
An Adaptive Multi-population Artificial Bee Colony Algorithm for Dynamic Optimisation
Problems

Shams K. Nseef1, Salwani Abdullah1, Ayad Turky2 and Graham Kendall3,4

1Data Mining and Optimisation Research Group, Centre for Artificial Intelligence Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
E-mail: shams.shamosa91@gmail.com; salwani@ukm.edu.my

2Swinburne University of Technology, Melbourne, Victoria, Australia
E-mail: aturky@swin.edu.au

3University of Nottingham Malaysia Campus, Semenyih, Malaysia
4ASAP Research Group, University of Nottingham, Nottingham, United Kingdom

Email: Graham.Kendall@nottingham.edu.my; Graham.Kendall@nottingham.ac.uk

Abstract
Recently, interest in solving real-world problems that change over the time, so called

dynamic optimisation problems (DOPs), has grown due to their practical applications. A

DOP requires an optimisation algorithm that can dynamically adapt to changes and several

methodologies have been integrated with population-based algorithms to address these

problems. Multi-population algorithms have been widely used, but it is hard to determine the

number of populations to be used for a given problem. This paper proposes an adaptive multi-

population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient,

nature inspired algorithm for addressing numerical optimisation, which has been successfully

used for tackling other optimisation problems. The proposed ABC algorithm has the

following features. Firstly it uses multi-populations to cope with dynamic changes, and a

clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the

number of sub-populations changes over time, to adapt to changes in the search space. The

moving peaks benchmark DOP is used to verify the performance of the proposed ABC.

Experimental results show that the proposed ABC is superior to the ABC on all tested

instances. Compared to state of the art methodologies, our proposed ABC algorithm produces

very good results.

Keywords: dynamic optimisation, artificial bee colony algorithm, adaptive multi-population

method, meta-heuristics

1. Introduction
Many real-world optimisation problems have the characteristic of changing over time in

terms of decision variables, constraints and the objective function [1], [2]. These problems

*Revised Manuscript (changes marked)
Click here to view linked References

are referred to as dynamic optimisation problems (DOPs) in the scientific literature. A DOP

requires an optimisation algorithm that can dynamically adapt to the changes and track the

optimum solution during the execution of the algorithm [2]. Given their practical applications

and complexity, DOPs have attracted a lot of research attention. Population-based algorithms,

which are a set of methodologies that utilise a population of solutions distributed over the

search space, have attracted particular attention, due to their good performance [1], [2]. A key

challenge in developing an optimisation algorithm for DOPs is how to maintain population

diversity during the search process in order to keep track of landscape changes [3]. Several

interesting diversity schemes have been developed in order to improve the search capability

of population-based algorithms so that they can adapt effectively to the problem as it

changes.

Prediction based methods is one of the diversity schemes which has been widely integrated

with other algorithms to maintain the diversity. This methodology uses an algorithm to learn

patterns from previous searches, which are then used to predict future changes. It should be

noted that memory methods can be categorised as a special case of the prediction method as

they store a set of solutions to be used when a problem changes [2]. The prediction method is

suitable for problems with cyclic changes. Hatzakis and Wallace [4] proposed a hybrid

algorithm that combines an evolutionary algorithm and a forecasting methodology for DOPs.

Forecasting is used to predict the movement of the optimum based on previous movements.

The results demonstrate that this method is suitable for problems which change quickly if the

movement of the optimum solution is predicted correctly. Sim et al. [5] used a prediction

based method to predict how the environment would change and the time of the next change.

The authors utilised a Markov chain that uses the previous movement of the search in order to

predict future changes and a linear regression to predict when the change will occur. The

results demonstrate that the hybrid algorithm performs with prediction, than without. Branke

and Mattfeld [6] proposed an anticipation-based algorithm for DOPs. This algorithm attempts

to simultaneously search for a good quality solution and move the search into a different area

based on the previous changes. This proposed algorithm was tested on a dynamic job-shop

scheduling problem and it was shown to produce very good results compared to other

algorithms. The advantage of the prediction method is that it can be effective in detecting the

global optima quickly, if the predictions are accurate [2]. The main drawback with this

method is that it depends on the training model and in many cases the data used during the

training process does not capture real world scenarios and there is a possibility of training

errors due to lack of training data [7], [2].

Memory based methodologies aim to maintain diversity. They use a memory with a fixed

size to store some of promising solutions that are captured during the search process. When a

change is detected, the stored solutions will be reinserted into the current population and the

population will be filtered to include only the best solutions. Examples of memory based

methodologies can be found in [8], [9], [10], [11]. These methodologies have worked well

when the dynamic problems are periodical or cyclic. The drawback is that they have

parameter sensitivities that need to be determined in advance, and most real world problems

are not cyclic in nature.

Self-adaptive algorithms attempt to adaptively improve the diversification of population-

based algorithms based on environmental changes. They use mechanisms to adapt the

algorithm to the changes in the search space [2]. Adaptive mechanisms can improve

algorithm search behaviour and also reduce the need for manual parameter tuning. The idea is

to apply different operators or parameter values for different problems by adaptively

changing them during the search process [7], [2]. Grefenstette [12] proposed a self-adaptive

genetic algorithm for DOPs. The proposed algorithm adaptively selects different

crossover/mutation operators at each generation. The author uses an agent based concept to

control the selection process, and each agent represents a crossover or mutation operator. All

agents are executed simultaneously and the one that generates the best solution is selected for

the current instance. Promising results were achieved when compared to other algorithms.

Grefenstette [12] also proposes an idea called a genetic mutation rate for the DOP. The idea

is to set the value of the mutation rate based on the fitness of the population. This idea was

shown to generate better results compared to the basic genetic algorithm. Ursem [13]

proposed a multinational genetic algorithm for the DOP. The main parameters are encoded

with the decision variables and are evolved during the solution process. The results show that

this algorithm is very good for simple instances in which the velocity of the moving peaks is

constant. It is also able to adapt by changing the algorithm parameters during the search.

However, encoding the parameters with the solution decision variables requires specialist

evolutionary operators. In addition, it is also very difficult to determine the values of the

parameters [2].

Multi-population methods improve diversity by dividing the population of solutions into

several sub-populations and distributing them throughout the search landscape so that they

can more effectively capture the problem changes. The idea is to maintain population

diversity by assigning a different sub-population to a different area, where each one is

responsible for either intensifying or diversifying the search process [7], [2]. These sub-

populations interact with each other via a merge and divide process when a change in the

environment is detected. The multi-population method has been shown to be effective in

dealing with various problem changes, whether they are cyclic or non-cyclic, and it has

outperformed other methods on various problem sizes. Branke et al. [14] proposed a self-

organising scouts multi-population evolutionary algorithm for the DOP. The population of

solutions is divided into two groups; small and large. The small population group is

responsible for tracking promising solutions found so far, while the large population group

tries to find a new region of the search space that has a new peak. The proposed algorithm

was tested on the moving peaks benchmark (MPB), obtaining very good results. Blackwell

and Branke [15] proposed a multi-swarm optimisation algorithm for the DOP. The swarm is

divided into subsets of swarms. These multi-swarms interact with each other locally, through

algorithm parameters, and globally by using an anti-convergence mechanism. The anti-

convergence mechanism searches for new peaks by removing the worst ones and re-

initialising them into a different area in the search space. The proposed algorithm obtained

very good results when tested on MPB problems. Mendes and Mohais [16] presented a multi-

population differential evolution algorithm for the DOP. The population of solutions is

divided into several sub-populations. Each sub-population is assigned to a different area of

the search space. The experimental results show that this algorithm obtains very good results

for MPB problems. Li and Yang [17] proposed a fast multi-swarm Particle Swarm

Optimisation (PSO) algorithm for the DOP. The swarm population is divided into two types

of swarms; parents and children. The parent swarm explores the entire search space to seek

the global optima, while the child swarm is responsible for monitoring the search behaviour

around the best solution obtained by the parent swarm. The position of the child swarm is

dynamically updated during the process. The algorithm was tested on the MPB problems and

produced good results when compared to other methods. Yang and Li [18] presented a

clustering-based particle swarm optimiser for the DOP. The swarm is divided based on a

hierarchical clustering method to locate and track multiple peaks. The algorithm achieved

very good results when tested on the MPB. Turky and Abdullah [19] proposed a multi-

population electromagnetic algorithm for DOPs. The proposed algorithm divides the

population into several sub-populations to simultaneously explore and exploit the search

process. The algorithm was tested on MPB problems and obtained very good results when

compared to other population diversity mechanisms. The same authors [20] also presented a

multi-population harmony search algorithm for the DOP. The population is divided into sub-

populations. Each sub-population is responsible for either exploring or exploiting the search

space. An external archive is utilised to track the best solutions found so far, which are used

to replace the worst ones when a change is detected. The results show that this algorithm

produces good results when compared to other methods. Sharifi et al. [21] proposed a hybrid

PSO and local search algorithm for DOPs. The algorithm utilises a fuzzy social-only model

to locate the peaks. The results show that this algorithm can produce very good results for

MPB problems. In Li et al. [22] comprehensive experimental analysis was reported on the

performance of a multi-population method with various algorithms in relation to DOPs. The

authors concluded that the multi-population method is able to deal effectively with various

DOPs and has the ability to maintain population diversity. It is also able to help the search in

locating a new area through a divide and merge process and information exchange. The

authors also highlighted several weaknesses of their method that relate to the number of sub-

populations, the distribution of solutions and the reaction to problem changes.

Existing works on DOPs demonstrate that employing multi-population methods are the most

effective method in maintaining population diversity. The features that make the multi-

population methodologies popular are [3]: i) it divides the population into sub-populations,

where the overall population diversity can be maintained since different populations can be

located in different areas of the problem landscape, ii) it has the ability to search different

areas simultaneously, enabling it to track the movement of the optimum, and iii) various

single population-based algorithms can be integrated within multi-population methods.

Although multi-population methods have shown success when applied to DOPs, most of

them use a number of sub-populations and the population diversity is maintained only

through the sub-population distribution [3]. The number of sub-populations has a crucial

impact on algorithm performance as it relates to the difficulty of the problem, which is not

known in advance, and changes during the search. In addition, the solutions in the sub-

populations may not be diverse enough as some methods are only concerned with how to

divide the population into sub-populations, rather than focussing on diversification. To

address these issues, this work proposes an adaptive multi-population artificial bee colony

(ABC) algorithm for the DOP. The proposed ABC utilises a clearing scheme to remove

redundant solutions in order to maintain diversity and enhance the exploration process. To

efficiently track the landscape changes, the proposed ABC algorithm adaptively updates the

number of sub-populations based on the problem change strength.

In this paper, the key objectives are:

i. To propose an artificial bee colony algorithm that utilises a multi-population and a

population clearing scheme to efficiently solve the dynamic optimisation problem.

ii. To propose an adaptive multi-population algorithm that updates the number of the

sub-populations based on the problem change strength.

iii. To test the performance of the proposed algorithm on dynamic optimisation problems

using different scenarios and compare the results with other methodologies.

We used the moving peaks benchmark DOP with a different number of peaks to evaluate the

effectiveness of the proposed ABC. Results demonstrate that the proposed ABC performs

better than a basic ABC on all tested scenarios. Compared to the state of the art method, the

proposed ABC produces very good results for many instances.

2. The proposed algorithm
This section presents the basic artificial bee colony algorithm, as well as our proposed

adaptive multi-population algorithm.

2.1 Basic artificial bee colony algorithm
The Artificial Bee Colony (ABC) algorithm is a simple, yet efficient, nature inspired

algorithm for addressing numerical optimization problems. It was proposed in [23] as a

nature inspired swarm intelligence algorithm based on the observation of bee foraging

behaviour. In ABC, there are a set of food sources and a set of bees. The quality of the food

sources is based on the amount of nectar they contain. Bees search and collaborate with each

other, seeking better food sources. To address an optimization problem using ABC, food

sources represent the population of solutions for a given problem and bees are categorised

into three types: scout, employee and onlooker bees. The amount of nectar corresponds to the

quality (objective function) of the problem being addressed. The three types of bees work

together in an iterative manner to improve the quality of the population of solutions (food

sources). The pseudo-code of a basic ABC is shown in Algorithm 1 [24]. ABC first sets the

main parameters, initializes the population of solutions and then evaluates them. Next, the

main loop is executed in an attempt to solve the given optimisation problem by calling the

employee bees, onlooker bees and scout bees until the stopping condition is satisfied.

 Algorithm 1: The pseudo-code of basic ABC
 Step 1: Set the parameter values

Step 2: Initialize the population of solutions
Step 3: Evaluate the population of solutions
while termination condition is not met do
 Step 4: Employed Bees step
 Step 5: Onlooker Bees step
 Step 6: Scout Bees step
end while

The basic ABC has the following steps:

Step 1- Set ABC parameters. In this step the main parameters of ABC are initialized.

These include: the maximum number of iterations (MaxIt) which represents the stopping

condition of ABC, the number of solutions or population size (Ps) which represent how

many solutions will be generated, the total number of bees (Sbees) which is set to be

twice the size of Ps, where half of them are employee bees and the other half are

onlooker bees, the limit parameter (Lit), which is used to determine if the solution should

be replaced by a new one.

Step 2- Initialise the population of solutions. A set of solutions with size equal to Ps

are randomly generated as follows:

)](1,0[min
,

max
,

min
,, jijijiji xxRandxx �� (1)

where i is the index of the solution, j is the current decision variable, Rand [0,1]

generates a random number between zero and one and min
, jix and max

, jix are the lower and

upper bonds for the jth decision variable.

Step 3- Evaluate the population of solutions. The fitness (quality) of the generated

solutions are calculated using the objective function. The objective function is problem

dependent. The objective function used in this work is shown in Section 3.2.

Step 4- Employed bees. Each employee bee is sent to one food source (solution). Its

main role is to explore the neighbourhood of the current solution, seeking an improving

solution. A neighbourhood solution, v, is created by modifying the ith solution, x, as

follows:

)(,,,,, jkjijijiji xxxv �)� (2)

where k is a randomly selected solution from Ps and Φ is a random number between [-1,

1]. The generated neighbourhood solution will be replaced with current solution if it has

better fitness.

Step 5- Onlooker bees. Onlooker bees seek to improve the current population of

solutions by exploring their neighbourhood using Equation (2), the same as the employee

bee. The difference is that onlooker bees select the solutions probabilistically based on

their fitness values as follows:

¦

 Ps

j

i
i

fitnessj

fitnessp

1 (3)

That is, the solution with the higher fitness has a higher chance of being selected (i.e.

roulette wheel selection). Onlooker bees use a greedy selection mechanism, where the

better solution in terms of fitness is selected.

Step 6- Scout bees. This step is activated if both employed and onlooker bees cannot

improve the current solution for a number of consecutive iterations defined by the limit

parameter, Lit. This indicates that the current solution is not good enough to search its

neighbourhood and it should be discarded. In this case, the scout bee will generate a new

solution using Equation (1) to replace the discarded one. This can help ABC to escape

from a local optimum and explore a different area of the search space.

2.2 The proposed artificial bee colony algorithm
Existing works on DOPs have demonstrated that multi-population methods are state of the

art, in that they outperform other methods on many scenarios. However, although multi-

population methods have achieved success in solving DOPs, most of them use a fixed

number of sub-populations and the population diversity is maintained through the sub-

population distribution. To address these issues, this work proposes an adaptive population

ABC (denoted as Multi-pop-ABC). In Multi-pop-ABC, three major modifications are added

to the basic ABC. These are:

i. Multi-population method. To deal with DOP, the proposed ABC uses a multi-population

method to divide the population into several sub-populations. By using a multi-population

method, the solutions are scattered over the search space instead of focusing on a specific

area. Thus the algorithm can generate high quality solutions and track the problem

changes.

ii. Adaptive scheme. To track the landscape changes that occur during the search process, the

proposed Multi-pop-ABC updates the number of sub-populations based on the strength of

the problem change. That is the number of sub-populations is either decreased or increased

during the search process. By using the proposed adaptive method, the number of sub-

populations can be changed adaptively based on the strength of the environment changes,

which helps the search track the optimum solution and also improves the diversification

and exploration processes.

iii. Population clearing scheme. To ensure that the solutions are diverse enough, a population

clearing scheme is called when a change is detected to delete redundant solutions and

replace them with new solutions. This scheme removes redundant solutions in order to

maintain diversity and enhance the exploration process.

The flowchart of the proposed Multi-pop-ABC for DOPs is shown in Figure 1. It

starts by setting the parameter values. It creates the population of solutions and then evaluates

them. Next, the population of solutions is divided into m sub-populations. Each sub-

population utilises an ABC algorithm. If a change in the problem is detected, the algorithm

calculates the change strength to update the sub-population size and checks the stopping

condition. If the specified stopping condition (we set this as a maximum number of fitness

evaluations) has been reached, the algorithm terminates and the best solution is returned.

Otherwise, the algorithm merges all the sub-populations, updates the population, runs the

clearing method, re-divides the population into m sub-populations and starts a new iteration.

The main steps are described in further detail below:

- Step 1: Set parameters. The main parameters of Multi-pop-ABC are initialised. The

algorithm has five parameters. Four of them are the same as the basic ABC. These

are: the maximum number of iterations (MaxIt), population size (Ps), number of bees

(Sbees), and the limit parameter (Lit). The fifth parameter is the sub-population size

(m), which represents the number of sub-populations (Ps/m). Initially, m=2 and during

the search process, it is either decreased or increased.

1- Step 2: Initialise the population of solutions. Same as Step 2 in the basic ABC, Section

2.1.

2- Step 3: Evaluate the population of solutions. Same as Step 3 in the basic ABC, Section

2.1.

3- Step 4: Divide the population. The population of solutions is divided into m sub-

populations (Ps/m). Each sub-population is assigned to explore a different area of the

search space. These sub-populations interact with each other through merging and re-

dividing every time a change in the environment is detected. Each solution in the

population is randomly assigned to a sub-population. The number of sub-populations m

is either increased or decreased based on the environment change strength. The initial

value of m is set to two (m=2) and it is updated during the search.

4- Step 5: Assign ABC to each sub-population. Each sub-population has its own ABC

algorithm. Each ABC executes all the steps presented in Section 2.1. It starts with a

population of solutions and iteratively calls the following until the stopping condition is

satisfied (the algorithm stops when a change in the environment is detected):

i. Employee bees. Same as Step 4 in the basic ABC, Section 2.1.

ii. Onlooker bees. Same as Step 5 in the basic ABC, Section 2.1.

iii. Scout bees. Same as Step 6 in the basic ABC, Section 2.1.

5- Step 6: Check the change strength. This step is activated when a change in the

environment is detected. Its main role is to update the number of sub-populations based

on the environment change strength. It first calculates the objective function of the best

solution before and after the environment change as follows:

)_()_(afterbestfbeforebestfCs � (4)

where Cs is the change strength, f(best_before) is the quality of the best solution before

the environment change and f(best_after) is the quality of the best solution after the

environment change. If the Cs is less than the defined threshold (Tv) and m is greater

than 2, the number of sub-populations m is decreased as the algorithm needs to be more

exploitive than explorative (m=m-1). Otherwise, m is increased by one with the aim of

increasing the exploration aspect of the search (m=m+1). It should be noted that when m

is an odd number, the extra solution is randomly assigned to one of the sub-populations.

6- Step 7: Check the stopping condition. This step checks the termination criterion of the

search process. In this work, it is set as a maximum number of fitness evaluations in line

with previous works. If the specified stopping condition is reached, the search process

stops and returns the best solution. Otherwise, the algorithm performs the following

processes:

i. Population clearing scheme: This scheme calculates the similarity between

solutions in the population. The similarity is calculated by using a matching

algorithm, which matches each pair of solutions in terms of phenotype. Two

solutions are similar if they have the same values in all the cells of both

solutions. If two or more solutions are similar, these solutions are deleted and

replaced with randomly generated ones.

ii. Population update: All sub-populations are merged to form one population.

iii. Re-divide the population: The population is re-divided into m sub-populations

and the algorithm continues by starting the process at step 1 with a new

generation.

Figure 1. The proposed Multi-pop-ABC

3. Experimental Setup
This section discusses the Moving Peak Benchmark (MPB), evaluation metric and the

parameter settings.

3.1 The Moving Peak Benchmark
The moving peak benchmark (MPB) is a maximization dynamic continuous optimization

problem proposed by [9], [25], and has been commonly used as a testbed for the performance

of optimisation algorithms. MPB consists of a set of peaks that move over the problem

landscape. It takes the given solution as an input and returns the value of the highest peak.

The returned value represents the quality of this solution. MPB can be mathematically

expressed as follows:

¸
¸
¸
¸

¹

·

¨
¨
¨
¨

©

§

��

¦

o

D

j
ijji

i
i

tXtxtW

tH
ptxF

1

2
,...,1

))()(()(1

)(max),((5)

where F(x, t) is the quality of solution x at time t, p is the number of peaks, D is the problem

dimension (number of decision variables where each variable has an upper and lower

boundary (DB)), Hi (t) is the height of peak i, Wi (t) is the width of peak i, and Xij is the jth

element of the location of peak i. Note that Equation (5) is a stationary optimization problem.

Thus, to change it to a dynamic problem, MPB randomly shifts the position of all peaks by

vector iv
o of a distance s (s is also known as the shift length that determines the severity

degree) as follows:

))1()1((
|)1(|

)(���
��

oo

oo

o

tvr
tvr

stv i

i

i OO (6)

where
o

r is a random vector, λ is the correlation between consecutive movements of a single

peak that takes either “0” if the movement of peaks are completely uncorrelated or “1” if they

move in the same direction. To make a fair comparison with existing algorithms, in this

paper, we used λ=0 [6]. The change of height and width of a peak in a given solution can be

mathematically expressed as follows:

V�� severityheighttHtH ii _)1()((7)

V�� severitywidthtWtW ii _)1()((8)

where height_severity and width_severity are calculated based on the problem severity. σ is a

normally distributed random number between 0 and 1. Then, the change of a solution x is

given as follows:

)()1)(()(tvttXtX iii

ooo

�� (9)

The change frequency (cf) occurs every 5,000 fitness evaluations [9]. The parameter values

of all MPBs that have been used in our experiments are shown in Table 1 [25].

Table 1 MPB parameter values
Parameters Description Value

p Number of peaks 1–200
cf Change frequency 5000

height_severity Height severity 7.0
width_severity Width severity 1.0

Peak shape Peak shape Cone
s Shift length 1.0
D Number of dimensions 5
λ Correlation coefficient 0

DB Each dimension boundaries [0,100]
H Peak height [30.0,70.0]
W Peak width [1,12]

3.2 Evaluation Metric
To fairly compare the proposed ABC with existing algorithms, we use the same evaluation

metric known as the offline error as suggested by [25]. This has also been used by other

researchers. The offline error is calculated as follows:

¦

:
g

i
ig

off
1

1 (10)

where g is the number of generations and Ω is the best performance since the last change at ith

fitness evaluation.

3.3 Parameter Settings
The parameter values of our Multi-pop-ABC are set by carrying out a set of initial

experiments, with the exception of the stopping condition which was set to be the same as the

compared algorithms (50,000 fitness evaluations). For each parameter, we tested various

values and the best values were selected. This is achieved by varying the value of one

parameter while fixing others. We have selected two scenarios of MPB for the parameter

tunning process: 50 peaks and 200 peaks. The proposed ABC has three parameters:

population size (Ps), limit (Lit) and the change strength threshold (Tv). First, we fixed Lit to

30, Tv to 0.09 and changed Ps. Table 2 shows the offline error of various Ps values for 50 and

200 peaks. The best result is highlighted in bold. Next, we fixed Ps to 60, Tv to 0.09 and

changed Lit as shown in Table 3. Finally, we fixed Ps to 60, Lit to 30 and changed Tv as

shown in Table 4. The parameter settings of the proposed ABC that were used across all

scenarios are presented in Table 5.

Table 2 The value of Ps parameter

Ps value 50 peaks 200 peaks
20 0.95669 2.70215
40 0.319632 1.8935
60 0.5810 0.34865
80 0.576911 1.15134

Table 3 The value of Lit parameter

Lit value 50 peaks 200 peaks
10 1.03474 1.18977
20 1.27535 1.70215
30 1.29851 0.24824
40 1.841891 1.28967

Table 4 The value of Tv parameter

Tv value 50 peaks 200 peaks
0.03 0.95669 1.89663
0.05 0.96573 1.08053
0.07 0.89978 1.37518
0.09 1.23491 1.77956

Table 5 The parameter settings of the proposed ABC

Parameter Value
1- Maximum number of iterations

(MaxIt)
50,000 fitness
evaluations

2- Population size (Ps) 60
3- Limit parameter (Lit) 30
4- Change strength threshold (Tv) 0.05

4. Results
We carried out three set of experiments. In first one, we compare the results of Multi-pop-

ABC with the basic ABC. In second one, the results obtained by Multi-pop-ABC are

compared with state of the art methods. In the third experiment, the results of Multi-pop-ABC

on well-known test functions are compared with state of the art methods.

4.1 Results comparison of Multi-pop-ABC and the basic ABC
This section aims to verify the effectiveness of the additional components that we have added

to the basic ABC. Specifically, the objective is to investigate the impact of the proposed

enhancements on the performance of the basic ABC when dealing with DOPs. Four different

algorithms were derived as follows:

- Multi-pop-ABC: the proposed ABC that utilises the adaptive multi-population and

population clearing scheme

- Multi-pop-ABC1: same as above but without the population clearing scheme

- Multi-pop-ABC2: same as above but uses a fixed number of sub-populations and

without the population clearing scheme. The sub-populations were fixed to be the

same as [26]

- ABC: basic ABC algorithm.

The computational comparisons of Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and

basic ABC are presented in Table 6. The comparison is in terms of the offline error, ±

standard error for each number of peaks. The best results are highlighted in bold. The results

clearly show the good performance of Multi-pop-ABC when compared to Multi-pop-ABC1,

Multi-pop-ABC2 and basic ABC. Indeed, Multi-pop-ABC outperformed Multi-pop-ABC1,

Multi-pop-ABC2 and basic ABC on both the offline error and the standard error on all tested

scenarios. The results demonstrate that the enhancements we made to the basic ABC improve

the algorithmic performance.

Table 6 Results of the Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC
Number of Peaks

Algorithm 1 2 5 7 10 20 30 40 50 100 200
Multi-pop-

ABC
0.14

±0.00
0.12

±0.00
0.20

±0.00
0.38

±0.01
0.22

±0.01
0.35

±0.00
0.46

±0.00
0.52

±0.01
0.44

±0.01
0.52

±0.00
0.93

±0.00
Multi-pop-

ABC1
1.81

±0.18
1.42

±0.32
1.11

±0.13
1.01

±0.22
1.57

±0.12
1.43

±0.15
1.45

±0.14
1.62

±0.10
1.21

±0.21
1.73

±0.11
1.22

±0.10
Multi-pop-

ABC2
1.12

±0.18
1.21

±0.41
1.61

±0.10
1.65

±0.11
1.71

±0.15
1.11

±0.14
1.72

±0.19
1.42

±0.13
1.62

±0.18
1.41

±0.12
1.42

±0.12
Basic ABC 5.88

±2.48
5.52

±4.31
4.12
±3.7

4.5
±2.3

5.2
±3.16

6.3
±3.51

3.38
±4.32

7.14
±3.60

6.21
±2.01

6.97
±2.11

7.03
±3.44

Note: Values in bold font indicate the best results.

To further verify the results, we conducted a comparison between Multi-pop-ABC and each

method separately. We used a Wilcoxon statistical test with a confidence level of 0.05. The p-

values of Multi-pop-ABC against Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC for each

scenario is presented in Table 7. A value less than 0.05 indicates Multi-pop-ABC is superior

(i.e. statistically different). As can be seen from Table 7, Multi-pop-ABC is superior to Multi-

pop-ABC1, Multi-pop-ABC2 and basic ABC on 9 out of 11 tested scenarios (p < 0.05). The

table also shows than on two scenarios (1 peak and 2 peaks) Multi-pop-ABC is not superior

to Multi-pop-ABC1 and Multi-pop-ABC2. This can be attributed to the fact that these two

scenarios are relatively easy to solve and thus all methods produce very good solutions. The

results of the statistical test also demonstrate that the proposed enhancements have a positive

impact and improve the search process.

Table 7 p-values of the of Multi-pop-ABC against other methods
Number of Peaks

Multi-pop-
ABC vs.

1 2 5 7 10 20 30 40 50 100 200

Multi-pop-
ABC1

0.06 0.08 0.04 0.03 0.00 0.00 0.00 0.01 0.01 0.00 0.00

Multi-pop-
ABC2

0.07 0.06 0.02 0.07 0.06 0.00 0.04 0.01 0. 02 0.00 0.00

Basic ABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Note: Values less than 0.05 indicate that Multi-pop-ABC is better than the compared methods.

4.2 Comparison with state of the art methods
There are numerous methods that use different schemes to handle diversification, and which

have been tested on MPB. In this section, we evaluate the performance of our algorithm by

comparing it with several recently proposed algorithms taken from the scientific literature.

The algorithms are:

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO)

[27].

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO)

[27]

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO*)

[27]

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO*)

[27].

- Competitive population evaluation in a differential evolution algorithm for dynamic

environments (CDE) [28].

- Differential evolution for dynamic environments with unknown numbers of optima

(DynPopDE) [29].

- Dynamic function optimization with hybridized extremal dynamics (EO + HJ) [30]

- A competitive clustering particle swarm optimizer for dynamic optimization problems

(CCPSO) [31].

- A novel hybrid adaptive collaborative approach based on particle swarm optimization

and local search for dynamic optimization problems (CHPSO(ES-NDS)) [32].

To ensure a fair comparison, we used the same stopping condition (50,000 fitness

evaluations), the same change frequency (every 5,000 fitness evaluations) and the same

evaluation metric (Offline error). We also used 11 MPB instances with a different number of

peaks ranging between 1 to 200 peaks.

The results of Multi-pop-ABC and the compared algorithms are presented in Table 8. The

results in the table are in terms of offline error, ± standard error and computational times for

each number of peaks. In the table, the symbol ‘-’ indicates that the scenario has not been

tested. We indicate in bold the best obtained results. From Table 8, it can be seen that Multi-

pop-ABC is superior to the other algorithms in most of the cases in terms of offline error. In

particular, Multi-pop-ABC obtained new best results for 9 out of 11 tested MPB instances.

Multi-pop-ABC was inferior on only two MPB instances: 1 peak and 2 peaks. Nevertheless,

the results of Multi-pop-ABC for these two scenarios are very competitive, where it obtained

the second best results. In terms of the standard error, Multi-pop-ABC produced a better

standard error for 6 scenarios, being similar on 5 scenarios out of the 11 tested.

Table 8 Results of Multi-pop-ABC compared to the state of the art methods

Number of Peaks
Algorithm 1 2 5 7 10 20 30 40 50 100 200
Multi-pop-

ABC
0.14

±0.00
8.11

0.12
±0.00

9.10

0.20
±0.00
10.20

0.38
±0.01
10.63

0.22
±0.01
11.12

0.35
±0.00
13.75

0.46
±0.00
15.13

0.52
±0.01
17.17

0.44
±0.01
20.23

0.52
±0.00
28.64

0.93
±0.00
56.48

mCPSO 4.93
±0.17

3.36
±0.26

2.07
±0.08

2.11
±0.11

2.08
±0.07

2.64
±0.07

2.63
±0.08

2.67
±0.07

2.65
±0.06

2.49
±0.04

2.44
±0.04

mQSO 5.07
±0.17

3.47
±0.23

1.81
±0.07

1.77
±0.07

1.80
±0.06

2.42
±0.07

2.48
±0.07

2.55
±0.07

2.50
±0.06

2.36
±0.04

2.26
±0.03

mCPSO* 4.93
±0.17

3.36
±0.26

2.07
±0.11

2.11
±0.11

2.05
±0.07

2.95
±0.08

3.38
±0.11

3.69
±0.11

3.68
±0.11

4.07
±0.09

3.97
±0.08

mQSO* 5.07
±0.17

3.47
±0.23

1.81
±0.07

1.77
±0.07

1.75
±0.06

2.74
±0.07

3.27
±0.11

3.60
±0.08

3.65
±0.11

3.93
±0.08

3.86
±0.07

CDE - - - - 0.92
±0.07

- - - - - -

DynPopDE - - 1.03
±0.13

- 1.39
±0.07

- - - 2.10
±0.06

2.34
±0.05

2.44
±0.05

EO + HJ 7.08
±1.99

- - - 0.25
±0.10

0.39
±0.10

0.49
±0.09

0.56
±0.09

0.58
±0.09

0.66
±0.07

-

CCPSO 0.09
±0.00

0.09
±0.00

0.25
±0.01

0.53
±0.03

0.75
±0.06

1.21
±0.08

1.40
±0.07

1.47
±0.08

1.50
±0.09

1.76
±0.09

-

CHPSO(ES-
NDS)

0.19
± 0.00

- 0.44
±0.02

- 0.64
±0.02

0.91
±0.01

0.99
±0.01

1.02
±0.01

1.03
±0.01

1.04
±0.01

1.01
±0.00

Note: Values in bold font indicate the best results.

To further verify the effectiveness of the proposed Multi-pop-ABC, we statistically compare

it with other methods. We followed the procedure described in [33]. First, Friedman test and

Iman and Davenport statistical tests with 0.05 confidence levels are carried out to detect if

there is a difference between the results of Multi-pop-ABC and other methods. It should be

noted that only those methods that were tested on all scenarios were considered for this test.

Both the Friedman test and Iman and Davenport tests returned p-values (0.000009 and

0.000000009061) less than 0.05 indicating the compared results are statistically different. We

next conducted a Friedman test to obtain rankings, and Holm and Hochberg post-hoc tests.

The ranking value for each method obtained by a Friedman test is presented in Table 9 (the

lower the better), where Multi-pop-ABC obtained the first rank followed by mQSO second

rank, mCPSO third rank, mQSO* fourth rank and mCPSO* fifth rank. Consequently, Multi-

pop-ABC will be the controlling method for the Holm and Hochberg post-hoc tests. The p-

values of Holm and Hochberg tests are shown in Table 10. From the table, one can see that

Multi-pop-ABC is statistically better than the compared methods on both Holm and

Hochberg tests in which all the obtained p-values are less than 0.05.

Table 9 The average ranking of Friedman test
Algorithm Ranking
1 Multi-pop-ABC 1
2 mQSO 2.6364
3 mCPSO 3.3636
4 mQSO* 3.6364
5 mCPSO* 4.3636

Table 10 The adjusted p-value of the compared methods

Algorithm Unadjusted P P Holm P Hochberg

1 mCPSO* 0.000001 0.000002 0.000002
2 mQSO* 0.000092 0.000276 0.000276
3 mCPSO 0.000455 0.00091 0.00091
4 mQSO 0.015219 0.015219 0.015219

The above results reveal that, in most of the tested scenarios, the proposed Multi-pop-ABC is

better than the compared methods. These results are supported by statistical tests.

We hypothesise that several key features contribute to the high performance of the proposed

algorithm (Multi-pop-ABC) on the dynamic problem. These can be summarised as follows:

- Multi-population: This feature is beneficial for maintaining the diversity of solutions

in the population during the search process.

- Adaptive number of sub-populations: This feature helps the algorithm in changing the

solution distribution over the search landscape to get better diversification and

intensification based on the problem change strength.

- Population clearing scheme: This feature helps avoid having similar solutions within

the population in order to further add to the diversification.

4.3 Comparison with state-of-the-art approaches on test functions
In this section, we evaluate our proposed algorithm based on other well-known ten test
functions. The tested functions are widely used by researchers [34-37]. These functions are:

¸
¹
·

¨
©
§oxf 1

=¦

n

i ix
1

2 [-100, 100]n

¸
¹
·

¨
©
§oxf 2

= i
n
ii

n

i
xx 1

1
 ��¦

 [-10, 10]n

¸
¹
·

¨
©
§oxf 3

= � �2
1

1¦¦

i

i
xn

i
j [-100, 100]n

¸
¹
·

¨
©
§oxf 4

= }1,{max nixii dd [-100, 100]n

¸
¹
·

¨
©
§oxf 5

= � � � �> @¦ �

 � ���
1

1
222

1 1100n

i iii xxx [-30, 30]n

¸
¹
·

¨
©
§oxf 6

= � �1,0
1

4 randomixn

i i �¦
 [-1.28, 1.28]n

¸
¹
·

¨
©
§oxf 7

= � �i
n

i i xx sin
1¦
� [-500, 500]n

¸
¹
·

¨
©
§oxf 8

= � �� �¦
��

n

i ii xx
1

2 102cos10 S [-5.12, 5.12]n

¸
¹
·

¨
©
§oxf 9

= � � ex
n

x
n

n

i i
n

i i ��¸
¹
·

¨
©
§�¸̧

¹

·
¨̈
©

§
�� ¦¦

202cos1exp12.0exp20
11

2 S [-32, 32]n

¸
¹
·

¨
©
§oxf 10

= 1cos
4000

1
11

2 �¸
¹

·
¨
©

§�� ¦ i
xx in

i
n

i i [-600, 600]n

For every benchmark function, respectively assume the dimension as 30, 50 and 100. The
results in Tables 11, 12 and 13 demonstrate that Multi-pop-ABC performs better than the
compared ABC, PS-ABC and PS-ABCII algorithms [34-36] in terms of both mean and
standard deviation (SD). Note that the best results are highlighted in bold. The presented
results indicate that the Multi-pop-ABC outperforms other methods over all test functions.

Table 11 M
ean, the standard deviation (SD

) of functions w
ith 30 dim

ensions.
F

ABC
PS-ABC

PS-ABCII
LW

G
SO

D
E

C
FO

A
M

ulti-pop-ABC
D

im

M
ean

SD

M

ean

SD

M
ean

M

ean

M
ean

SD

M

ean

SD

SD

SD

f1
30

3.3955 x 10

-9
4.5376 x 10

-9
0

0
0

0
1.68 x 10

-7
1.63 x 10

-7
1 x 10

-309
-

0
0

f2
30

5.1029 x 10- 6
1.8417 x 10

-6
0

0
0

0
1.10 x 10

-3
4.09 x 10

-4
1 x 10 -155

-
0

0
f3

30
1.2598 x 10

4
2.9192 x 10

3
7.2696 x 10

3
1.4359 x 10

3
4.0756 x 10

4
8.1760 x 10

3
-

-
-

-
6.4361 x 10

2
1.9164 x 10

2
f4

30
2.4044 x 10

1
3.3935

0
0

0
0

-
-

-
-

0
0

f5
30

3.2873
3.4035

1.4048
2.7168

2.8408 x 10
1

0.1154
2.60 x 10

1
2.70 x 10

-2
-

-
1.0196

1.9217

f6
30

1.5788 x 10
-1

3.6701 x 10
-1

1.8545 x 10
-2

5.3198 x 10
-3

5.5447 x 10
-4

1.2352 x 10
-3

-
-

1 x 10
-309

-
3.2124 x 10

-4
1.0172 x 10

-3

f7
30

-12185.9
1.4299 x 10

2
-12549.7

4.4891 x 10
1

-12088.9
1.8715 x 10

2
-

-
-

-
-14847.9

3.5787 x 10
1

f8
30

4.0160 x 10
-1

6.2228 x 10
-1

0
0

0
0

3.85 x 10
-5

3.75 x 10
-5

-
-

0
0

f9
30

2.4076 x 10
-5

1.2439 x 10
-5

8.8817 x 10
-16

0
8.8817 x 10

-16
0

2.99 x 10
-4

1.86 x 10
-4

1 x 10
-308

-
0

0

10
30

1.4335 x 10
-3

4.0152 x 10
-3

0
0

0
0

-
-

1 x 10
-309

-
0

0

Table 12 Mean, the standard deviation (SD) of functions with 50 dimension.
F ABC PS-ABC PS-ABCII Multi-pop-ABC

Dim Mean SD Mean SD Mean SD Mean SD
f1 50 1.1483 x 10-5 1.6272 x 10-5 0 0 0 0 0 0

f2 50 2.8511 x 10-3 1.3944 x 10-3 0 0 0 0 0 0

f3 50 4.6422 x 104 6.9821 x 103 3.0638 x 103 3.4739 x 103 1.2539 x 105 2.1047 x 104 2.1041 x 103 2.0893 x 103
f4 50 5.6020 x 101 5.1905 1.8782 x 101 5.7908 0 0 0 0

f5 50 3.7224 x 101 3.6453 x 101 3.1451 x 101 2.9224 x 101 4.8504 x 101 1.3535 x 10-1 2.2310 x 101 2.1102 x 101

f6 50 4.2726 x 10-1 8.2393 x 10-2 5.7802 x 10-2 1.6469 x 10-2 5.4388 x 10-4 6.4470 x 10-4 2.1847 x 10-4 3.2711 x 10-4

f7 50 -19359.1 3.1097 x 102 -20893.4 7.9224 x 101 -19414.1 3.3738 x 102 -26893.4 7.8394 x 101

f8 50 8.1857 2.4195 0 0 0 0 0 0

f9 50 4.0637 x 10-2 3.2467 x 10-2 8.8817 x 10-16 0 8.8817 x 10-16 0 0 0

10 50 9.9977 x 10-3 1.1718 x 10-2 0 0 0 0 0 0

Table 13 Mean, the standard deviation (SD) of functions with 100 dimension.

F ABC PS-ABC PS-ABCII Multi-pop-ABC
Dim Mean SD Mean SD Mean SD Mean SD

f1 100 4.9461 x 10-3 1.1389 x 10-2 8.3417 x 10-47 4.5689 x 10-46 0 0 0 0

f2 100 2.7814 x 10-1 4.0035 x 10-1 0 0 0 0 0 0

f3 100 1.8854 x 105 2.1886 x 104 1.3544 x 105 1.2851 x 104 5.4823 x 105 1.0256 x 105 1.4211 x 104 1.0937 x 104
f4 100 8.2376 x 101 3.0440 7.2160 x 101 4.0371 0 0 0 0

f5 100 3.3118 x 102 3.8309 x 102 2.0376 x 102 6.7028 x 101 9.8590 x 101 1.5702 x 10-1 4.1781 x 101 1.2011 x 10-1

f6 100 1.5950 3.2657 x 10-1 2.2021 x 10-1 4.1119 x 10-2 1.6151 x 10-3 3.2646 x 10-3 1.1260 x 10-3 2.9615 x 10-3

f7 100 -34413.8 5.0878 x 102 -39976.6 3.3634 x 102 -37405.7 5.5665 x 102 -40182.4 2.6738 x 102

f8 100 8.5540 x 101 1.1018 x 101 0 0 0 0 0 0

f9 100 3.8186 3.6198 x 10-1 2.3270 x 10-14 1.2259 x 10-13 8.8817 x 10-16 0 0 0

10 100 1.4344 x 10-1 1.3282 x 10-1 1.6904 x 10-3 6.4786 x 10-3 0 0 0 0

5. Conclusion
This paper has presented a modified artificial bee colony algorithm for dynamic optimization

problems. The aims of our modifications were to enhance the capability of the algorithm to

efficiently deal with DOPs. We first integrated it with a multi-population method to scatter

the solution over the search process so that they can search and track the optimum solution

simultaneously. An adaptive multi-population was also proposed to adaptively change the

number of sub-populations based on the problem change strength. In addition, a population

clearing scheme was proposed to remove redundant solutions in the population. To evaluate

the performance of the proposed algorithm, experimental tests were carried out using the

moving peaks benchmark DOP, with a different number of peaks. Comparisons were carried

out between the proposed algorithm, the basic ABC and state of the art methods. The results

demonstrated that the proposed algorithm outperforms basic ABC on all tested scenarios. It

also produced better results than the state of the art methods on many scenarios, indicating

that the proposed algorithm is an effective method for the DOP.

Acknowledgements
This work was supported by the Ministry of Education, Malaysia

(FRGS/1/2015/ICT02/UKM/01/2) and the Universiti Kebangsaan Malaysia (DIP-2012-15).

References
1. Jin, Y. and J. Branke, Evolutionary optimization in uncertain environments-a survey.

IEEE Transactions on Evolutionary Computation, 2005. 9(3): p. 303-317.
2. Nguyen, T.T., S. Yang, and J. Branke, Evolutionary dynamic optimization: A survey

of the state of the art. Swarm and Evolutionary Computation, 2012. 6: p. 1-24.
3. Li, C., T.T. Nguyen, M. Yang, S. Yang, and S. Zeng, Multi-population methods in

unconstrained continuous dynamic environments: The challenges. Information
Sciences, 2015. 296: p. 95-118.

4. Hatzakis, I. and D. Wallace. Dynamic multi-objective optimization with evolutionary
algorithms: a forward-looking approach. in Proceedings of the 8th annual conference
on Genetic and evolutionary computation. 2006. p. 1201-1208. ACM.

5. Simões, A. and E. Costa. Improving prediction in evolutionary algorithms for
dynamic environments. in Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. 2009. p. 875-882. ACM.

6. Branke, J. and D.C. Mattfeld, Anticipation and flexibility in dynamic scheduling.
International Journal of Production Research, 2005. 43(15): p. 3103-3129.

7. Cruz, C., J.R. González, and D.A. Pelta, Optimization in dynamic environments: a
survey on problems, methods and measures. Soft Computing, 2011. 15(7): p. 1427-
1448.

8. Branke, J. Memory enhanced evolutionary algorithms for changing optimization
problems. in In Congress on Evolutionary Computation CEC99. 1999. 3:1875-1882.

9. Branke, J., Evolutionary optimization in dynamic environments. Vol. 3. 2012:
Springer Science & Business Media.

10. Yang, S. On the design of diploid genetic algorithms for problem optimization in
dynamic environments. in IEEE Congress on Evolutionary Computation CEC 2006.
pp. 1362-1369.

11. Daneshyari, M. and G.G. Yen. Dynamic optimization using cultural based PSO. in
IEEE Congress on Evolutionary Computation CEC 2011 pp. 509-516.

12. Grefenstette, J.J. Evolvability in dynamic fitness landscapes: A genetic algorithm
approach. in IEEE Congress on Evolutionary Computation CEC 1999. Vol. 3,
pp.2031 -2038 1999.

13. Ursem, R.K. Multinational GAs: Multimodal Optimization Techniques in Dynamic
Environments. in In GECCO, pp. 19-26. 2000.

14. Branke, J., T. Kaußler, C. Schmidt, and H. Schmeck, A multi-population approach to
dynamic optimization problems. Adaptive computing in design and
manufacturing,2000:, 2000: p. 299-308.

15. Blackwell, T. and J. Branke, Multi-swarm optimization in dynamic environments.
Applications of Evolutionary Computing, 2004: p. 489-500.

16. Mendes, R. and A.S. Mohais. DynDE: a differential evolution for dynamic
optimization problems. in IEEE Congress on Evolutionary Computation CEC 2005
vol. 3, pp. 2808-2815.

17. Li, C. and S. Yang. Fast multi-swarm optimization for dynamic optimization
problems. in Fourth International Conference on Natural Computation, 2008.
ICNC'08. . vol. 7, pp. 624-628. IEEE.

18. Yang, S. and C. Li, A clustering particle swarm optimizer for locating and tracking
multiple optima in dynamic environments. IEEE Transactions on Evolutionary
Computation, , 2010. 14(6): p. 959-974.

19. Turky, A.M. and S. Abdullah, A multi-population electromagnetic algorithm for
dynamic optimisation problems. Applied Soft Computing, 2014. 22(1): p. 474-482.

20. Turky, A.M. and S. Abdullah, A multi-population harmony search algorithm with
external archive for dynamic optimization problems. Information Sciences, 2014.
272(1): p. 84-95.

21. Sharifi, A., J.K. Kordestani, M. Mahdaviani, and M.R. Meybodi, A novel hybrid
adaptive collaborative approach based on particle swarm optimization and local
search for dynamic optimization problems. Applied Soft Computing, 2015. 32(1): p.
432-448.

22. Li, C., T.T. Nguyen, M. Yang, S. Yang, and S. Zeng, Multi-population methods in
unconstrained continuous dynamic environments: The challenges. Information
Sciences, 2015. 296(1): p. 95-118.

23. Karaboga, D., An idea based on honey bee swarm for numerical optimization. 2005,
Technical report-tr06, Erciyes university, engineering faculty, computer engineering
department.

24. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of global
optimization, 2007. 39(3): p. 459-471.

25. Branke, J. and H. Schmeck, Designing evolutionary algorithms for dynamic
optimization problems, in Advances in evolutionary computing. 2003, Springer. p.
239-262.

26. Branke, J., T. Kaußler, C. Smidt, and H. Schmeck, A multi-population approach to
dynamic optimization problems, in Evolutionary Design and Manufacture. 2000,
Springer. p. 299-307.

27. Blackwell, T. and J. Branke, Multiswarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation, 2006.
10(4): p. 459-472.

28. Du Plessis, M.C. and A.P. Engelbrecht, Using competitive population evaluation in a
differential evolution algorithm for dynamic environments. European Journal of
Operational Research, 2012. 218(1): p. 7-20.

29. Du Plessis, M.C. and A.P. Engelbrecht, Differential evolution for dynamic
environments with unknown numbers of optima. Journal of Global Optimization,
2013. 55(1): p. 73-99.

30. Moser, I. and R. Chiong, Dynamic function optimisation with hybridised extremal
dynamics. Memetic Computing, 2010. 2(2): p. 137-148.

31. Nickabadi, A., M.M. Ebadzadeh, and R. Safabakhsh, A competitive clustering particle
swarm optimizer for dynamic optimization problems. Swarm Intelligence, 2012. 6(3):
p. 177-206.

32. Sharifi, A., J.K. Kordestani, M. Mahdaviani, and M.R. Meybodi, A novel hybrid
adaptive collaborative approach based on particle swarm optimization and local

search for dynamic optimization problems. Applied Soft Computing, 2015. 32: p.
432-448.

33. García, S., A. Fernández, J. Luengo, and F. Herrera, Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences, 2010.
180(10): p. 2044-2064.

34. Li, G., P. Niu, Y. Ma, H. Wang, and W. Zhang, Tuning extreme learning machine by
an improved artificial bee colony to model and optimize the boiler efficiency.
Knowledge-Based Systems, 2014. 67: p. 278-289.

35. Cui, H., J. Feng, J. Guo, and T. Wang, A novel single multiplicative neuron model
trained by an improved glowworm swarm optimization algorithm for time series
prediction. Knowledge-Based Systems, 2015. 88: p. 195-209.

36. Mitić, M., N. Vuković, M. Petrović, and Z. Miljković, Chaotic fruit fly optimization
algorithm. Knowledge-Based Systems, 2015. 89: p. 446-458.

37. Yeh, W.-C., An improved simplified swarm optimization. Knowledge-Based Systems,
2015. 82: p. 60-69.

An Adaptive Multi-population Artificial Bee Colony Algorithm for Dynamic Optimisation
Problems

Shams K. Nseef1, Salwani Abdullah1, Ayad Turky2 and Graham Kendall3,4

1Data Mining and Optimisation Research Group, Centre for Artificial Intelligence Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
E-mail: shams.shamosa91@gmail.com; salwani@ukm.edu.my

2Swinburne University of Technology, Melbourne, Victoria, Australia
E-mail: aturky@swin.edu.au

3University of Nottingham Malaysia Campus, Semenyih, Malaysia
4ASAP Research Group, University of Nottingham, Nottingham, United Kingdom

Email: Graham.Kendall@nottingham.edu.my; Graham.Kendall@nottingham.ac.uk

Abstract
Recently, interest in solving real-world problems that change over the time, so called

dynamic optimisation problems (DOPs), has grown due to their practical applications. A

DOP requires an optimisation algorithm that can dynamically adapt to changes and several

methodologies have been integrated with population-based algorithms to address these

problems. Multi-population algorithms have been widely used, but it is hard to determine the

number of populations to be used for a given problem. This paper proposes an adaptive multi-

population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient,

nature inspired algorithm for addressing numerical optimisation, which has been successfully

used for tackling other optimisation problems. The proposed ABC algorithm has the

following features. Firstly it uses multi-populations to cope with dynamic changes, and a

clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the

number of sub-populations changes over time, to adapt to changes in the search space. The

moving peaks benchmark DOP is used to verify the performance of the proposed ABC.

Experimental results show that the proposed ABC is superior to the ABC on all tested

instances. Compared to state of the art methodologies, our proposed ABC algorithm produces

very good results.

Keywords: dynamic optimisation, artificial bee colony algorithm, adaptive multi-population

method, meta-heuristics

1. Introduction
Many real-world optimisation problems have the characteristic of changing over time in

terms of decision variables, constraints and the objective function [1], [2]. These problems

*Revised Manuscript (Clean Version)
Click here to view linked References

are referred to as dynamic optimisation problems (DOPs) in the scientific literature. A DOP

requires an optimisation algorithm that can dynamically adapt to the changes and track the

optimum solution during the execution of the algorithm [2]. Given their practical applications

and complexity, DOPs have attracted a lot of research attention. Population-based algorithms,

which are a set of methodologies that utilise a population of solutions distributed over the

search space, have attracted particular attention, due to their good performance [1], [2]. A key

challenge in developing an optimisation algorithm for DOPs is how to maintain population

diversity during the search process in order to keep track of landscape changes [3]. Several

interesting diversity schemes have been developed in order to improve the search capability

of population-based algorithms so that they can adapt effectively to the problem as it

changes.

Prediction based methods is one of the diversity schemes which has been widely integrated

with other algorithms to maintain the diversity. This methodology uses an algorithm to learn

patterns from previous searches, which are then used to predict future changes. It should be

noted that memory methods can be categorised as a special case of the prediction method as

they store a set of solutions to be used when a problem changes [2]. The prediction method is

suitable for problems with cyclic changes. Hatzakis and Wallace [4] proposed a hybrid

algorithm that combines an evolutionary algorithm and a forecasting methodology for DOPs.

Forecasting is used to predict the movement of the optimum based on previous movements.

The results demonstrate that this method is suitable for problems which change quickly if the

movement of the optimum solution is predicted correctly. Sim et al. [5] used a prediction

based method to predict how the environment would change and the time of the next change.

The authors utilised a Markov chain that uses the previous movement of the search in order to

predict future changes and a linear regression to predict when the change will occur. The

results demonstrate that the hybrid algorithm performs with prediction, than without. Branke

and Mattfeld [6] proposed an anticipation-based algorithm for DOPs. This algorithm attempts

to simultaneously search for a good quality solution and move the search into a different area

based on the previous changes. This proposed algorithm was tested on a dynamic job-shop

scheduling problem and it was shown to produce very good results compared to other

algorithms. The advantage of the prediction method is that it can be effective in detecting the

global optima quickly, if the predictions are accurate [2]. The main drawback with this

method is that it depends on the training model and in many cases the data used during the

training process does not capture real world scenarios and there is a possibility of training

errors due to lack of training data [7], [2].

Memory based methodologies aim to maintain diversity. They use a memory with a fixed

size to store some of promising solutions that are captured during the search process. When a

change is detected, the stored solutions will be reinserted into the current population and the

population will be filtered to include only the best solutions. Examples of memory based

methodologies can be found in [8], [9], [10], [11]. These methodologies have worked well

when the dynamic problems are periodical or cyclic. The drawback is that they have

parameter sensitivities that need to be determined in advance, and most real world problems

are not cyclic in nature.

Self-adaptive algorithms attempt to adaptively improve the diversification of population-

based algorithms based on environmental changes. They use mechanisms to adapt the

algorithm to the changes in the search space [2]. Adaptive mechanisms can improve

algorithm search behaviour and also reduce the need for manual parameter tuning. The idea is

to apply different operators or parameter values for different problems by adaptively

changing them during the search process [7], [2]. Grefenstette [12] proposed a self-adaptive

genetic algorithm for DOPs. The proposed algorithm adaptively selects different

crossover/mutation operators at each generation. The author uses an agent based concept to

control the selection process, and each agent represents a crossover or mutation operator. All

agents are executed simultaneously and the one that generates the best solution is selected for

the current instance. Promising results were achieved when compared to other algorithms.

Grefenstette [12] also proposes an idea called a genetic mutation rate for the DOP. The idea

is to set the value of the mutation rate based on the fitness of the population. This idea was

shown to generate better results compared to the basic genetic algorithm. Ursem [13]

proposed a multinational genetic algorithm for the DOP. The main parameters are encoded

with the decision variables and are evolved during the solution process. The results show that

this algorithm is very good for simple instances in which the velocity of the moving peaks is

constant. It is also able to adapt by changing the algorithm parameters during the search.

However, encoding the parameters with the solution decision variables requires specialist

evolutionary operators. In addition, it is also very difficult to determine the values of the

parameters [2].

Multi-population methods improve diversity by dividing the population of solutions into

several sub-populations and distributing them throughout the search landscape so that they

can more effectively capture the problem changes. The idea is to maintain population

diversity by assigning a different sub-population to a different area, where each one is

responsible for either intensifying or diversifying the search process [7], [2]. These sub-

populations interact with each other via a merge and divide process when a change in the

environment is detected. The multi-population method has been shown to be effective in

dealing with various problem changes, whether they are cyclic or non-cyclic, and it has

outperformed other methods on various problem sizes. Branke et al. [14] proposed a self-

organising scouts multi-population evolutionary algorithm for the DOP. The population of

solutions is divided into two groups; small and large. The small population group is

responsible for tracking promising solutions found so far, while the large population group

tries to find a new region of the search space that has a new peak. The proposed algorithm

was tested on the moving peaks benchmark (MPB), obtaining very good results. Blackwell

and Branke [15] proposed a multi-swarm optimisation algorithm for the DOP. The swarm is

divided into subsets of swarms. These multi-swarms interact with each other locally, through

algorithm parameters, and globally by using an anti-convergence mechanism. The anti-

convergence mechanism searches for new peaks by removing the worst ones and re-

initialising them into a different area in the search space. The proposed algorithm obtained

very good results when tested on MPB problems. Mendes and Mohais [16] presented a multi-

population differential evolution algorithm for the DOP. The population of solutions is

divided into several sub-populations. Each sub-population is assigned to a different area of

the search space. The experimental results show that this algorithm obtains very good results

for MPB problems. Li and Yang [17] proposed a fast multi-swarm Particle Swarm

Optimisation (PSO) algorithm for the DOP. The swarm population is divided into two types

of swarms; parents and children. The parent swarm explores the entire search space to seek

the global optima, while the child swarm is responsible for monitoring the search behaviour

around the best solution obtained by the parent swarm. The position of the child swarm is

dynamically updated during the process. The algorithm was tested on the MPB problems and

produced good results when compared to other methods. Yang and Li [18] presented a

clustering-based particle swarm optimiser for the DOP. The swarm is divided based on a

hierarchical clustering method to locate and track multiple peaks. The algorithm achieved

very good results when tested on the MPB. Turky and Abdullah [19] proposed a multi-

population electromagnetic algorithm for DOPs. The proposed algorithm divides the

population into several sub-populations to simultaneously explore and exploit the search

process. The algorithm was tested on MPB problems and obtained very good results when

compared to other population diversity mechanisms. The same authors [20] also presented a

multi-population harmony search algorithm for the DOP. The population is divided into sub-

populations. Each sub-population is responsible for either exploring or exploiting the search

space. An external archive is utilised to track the best solutions found so far, which are used

to replace the worst ones when a change is detected. The results show that this algorithm

produces good results when compared to other methods. Sharifi et al. [21] proposed a hybrid

PSO and local search algorithm for DOPs. The algorithm utilises a fuzzy social-only model

to locate the peaks. The results show that this algorithm can produce very good results for

MPB problems. In Li et al. [22] comprehensive experimental analysis was reported on the

performance of a multi-population method with various algorithms in relation to DOPs. The

authors concluded that the multi-population method is able to deal effectively with various

DOPs and has the ability to maintain population diversity. It is also able to help the search in

locating a new area through a divide and merge process and information exchange. The

authors also highlighted several weaknesses of their method that relate to the number of sub-

populations, the distribution of solutions and the reaction to problem changes.

Existing works on DOPs demonstrate that employing multi-population methods are the most

effective method in maintaining population diversity. The features that make the multi-

population methodologies popular are [3]: i) it divides the population into sub-populations,

where the overall population diversity can be maintained since different populations can be

located in different areas of the problem landscape, ii) it has the ability to search different

areas simultaneously, enabling it to track the movement of the optimum, and iii) various

single population-based algorithms can be integrated within multi-population methods.

Although multi-population methods have shown success when applied to DOPs, most of

them use a number of sub-populations and the population diversity is maintained only

through the sub-population distribution [3]. The number of sub-populations has a crucial

impact on algorithm performance as it relates to the difficulty of the problem, which is not

known in advance, and changes during the search. In addition, the solutions in the sub-

populations may not be diverse enough as some methods are only concerned with how to

divide the population into sub-populations, rather than focussing on diversification. To

address these issues, this work proposes an adaptive multi-population artificial bee colony

(ABC) algorithm for the DOP. The proposed ABC utilises a clearing scheme to remove

redundant solutions in order to maintain diversity and enhance the exploration process. To

efficiently track the landscape changes, the proposed ABC algorithm adaptively updates the

number of sub-populations based on the problem change strength.

In this paper, the key objectives are:

i. To propose an artificial bee colony algorithm that utilises a multi-population and a

population clearing scheme to efficiently solve the dynamic optimisation problem.

ii. To propose an adaptive multi-population algorithm that updates the number of the

sub-populations based on the problem change strength.

iii. To test the performance of the proposed algorithm on dynamic optimisation problems

using different scenarios and compare the results with other methodologies.

We used the moving peaks benchmark DOP with a different number of peaks to evaluate the

effectiveness of the proposed ABC. Results demonstrate that the proposed ABC performs

better than a basic ABC on all tested scenarios. Compared to the state of the art method, the

proposed ABC produces very good results for many instances.

2. The proposed algorithm
This section presents the basic artificial bee colony algorithm, as well as our proposed

adaptive multi-population algorithm.

2.1 Basic artificial bee colony algorithm
The Artificial Bee Colony (ABC) algorithm is a simple, yet efficient, nature inspired

algorithm for addressing numerical optimization problems. It was proposed in [23] as a

nature inspired swarm intelligence algorithm based on the observation of bee foraging

behaviour. In ABC, there are a set of food sources and a set of bees. The quality of the food

sources is based on the amount of nectar they contain. Bees search and collaborate with each

other, seeking better food sources. To address an optimization problem using ABC, food

sources represent the population of solutions for a given problem and bees are categorised

into three types: scout, employee and onlooker bees. The amount of nectar corresponds to the

quality (objective function) of the problem being addressed. The three types of bees work

together in an iterative manner to improve the quality of the population of solutions (food

sources). The pseudo-code of a basic ABC is shown in Algorithm 1 [24]. ABC first sets the

main parameters, initializes the population of solutions and then evaluates them. Next, the

main loop is executed in an attempt to solve the given optimisation problem by calling the

employee bees, onlooker bees and scout bees until the stopping condition is satisfied.

 Algorithm 1: The pseudo-code of basic ABC
 Step 1: Set the parameter values

Step 2: Initialize the population of solutions
Step 3: Evaluate the population of solutions
while termination condition is not met do
 Step 4: Employed Bees step
 Step 5: Onlooker Bees step
 Step 6: Scout Bees step
end while

The basic ABC has the following steps:

Step 1- Set ABC parameters. In this step the main parameters of ABC are initialized.

These include: the maximum number of iterations (MaxIt) which represents the stopping

condition of ABC, the number of solutions or population size (Ps) which represent how

many solutions will be generated, the total number of bees (Sbees) which is set to be

twice the size of Ps, where half of them are employee bees and the other half are

onlooker bees, the limit parameter (Lit), which is used to determine if the solution should

be replaced by a new one.

Step 2- Initialise the population of solutions. A set of solutions with size equal to Ps

are randomly generated as follows:

)](1,0[min
,

max
,

min
,, jijijiji xxRandxx �� (1)

where i is the index of the solution, j is the current decision variable, Rand [0,1]

generates a random number between zero and one and min
, jix and max

, jix are the lower and

upper bonds for the jth decision variable.

Step 3- Evaluate the population of solutions. The fitness (quality) of the generated

solutions are calculated using the objective function. The objective function is problem

dependent. The objective function used in this work is shown in Section 3.2.

Step 4- Employed bees. Each employee bee is sent to one food source (solution). Its

main role is to explore the neighbourhood of the current solution, seeking an improving

solution. A neighbourhood solution, v, is created by modifying the ith solution, x, as

follows:

)(,,,,, jkjijijiji xxxv �)� (2)

where k is a randomly selected solution from Ps and Φ is a random number between [-1,

1]. The generated neighbourhood solution will be replaced with current solution if it has

better fitness.

Step 5- Onlooker bees. Onlooker bees seek to improve the current population of

solutions by exploring their neighbourhood using Equation (2), the same as the employee

bee. The difference is that onlooker bees select the solutions probabilistically based on

their fitness values as follows:

¦

 Ps

j

i
i

fitnessj

fitnessp

1 (3)

That is, the solution with the higher fitness has a higher chance of being selected (i.e.

roulette wheel selection). Onlooker bees use a greedy selection mechanism, where the

better solution in terms of fitness is selected.

Step 6- Scout bees. This step is activated if both employed and onlooker bees cannot

improve the current solution for a number of consecutive iterations defined by the limit

parameter, Lit. This indicates that the current solution is not good enough to search its

neighbourhood and it should be discarded. In this case, the scout bee will generate a new

solution using Equation (1) to replace the discarded one. This can help ABC to escape

from a local optimum and explore a different area of the search space.

2.2 The proposed artificial bee colony algorithm
Existing works on DOPs have demonstrated that multi-population methods are state of the

art, in that they outperform other methods on many scenarios. However, although multi-

population methods have achieved success in solving DOPs, most of them use a fixed

number of sub-populations and the population diversity is maintained through the sub-

population distribution. To address these issues, this work proposes an adaptive population

ABC (denoted as Multi-pop-ABC). In Multi-pop-ABC, three major modifications are added

to the basic ABC. These are:

i. Multi-population method. To deal with DOP, the proposed ABC uses a multi-population

method to divide the population into several sub-populations. By using a multi-population

method, the solutions are scattered over the search space instead of focusing on a specific

area. Thus the algorithm can generate high quality solutions and track the problem

changes.

ii. Adaptive scheme. To track the landscape changes that occur during the search process, the

proposed Multi-pop-ABC updates the number of sub-populations based on the strength of

the problem change. That is the number of sub-populations is either decreased or increased

during the search process. By using the proposed adaptive method, the number of sub-

populations can be changed adaptively based on the strength of the environment changes,

which helps the search track the optimum solution and also improves the diversification

and exploration processes.

iii. Population clearing scheme. To ensure that the solutions are diverse enough, a population

clearing scheme is called when a change is detected to delete redundant solutions and

replace them with new solutions. This scheme removes redundant solutions in order to

maintain diversity and enhance the exploration process.

The flowchart of the proposed Multi-pop-ABC for DOPs is shown in Figure 1. It

starts by setting the parameter values. It creates the population of solutions and then evaluates

them. Next, the population of solutions is divided into m sub-populations. Each sub-

population utilises an ABC algorithm. If a change in the problem is detected, the algorithm

calculates the change strength to update the sub-population size and checks the stopping

condition. If the specified stopping condition (we set this as a maximum number of fitness

evaluations) has been reached, the algorithm terminates and the best solution is returned.

Otherwise, the algorithm merges all the sub-populations, updates the population, runs the

clearing method, re-divides the population into m sub-populations and starts a new iteration.

The main steps are described in further detail below:

- Step 1: Set parameters. The main parameters of Multi-pop-ABC are initialised. The

algorithm has five parameters. Four of them are the same as the basic ABC. These

are: the maximum number of iterations (MaxIt), population size (Ps), number of bees

(Sbees), and the limit parameter (Lit). The fifth parameter is the sub-population size

(m), which represents the number of sub-populations (Ps/m). Initially, m=2 and during

the search process, it is either decreased or increased.

1- Step 2: Initialise the population of solutions. Same as Step 2 in the basic ABC, Section

2.1.

2- Step 3: Evaluate the population of solutions. Same as Step 3 in the basic ABC, Section

2.1.

3- Step 4: Divide the population. The population of solutions is divided into m sub-

populations (Ps/m). Each sub-population is assigned to explore a different area of the

search space. These sub-populations interact with each other through merging and re-

dividing every time a change in the environment is detected. Each solution in the

population is randomly assigned to a sub-population. The number of sub-populations m

is either increased or decreased based on the environment change strength. The initial

value of m is set to two (m=2) and it is updated during the search.

4- Step 5: Assign ABC to each sub-population. Each sub-population has its own ABC

algorithm. Each ABC executes all the steps presented in Section 2.1. It starts with a

population of solutions and iteratively calls the following until the stopping condition is

satisfied (the algorithm stops when a change in the environment is detected):

i. Employee bees. Same as Step 4 in the basic ABC, Section 2.1.

ii. Onlooker bees. Same as Step 5 in the basic ABC, Section 2.1.

iii. Scout bees. Same as Step 6 in the basic ABC, Section 2.1.

5- Step 6: Check the change strength. This step is activated when a change in the

environment is detected. Its main role is to update the number of sub-populations based

on the environment change strength. It first calculates the objective function of the best

solution before and after the environment change as follows:

)_()_(afterbestfbeforebestfCs � (4)

where Cs is the change strength, f(best_before) is the quality of the best solution before

the environment change and f(best_after) is the quality of the best solution after the

environment change. If the Cs is less than the defined threshold (Tv) and m is greater

than 2, the number of sub-populations m is decreased as the algorithm needs to be more

exploitive than explorative (m=m-1). Otherwise, m is increased by one with the aim of

increasing the exploration aspect of the search (m=m+1). It should be noted that when m

is an odd number, the extra solution is randomly assigned to one of the sub-populations.

6- Step 7: Check the stopping condition. This step checks the termination criterion of the

search process. In this work, it is set as a maximum number of fitness evaluations in line

with previous works. If the specified stopping condition is reached, the search process

stops and returns the best solution. Otherwise, the algorithm performs the following

processes:

i. Population clearing scheme: This scheme calculates the similarity between

solutions in the population. The similarity is calculated by using a matching

algorithm, which matches each pair of solutions in terms of phenotype. Two

solutions are similar if they have the same values in all the cells of both

solutions. If two or more solutions are similar, these solutions are deleted and

replaced with randomly generated ones.

ii. Population update: All sub-populations are merged to form one population.

iii. Re-divide the population: The population is re-divided into m sub-populations

and the algorithm continues by starting the process at step 1 with a new

generation.

Figure 1. The proposed Multi-pop-ABC

3. Experimental Setup
This section discusses the Moving Peak Benchmark (MPB), evaluation metric and the

parameter settings.

3.1 The Moving Peak Benchmark
The moving peak benchmark (MPB) is a maximization dynamic continuous optimization

problem proposed by [9], [25], and has been commonly used as a testbed for the performance

of optimisation algorithms. MPB consists of a set of peaks that move over the problem

landscape. It takes the given solution as an input and returns the value of the highest peak.

The returned value represents the quality of this solution. MPB can be mathematically

expressed as follows:

¸
¸
¸
¸

¹

·

¨
¨
¨
¨

©

§

��

¦

o

D

j
ijji

i
i

tXtxtW

tH
ptxF

1

2
,...,1

))()(()(1

)(max),((5)

where F(x, t) is the quality of solution x at time t, p is the number of peaks, D is the problem

dimension (number of decision variables where each variable has an upper and lower

boundary (DB)), Hi (t) is the height of peak i, Wi (t) is the width of peak i, and Xij is the jth

element of the location of peak i. Note that Equation (5) is a stationary optimization problem.

Thus, to change it to a dynamic problem, MPB randomly shifts the position of all peaks by

vector iv
o of a distance s (s is also known as the shift length that determines the severity

degree) as follows:

))1()1((
|)1(|

)(���
��

oo

oo

o

tvr
tvr

stv i

i

i OO (6)

where
o

r is a random vector, λ is the correlation between consecutive movements of a single

peak that takes either “0” if the movement of peaks are completely uncorrelated or “1” if they

move in the same direction. To make a fair comparison with existing algorithms, in this

paper, we used λ=0 [6]. The change of height and width of a peak in a given solution can be

mathematically expressed as follows:

V�� severityheighttHtH ii _)1()((7)

V�� severitywidthtWtW ii _)1()((8)

where height_severity and width_severity are calculated based on the problem severity. σ is a

normally distributed random number between 0 and 1. Then, the change of a solution x is

given as follows:

)()1)(()(tvttXtX iii

ooo

�� (9)

The change frequency (cf) occurs every 5,000 fitness evaluations [9]. The parameter values

of all MPBs that have been used in our experiments are shown in Table 1 [25].

Table 1 MPB parameter values
Parameters Description Value

p Number of peaks 1–200
cf Change frequency 5000

height_severity Height severity 7.0
width_severity Width severity 1.0

Peak shape Peak shape Cone
s Shift length 1.0
D Number of dimensions 5
λ Correlation coefficient 0

DB Each dimension boundaries [0,100]
H Peak height [30.0,70.0]
W Peak width [1,12]

3.2 Evaluation Metric
To fairly compare the proposed ABC with existing algorithms, we use the same evaluation

metric known as the offline error as suggested by [25]. This has also been used by other

researchers. The offline error is calculated as follows:

¦

:
g

i
ig

off
1

1 (10)

where g is the number of generations and Ω is the best performance since the last change at ith

fitness evaluation.

3.3 Parameter Settings
The parameter values of our Multi-pop-ABC are set by carrying out a set of initial

experiments, with the exception of the stopping condition which was set to be the same as the

compared algorithms (50,000 fitness evaluations). For each parameter, we tested various

values and the best values were selected. This is achieved by varying the value of one

parameter while fixing others. We have selected two scenarios of MPB for the parameter

tunning process: 50 peaks and 200 peaks. The proposed ABC has three parameters:

population size (Ps), limit (Lit) and the change strength threshold (Tv). First, we fixed Lit to

30, Tv to 0.09 and changed Ps. Table 2 shows the offline error of various Ps values for 50 and

200 peaks. The best result is highlighted in bold. Next, we fixed Ps to 60, Tv to 0.09 and

changed Lit as shown in Table 3. Finally, we fixed Ps to 60, Lit to 30 and changed Tv as

shown in Table 4. The parameter settings of the proposed ABC that were used across all

scenarios are presented in Table 5.

Table 2 The value of Ps parameter

Ps value 50 peaks 200 peaks
20 0.95669 2.70215
40 0.319632 1.8935
60 0.5810 0.34865
80 0.576911 1.15134

Table 3 The value of Lit parameter

Lit value 50 peaks 200 peaks
10 1.03474 1.18977
20 1.27535 1.70215
30 1.29851 0.24824
40 1.841891 1.28967

Table 4 The value of Tv parameter

Tv value 50 peaks 200 peaks
0.03 0.95669 1.89663
0.05 0.96573 1.08053
0.07 0.89978 1.37518
0.09 1.23491 1.77956

Table 5 The parameter settings of the proposed ABC

Parameter Value
1- Maximum number of iterations

(MaxIt)
50,000 fitness
evaluations

2- Population size (Ps) 60
3- Limit parameter (Lit) 30
4- Change strength threshold (Tv) 0.05

4. Results
We carried out three set of experiments. In first one, we compare the results of Multi-pop-

ABC with the basic ABC. In second one, the results obtained by Multi-pop-ABC are

compared with state of the art methods. In the third experiment, the results of Multi-pop-ABC

on well-known test functions are compared with state of the art methods.

4.1 Results comparison of Multi-pop-ABC and the basic ABC
This section aims to verify the effectiveness of the additional components that we have added

to the basic ABC. Specifically, the objective is to investigate the impact of the proposed

enhancements on the performance of the basic ABC when dealing with DOPs. Four different

algorithms were derived as follows:

- Multi-pop-ABC: the proposed ABC that utilises the adaptive multi-population and

population clearing scheme

- Multi-pop-ABC1: same as above but without the population clearing scheme

- Multi-pop-ABC2: same as above but uses a fixed number of sub-populations and

without the population clearing scheme. The sub-populations were fixed to be the

same as [26]

- ABC: basic ABC algorithm.

The computational comparisons of Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and

basic ABC are presented in Table 6. The comparison is in terms of the offline error, ±

standard error for each number of peaks. The best results are highlighted in bold. The results

clearly show the good performance of Multi-pop-ABC when compared to Multi-pop-ABC1,

Multi-pop-ABC2 and basic ABC. Indeed, Multi-pop-ABC outperformed Multi-pop-ABC1,

Multi-pop-ABC2 and basic ABC on both the offline error and the standard error on all tested

scenarios. The results demonstrate that the enhancements we made to the basic ABC improve

the algorithmic performance.

Table 6 Results of the Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC
Number of Peaks

Algorithm 1 2 5 7 10 20 30 40 50 100 200
Multi-pop-

ABC
0.14

±0.00
0.12

±0.00
0.20

±0.00
0.38

±0.01
0.22

±0.01
0.35

±0.00
0.46

±0.00
0.52

±0.01
0.44

±0.01
0.52

±0.00
0.93

±0.00
Multi-pop-

ABC1
1.81

±0.18
1.42

±0.32
1.11

±0.13
1.01

±0.22
1.57

±0.12
1.43

±0.15
1.45

±0.14
1.62

±0.10
1.21

±0.21
1.73

±0.11
1.22

±0.10
Multi-pop-

ABC2
1.12

±0.18
1.21

±0.41
1.61

±0.10
1.65

±0.11
1.71

±0.15
1.11

±0.14
1.72

±0.19
1.42

±0.13
1.62

±0.18
1.41

±0.12
1.42

±0.12
Basic ABC 5.88

±2.48
5.52

±4.31
4.12
±3.7

4.5
±2.3

5.2
±3.16

6.3
±3.51

3.38
±4.32

7.14
±3.60

6.21
±2.01

6.97
±2.11

7.03
±3.44

Note: Values in bold font indicate the best results.

To further verify the results, we conducted a comparison between Multi-pop-ABC and each

method separately. We used a Wilcoxon statistical test with a confidence level of 0.05. The p-

values of Multi-pop-ABC against Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC for each

scenario is presented in Table 7. A value less than 0.05 indicates Multi-pop-ABC is superior

(i.e. statistically different). As can be seen from Table 7, Multi-pop-ABC is superior to Multi-

pop-ABC1, Multi-pop-ABC2 and basic ABC on 9 out of 11 tested scenarios (p < 0.05). The

table also shows than on two scenarios (1 peak and 2 peaks) Multi-pop-ABC is not superior

to Multi-pop-ABC1 and Multi-pop-ABC2. This can be attributed to the fact that these two

scenarios are relatively easy to solve and thus all methods produce very good solutions. The

results of the statistical test also demonstrate that the proposed enhancements have a positive

impact and improve the search process.

Table 7 p-values of the of Multi-pop-ABC against other methods
Number of Peaks

Multi-pop-
ABC vs.

1 2 5 7 10 20 30 40 50 100 200

Multi-pop-
ABC1

0.06 0.08 0.04 0.03 0.00 0.00 0.00 0.01 0.01 0.00 0.00

Multi-pop-
ABC2

0.07 0.06 0.02 0.07 0.06 0.00 0.04 0.01 0. 02 0.00 0.00

Basic ABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Note: Values less than 0.05 indicate that Multi-pop-ABC is better than the compared methods.

4.2 Comparison with state of the art methods
There are numerous methods that use different schemes to handle diversification, and which

have been tested on MPB. In this section, we evaluate the performance of our algorithm by

comparing it with several recently proposed algorithms taken from the scientific literature.

The algorithms are:

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO)

[27].

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO)

[27]

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO*)

[27]

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO*)

[27].

- Competitive population evaluation in a differential evolution algorithm for dynamic

environments (CDE) [28].

- Differential evolution for dynamic environments with unknown numbers of optima

(DynPopDE) [29].

- Dynamic function optimization with hybridized extremal dynamics (EO + HJ) [30]

- A competitive clustering particle swarm optimizer for dynamic optimization problems

(CCPSO) [31].

- A novel hybrid adaptive collaborative approach based on particle swarm optimization

and local search for dynamic optimization problems (CHPSO(ES-NDS)) [32].

To ensure a fair comparison, we used the same stopping condition (50,000 fitness

evaluations), the same change frequency (every 5,000 fitness evaluations) and the same

evaluation metric (Offline error). We also used 11 MPB instances with a different number of

peaks ranging between 1 to 200 peaks.

The results of Multi-pop-ABC and the compared algorithms are presented in Table 8. The

results in the table are in terms of offline error, ± standard error and computational times for

each number of peaks. In the table, the symbol ‘-’ indicates that the scenario has not been

tested. We indicate in bold the best obtained results. From Table 8, it can be seen that Multi-

pop-ABC is superior to the other algorithms in most of the cases in terms of offline error. In

particular, Multi-pop-ABC obtained new best results for 9 out of 11 tested MPB instances.

Multi-pop-ABC was inferior on only two MPB instances: 1 peak and 2 peaks. Nevertheless,

the results of Multi-pop-ABC for these two scenarios are very competitive, where it obtained

the second best results. In terms of the standard error, Multi-pop-ABC produced a better

standard error for 6 scenarios, being similar on 5 scenarios out of the 11 tested.

Table 8 Results of Multi-pop-ABC compared to the state of the art methods

Number of Peaks
Algorithm 1 2 5 7 10 20 30 40 50 100 200
Multi-pop-

ABC
0.14

±0.00
8.11

0.12
±0.00

9.10

0.20
±0.00
10.20

0.38
±0.01
10.63

0.22
±0.01
11.12

0.35
±0.00
13.75

0.46
±0.00
15.13

0.52
±0.01
17.17

0.44
±0.01
20.23

0.52
±0.00
28.64

0.93
±0.00
56.48

mCPSO 4.93
±0.17

3.36
±0.26

2.07
±0.08

2.11
±0.11

2.08
±0.07

2.64
±0.07

2.63
±0.08

2.67
±0.07

2.65
±0.06

2.49
±0.04

2.44
±0.04

mQSO 5.07
±0.17

3.47
±0.23

1.81
±0.07

1.77
±0.07

1.80
±0.06

2.42
±0.07

2.48
±0.07

2.55
±0.07

2.50
±0.06

2.36
±0.04

2.26
±0.03

mCPSO* 4.93
±0.17

3.36
±0.26

2.07
±0.11

2.11
±0.11

2.05
±0.07

2.95
±0.08

3.38
±0.11

3.69
±0.11

3.68
±0.11

4.07
±0.09

3.97
±0.08

mQSO* 5.07
±0.17

3.47
±0.23

1.81
±0.07

1.77
±0.07

1.75
±0.06

2.74
±0.07

3.27
±0.11

3.60
±0.08

3.65
±0.11

3.93
±0.08

3.86
±0.07

CDE - - - - 0.92
±0.07

- - - - - -

DynPopDE - - 1.03
±0.13

- 1.39
±0.07

- - - 2.10
±0.06

2.34
±0.05

2.44
±0.05

EO + HJ 7.08
±1.99

- - - 0.25
±0.10

0.39
±0.10

0.49
±0.09

0.56
±0.09

0.58
±0.09

0.66
±0.07

-

CCPSO 0.09
±0.00

0.09
±0.00

0.25
±0.01

0.53
±0.03

0.75
±0.06

1.21
±0.08

1.40
±0.07

1.47
±0.08

1.50
±0.09

1.76
±0.09

-

CHPSO(ES-
NDS)

0.19
± 0.00

- 0.44
±0.02

- 0.64
±0.02

0.91
±0.01

0.99
±0.01

1.02
±0.01

1.03
±0.01

1.04
±0.01

1.01
±0.00

Note: Values in bold font indicate the best results.

To further verify the effectiveness of the proposed Multi-pop-ABC, we statistically compare

it with other methods. We followed the procedure described in [33]. First, Friedman test and

Iman and Davenport statistical tests with 0.05 confidence levels are carried out to detect if

there is a difference between the results of Multi-pop-ABC and other methods. It should be

noted that only those methods that were tested on all scenarios were considered for this test.

Both the Friedman test and Iman and Davenport tests returned p-values (0.000009 and

0.000000009061) less than 0.05 indicating the compared results are statistically different. We

next conducted a Friedman test to obtain rankings, and Holm and Hochberg post-hoc tests.

The ranking value for each method obtained by a Friedman test is presented in Table 9 (the

lower the better), where Multi-pop-ABC obtained the first rank followed by mQSO second

rank, mCPSO third rank, mQSO* fourth rank and mCPSO* fifth rank. Consequently, Multi-

pop-ABC will be the controlling method for the Holm and Hochberg post-hoc tests. The p-

values of Holm and Hochberg tests are shown in Table 10. From the table, one can see that

Multi-pop-ABC is statistically better than the compared methods on both Holm and

Hochberg tests in which all the obtained p-values are less than 0.05.

Table 9 The average ranking of Friedman test
Algorithm Ranking
1 Multi-pop-ABC 1
2 mQSO 2.6364
3 mCPSO 3.3636
4 mQSO* 3.6364
5 mCPSO* 4.3636

Table 10 The adjusted p-value of the compared methods

Algorithm Unadjusted P P Holm P Hochberg

1 mCPSO* 0.000001 0.000002 0.000002
2 mQSO* 0.000092 0.000276 0.000276
3 mCPSO 0.000455 0.00091 0.00091
4 mQSO 0.015219 0.015219 0.015219

The above results reveal that, in most of the tested scenarios, the proposed Multi-pop-ABC is

better than the compared methods. These results are supported by statistical tests.

We hypothesise that several key features contribute to the high performance of the proposed

algorithm (Multi-pop-ABC) on the dynamic problem. These can be summarised as follows:

- Multi-population: This feature is beneficial for maintaining the diversity of solutions

in the population during the search process.

- Adaptive number of sub-populations: This feature helps the algorithm in changing the

solution distribution over the search landscape to get better diversification and

intensification based on the problem change strength.

- Population clearing scheme: This feature helps avoid having similar solutions within

the population in order to further add to the diversification.

4.3 Comparison with state-of-the-art approaches on test functions
In this section, we evaluate our proposed algorithm based on other well-known ten test
functions. The tested functions are widely used by researchers [34-37]. These functions are:

¸
¹
·

¨
©
§oxf 1

=¦

n

i ix
1

2 [-100, 100]n

¸
¹
·

¨
©
§oxf 2

= i
n
ii

n

i
xx 1

1
 ��¦

 [-10, 10]n

¸
¹
·

¨
©
§oxf 3

= � �2
1

1¦¦

i

i
xn

i
j [-100, 100]n

¸
¹
·

¨
©
§oxf 4

= }1,{max nixii dd [-100, 100]n

¸
¹
·

¨
©
§oxf 5

= � � � �> @¦ �

 � ���
1

1
222

1 1100n

i iii xxx [-30, 30]n

¸
¹
·

¨
©
§oxf 6

= � �1,0
1

4 randomixn

i i �¦
 [-1.28, 1.28]n

¸
¹
·

¨
©
§oxf 7

= � �i
n

i i xx sin
1¦
� [-500, 500]n

¸
¹
·

¨
©
§oxf 8

= � �� �¦
��

n

i ii xx
1

2 102cos10 S [-5.12, 5.12]n

¸
¹
·

¨
©
§oxf 9

= � � ex
n

x
n

n

i i
n

i i ��¸
¹
·

¨
©
§�¸̧

¹

·
¨̈
©

§
�� ¦¦

202cos1exp12.0exp20
11

2 S [-32, 32]n

¸
¹
·

¨
©
§oxf 10

= 1cos
4000

1
11

2 �¸
¹

·
¨
©

§�� ¦ i
xx in

i
n

i i [-600, 600]n

For every benchmark function, respectively assume the dimension as 30, 50 and 100. The
results in Tables 11, 12 and 13 demonstrate that Multi-pop-ABC performs better than the
compared ABC, PS-ABC and PS-ABCII algorithms [34-36] in terms of both mean and
standard deviation (SD). Note that the best results are highlighted in bold. The presented
results indicate that the Multi-pop-ABC outperforms other methods over all test functions.

Table 11 M
ean, the standard deviation (SD

) of functions w
ith 30 dim

ensions.
F

ABC
PS-ABC

PS-ABCII
LW

G
SO

D
E

C
FO

A
M

ulti-pop-ABC
D

im

M
ean

SD

M

ean

SD

M
ean

M

ean

M
ean

SD

M

ean

SD

SD

SD

f1
30

3.3955 x 10

-9
4.5376 x 10

-9
0

0
0

0
1.68 x 10

-7
1.63 x 10

-7
1 x 10

-309
-

0
0

f2
30

5.1029 x 10- 6
1.8417 x 10

-6
0

0
0

0
1.10 x 10

-3
4.09 x 10

-4
1 x 10 -155

-
0

0
f3

30
1.2598 x 10

4
2.9192 x 10

3
7.2696 x 10

3
1.4359 x 10

3
4.0756 x 10

4
8.1760 x 10

3
-

-
-

-
6.4361 x 10

2
1.9164 x 10

2
f4

30
2.4044 x 10

1
3.3935

0
0

0
0

-
-

-
-

0
0

f5
30

3.2873
3.4035

1.4048
2.7168

2.8408 x 10
1

0.1154
2.60 x 10

1
2.70 x 10

-2
-

-
1.0196

1.9217

f6
30

1.5788 x 10
-1

3.6701 x 10
-1

1.8545 x 10
-2

5.3198 x 10
-3

5.5447 x 10
-4

1.2352 x 10
-3

-
-

1 x 10
-309

-
3.2124 x 10

-4
1.0172 x 10

-3

f7
30

-12185.9
1.4299 x 10

2
-12549.7

4.4891 x 10
1

-12088.9
1.8715 x 10

2
-

-
-

-
-14847.9

3.5787 x 10
1

f8
30

4.0160 x 10
-1

6.2228 x 10
-1

0
0

0
0

3.85 x 10
-5

3.75 x 10
-5

-
-

0
0

f9
30

2.4076 x 10
-5

1.2439 x 10
-5

8.8817 x 10
-16

0
8.8817 x 10

-16
0

2.99 x 10
-4

1.86 x 10
-4

1 x 10
-308

-
0

0

10
30

1.4335 x 10
-3

4.0152 x 10
-3

0
0

0
0

-
-

1 x 10
-309

-
0

0

Table 12 Mean, the standard deviation (SD) of functions with 50 dimension.
F ABC PS-ABC PS-ABCII Multi-pop-ABC

Dim Mean SD Mean SD Mean SD Mean SD
f1 50 1.1483 x 10-5 1.6272 x 10-5 0 0 0 0 0 0

f2 50 2.8511 x 10-3 1.3944 x 10-3 0 0 0 0 0 0

f3 50 4.6422 x 104 6.9821 x 103 3.0638 x 103 3.4739 x 103 1.2539 x 105 2.1047 x 104 2.1041 x 103 2.0893 x 103
f4 50 5.6020 x 101 5.1905 1.8782 x 101 5.7908 0 0 0 0

f5 50 3.7224 x 101 3.6453 x 101 3.1451 x 101 2.9224 x 101 4.8504 x 101 1.3535 x 10-1 2.2310 x 101 2.1102 x 101

f6 50 4.2726 x 10-1 8.2393 x 10-2 5.7802 x 10-2 1.6469 x 10-2 5.4388 x 10-4 6.4470 x 10-4 2.1847 x 10-4 3.2711 x 10-4

f7 50 -19359.1 3.1097 x 102 -20893.4 7.9224 x 101 -19414.1 3.3738 x 102 -26893.4 7.8394 x 101

f8 50 8.1857 2.4195 0 0 0 0 0 0

f9 50 4.0637 x 10-2 3.2467 x 10-2 8.8817 x 10-16 0 8.8817 x 10-16 0 0 0

10 50 9.9977 x 10-3 1.1718 x 10-2 0 0 0 0 0 0

Table 13 Mean, the standard deviation (SD) of functions with 100 dimension.

F ABC PS-ABC PS-ABCII Multi-pop-ABC
Dim Mean SD Mean SD Mean SD Mean SD

f1 100 4.9461 x 10-3 1.1389 x 10-2 8.3417 x 10-47 4.5689 x 10-46 0 0 0 0

f2 100 2.7814 x 10-1 4.0035 x 10-1 0 0 0 0 0 0

f3 100 1.8854 x 105 2.1886 x 104 1.3544 x 105 1.2851 x 104 5.4823 x 105 1.0256 x 105 1.4211 x 104 1.0937 x 104
f4 100 8.2376 x 101 3.0440 7.2160 x 101 4.0371 0 0 0 0

f5 100 3.3118 x 102 3.8309 x 102 2.0376 x 102 6.7028 x 101 9.8590 x 101 1.5702 x 10-1 4.1781 x 101 1.2011 x 10-1

f6 100 1.5950 3.2657 x 10-1 2.2021 x 10-1 4.1119 x 10-2 1.6151 x 10-3 3.2646 x 10-3 1.1260 x 10-3 2.9615 x 10-3

f7 100 -34413.8 5.0878 x 102 -39976.6 3.3634 x 102 -37405.7 5.5665 x 102 -40182.4 2.6738 x 102

f8 100 8.5540 x 101 1.1018 x 101 0 0 0 0 0 0

f9 100 3.8186 3.6198 x 10-1 2.3270 x 10-14 1.2259 x 10-13 8.8817 x 10-16 0 0 0

10 100 1.4344 x 10-1 1.3282 x 10-1 1.6904 x 10-3 6.4786 x 10-3 0 0 0 0

5. Conclusion
This paper has presented a modified artificial bee colony algorithm for dynamic optimization

problems. The aims of our modifications were to enhance the capability of the algorithm to

efficiently deal with DOPs. We first integrated it with a multi-population method to scatter

the solution over the search process so that they can search and track the optimum solution

simultaneously. An adaptive multi-population was also proposed to adaptively change the

number of sub-populations based on the problem change strength. In addition, a population

clearing scheme was proposed to remove redundant solutions in the population. To evaluate

the performance of the proposed algorithm, experimental tests were carried out using the

moving peaks benchmark DOP, with a different number of peaks. Comparisons were carried

out between the proposed algorithm, the basic ABC and state of the art methods. The results

demonstrated that the proposed algorithm outperforms basic ABC on all tested scenarios. It

also produced better results than the state of the art methods on many scenarios, indicating

that the proposed algorithm is an effective method for the DOP.

Acknowledgements
This work was supported by the Ministry of Education, Malaysia

(FRGS/1/2015/ICT02/UKM/01/2) and the Universiti Kebangsaan Malaysia (DIP-2012-15).

References
1. Jin, Y. and J. Branke, Evolutionary optimization in uncertain environments-a survey.

IEEE Transactions on Evolutionary Computation, 2005. 9(3): p. 303-317.
2. Nguyen, T.T., S. Yang, and J. Branke, Evolutionary dynamic optimization: A survey

of the state of the art. Swarm and Evolutionary Computation, 2012. 6: p. 1-24.
3. Li, C., T.T. Nguyen, M. Yang, S. Yang, and S. Zeng, Multi-population methods in

unconstrained continuous dynamic environments: The challenges. Information
Sciences, 2015. 296: p. 95-118.

4. Hatzakis, I. and D. Wallace. Dynamic multi-objective optimization with evolutionary
algorithms: a forward-looking approach. in Proceedings of the 8th annual conference
on Genetic and evolutionary computation. 2006. p. 1201-1208. ACM.

5. Simões, A. and E. Costa. Improving prediction in evolutionary algorithms for
dynamic environments. in Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. 2009. p. 875-882. ACM.

6. Branke, J. and D.C. Mattfeld, Anticipation and flexibility in dynamic scheduling.
International Journal of Production Research, 2005. 43(15): p. 3103-3129.

7. Cruz, C., J.R. González, and D.A. Pelta, Optimization in dynamic environments: a
survey on problems, methods and measures. Soft Computing, 2011. 15(7): p. 1427-
1448.

8. Branke, J. Memory enhanced evolutionary algorithms for changing optimization
problems. in In Congress on Evolutionary Computation CEC99. 1999. 3:1875-1882.

9. Branke, J., Evolutionary optimization in dynamic environments. Vol. 3. 2012:
Springer Science & Business Media.

10. Yang, S. On the design of diploid genetic algorithms for problem optimization in
dynamic environments. in IEEE Congress on Evolutionary Computation CEC 2006.
pp. 1362-1369.

11. Daneshyari, M. and G.G. Yen. Dynamic optimization using cultural based PSO. in
IEEE Congress on Evolutionary Computation CEC 2011 pp. 509-516.

12. Grefenstette, J.J. Evolvability in dynamic fitness landscapes: A genetic algorithm
approach. in IEEE Congress on Evolutionary Computation CEC 1999. Vol. 3,
pp.2031 -2038 1999.

13. Ursem, R.K. Multinational GAs: Multimodal Optimization Techniques in Dynamic
Environments. in In GECCO, pp. 19-26. 2000.

14. Branke, J., T. Kaußler, C. Schmidt, and H. Schmeck, A multi-population approach to
dynamic optimization problems. Adaptive computing in design and
manufacturing,2000:, 2000: p. 299-308.

15. Blackwell, T. and J. Branke, Multi-swarm optimization in dynamic environments.
Applications of Evolutionary Computing, 2004: p. 489-500.

16. Mendes, R. and A.S. Mohais. DynDE: a differential evolution for dynamic
optimization problems. in IEEE Congress on Evolutionary Computation CEC 2005
vol. 3, pp. 2808-2815.

17. Li, C. and S. Yang. Fast multi-swarm optimization for dynamic optimization
problems. in Fourth International Conference on Natural Computation, 2008.
ICNC'08. . vol. 7, pp. 624-628. IEEE.

18. Yang, S. and C. Li, A clustering particle swarm optimizer for locating and tracking
multiple optima in dynamic environments. IEEE Transactions on Evolutionary
Computation, , 2010. 14(6): p. 959-974.

19. Turky, A.M. and S. Abdullah, A multi-population electromagnetic algorithm for
dynamic optimisation problems. Applied Soft Computing, 2014. 22(1): p. 474-482.

20. Turky, A.M. and S. Abdullah, A multi-population harmony search algorithm with
external archive for dynamic optimization problems. Information Sciences, 2014.
272(1): p. 84-95.

21. Sharifi, A., J.K. Kordestani, M. Mahdaviani, and M.R. Meybodi, A novel hybrid
adaptive collaborative approach based on particle swarm optimization and local
search for dynamic optimization problems. Applied Soft Computing, 2015. 32(1): p.
432-448.

22. Li, C., T.T. Nguyen, M. Yang, S. Yang, and S. Zeng, Multi-population methods in
unconstrained continuous dynamic environments: The challenges. Information
Sciences, 2015. 296(1): p. 95-118.

23. Karaboga, D., An idea based on honey bee swarm for numerical optimization. 2005,
Technical report-tr06, Erciyes university, engineering faculty, computer engineering
department.

24. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of global
optimization, 2007. 39(3): p. 459-471.

25. Branke, J. and H. Schmeck, Designing evolutionary algorithms for dynamic
optimization problems, in Advances in evolutionary computing. 2003, Springer. p.
239-262.

26. Branke, J., T. Kaußler, C. Smidt, and H. Schmeck, A multi-population approach to
dynamic optimization problems, in Evolutionary Design and Manufacture. 2000,
Springer. p. 299-307.

27. Blackwell, T. and J. Branke, Multiswarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation, 2006.
10(4): p. 459-472.

28. Du Plessis, M.C. and A.P. Engelbrecht, Using competitive population evaluation in a
differential evolution algorithm for dynamic environments. European Journal of
Operational Research, 2012. 218(1): p. 7-20.

29. Du Plessis, M.C. and A.P. Engelbrecht, Differential evolution for dynamic
environments with unknown numbers of optima. Journal of Global Optimization,
2013. 55(1): p. 73-99.

30. Moser, I. and R. Chiong, Dynamic function optimisation with hybridised extremal
dynamics. Memetic Computing, 2010. 2(2): p. 137-148.

31. Nickabadi, A., M.M. Ebadzadeh, and R. Safabakhsh, A competitive clustering particle
swarm optimizer for dynamic optimization problems. Swarm Intelligence, 2012. 6(3):
p. 177-206.

32. Sharifi, A., J.K. Kordestani, M. Mahdaviani, and M.R. Meybodi, A novel hybrid
adaptive collaborative approach based on particle swarm optimization and local

search for dynamic optimization problems. Applied Soft Computing, 2015. 32: p.
432-448.

33. García, S., A. Fernández, J. Luengo, and F. Herrera, Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences, 2010.
180(10): p. 2044-2064.

34. Li, G., P. Niu, Y. Ma, H. Wang, and W. Zhang, Tuning extreme learning machine by
an improved artificial bee colony to model and optimize the boiler efficiency.
Knowledge-Based Systems, 2014. 67: p. 278-289.

35. Cui, H., J. Feng, J. Guo, and T. Wang, A novel single multiplicative neuron model
trained by an improved glowworm swarm optimization algorithm for time series
prediction. Knowledge-Based Systems, 2015. 88: p. 195-209.

36. Mitić, M., N. Vuković, M. Petrović, and Z. Miljković, Chaotic fruit fly optimization
algorithm. Knowledge-Based Systems, 2015. 89: p. 446-458.

37. Yeh, W.-C., An improved simplified swarm optimization. Knowledge-Based Systems,
2015. 82: p. 60-69.

