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Abstract  

Control of chaotic systems to given targets is a subject of substantial and well-developed research issue in 

nonlinear science, which can be formulated as a class of multi-modal constrained numerical optimization 

problem with multi-dimensional decision variables. This investigation elucidates the feasibility of applying a 

novel population-based metaheuristics labelled here as Teaching-learning-based optimization to direct the orbits 

of discrete chaotic dynamical systems towards the desired target region. Several consecutive control steps of 

small bounded perturbations are made in the Teaching-learning-based optimization strategy to direct the chaotic 

series towards the optimal neighborhood of the desired target rapidly, where a conventional controller is 

effective for chaos control. Working with the dynamics of the well-known Hénon as well as Ushio discrete 

chaotic systems, we assess the effectiveness and efficiency of the Teaching-learning-based optimization based 

optimal control technique, meanwhile the impacts of the core parameters on performances are also discussed. 

Furthermore, possible engineering applications of directing chaotic orbits are discussed. 
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Highlights  

► Control of chaotic systems is formulated as constrained optimization problem.  

► Teaching-learning-based optimization is to direct the chaotic series.  

► The efficacy of TLBO based optimal control technique have been demonstrated.  
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1. Introduction  

Chaos is a kind of characteristic of non-linear systems, which is a bounded unstable dynamic behavior that 

exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions. Although it 

appears to be stochastic, it occurs in a deterministic nonlinear system under deterministic conditions. In 

recently years, growing interests from physics, chemistry, biology, electronics, controls and instrumentation 

have stimulated the studies of chaos so as to improve the industrial and manufacturing systems and processes 

which exhibit chaotic phenomena [1]. Control of chaotic systems is one of important and well-developed 

research issues in nonlinear science [2-4], and it is possible that a minute perturbation of the control parameter 

could redirect chaos towards the desired region and stabilize it [5]. In the last decade, chaotic control has been 

shown to cover a wide spectrum of real world applications in engineering [6-17]. 

 

Since the pioneering work of Hübler’s on chaos control in 1989 [18], a wide variety of approaches have been 

proposed for the appropriate control of chaotic systems. Most of the control techniques have been based on the 

OGY method [5, 19]. OGY exploits the exponential sensitivity of chaotic systems by using minute perturbations 

to direct the system towards a desired target in a short time. By extending the work of Ott et al. [5], Grebogi 

and Lai [20] described a method that converts the motion on a chaotic attractor to a desired attracting time 

periodic motion by making only small time dependent perturbations of a control parameter. This allows for a 

more generic choice of the feedback matrix and implementation to higher-dimensional systems. Optimal 

control theory based approach is an alternative approach for the control of chaotic dynamic systems [21]. 

Paskota et al. [22] applied the optimal control theory to calculate an open-loop controller and direct the orbit of 

a chaotic system towards the neighborhood of the desired target. Abarbanel et al. [3] demonstrated the use of an 

explicit single-step control method for directing a nonlinear system to the target orbit and maintaining it there. 

On the other hand, a few research studies have dealt with the control and synchronization problems of chaotic 

systems using the variable structure control scheme. Yu [23] examined the variable structure control strategy 

for the control of chaos in dynamic systems. In their study, by switching between two configurations of a 

perturbed parameter in chaotic systems, sliding regions can be created in which the desired performance lies. 

The stabilization and tracking of a periodic signal of the Rössler system have also been studied. Wang and Su 

[24] proposed an adaptive complementary variable structure control for chaotic synchronization. Based on 

Lyapunov’s stability theory and the Babalat’s lemma the proposed controller has been shown to render the 

synchronous error to zero. Fuh and Tung [25] presented an effective approach for controlling chaos by using a 



differential geometric method which transformed nonlinear dynamics into linear form algebraically, so that 

linear control techniques can be used. It has been shown that the proposed method is not only able to control 

chaotic motion to a steady state but also to any desired periodic orbit. Linear feedback methods [26, 27] and 

nonlinear feedback control [28-30] are feasible approaches to direct chaotic systems to a steady state. [31] 

addressed the control of discrete-time chaotic dynamic systems using conventional feedback control strategies. 

Further, Chen and Dong [32] presented how to use the canonical feedback controllers to control chaotic 

trajectory of a continuous-time nonlinear system in converging to its equilibrium points and, more significantly, 

to its multiperiodic orbits including unstable limit cycles. Chen and Han [28] stabilize the controlled system at 

origin and synchronize two Genesio systems by designing a nonlinear feedback controller, whose stability 

could be easily guaranteed by using Hurwitz stability analysis approach. Based on the adaptive control 

approach [33], Liao and Tsai [34] constructed an adaptive observer-based driven system to synchronize the 

drive system whose dynamics are subjected to the system's disturbances and/or some unknown parameters. By 

appropriately selecting the observer gains, the synchronization and stability of the overall systems can be 

guaranteed with the Lyapunov approach. Fotsin and Bowong [35] addressed the problem of control and 

synchronization of coupled second-order oscillators. Firstly, they designed feedback controller to stabilize the 

system at its equilibrium. Then an adaptive observer was designed to synchronize the states of the master and 

slave oscillators using a single scalar signal corresponding to an observable state variable of the driving 

oscillator. Aghababa and Hashtarkhani [36] addressed the issue of synchronizing two different uncertain chaotic 

systems with unknown and different bounds via adaptive control method. Nijmeijer and Mareels [37] 

reformulated the chaotic synchronization as an observer design problem. Yang and Chen [38] provided some 

new observer-based criteria for discrete-time generalized chaos synchronization. Bai and Lonngren [39] 

utilized active control theory to synchronize a coupled Lorenz system. Tang and Wang [40] proposed an 

adaptive active control approach to make the states of two identical Chua's systems with unknown constant 

parameters to be asymptotically synchronized. Lu and Zhang [41] proposed the backstepping design technique 

for controlling Chen's chaotic attractor based on parameters identification. Wu and Lu [42] first designed an 

observer to identify the unknown parameter of Lü system, then applied the backstepping approach to control 

the uncertain Lü system to bounded points. Xu and Teo [43] considered the asymptotical stabilization problem 

of discrete chaotic systems based on the impulsive control scheme. By means of the Lyapunov stability theory 

and algebraic inequality techniques, sufficient conditions for asymptotical stability of the impulsive controlled 

discrete systems were obtained. Based on the impulsive control approach, Kemih et al. [44] addressed the 



satellite attitude control problem subjected to deterministic external perturbations which induced chaotic 

motions. Theorems on the stability of impulsive control systems were developed to find the conditions under 

which the chaotic systems can be asymptotically controlled to the origin by using impulsive control. As for the 

fuzzy approach [45], Poursamad and Davaie-Markazi [46] presented a robust adaptive fuzzy control algorithm 

for controlling unknown chaotic systems. The fuzzy system is designed to mimic an ideal controller, based on 

sliding-mode control. The robust controller is designed to compensate for the difference between the fuzzy 

controller and the ideal controller. The adaptive laws are derived in the Lyapunov sense to guarantee the 

stability of the controlled system. In addition to the above methods, some researches applied optimization based 

methods to direct chaos to targeted regions. From the viewpoint of optimization, control of chaotic systems 

could be formulated as multi-modal constrained numerical optimization problems [47-49]. Genetic algorithm 

[50], simplex-annealing strategy [51], Particle swarm optimization [52], and Differential Evolution [53] have 

been considered. Wang et al. [51] proposed an effective hybrid optimization strategy by combining the 

probabilistic jump search of simulated annealing with the convex polyhedron-based geometry search of 

Nelder-Mead Simplex method. The hybrid optimization strategy was applied to direct orbits of chaotic systems 

to a desired target region and to synchronize the two chaotic systems. Simulations results obtained on Hénon 

Map demonstrated the effectiveness of their hybrid approach.  

 

In the past two decades, population-based optimization has attracted great attention from both academia and 

industry in many fields not limited in system science [54-62]. Recently, a new population-based metaheuristics, 

labeled as the Teaching-learning-based optimization (TLBO), has been proposed [63-67] as an alternative to 

genetic algorithm (GA) [68], particle swarm optimization (PSO) [69, 70] and Differential Evolution (DE) [71] 

for continuous optimization problems. The TLBO is inspired by the process of the teaching process and 

learning process of students in a class. In TLBO, firstly a population of solutions which is composed of teacher 

and students is initialized randomly, in which the most knowledgeable individual with the best fitness value is 

generally regarded as the teacher, while the remaining individuals in population are considered as students. 

Then the population is evolved to find optimal solutions through teaching phase in which the teacher helps the 

students to improve their grades as well as the learning phase in which the students improve their grades 

through interactions among themselves. Compared with GA, PSO and DE, TLBO has some attractive 

characteristics. It uses simple differential operation between teacher and students to create new candidate 

solutions, as well as to guide the search toward the most promising region. The conventional TLBO only 



contains one adjustable controlling parameter which facilitates easy tuning and implementation, while in GA, 

PSO and DE more parameters need to be set in appropriate manner so as to guarantee the searching 

performance. Nowadays, TLBO has attracted much attention and wide applications in different fields since its 

birth in 2011 [72, 73]. Application areas cover dynamic economic emission dispatch [74], structural 

optimization [75], power system [76], heat exchangers [77, 78], thermoelectric cooler [79], chaotic time series 

prediction [80], planning and scheduling [81-85], bioinformatics [86] and engineering optimization problems 

[87-95] etc., which demonstrate the effectiveness and efficiency of the TLBO based algorithms. 

 

To date, there has been a lack of research study on TLBO for chaos control. The objective of this investigation 

is explicitly set out to fulfill this role. In this study, the TLBO is applied to direct the orbits of chaotic 

dynamical systems, which could be formulated as multimodal numerical optimization problems with high 

dimensions. Simulations results based on Hénon Map and Ushio Map are then obtained to verify the 

effectiveness and efficiency of TLBO, and the effects of some core parameters are also investigated.  

 

2. Problem formulation  

Consider the following discrete chaotic dynamic system: 

Nkkk ,...,2,1)),(()1(  xfx                             (1) 

where state , and  is continuously differentiable. nRk )(x nn RR :f

 

To direct the system towards a desired target, often minute perturbation  is added to the chaotic 

system. The system depicted in Eq. (1) can then be reformulated as follows:  

nRk )(u
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where  is an initial state of the system, the value of small perturbation  is bounded by nR0x )(ku

)(ku , and   is a positive real constant. 

 

The goal is to determine a trajectory of consecutive perturbations , )(ku 1,...,1,0  Nk  in guiding the state of 

the subsequent  steps, i.e.,  towards the N )(Nx  -neighborhood of desired target , i.e., tx  tN xx )( , 

where a local controller or conventional control technique that is effective for chaos control lies.  



 

Without loss of generality, assuming that perturbation  is imposed only on the first component of , the 

optimal targeting of nonlinear chaotic systems can thus be casted as a multi-dimensional constrained numerical 

optimization problem of the following form:  

)(ku f

tku N xx )(min )(                                 (3) 








nikfkx

kukfkx
ts

ii ,,2)),(()1(

)())(()1(
.. 11

x

x
                  (4) 

)(ku                                      (5) 

0)0( xx                                       (6) 

 

In the present study, the TLBO is considered for solving the above minimization problem which involves 

finding a series of suitable , )(ku 1,...,1,0  Nk  by minimizing objective function (3); Meanwhile, 

constraints arising from chaotic dynamics (4), imposed on amplitude of perturbation (5), and stemmed from the 

initial chaotic states (6) should not be violated in the TLBO search. In the experiments, the chaotic dynamical 

system  is then instantiated with the well-established Hénon and Ushio discrete chaotic systems. nn RR :f

 

3. Teaching-learning-based optimization (TLBO) 

In this section, the TLBO approach is described. In the TLBO system, a population of solutions corresponding 

to a group of learners is initialized randomly. The most knowledgeable individual, which is analogous to the 

elite solution with the best fitness value in the search, behaves as the teacher, while the remaining individuals in 

population are considered as the learners or students. Each dimension of an individual solution in the TLBO 

models the grade of a different subject as attained by a teacher or learner. The population is then evolved to 

locate optimal solutions through a teaching phase in which the teacher helps the students to improve their 

grades as well as a learning phase where students improve their grades through interactions among themselves.  

 

The i-th individual in the d-dimensional search space at generation t can be represented as 

, (],...,,[)( ,2,1, diiii xxxtX  NPi ,...,2,1 , where  denotes the size of the population. Remark:  is the 

decision variables , 

NP )(tX i

)(ku 1,...,1,0  Nk  of Eq. (4) which are bounded according to Eq. (5)). As the teacher is 

considered the most knowledgeable person, the best member  of the current population as defined by )(tX best



the objective function or fitness value is considered as the teacher. In problem minimization, the solution or 

individual with the smallest objective function value is thus regarded as the best member. At each generation t, 

the teaching and learning operations are applied on the learners, and a new population arises. Then, 

comparison takes place, and the corresponding individuals from both populations compete to comprise the next 

generation. 

 

For each learner , according to the teaching operation, an updated learner  is 

generated by adding the weighted difference between the teacher and mean grade of learners to itself, which 

takes the following form:  

)(tX i ],...,,...,[)( ,,1, dijiii vvvtV 

  )()()()( tXtMTtXRtV ibesti                       (7) 

where the arithmetic operator  denotes element-by-element multiplication.  ],...,,...,[ 1 dj randrandrandR   

is d-dimensional random weight vector which controls amplification of the differential variation 

, and each element  is the j-th independent random number which is uniformly 

distributed in the range of [0, 1]. As previously described, , the base vector to model after, is the best 

member of the current population so that the finest traits of the teacher can be passed to the learners. 

 denotes the mean grade of the learners for each subject. , known as the teaching 

factor which represents the aptitude of the teacher, is a d-dimensional random weight vector that controls the 

changes to the mean grades of learners. The value for each element of 
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T  is then either 1 or 2, as 

recommended in Rao et al. [64].  

After all the learners have completed the teaching phase, the one to one selection operator is then applied on 

each individual to decide whether the updated learner  or the original  would become a member 

of the population that would subsequently undergo the learning phase. Thus, for each target individual, a new 

trial vector  is generated and assigned to the value  if the target learner could 

not improve itself in the teaching process; otherwise  is set to be . 
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For each trial vector of the i-th learner , through the learning phase, learners improve themselves by 

learning from others in the group, which is described by the following equation (for minimization problem): 
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where  is the trial vector after learning for target individual i.  is a d-dimensional random weight 

vector which controls amplification of the differential variation. The subscript j of  denotes a randomly 

selected target individual j form the population  and also different from the current index i. 
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means the objective evaluation function, which is the value of Eq.(3) in our study.  

 

Finally, the selection arises to decide whether the trial vector  would be a member of the population of 

the next generation . For a minimization problem,  is compared to  using the following one 

to one greedy based selection criterion: 
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where  is the individual of the new population. The best individual of the current new population 

with the best objective value is then determined. If the objective value is better than the objective value of 

,  is then updated as the new best individual. The above operation is iterated until the stopping 

criterion is met, and  is then the converged solution obtained. The procedure described above is 

considered as the standard version of TLBO. The key parameter in TLBO is  (size of population). As 

described previously, the conventional TLBO only contains one adjustable controlling parameter which 

facilitates easy tuning and eases of implementation. This is in contrast to the GA, PSO and DE, which has more 

parameters that need to be appropriately defined in order to assert good and robust search performances. In our 

study, we shall provide a sensitivity analysis on the effects of the population size parameter on the search 

performances, specifically for chaotic control.  
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As for the problem to direct chaotic orbit, TLBO determines the consecutive control steps 

 which are bounded by the allowable perturbation amplitude while minimizing objective 

function (3). The control steps  denotes the dimension d of solution , and 

. In next section, the performance of TLBO is investigated on the direct chaotic 

orbit problem. 
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4. Numerical simulation on directing chaotic orbits  

This section investigates the feasibility of applying the population-based metaheuristics TLBO for directing the 

orbits of discrete chaotic dynamical systems towards the desirable target region. Working with the dynamics of 

the well-established Hénon and Ushio discrete chaotic systems, we apply the TLBO to direct the orbits of 

discrete chaotic dynamical systems towards the desired target region; meanwhile the impacts of some 

parameters on controlling performance are also investigated. Furthermore, possible engineering applications of 

directing chaotic orbits are discussed.  

 

4.1 Directing Hénon chaotic orbits 

As one of the most studied examples of the dynamical discrete-time chaotic system, Hénon Map is employed as 

the illustrating example in the present study, which can be described as follows: 
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The map has two parameters,  and q , and for the classical Hénon map have values =1.4, and =0.3. 

On these classical values, the Hénon map is chaotic.  

p p q

 

Target  is set to be a fixed point of the system (0.63135, 0.18941). Let =(0, 0), and  is only 

appended to  with  bound 

tx 0x )(ku

1x  =0.01. The population size of TLBO is 50 and the maximum generation of 

TLBO is 1,000 (stopping condition), and the objective function is defined as tNx )( x . For different values 

of , Table 1 reports the best, worst and the mean objective values as well as the standard deviations obtained 

from the 100 independent runs performed. 

N

(Insert Table 1 here) 

It could be concluded that the directing error (i.e. distance between the target and the ending state) in terms of 

‘Best objective value’ decreases as  increases, which suggests that a small number of consecutive control 

steps is insufficient to direct the Hénon chaotic trajectory towards the targeted region. Further, it can be 

observed that a consecutive control step of 9 give superior performance in terms of best, worst, mean objective 

values and standard deviations. In contrast, without above directing it would take a very long time to get close 

to the target starting from the same initial state, and the iteration (i.e. needed ) increases greatly as 

N

N   

decreases, see Table 2. 

(Insert Table 2 here) 



To test the performance of TLBO, TLBO is compared with standard Estimation of Distribution Algorithm 

(EDA) [96] and Particle Swarm Optimization (PSO) [52]. We adopt the simulation results from the literature. 

From Table 3, it can be seen that TLBO is superior to EDA and PSO in term of searching quality and derivation 

of the results. It could be concluded that TLBO is more effective and more robust on initial conditions. 

(Insert Table 3 here) 

Next, we investigate the impact of parameters , N   and   on the directing errors of the Hénon chaotic 

orbits. The TLBO search is conducted 100 times independently for each combination of parameters, with the 

maximum number of generations set as 1000. If the resultant objective value in a run satisfies precision value 

 , a success run is registered. Further, we define two performance measures labelled here as "succeed ratio 

(SR)" and "average valid evaluation number (AVEN)" which takes the following forms: 

%100
100

 vN
SR                               (11) 

v

N
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N

n
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v 1                                (12) 

where  denotes the number of success runs among 100 independent runs,  denotes the generation 

number of the -th success run. Table 4 then reports the SR and AVEN results of the simulation runs obtained 

for the different combinations of , 

vN in

i

N   and  . 

(Insert Table 4 here) 

It could be seen from Table 4 that when a large directing error of precision   is considered, for instance 

02.0 , TLBO is able to direct the chaotic orbit to the target region rapidly and is not affected by the 

configurations of the control step and perturbation bound parameters. However, as   is tightened (i.e., a 

higher directing error of precision is required, e.g., 001.0  or 0001.0 ), it can be seen that SR decreases 

while AVEN increases, respectively, on all combinations of  and N  . Fortunately, it is often unnecessary to 

use a small threshold value for local controller to be effective. Further, TLBO is noted to be effective where 

large control steps such as , , and 8N 9N 10N , are used.  

 

Next, we investigate the effect of perturbation bound parameter would affect the directing accuracy at each 

control step. Figs. 1-4 depict the mean objective values of directing errors over 100 independent runs for 

different configurations of  and N  . From these figures, the rapid decreasing trends of the mean objective 

values or errors are relatively steep and convergence happened at high precision. In addition, Figure 1 ( 7N ) 

and Figure 4 ( ) also exhibits similar trends where the curves have been noted to descend faster on larger 10N



  values. On the contrary, Figure 2 ( ) and Figure 3 (8N 9N ) show opposite trends from Figures 1 and 4 

where the curves plotted exhibits faster descend for small   values. These seemingly paradoxical phenomena 

cannot be easily explained. A thoroughgoing landscape analysis of this problem may be necessary but is beyond 

the scope of the present study.  

(Insert Figure 1 here) 

(Insert Figure 2 here) 

(Insert Figure 3 here) 

(Insert Figure 4 here) 

4.2 Directing Ushio chaotic orbits 

In what follows, we consider the Ushio discrete-time chaotic system [43, 97] which has the following form: 
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where 9.1 , and 5.0 .  

 

The target  is set to be (0, 0), the initial value tx 0[0 ]3.0,6. x , and  is only appended to . Table 5 

reports the best, worst and the mean objective values as well as the standard deviation of 100 independent runs 

for each combination of the control step and perturbation bound parameters. In this case, we consider the 

control steps from 6 to 20, and the perturbation bounds from 0.01 to 0.1. 

)(ku 1x

(Insert Table 5 here) 

From Table 5, first of all it can be observed that TLBO has been able to direct the trajectory of Ushio chaotic 

dynamic to the target region rapidly at high precision in nearly all cases, except the cases when both the control 

steps and perturbation bounds are configured as too small. The directing error is relatively larger when 6N  

and perturbation bounds are 0.01 to 0.03. However, if perturbation bounds are extended to 0.04, then TLBO 

performs reasonably for 6N . Secondly, TLBO is shown to perform robustly with large control steps, which 

suggests it can handle high-dimension optimization problem. From this study, we conclude that TLBO is 

effectively and efficiently for directing chaotic orbits.  

 

4.3 Possible applications of directing chaotic orbits 

Recently, control of chaotic systems to given targets has received increasing interests from both fundamental 

and applied researches. To improve the engineering systems and processes which exhibit chaotic phenomena, 



growing interests from physics, chemistry, biology, healthcare, electronics, and control have stimulated the 

studies on chaotic control [7, 98].  

 

The motivations for controlling chaos in engineering practice are twofold: firstly, when chaotic dynamics are 

useful, the very nature of chaos, e.g., sensitive dependence on initial conditions, infinite unstable periodic 

motions, and ergodicity should be utilized instead of suppression. For instance, in chemical engineering, for the 

crucial equipment CSTR (Continuous Stirred Tank Reactor), by imposing chaotic dynamics on both the 

magnitude and the rate of change of the controlled variables, better mixing of reactants and full reaction could 

be well achieved [99].  

 

Secondly, when chaotic dynamics or behaviors are undesired, the chaos should be redirected towards the 

desired region and be stabilized (i.e., decreased as much as possible) by a minute perturbation of the control 

parameter. Our study falls into this category in which the chaotic behaviors should be suppressed totally if 

possible. Taking the irregular vibrations in mechanical systems as the first example, the unfavorable vibrations 

arising from unbalanced rotators should be reduced as much as possible so as to avoid fatigue failures. 

Considering the fact that the motion of irregular vibrations is known to be chaotic, the control aim is then 

suppression of these undesirable vibrations by guiding or targeting the chaotic behaviors to a steady state [7, 

25].  

 

Anther representative example belonging to this category could be the control of chaotic attitude motion of the 

spacecraft with perturbation. Given the combination of forces from geomagnetic field, gravitational field, 

sunlight flux, etc., nearly all of the satellites in the spinning mode would exhibit chaotic motion [100-102]. 

Generally, the attitude motion of the spinning satellites could be characterized as nonlinear system of motion of 

rigid bodies. The attitude motion system is known to be several well-known chaotic dynamics, e.g., Lorenz 

equations, if periodically varying torque and long-term disturbing torque are selected. The objective of control 

is to redirect chaos towards the desired region (i.e., steady state) and stabilize, so that the chaotic behaviors in 

the spinning motion could be suppressed. Currently, a few approaches have been proposed for the appropriate 

control of chaotic attitude motion of the spacecraft with perturbation. For example, Mohammadbagheri and 

Yaghoobi [103] proposed a generalized predictive controller to suppress the chaos and regulate the state 

trajectory to desire fixed point. Kong et al. [100] proposed improved nonlinear relay control law based on 



position and velocities feedback to suppress the chaos in spacecraft attitude motion. Tsui and Jones [104] 

addressed the chaotic satellite attitude control problem by utilizing three techniques, i.e., delayed feedback 

control method, the Otani–Jones technique, and a higher dimensional variation of the OGY method, and their 

results showed that delayed feedback control method provided the most satisfactory control solution. Chen and 

Liu [105] applied the linear feedback method to control chaotic attitude motions of a magnetic rigid spacecraft 

with internal damping to the given fixed point. Abtahi et al. [106] investigated control of chaos for a Gyrostat 

satellite and designed OGY based method by using the linearization of the Poincaré map for suppression of 

chaos. Faramin and Ataei [107] investigated chaotic attitude maneuvers in a satellite for a range of parameters 

and designed back-stepping sliding mode method to ensure chaos suppression and achieve desired 

performance.  

 

Based on the above investigation and analysis of the work on control of chaotic attitude motion of the 

spacecraft with perturbation, we would like to remark that a few control techniques have been investigated, e.g., 

the OGY method, optimal control theory based approach, nonlinear/linear feedback methods, adaptive control 

approach and backstepping design technique. However, in addition to the aforementioned methods, application 

of optimization based methods to control chaotic attitude motion of the spacecraft (i.e., direct chaos to targeted 

regions) is limited and relatively new, which is also our main motivation for writing this section on possible 

applications of directing chaotic orbit. And the proposed optimal targeting technique using the novel TLBO 

based evolutionary computing strategy is also necessary, and would be more useful for a practical user. It is also 

believed that the present study will provide benefits to a wide spectrum of real world applications of chaotic 

control in engineering, including maneuvering target tracking.  

 

5. Conclusion and further study 

Control of chaotic systems to given targets is the substantial research issue in both theory and application. By 

formulating it as a multi-dimensional constrained optimization problem, we investigated the feasibility of 

applying a novel population-based metaheuristics (Teaching-learning-based optimization, TLBO) for directing 

the orbits of discrete chaotic dynamical systems. Several consecutive control steps of small bounded 

perturbations were made in the Teaching-learning-based optimization strategy to direct the chaotic series 

towards the optimal neighborhood of the desired target rapidly, where a conventional controller was effective 

for chaos control. Working with the dynamics of the well-known Hénon as well as Ushio discrete chaotic 



systems, we assessed the effectiveness and efficiency of the Teaching-learning-based optimization based 

optimal control technique. First of all it could be observed that TLBO has been able to direct the trajectory of 

chaotic dynamic to the target region rapidly at high precision. Secondly, TLBO was shown to perform robustly 

with large control steps, which suggests it can handle high-dimension optimization problem. From this study, 

we concluded that TLBO was effectively and efficiently for directing chaotic orbits. Besides, TLBO was 

compared with standard Estimation of Distribution Algorithm (EDA) and Particle Swarm Optimization (PSO). 

It could be seen that TLBO was superior to EDA and PSO in term of searching quality and derivation of the 

results. Meanwhile, the impacts of the core parameters on control performance were also discussed. To the best 

of our knowledge, this is the first study to be reported on the use of TLBO for addressing problems involving 

chaos control.  

 

In the past decades, Memetic Algorithms (MAs) have been demonstrated to converge to high-quality solutions 

more efficiently than their conventional counterparts on a wide range of benchmark problems as well as 

real-practice optimization problems [58, 108]. Among MAs, the Meta-Lamarckian learning [61] and the 

Probabilistic Memetic Framework [108] show outstanding searching performance on a variety of optimization 

problems. Besides, transfer learning concept provides a framework to utilize previously-acquired knowledge to 

solve new but similar problems much more quickly and effectively [109]. Our future work will investigate the 

performances of TLBO enhanced by Meta-Lamarckian learning scheme, the probabilistic memetic framework 

as well as transfer learning on the optimal targeting problems of nonlinear chaotic systems, respectively. As 

noticed that control of chaotic systems to given targets could be formulated as a class of multi-modal 

constrained numerical optimization problem with multi-dimensional decision variables. To further enhance the 

effectiveness and efficacy of the TLBO, a thoroughgoing landscape analysis of the formulated optimization 

problems may be necessary.  

 

We hope the novel TLBO-based optimization methodology could serve as a vital control method for chaotic 

dynamic systems in more complex situations, e.g., control and synchronization of two different chaotic systems, 

control and synchronization of hyperchaotic systems, as well as targeting of nonlinear chaotic systems under 

uncertain parameters. It is also believed that the current study would provide benefits to a wide spectrum of real 

world applications of chaotic control in engineering practice, including control of chaotic attitude motion of the 

spacecraft with perturbation, maneuvering target tracking, and construction of secure communication system. 



Our future work will investigate the performances of TLBO or improved TLBO on such substantial issues.  
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Table 1. Statistics performance of TLBO under different  when N 01.0 for Hénon chaotic orbits 

N  Best objective value Worst objective value Mean objective value Standard deviation

6 0.08509 0.09331 0.09003 0.00163 

7 0.00835 0.01287 0.01114 0.0008 

8 0.00002 0.00052 0.00021 0.00009 

9 0.00001 0.00036 0.00012 0.00007 

10 0.00002 0.09152 0.00163 0.01042 

 

 

Table 2. Iteration number needed without directing for Hénon chaotic orbits 

  0.02 0.001 0.00001 

Needed  N 1188 17342 3356954 

 

 

Table 3. Comparisons between TLBO and state-of-the-art algorithms under different  when N 01.0  for 

Hénon chaotic orbits 

N   TLBO EDA [96] PSO [52] 

6 Mean 0.09003 0.09784 0.09390 

 Best 0.08509 0.09405 0.09390 

 Standard deviation 0.00163 0.0028 N/A 

7 Mean 0.01114 0.02091 0.01340 

 Best 0.00835 0.01385 0.01290 

 Standard deviation 0.0008 0.00766 N/A 

8 Mean 0.00021 0.02838 0.00085 

 Best 0.00002 0.00124 0.00047 

 Standard deviation 0.00009 0.03057 N/A 

9 Mean 0.00012 0.05913 0.00061 

 Best 0.00001 0.00078 0.00000 

 Standard deviation 0.00007 0.05706 N/A 

10 Mean 0.00163 0.06831 0.01820 

 Best 0.00002 0.00138 0.00000 

 Standard deviation 0.01042 0.03425 N/A 

 
 

Table 4 Average generation number and success ratio under different parameters for Hénon chaotic orbits  

02.0  001.0  0001.0  
N    

SR(%) AVEN SR(%) AVEN SR(%) AVEN

7N  0.01 100 1.57 0 - 0 - 



 0.02 100 1.43 0 - 0 - 

 0.03 100 1.64 1 52 0 - 

8N  0.01 100 1.81 100 27.49 10 494.60

 0.02 100 1.57 100 18.80 54 440.03

 0.03 100 1.64 97 54.67 18 438.22

9N  0.01 100 2.12 100 26.61 42 511.73

 0.02 100 2.14 100 49.75 22 427.09

 0.03 100 2.21 100 90.94 17 459.11

10N  0.01 98 30.9 97 71.77 30 491.03

 0.02 100 5.09 82 114.29 11 430.09

 0.03 100 3.29 95 235.53 5 329.20

 

 

Table 5. Statistics performance of TLBO under different  and N   for Ushio chaotic orbits 

N    Best 
objective 

value 

Mean 
objective 

value 

Worst 
objective 

value 

Standard 
deviation 

6 0.01 0.22967 0.29073 0.33347 0.02402 

 0.02 0.19066 0.2026 0.20821 0.00423 

 0.03 0.17504 0.19154 0.20136 0.0064 

 0.04 0.00529 0.17614 0.19147 0.03261 

 0.05 0.00735 0.14905 0.18728 0.05099 

 0.06 0.00445 0.12614 0.1863 0.05629 

 0.07 0.00429 0.09344 0.17197 0.05294 

 0.08 0.00635 0.09035 0.17632 0.04865 

 0.09 0.00835 0.0734 0.15915 0.03658 

 0.10 0.00328 0.05541 0.13686 0.03918 

7 0.01 0.0521 0.39847 0.57298 0.1058 
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Figure 1 Descending curves of mean objective value when 7N  for Hénon chaotic orbits 
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Figure 2 Descending curves of mean objective value when 8N  for Hénon chaotic orbits 
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Figure 3 Descending curves of mean objective value when 9N  for Hénon chaotic orbits 



 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

4

-3.5

-3

-2.5

-2

-1.5

-1

Number of function evaluations

lo
g1

0 
(

 )

 

 

=0.01
=0.02
=0.03

 

Figure 4 Descending curves of mean objective value when 10N  for Hénon chaotic orbits 

 


