ .    □ 

 

Theorem 3.4 tells us complement-preserving aggregation functions under (2)I  can be 

constructed through complement-preserving aggregation functions under [0, 1].  

On the other hand, in the following theorem, complement-preserving aggregation functions 

under [0, 1] can be also constructed through complement-preserving aggregation functions under 
(2)I . 

Theorem 3.5. Let (2) (2)( )nf AF I∈  and  

( ) ( )( )(2) (2)

1 2 1 1 2 2 1 1 2 2

1
( , , , ) ([ , ],[ , ], ,[ , ]) ([ , ],[ , ], ,[ , ])

2
n n n n n

f x x x f x x x x x x f x x x x x x
− +

= +⋯ ⋯ ⋯ , 

[0,1]
i

x ∈ . 

Then ([0,1])
n

f AF∈ . 

Proof. Obviously f satisfies regularity and nondecreasing property. In the following, we only verify 

that it is complement-preserving. For any [0,1]
i

x ∈ ,  

1 2
(1 ,1 , ,1 )

n
f x x x− − −⋯  

( )( (2)

1 1 2 2

1
([1 ,1 ],[1 ,1 ], ,[1 ,1 ])

2
n n

f x x x x x x
−

= − − − − − −⋯  

( ) )(2)

1 1 2 2([1 ,1 ],[1 ,1 ], ,[1 ,1 ])n nf x x x x x x
+

+ − − − − − −⋯  

( ) ( )( )(2) (2)

1 1 2 2 1 1 2 2

1
(1 [ , ], 1 [ , ], , 1 [ , ]) (1 [ , ], 1 [ , ], , 1 [ , ])

2
n n n n

f x x x x x x f x x x x x x
− +

= − − − + − − −⋯ ⋯  

( ) ( )( )(2) (2)

1 1 2 2 1 1 2 2

1
1 ([ , ],[ , ], ,[ , ]) 1 ([ , ],[ , ], ,[ , ])

2
n n n n

f x x x x x x f x x x x x x
− +

= − + −⋯ ⋯  

( ) ( )( )(2) (2)

1 1 2 2 1 1 2 2

1
1 ([ , ],[ , ], ,[ , ]) 1 ([ , ],[ , ], ,[ , ])

2
n n n n

f x x x x x x f x x x x x x
+ −

= − + −⋯ ⋯  

( ) ( )( )(2) (2)

1 1 2 2 1 1 2 2

1
1 ([ , ],[ , ], ,[ , ]) ([ , ],[ , ], ,[ , ])

2
n n n n

f x x x x x x f x x x x x x
− +

= − +⋯ ⋯  

1 2
1 ( , , , )

n
f x x x= − ⋯ .    □ 
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Example 3.2. Let 

( )(2)

1 1 2 2 1 2 1 2[ , ],[ , ], ,[ , ] min{ , , , },max{ , , , }n n n nf x x x x x x x x x x x x
− + − + − + − − − + + + =  ⋯ ⋯ ⋯ , 

(2)
,i ix x I

− + ∈  . 

Then (2) (2)( )nf AF I∈ . In fact we only verify it is complement-preserving. For any 
(2)

,i ix x I
− + ∈  , 

( )(2)

1 1 2 21 [ , ], 1 [ , ], , 1 [ , ]n nf x x x x x x
− + − + − +− − −⋯

 

( )(2)

1 1 2 2[1 ,1 ],[1 ,1 ], ,[1 ,1 ]n nf x x x x x x
+ − + − + −= − − − − − −⋯

 

{ } { }1 2 1 2
min 1 ,1 , ,1 ,max 1 ,1 , ,1

n n
x x x x x x+ + + − − − = − − − − − − ⋯ ⋯  

{ } { }1 2 1 2
1 max , , , ,1 min , , ,

n n
x x x x x x+ + + − − − = − − ⋯ ⋯  

{ } { }1 2 1 2
1 min , , , ,max , , ,

n n
x x x x x x− − − + + + = −  ⋯ ⋯  

( )(2)

1 1 2 21 [ , ],[ , ], ,[ , ]n nf x x x x x x
− + − + − += − ⋯ . 

 

3.2. Aggregation three-way decisions 

 

The aggregation of multiple decision evaluation functions is a decision evaluation function. The 

following theorem confirms this. 

Theorem 3.6. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈  and ( )1 2
( )( ) ( )( ), ( )( ), , ( )( )f

n
E A x f E A x E A x E A x= ⋯  for ( , )

C
A Map V P∈  and 

x U∈ . Then ( , ( , ), , )f

C DU Map V P P E  is a three-way decision space. 

Proof. Axioms E1 and E2 are easy to verify. And for ( , )
C

A Map V P∈ , 

( )1 2
( ( ))( ) ( ( ))( ), ( ( ))( ), , ( ( ))( )

C C C C

f

P P P n P
E N A x f E N A x E N A x E N A x= ⋯  

    ( )1 2
( ( ))( ), ( ( ))( ), , ( ( ))( )

D D DP P P n
f N E A x N E A x N E A x= ⋯  

    ( )( )1 2( )( ), ( )( ), , ( )( )
DP nN f E A x E A x E A x= ⋯  

( )( ) ( )
D

f

PN E A x= . 

Namely ( )( ( )) ( )
C D

f f

P PE N A N E A= .     □ 

 

In [0,1]DP = , fE  is written as waE , saE , maE  and meE  if , , ,wa sa ma mef f f f f=  

respectively, i.e. for ( , )CA Map V P∈  and [0,1]x ∈ , 

1

( )( ) ( )( )
n

wa

i i

i

E A x a E A x
=

=∑ , where 
1 2
, , , [0,1]

n
a a a ∈⋯  and 

1

1
n

i

i

a
=

=∑ , 

31 2

1 2

( )( ) ( )( )( )( ) ( )( )
( )( )

2 2 2

sa n

n n

E A x E A xE A x E A x
E A x

− −

+
= + + +⋯ , 

( ) ( )max ( )( ) min (1 ) ( )( )
( )( )

2

i i i i
ma ii

a E A x a E A x
E A x

+ − ⊥
=

T

 and max 1i
i

a = , 

{ }( )( ) ( )( )me

i
E A x Median E A x= . 

waE , saE , maE  and  meE  are called the weighted average, stepwise average, max-min average 
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and median decision evaluation function respectively. 

 

Through aggregation of multiple three-way decision spaces, it follows aggregation three-way 

decisions and the lower and upper approximations of the aggregation three-way decisions based on 

complement-preserving aggregation functions.  

Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n 3WD spaces, ( )n Df AF P∈ , ( , )
C

A Map V P∈  

and 0 1β α≤ < ≤ . Then the aggregation three-way decisions over n three-way decision spaces are 

(1) Acceptance region： 

{ }( , ) 1~ ( , )( , ) ( , ) | ( )( )
f f f

nACP E A ACP E A x U E A xα β α β α= = ∈ ≥ , 

(2) Rejection region： 

{ }( , ) 1~ ( , )( , ) ( , ) | ( )( )
f f f

nREJ E A REJ E A x U E A xα β α β β= = ∈ ≤ , 

(3) Uncertain region： 

( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )f f f

n n nUNC E A U ACP E A REJ E Aα β α β α β= − ∪ . 

If DP  is a linear order, then { }( , ) 1~( , ) | ( )( )
f f

nUNC E A x U E A xα β β α= ∈ < < . 

The lower and upper approximations of the aggregation three-way decisions over n three-way 

decision spaces are respectively 

{ }1~ ( , ) 1~( , )
( , ) ( , ) | ( )( )

f f f

n n
apr E A ACP E A x U E A xα βα β

α= = ∈ ≥   

and  

( ) { }1~ ( , ) 1~( , )
( , ) ( , ) | ( )( )

cf
f f

n napr E A REJ E A x U E A xα βα β β= = ∈ > . 

 

3.3. Relationships among aggregation, the optimistic and pessimistic three-way decisions 

 

In the following, we discuss properties of the aggregation three-way decisions and the lower and 

upper approximations, and relationships among the aggregation three-way decisions, the optimistic 

three-way decisions and the pessimistic three-way decisions. 

Theorem 3.7. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈  and satisfy (AF4), ( , )
C

A Map V P∈  and 0 1β α≤ < ≤ . Then the following 

statements hold. 

(1) ( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )pe f op

n n nACP E A ACP E A ACP E Aα β α β α β⊆ ⊆ , 

(2) ( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )op f pe

n n nREJ E A REJ E A REJ E Aα β α β α β⊆ ⊆ . 

Proof. Let ( , ) 1~ ( , )

1

( , ) ( , )
n

pe

n i

i

x ACP E A ACP E Aα β α β
=

∈ =∩ . Then i∀ , ( , ) ( , )ix ACP E Aα β∈ , i.e. 

( )( )
i

E A x α≥ . So  

1 2( )( ) ( ( )( ), ( )( ), , ( )( ))f

nE A x f E A x E A x E A x= ⋯  

( , , , )f α α α α≥ =⋯ ,  

i.e. ( , ) 1~( , )f

nx ACP E Aα β∈ . If ( , ) 1~( , )f

nx ACP E Aα β∈ , then 

1 2
( )( ) ( ( )( ), ( )( ), , ( )( ))f

n
E A x f E A x E A x E A x α= ≥⋯ .  

Hence there is an i such that ( )( )
i

E A x α≥  due to the condition (AF4) of f, i.e. 

( , ) 1~( , )
1

( , ) ( , )
n

op

i n

i

x apr E A ACP E Aα βα β
=

∈ =∪ .     

The second relation of inclusion can be proved in a similar way.      □ 
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Theorem 3.8. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈ , , ( , )
C

A B Map V P∈  and 0 1β α≤ < ≤ . Then 

1~ 1~ 1~( , ) ( , ) ( , ) ( , ) ( , )
1 1

( , ) ( , ) ( , ) ( , ) ( , )
n n

pe f op

n i n i n

i i

apr E A apr E A apr E A apr E A apr E A
α β α β α β α β α β

= =

= ⊆ ⊆ =∩ ∪  

and  

1~ 1~ 1~( , ) ( , ) ( , ) ( , ) ( , )

1 1

( , ) ( , ) ( , ) ( , ) ( , )
n n

pe f op

n i n i n

i i

apr E A apr E A apr E A apr E A apr E Aα β α β α β α β α β
= =

= ⊆ ⊆ =∩ ∪ . 

Proof. It is straightforward from the definition of the lower and upper approximations of the 

aggregation three-way decisions and Theorem 3.7.    □ 

 

Theorem 3.9. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈ , ( , )
C

A Map V P∈ . If 0 1β β α α′ ′≤ ≤ < ≤ ≤ , then 

1~ 1~( , ) ( , )
( , ) ( , )

f f

n n
apr E A apr E A

α β α β′ ′
⊆  and 

1~ 1~( , ) ( , )
( , ) ( , )

f f

n napr E A apr E Aα β α β′ ′⊇ . 

Proof. It is straightforward from the definition of the lower and upper approximations of the 

aggregation three-way decisions.    □ 

 

3.4. Illustrative example 

 

  Here, we use an example to illustrate some notions on the aggregation of multiple three-way 

decision spaces. 

Example 3.3. Let 
1 2 8

{ , , , }U x x x= ⋯ , (2)

CP I= , [0,1]
D

P = , an interval-valued fuzzy set over U is  

1 2 3 4 5 6 7 8

1 1 1 [0.5,0.6] [0.4,0.6] [0.6,0.8] [0.8,1] [0.2,0.4]
A

x x x x x x x x
= + + + + + + +  and  

{ }1 8 2 3 4 5 6 7
/ { , },{ },{ },{ , },{ },{ }U R x x x x x x x x=  is a classification of U based on an equivalence 

relation (or an attribute) R. 

If follows from 
1

| [ ] |
( )( )

| [ ] |

R

R

A x
E A x

x

−

=
∩

, 
2

| [ ] |
( )( )

| [ ] |

R

R

A x
E A x

x

+

=
∩

, 
3
( )( ) ( )E A x A x−=  and 

4
( )( ) ( )E A x A x+=  that 

1

1 2 3 4 5 6 7 8

0.6 1 1 0.45 0.45 0.6 0.8 0.6
( )E A

x x x x x x x x
= + + + + + + + , 

2

1 2 3 4 5 6 7 8

0.7 1 1 0.6 0.6 0.8 1 0.7
( )E A

x x x x x x x x
= + + + + + + + , 

3

1 2 3 4 5 6 7 8

1 1 1 0.5 0.4 0.6 0.8 0.2
( )E A

x x x x x x x x
= + + + + + + + , 

4

1 2 3 4 5 6 7 8

1 1 1 0.6 0.6 0.8 1 0.4
( )E A

x x x x x x x x
= + + + + + + + . 

Then  

1 2 3 4 5 6 7 8

0.825 1 1 0.5375 0.5125 0.7 0.9 0.475
( )

wa
E A

x x x x x x x x
= + + + + + + + ,  
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where the weight vector 
1 2 3 4

( , , , ) (0.25,0.25,0.25,0.25)a a a a = , 

1 2 3 4 5 6 7 8

0.9125 1 1 0.55625 0.53125 0.725 0.925 0.4125
( )

sa
E A

x x x x x x x x
= + + + + + + + , 

1 2 3 4 5 6 7 8

0.8 1 1 0.525 0.5 0.7 0.9 0.45
( )

ma
E A

x x x x x x x x
= + + + + + + + , (take 

1 2 3 4
1a a a a= = = = ), 

1 2 3 4 5 6 7 8

0.85 1 1 0.55 0.525 0.7 0.9 0.5
( )

me
E A

x x x x x x x x
= + + + + + + + . 

Consider 0.6β =  and 0.9α = , then weighted average three-way decisions over three-way decision 

spaces are given as follows: 

Acceptance region： (0.9,0.6) 1~4 2 3 7( , ) { | ( )( ) 0.9} { , , }wa waACP E A x U E A x x x x= ∈ ≥ = , 

Rejection region： (0.9,0.6) 1~4 4 5 8( , ) { | ( )( ) 0.6} { , , }wa waREJ E A x U E A x x x x= ∈ ≤ = ； 

Uncertain region： ( )(0.9,0.6) 1~4 (0.9,0.6) 1~4 (0.9,0.6) 1~4( , ) ( , ) ( , )
c

wa wa waUNC E A ACP E A REJ E A= ∪  

                          { } 1 6| 0.6 ( )( ) 0.9 { , }
wa

x U E A x x x= ∈ < < = . 

The lower and upper approximations of A are 

1~4 (0.9,0.6) 1~4 2 3 7(0.9,0.6)
( , ) ( , ) { , , }

wa waapr E A ACP E A x x x= =  and  

( )1~4 (0.9,0.6) 1~4 1 2 3 6 7(0.9,0.6) ( , ) ( , ) { , , , , }
cwa

waapr E A REJ E A x x x x x= = .     

In the following 4 three-way decision spaces, if we consider three groups of different parameters 

,α β , the aggregation three-way decisions over four three-way decision spaces, the lower and upper 

approximations of A are listed in Table 3.1. 

 

Table 3.1 

The aggregation three-way decisions, the lower and upper approximations of A for different ,α β . 

 0.6, 0.9β α= =  0.7, 0.8β α= =  0.55, 0.7β α= =  

( , ) 1~4( , )waACP E Aα β  
2 3 7{ , , }x x x  

1 2 3 7{ , , , }x x x x  
1 2 3 6 7{ , , , , }x x x x x  

( , ) 1~4( , )saACP E Aα β  1 2 3 7{ , , , }x x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

( , ) 1~4( , )maACP E Aα β  
2 3 7{ , , }x x x  

1 2 3 7{ , , , }x x x x  
1 2 3 6 7{ , , , , }x x x x x  

( , ) 1~4( , )meACP E Aα β  2 3 7{ , , }x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

( , ) 1~4( , )waREJ E Aα β  
4 5 8{ , , }x x x  

4 5 6 8{ , , , }x x x x  
4 5 8{ , , }x x x  

( , ) 1~4( , )saREJ E Aα β  4 5 8{ , , }x x x  
4 5 8{ , , }x x x  

5 8{ , }x x  

( , ) 1~4( , )maREJ E Aα β  
4 5 8{ , , }x x x  

4 5 6 8{ , , , }x x x x  
4 5 8{ , , }x x x  

( , ) 1~4( , )meREJ E Aα β  4 5 8{ , , }x x x  
4 5 6 8{ , , , }x x x x  

4 5 8{ , , }x x x  

( , ) 1~ 4( , )waUNC E Aα β  
1 6{ , }x x  ∅  ∅  

( , ) 1~ 4( , )saUNC E Aα β  6{ }x  
6{ }x  

4{ }x  

( , ) 1~ 4( , )maUNC E Aα β  
1 6{ , }x x  ∅  ∅  

( , ) 1~ 4( , )meUNC E Aα β  6{ }x  
6{ }x  ∅  

1~4( , )
( , )

wa
apr E A

α β
 

2 3 7{ , , }x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  
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1~4( , )
( , )

sa
apr E A

α β
 

1 2 3 7{ , , , }x x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

1~4( , )
( , )

ma
apr E A

α β
 

2 3 7{ , , }x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

1~4( , )
( , )

me
apr E A

α β
 

2 3 7{ , , }x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

1~4( , )
( , )

wa

apr E Aα β  1 2 3 6 7{ , , , , }x x x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

1~4( , )
( , )

sa

apr E Aα β  1 2 3 6 7{ , , , , }x x x x x  
1 2 3 6 7{ , , , , }x x x x x  

1 2 3 4 6 7{ , , , , , }x x x x x x  

1~4( , )
( , )

ma

apr E Aα β  1 2 3 6 7{ , , , , }x x x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

1~4( , )
( , )

me

apr E Aα β  1 2 3 6 7{ , , , , }x x x x x  
1 2 3 7{ , , , }x x x x  

1 2 3 6 7{ , , , , }x x x x x  

 

From Table 3.1, we have the following observations. 

(1) Acceptance regions contain decision objects 
2 3
,x x  and 

7
x  for all different parameters and 

transformation methods. 

(2) Rejection regions contain decision objects 
4 5
,x x  and 

8
x  for almost all different parameters 

and transformation methods. 

(3) Decision object 
6

x  appears most frequently in the uncertain region for all different parameters 

and transformation methods. 

 

4. The aggregations of multiple three-way decisions with a pair of evaluation functions 

 

4.1 Three-way decisions with a pair of evaluation functions 

Depending upon the number of evaluation functions, Yao gave two modes of three-way decisions, 

which are the single evaluation function and dual evaluation functions [37]. Hu discussed three-way 

decisions with a pair of evaluation functions through two three-way decision spaces [7]. In the 

following, we discuss the aggregation of three-way decisions over two groups of multiple three-way 

decision spaces. 

Definition 4.1. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i m= ⋯ ) and ( , ( , ), , )C D jU Map V P P F  

( 1,2, ,j n= ⋯ ) be two groups of multiple three-way decision spaces, ( )m Df AF P∈ , ( )n Dg AF P∈ , 

, ( , )
C

A B Map V P∈  and ,
D

Pα β ∈ . Then three-way decisions over two groups of multiple three-way 

decision spaces are defined as follows.  

(1) Acceptance region： 

{ } { },

( , ) 1~ 1~(( , ), ( , )) | ( )( ) | ( )( )
f g f g

m nACP E F A B x U E A x x U F B xα β α β= ∈ ≥ ∈ <∩  

( , ) ( , )( , ) ( , )f gACP E A REJ F Bα β α β= ∩ . 

(2) Rejection region： 

{ } { },

( , ) 1~ 1~(( , ), ( , )) | ( )( ) | ( )( )
f g f g

m nREJ E F A B x U E A x x U F B xα β α β= ∈ < ∈ ≥∩  

( , ) ( , )( , ) ( , )f gREJ E A ACP F Bα β α β= ∩ . 

(3) Uncertain region： 

( ), , ,

( , ) 1~ 1~ ( , ) 1~ 1~ ( , ) 1~ 1~(( , ), ( , )) (( , ), ( , )) (( , ), ( , ))
c

f g f g f g

m n m n m nUNC E F A B ACP E F A B REJ E F A Bα β α β α β= ∪ . 
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Definition 4.2. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i m= ⋯ ) and ( , ( , ), , )C D jU Map V P P F  

( 1,2, ,j n= ⋯ ) be two groups of multiple 3WD spaces, ( )m Df AF P∈ , ( )n Dg AF P∈ , 

, ( , )
C

A B Map V P∈  and ,
D

Pα β ∈ . Then  

, ,

1~ 1~ ( , ) 1~ 1~( , )
(( , ), ( , )) (( , ), ( , ))

f g f g

m n m n
apr E F A B ACP E F A Bα βα β

=   

and  

( )
,

,

1~ 1~ ( , ) 1~ 1~( , )
(( , ), ( , ))) (( , ), ( , ))

cf g
f g

m n m napr E F A B REJ E F A Bα βα β =  

{ } { }, ,
| ( )( ) | ( )( )

f g f g
x U E A x x U F B xα β= ∈ ≥ ∈ <∪  

are referred to as the lower approximation and upper approximation of (A, B) with regard to 

three-way decisions over two groups of multiple three-way decision spaces respectively. 

 

Theorem 4.1. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i m= ⋯ ) and ( , ( , ), , )C D jU Map V P P F  

( 1,2, ,j n= ⋯ ) be two groups of multiple three-way decision spaces, ( )m Df AF P∈ , ( )n Dg AF P∈ , 

, ( , )
C

A B Map V P∈  and ,
D

Pα β ∈ . Then the following hold. 

(1) 
,,

1~ 1~ 1~ 1~( , )( , )
(( , ), ( , )) (( , ), ( , ))

f gf g

m n m n
apr E F A B apr E F A Bα βα β

⊆ . 

(2) 
,

1~ 1~( , )
(( , ), ( , ))

f g

m n
apr E F U U

α β
∅ = , 

,

1~ 1~( , )
(( , ), ( , ))

f g

m napr E F Uα β ∅ = ∅ . 

(3) ( ) ,,

1~ 1~ 1~ 1~( , )( , )
(( , ), ( , )) (( , ), ( , ))

c f gf g

m n n m
apr E F A B apr F E B Aβ αα β

= . 

(4) If ,A C B D⊆ ⊇ , then 
, ,

1~ 1~ 1~ 1~( , ) ( , )
(( , ), ( , )) (( , ), ( , ))

f g f g

m n m n
apr E F A B apr E F C D

α β α β
⊆ , and 

, ,

1~ 1~ 1~ 1~( , ) ( , )
(( , ), ( , )) (( , ), ( , ))

f g f g

m n m napr E F A B apr E F C Dα β α β⊆ . 

Proof. Propositions (2) and (4) are immediate from Definition 4.1 and Definition 4.2. The proofs of 

Propositions (1) and (3) are given as follows. 

(1) ( )
,

,

1~ 1~ ( , ) 1~ 1~( , )
(( , ), ( , )) (( , ), ( , ))

cf g
f g

m n m napr E F A B REJ E F A Bα βα β =  

        ( ){ | ( )( ) } { | ( )( ) }
c

f gx U E A x x U F B xα β= ∈ < ∈ ≥∩  

        ( ) ( ){ | ( )( ) } { | ( )( ) }
c c

f gx U E A x x U F B xα β= ∈ < ∈ ≥∪  

        { } { }| ( )( ) | ( )( )
f g

x U E A x x U F B xα β⊇ ∈ ≥ ∈ <∩  

,

1~ 1~( , )
(( , ), ( , ))

f g

m napr E F A B
α β

= . 

(3) ( ) { } { }( ),

1~ 1~( , )
(( , ), ( , )) | ( )( ) | ( )( )

c c
f g f g

m n
apr E F A B x U E A x x U F B x

α β
α β= ∈ ≥ ∈ <∩  

( )( , ) 1~ 1~(( , ), ( , ))
c

f

n mREJ F E B Aβ α=  

        
,

1~ 1~( , )
(( , ), ( , ))

f g

n mapr F E B Aβ α= .     □ 

 

4.2. Illustrative example 

 

  Here, we use an example to illustrate some notions on the aggregation of multiple three-way 

decisions with a pair of evaluation functions. 
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Example 4.1. Let 
1 2 8

{ , , , }U x x x= ⋯  be a universe consisting of 8 students and their classification 

on examination scores of a course is { }1 2 3 7 4 5 8 6/ { , , , },{ , , },{ }U R x x x x x x x x=  where students x1, x2, 

x3 and x7 obtain grade A, x4, x5 and x8 obtain grade B and 
6

x  obtains grade C. Their presentation 

scores of this course are   

1 2 3 4 5 6 7 8

1 0.7 0.9 0.6 0.6 0.8 1 0.3
pS

x x x x x x x x
= + + + + + + +   

and their rates of absence for this course are  

1 2 3 4 5 6 7 8

0.1 0.3 0.2 0.5 0.6 0.1 0.2 0.4
aS

x x x x x x x x
= + + + + + + + . 

In the following, we give students’ evaluation on the course by considering decision evaluation 

functions 
1

| [ ] |
( )( )

| [ ] |

p R

p

R

S x
E S x

x
=

∩
, 2 ( )( ) ( )p pE S x S x= , 1

| [ ] |
( )( )

| [ ] |

a R
a

R

S x
F S x

x
=

∩
 and 

2
( )( ) ( )

a a
F S x S x= . By computing, we have 

1

1 2 3 4 5 6 7 8

0.9 0.9 0.9 0.5 0.5 0.8 0.9 0.5
( )pE S

x x x x x x x x
= + + + + + + + , 

2

1 2 3 4 5 6 7 8

1 0.7 0.9 0.6 0.6 0.8 1 0.3
( )pE S

x x x x x x x x
= + + + + + + + , 

1

1 2 3 4 5 6 7 8

0.2 0.2 0.2 0.5 0.5 0.1 0.2 0.25
( )aF S

x x x x x x x x
= + + + + + + + , 

2

1 2 3 4 5 6 7 8

0.1 0.3 0.2 0.5 0.6 0.1 0.2 0.4
( )aF S

x x x x x x x x
= + + + + + + + . 

Considering that E1 and E2 (F1 and F2) are equally important, we choose 2-ary 

complement-preserving aggregation functions ( , )
2

x y
f x y

+
=  and 

(0.5 ) (0.5 )
( , )

2

x y x y
g x y

∧ ∨ + ∨ ∧
= . Then  

1 2 3 4 5 6 7 8

0.95 0.8 0.9 0.55 0.55 0.8 0.95 0.4
( )

f

pE S
x x x x x x x x

= + + + + + + + , and 

1 2 3 4 5 6 7 8

0.15 0.3 0.2 0.5 0.55 0.1 0.2 0.4
( )

g

aF S
x x x x x x x x

= + + + + + + + . 

Consider 0.6α =  and 0.3β = , then three-way decisions over two groups of multiple three-way 

decision spaces are given as follows: 

Acceptance region： 
,

(0.6,0.2) 1,2 1,2(( , ), ( , )) { | ( )( ) 0.6} { | ( )( ) 0.3}f g f g

p a p aACP E F S S x U E S x x U F S x= ∈ ≥ ∈ <∩  

1 3 6 7
{ , , , }x x x x= , 

Rejection region： 
,

(0.6,0.2) 1,2 1,2(( , ), ( , )) { | ( )( ) 0.6} { | ( )( ) 0.3}f g f g

p a p aREJ E F S S x U E S x x U F S x= ∈ < ∈ ≥∩  

4 5 8
{ , , }x x x= ； 

Uncertain region： 

( ), , ,

(0.6,0.2) 1,2 1,2 (0.6,0.2) 1,2 1,2 (0.6,0.2) 1,2 1,2(( , ), ( , )) (( , ), ( , )) (( , ), ( , ))
c

f g f g f g

p a p a p aUNC E F S S ACP E F S S REJ E F S S= ∪  

                          
2

{ }x= . 

The three regions tell us students x1, x3, x6 and x7 pass the exam of this course; students x4, x5, and x8 

no pass; student x2 cannot be determined to be or not pass, and must be further examined on this 



17 

 

course. 

The lower and upper approximations of ( , )p aS S  with regard to three-way decisions over two 

groups of multiple three-way decision spaces are 
, ,

1,2 1,2 (0.6,0.2) 1,2 1,2 1 3 6 7(0.6,0.2)
(( , ), ( , )) (( , ), ( , )) { , , , }

f g f g

p a p a
apr E F S S ACP E F S S x x x x= =  and  

( )
,

,

1,2 1,2 (0.6,0.2) 1,2 1,2 1 2 3 6 7(0.6,0.2)
(( , ), ( , )) (( , ), ( , )) { , , , , }

cf g
f g

p a p aapr E F S S REJ E F S S x x x x x= = .     

The lower approximation of ( , )p aS S  contains students who are sure to pass the exam. Students in 

the upper approximation of ( , )p aS S  may pass the exam.  

 

5. Conclusions 

This paper presents several transformation methods from multiple three-way decision spaces to 

single three-way decisions. Aggregated three-way decisions can be made by single three-way 

decisions. Main conclusions in this paper and future work are listed as follows. 

(1) The existing work only considers the two methods in multiple three-way decision spaces, the 

optimistic method and the pessimistic method. This paper presents several transformation methods 

from multiple three-way decision spaces to single three-way decision space. 

(2) Transformation methods are presented based on axiomatic complement-preserving aggregation 

functions. 

(3) This paper gives some methods of construction of complement-preserving aggregation 

functions. Especially in [0, 1] this paper demonstrates many examples on complement-preserving 

aggregation functions such as the weighted average method, max-min average method and median 

method etc. 

(4) These methods are generalized to three-way decisions over two groups of multiple three-way 

decision spaces. 

  (5) We may consider single three-way decisions and multiple three-way decisions through Yao’s 

view on the two sides of the theory of rough sets [41]. If so, it makes more sense to transformation 

methods proposed in this paper. 

  (6) We may consider potential industrial applications of the theory of aggregated three-way 

decision spaces, such as data mining [4], prediction [12], attribute reduction [13], pattern recognition 

[14], social networks [26], granular computing [31, 32], clustering [43] and so on.  
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