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A R T I C L E  I N F O A B S T R A C T 

Many popular clustering techniques including K-means require various user inputs such as the 

number of clusters k, which can often be very difficult for a user to guess in advance. Moreover, 

existing techniques like K-means also have a tendency of getting stuck at local optima. As a result, 

various evolutionary algorithm based clustering techniques have been proposed. Typically, they 

choose the initial population randomly, whereas carefully selected initial population can improve 

final clustering results. Hence, some existing techniques such as GenClust carefully select high 

quality initial population with a complexity of O(n2) which is very high. We propose a clustering 

technique that in addition to selecting initial population with a low complexity of O(n), uses a 

number of new components including multiple streams, information exchange between 

neighboring streams, regular health improvement of the chromosomes, and mutation which also 

aims to improve chromosome health. We compare the proposed technique HeMI with five (5) 

existing techniques on 20 publicly available datasets in terms of two well-known evaluation 

criteria. We also carry out a through experimentation to investigate the usefulness of the new 

components of HeMI. Our experimental results demonstrate statistically significant superiority 

of HeMI over existing techniques, and the effectiveness of the proposed components.  
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1. Introduction

1.1 What is Clustering? 

Nowadays, with the advancement of scientific 

technology and increase of information, huge amount of data 

can be collected [8, 11]. It is difficult for a domain expert to 

infer knowledge manually from the enormous amount of 

data. To acquire information from the huge amount of data 

and facilitate decision making process data mining 

techniques are required.  

Clustering is an important and well-known technique in 

the area of data mining. It aims to group the similar records 

in one cluster and dissimilar records in different clusters [1, 

4, 5, 6, 8, 9].Through clustering the hidden information can 

be extracted from the data that can help in decision making 

process [4]. In recent years, clustering has been applied in 

various areas such as machine learning [10, 12], image 

segmentation [13-15], business [16, 17], social network 

analysis [18], medical imaging and object detection [19-21]. 

1.2 Definitions and Notations 

We consider a dataset D to be a two dimensional 

matrix/table having n records (i.e. rows) and m attributes (i.e. 

columns). We represent the dataset as D = {R1, R2, …. Rn}, 

where Ri is the ith record. The set of attributes are represented 

as A= {A1, A2, … Am}, where Aj is the jth attribute. Each 

record Ri has |A| attributes. An attribute can be either 
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categorical or numerical. The domain of a numerical attribute 

Ai is represented as Ai = [li, ui] where li is the lower limit and 

ui is the upper limit of the domain of Ai. The domain of a 

categorical attribute Aj is represented as Aj = {Aj
1, Aj

2, … Aj
x}, 

where Aj
k is the k-th domain value and  x is the domain size 

of Aj. 

1.3 Some Existing Techniques and their Limitations 

K-means is one of the most popular techniques for

clustering. In k-means, it requires a user (data miner) to 

define the number of clusters (k) in advance [2]. Based on the 

user defined number of clusters, it then randomly selects k 

records as initial seeds form the data set and each record of 

the data set is then allocated to its closest seed in order to 

form clusters. The seed of a cluster is then updated based on 

the records allocated to the cluster. The updated seed is a (real 

or pseudo) record where each attribute value of the updated 

seed is the average of all values of the attribute for all records 

belonging to the cluster.  

The process of the record allocation/re-allocation to the 

clusters and updating is considered to be an iteration of K-

means. The iterations continue until any of the termination 

conditions are met. Typically there are two terminations 

conditions: first, if the user defined number of maximum 

iterations is reached then the process terminates and second 

if the improvement of the objective function values of two 

consecutive iterations do not improve more than a user 

defined threshold [1-3]. 
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While K-means is popular for its simplicity, it has a 

number of well-known drawbacks [4, 22].One of the main 

drawbacks of K-means is its requirement of user defined 

number of clusters (k) prior to clustering. The appropriate 

number of clusters has influence on the quality of final 

clustering solution [8]. It is difficult for a user (data miner) to 

estimate the appropriate number of clusters in advance. 

Another drawback of K-means is that it has a tendency to 

getting stuck at local optima. Moreover, the random selection 

of the initial seeds is also considered to be a major drawback 

since it influences heavily the final clustering quality [3]. 

A recent technique K-means ++ [3] addresses the last 

drawback of K-means. It chooses only the first seed 

randomly. It then chooses the second seed in a probabilistic 

way so that the record having the highest distance with the 

first seed has the highest probability to be chosen as the 

second seed. While choosing the third seed the record having 

the maximum distance with its nearest seed has the highest 

probability. Similarly it picks the fourth seed and so on; it 

picks as many seeds as the user defined number of clusters. 

All other components of K-means++ are exactly the same as 

K-means. Hence, it also suffers from other drawbacks of K-

means. 

To overcome these limitations various methods have 

been proposed in the recent years, such as stochastic search 

[23], simulated annealing [24, 25] and genetic algorithms [4, 

5, 6, 7, 9, 47, 48]. Genetic algorithms (GA) are randomized 

search and optimization techniques based on the concepts of 

Darwin’s law of evolution “Survival of the fittest in natural 

selection” proposed by John H. Holland [26]. This algorithm 

simulates the biological structure of the genetic evolution 

process.  

In recent years, many GA based clustering techniques 

have been proposed such as GenClust [4], AGCUK [5], 

GAGR [6] and so on. In GA a chromosome contains a set of 

genes, where a gene is a (real or pseudo) record. A gene is 

considered to be the center of a cluster. Therefore, a 

chromosome is considered to be a clustering solution. GA 

generally contains many iterations/generations. Each 

generation typically contains a number of chromosomes that 

are known as the population of the generation. GA consists 

of five main phases namely population initialization, 

selection, crossover, mutation and elitist operation. 

Many existing techniques generate the number genes of a 

chromosome randomly, in the population initialization 

phase. They also randomly choose records as genes, instead 

of carefully choosing genes of a chromosome. Careful 

selection of genes can create an initial population containing 

high quality chromosomes. High quality initial population 

typically increases the possibility of obtaining a good 

clustering solution at the end of the genetic processing [4, 27, 

28]. An existing technique called GenClust [4] finds high 

quality initial population and thereby obtains good clustering 

solution.  

However, its initial population selection process is very 

complex with a complexity of O(N2), where N is the number 

of records in a dataset. Moreover, GenClust requires a user 

input on the number of radius values for the clusters in the 

initial population selection. It can be very difficult for a user 

to guess the set of radius values (i.e. radii). 

1.4  Novel Components of the Proposed Technique and their 

Advantages 

  In this paper, we propose a genetic algorithm based 

clustering technique called “Genetic Algorithm with Healthy 

Population and Multiple Streams Sharing Information for 

Clustering (HeMI)”. We now briefly introduce the novel 

components/properties of HeMI and their logical 

justifications as follows. 

Following the approach of some existing techniques, 

HeMI also uses a high quality initial population. It does not 

require any user input on the radii of clusters and keeps the 

complexity of the initial population selection operation low, 

O(N). It also uses a set of randomly selected chromosomes in 

the initial population in order to maintain both high quality 

and randomness, since genetic algorithms also require 

randomness. 

It is evident from the literature [29, 30] and through our 

empirical analysis (carried out in this study) that the 

population size has a positive impact on the clustering 

quality. That is, a big population size is likely to contribute 

towards a good clustering solution. However, big population 

size requires high time complexity. Therefore, HeMI uses a 

big population in multiple streams, where each stream 

contains a relatively small number of chromosomes.  

Various genetic operations (such as crossover and 

mutation) are applied on each stream in parallel. As a result 

HeMI is likely to produce better quality clustering solutions 

within reasonable time. Moreover, due to splitting the 

chromosomes into a number of streams and processing the 

splits separately HeMI exhibits higher ability to explore the 

solution space than the traditional approach of processing all 

chromosomes in a single stream. We present empirical 

evidence of this phenomenon where we use a single stream 

of 20 chromosomes, 40 chromosomes and 80 chromosomes, 

and four streams of 20 chromosomes. 

Note that there are some existing techniques that use 

parallel genetic algorithms [29, 33, 34, 35] where they divide 

the total number of chromosomes into a number of parallel 

runs, whereas in our technique we increase the total number 

of chromosomes. The main goal of these existing techniques 

is to reduce the time complexity through the parallelization 

of the genetic algorithms, whereas the main goal of HeMI is 

to improve clustering results. While employing 

parallelization these existing techniques do not share 

information among the parallel streams, whereas HeMI 

introduces information sharing among the streams at a 

regular interval in order to take advantage of the multiple 

streams.  

For a stream Si, HeMI first identifies its neighboring 

streams and then spots out the best chromosome from all 

neighboring streams and Si. It then replaces the worst 

chromosome of Si by the best chromosome. The information 

sharing is carried out at a regular interval such as at every 

10th iteration.  



For Stream 1, Stream 2 and Stream 3 are considered to be 

neighbors. Similarly for Stream 2, Stream 3 and Stream 4 are 

considered to be neighbors. While the sharing of the best 

chromosome from the neighbors increases the fitness of the 

best chromosome, it maintains the divergence among the 

streams. That is, had HeMI used/inserted the best 

chromosome out of all streams into all streams then they 

would have the same best chromosome in all streams. 

The presence of healthy chromosomes (i.e. chromosomes 

with high fitness values) in a population can increase the 

possibility of good clustering results. Therefore, HeMI 

replaces the sick chromosomes (i.e. chromosomes with low 

fitness) by healthy chromosomes. Some of the healthy 

chromosomes are chosen from a pool of healthy 

chromosomes obtained by the initial population operation, 

whereas some of the healthy chromosomes are generated 

through the crossover operation of the existing healthy 

chromosomes of a generation with the hope that the 

crossover of two healthy chromosomes may generate new 

healthy chromosomes. The crossover operation aims to 

maintain some randomness even in the process of replacing 

sick chromosomes by healthy chromosomes. 

Randomness is also maintained through the mutation 

operation which employs a division and absorption operation 

in sequence if they improve the quality of clustering 

solutions. Additionally, at the end of the division and 

absorption operation it also applies a random change in 

chromosomes. Unlike HeMI, an existing technique [5] 

applies either division or absorption randomly. Another 

existing technique [7] applies division (they call it splitting) 

on the largest cluster instead of the sparsest cluster, and 

absorption on two randomly chosen clusters. Another 

existing technique [9] applies division and absorption of 

randomly chosen clusters. Hence, HeMI has a better 

approach to carefully improve clustering quality through 

mutation while exploring unconventional solution space.  

1.5 Evaluation Techniques 

We evaluate our technique by comparing its performance 

with the performance of five high quality techniques namely 

AGCUK [5], GAGR [6], GenClust [4], K-means [2], K-

means ++ [3]. We conduct experiments for the techniques on 

twenty (20) real life datasets that are available in the UCI 

machine learning repository [31]. The experimental results 

clearly indicate that the proposed technique performs 

significantly better than other techniques in terms of the 

evaluation criteria considered in this study: silhouette 

coefficient and DB Index. We also experimentally evaluate 

the usefulness of various components of HeMI.  

1.6 Main Contributions of this Study 

Note that HeMI is a significant improvement of our 

previous technique called DeRanClust that we published in a 

conference [32] and have never published in any journal. We 

consider this paper as a significant extension of the 

conference paper where the only similarity is the initial 

population selection process. The main contribution of 

DeRanClust was as follows: 

 The initial population was selected through 

deterministic and randomly chosen chromosomes. 

However, the original contributions of HeMI are as 

follows: 

 The use of multiple streams (see Section 2.2.2).  

 High quality initial population selection maintaining 

some randomness (see Section 2.2.3). 

 The three steps mutation operation (see Section 2.2.7).  

 The Health improvement operation (see Section 2.2.8). 

 Neighbor information sharing (see Section 2.2.10). 

 The Global Best Selection operation (see Section 

2.2.11) 

 HeMI works on datasets having numerical and/or 

categorical attributes. 

The rest of the paper is organized as follows: in Section 

2 we provide a brief literature review on some existing 

techniques. Section 3 describes our proposed technique. We 

discuss the experimental result in section 4 and in section 5 

we provide the concluding remarks.  

2. Our Technique 

2.1 Basic Concepts 

In this section we introduce the basic concepts of various 

components of the proposed technique called HeMI and 

present a logical justification of the basic concepts. One 

important component of HeMI is the initial population 

selection aiming to get high quality initial population. The 

basic idea here is high quality initial population is likely to 

result in high quality final clustering solution as evident in 

the literature [4, 27, 28]. HeMI uses K-means/K-means ++ 

many times with a set of different k values to explore the best 

k value for a dataset and then use the best chromosomes 

(obtained by the best k value/s) in the initial population. We 

carry out empirical analysis (presented in Section 3.5.2) that 

supports the basic concept of using high quality initial 

population. 

Another important component of HeMI is multiple 

streams. It is evident from relevant literature that [29, 30] in 

genetic algorithm based clustering techniques bigger 

population size tends to increase the quality of the final 

clustering solution. Therefore, we realize that a population 

size of 80 chromosomes is more likely to produce better 

clustering solution than a smaller population size such as 20 

chromosomes. In this study we carry out empirical analysis 

on this (presented in Section 3.5.1) where we can see the 

improvement of clustering quality with the increase of 

population size in an existing genetic algorithm based 

clustering technique called AGCUK [5] and GenClust [4].  

An obvious issue related to the increase of population size 

is the increased time complexity. In order to reduce the time 

complexity HeMI uses multiple streams, where in each 

stream it uses smaller population size. The multiple streams 

can be processed in parallel to reduce the time complexity. 

Another advantage of using the multiple streams is better 



exploration of clustering solutions. That is, if we run all 

chromosomes in a single stream (like traditional techniques) 

then we get one best chromosome from the whole population, 

whereas if we divide the chromosomes in multiple streams 

and run them independently then we get multiple best 

chromosomes; one best chromosome from each stream. We 

naturally expect this approach to get better clustering 

solution. The empirical analysis carried out in this study 

(presented in Section 3.5.1) also supports the expectation. 

While running multiple streams independently we also 

make them help each other in achieving better clustering 

solutions. That is, the independent streams can exchange 

message at a regular interval in order to increase the 

clustering quality of each stream. One way we could do this 

is by identifying the best chromosome out of all streams and 

implanting the chromosome in each stream. However, in that 

case all streams would have the same best chromosome and 

would lose the diversity among them. Therefore, for each 

stream we first identify a set of neighboring streams and then 

identify the best chromosome within the neighboring streams 

which is then implanted into the stream. This way we can 

ensure that all streams will not have the same best 

chromosome in them. Our empirical analysis again shows 

(presented in Section 3.5.1) a clear evidence that the use of 

multiple streams with sharing information among the 

neighboring streams result in better clustering solutions. 

Another interesting idea of HeMI is the continuous health 

improvement in every generation in order to ensure the 

presence of high quality chromosomes in each population. In 

each population it identifies a number of sick chromosomes 

and replaces them by healthy chromosomes. Some of the 

healthy chromosomes are obtained from the pool of high 

quality chromosomes created for the initial population using 

K-means/K-means ++ many times. Moreover, some of the 

healthy chromosomes are created by applying the crossover 

operation on pairs of good chromosomes. Again our 

empirical analysis indicates the effectiveness of the health 

improvement as presented in Section 3.5.4. 

The mutation operation generally changes some 

chromosome randomly [4, 7, 9]. However, HeMI aims to use 

the mutation operation for improving the chromosome health 

while changing them randomly. The mutation operation in 

HeMI has three components: division, absorption and 

random change. In the division operation, it examines 

whether dividing the sparsest cluster into two separate 

clusters can improve the chromosome health. Similarly in the 

absorption operation, it examines whether the chromosome 

health can be improved by merging the two closest clusters. 

After the division and absorption operation it finally makes a 

slight change randomly. The effectiveness of this mutation 

operation has been empirically analyzed in Section 3.5.3. 

2.2 Main Components 

In this subsection we introduce the main components of 

the proposed technique, HeMI before we present the 

complete algorithm and steps of HeMI in the next subsection. 

 

2.2.1 Component 1: Normalization 

HeMI first normalizes a dataset D (See Algorithm 1) in 

order to weigh each attribute equally regardless of their 

domain sizes [4]. The normalization brings the domain range 

of each numerical attribute between 0 and 1. It generates a 

normalized attribute value 𝑋𝑁 =  
𝑋𝑀𝑎𝑥−𝜇

𝑋𝑀𝑎𝑥− 𝑋𝑀𝑖𝑛
, where 𝑋𝑀𝑎𝑥 is 

the maximum, 𝑋𝑀𝑖𝑛 is the minimum, and 𝜇 is the average 

domain value of the numerical attribute. The distance 

between records is computed using the Euclidean distance 

metric [37-39]. Hence, the distance between two records for 

a numerical attribute can vary between 0 and 1. For a 

categorical attribute, HeMI uses an existing technique [36] to 

compute the similarity S between two categorical values of 

the categorical attribute. The distance between two values of 

a categorical attribute d = 1 – S. The similarity S varies 

between 0 and 1 and hence the distance d also varies between 

0 and 1. As a result the distance between any two records 

varies between 0 and 1 and all attributes have equal weight 

in the distance calculation. 

 

2.2.2 Component 2: Multiple Streams 

This component is an original/new contribution of HeMI 

that aims to take advantage of using a big population through 

multiple streams where each stream contains a relatively 

small number of chromosomes. Generally in the genetic 

algorithm based clustering techniques the bigger population 

size tends to increase the quality of final clustering solutions 

[29, 30]. Therefore, HeMI aims to use a big population in 

order to produce better clustering solution. However, big 

population can increase the time complexity. Thus, HeMI 

uses multiple streams where each stream contains a 

subpopulation. It can process the streams in parallel in order 

to reduce the time complexity. The chromosomes for each 

stream are generated separately through the population 

initialization. Various components such as crossover and 

mutation are applied on each stream separately. 

 

2.2.3 Component 3: Population Initialization 

This is another new/original contribution of HeMI that 

selects high quality chromosomes in the initial population 

through two phases: a deterministic phase and a random 

phase. The proposed technique selects 50% of the 

chromosomes of the initial population through the 

deterministic phase and the remaining 50% chromosomes 

through the random phase. 

For the deterministic phase HeMI uses a set of predefined 

numbers of genes/clusters k. The default set of predefined k 

is {2, 3, …. 10} where the size of the set is nine. HeMI uses 

each element of the set as the number of clusters (k) for K-

means/K-means++ and thus produce a clustering solution i.e. 

chromosome. For each element it run K-means/K-means++ 

five times and thus produces five chromosomes. That is it 

produces altogether 5 x 9 = 45 chromosomes in the 

deterministic phase. 



Due to the use of K-means/K-means++ HeMI expects to 

get high quality chromosomes for a given k value. Since 

HeMI does not know the actual k in a dataset it explores 

numbers from 2 to 10. Typically the k value for a dataset 

varies between 2 and 10, which is supported by our empirical 

analysis on the datasets in the UCI machine learning 

repository [31]. In the UCI repository there are 157 datasets 

for which the class sizes (i.e. the domain sizes of the class 

attributes) have been reported. The domain size of the class 

attribute of a dataset is indicative to the number of clusters in 

the dataset. The mean and standard deviation of the class 

sizes of the datasets are 5.36 and 5.49, respectively. That is, 

the number of clusters of a data set typically varies between 

2 and 10. Hence, HeMI uses the set of k {2, 3,…..10}, in the 

deterministic phase. 

However, the actual k values in many datasets are more 

than 10. In order to handle such situations HeMI uses the 

random phase where it generates 45 chromosomes. For each 

chromosomes, it randomly generates the k value between 2 

and √𝑁(N is the number of records in a dataset) and then 

randomly picks k records to form k genes of the chromosome. 

HeMI by default uses 20 chromosomes in the population 

of a generation. Therefore, it chooses the best 10 

chromosomes from the 45 chromosomes generated in the 

deterministic phase and the best 10 chromosomes from the 

45 chromosomes generated in the random phase. While the 

use of K-means/K-means++ helps to get high quality 

chromosomes the use of the random approach helps to 

explore the solution space through its randomness. 

The best chromosome out of the 20 chromosomes of the 

initial population is stored separately as the best chromosome 

which is then used in the elitist operation later on. The DB 

Index [40] is used by default as the fitness function of the 

chromosomes throughout all steps in HeMI. A small DB 

Index value indicates a good clustering result and therefore, 

the fitness of a chromosome is computed by 1/DB [5] where 

the chromosome with low DB Index has a higher fitness 

value. 

 

2.2.4 Component 4: Noise Based Selection 

At the beginning of each generation starting from 

Generation 2, we carry out the Noise Based Selection [5] in 

order to get a new population for subsequent genetic 

operations such as crossover and health improvement. This 

component was originally proposed in the literature [5]. 

The chromosomes of two generations are compared pair 

wise. If we have twenty chromosome in the current (i-th) 

generation 𝑃1
𝑖 , 𝑃2

𝑖 , … 𝑃20
𝑖  and twenty chromosome in the 

previous (i-1)-th generation  𝑃1
𝑖−1 , 𝑃2

𝑖−1, … 𝑃20
𝑖−1  then 

 𝑃𝑗
𝑖−1 and  𝑃𝑗

𝑖  are compared pairwise, ∀𝑗. If the fitness of 

chromosome  𝑃𝑗
𝑖−1 and  𝑃𝑗

𝑖  are  𝑓𝑗
𝑖−1 and 𝑓𝑗

𝑖, respectively, and 

 𝑓𝑗
𝑖−1 >  𝑓𝑗

𝑖 then we choose   𝑃𝑗
𝑖−1  if  𝑓𝑗

𝑖−1 >  𝑓𝑗
𝑖  + noise > 0, 

otherwise we choose  𝑃𝑗
𝑖 . The noise value ranges between 1 

and 0.  We use this component to introduce a randomness in 

selecting the chromosomes of a generation, where the 

chances are high that the chromosome with higher fitness 

will be chosen (especially when the difference between the 

fitness values is big), but still in some cases it may not 

happen. 

 

2.2.5 Component 5: Crossover Operation 

HeMI performs a crossover operation on a pair of  

chromosomes where the chromosomes swap their 

segments/genes to each other and generate a pair of offspring 

[4, 7, 9].Typically, there are many selection criteria such as 

roulette wheel [9, 10, 41] rank-based wheel [7] and random 

selection [6] that are used to select a chromosome pair for a 

crossover operation. In HeMI, the best chromosome (which 

is currently available in the population) is chosen as the 1st 

chromosome of the pair. The 2nd chromosome of the pair is 

chosen using the roulette approach, where a chromosome 

𝑃𝑗  is chosen with a probability 𝑇𝑗  = (𝑓𝑗/ ∑ 𝑓𝑗
|P|
𝑗=1 ). Here, 𝑓𝑗 is 

the fitness of the chromosome 𝑃𝑗 and |𝑃| is the size of the 

current population. Once a pair of chromosomes is chosen it 

is removed from the current population. For the selection of 

the next pair, again the new best chromosome is chosen. The 

2nd chromosome of the pair is chosen using the same process 

described above. The intuition behind the roulette wheel 

selection is to take a non-deterministic approach with high 

probability of choosing a pair of good chromosomes. 

There are many approaches to perform crossover between 

a pair of chromosome such as single point [4, 9, 42], multi-

point [7], arithmetic [43] and path-based crossover [6]. 

However, Peng et al. [42] in some experiments demonstrates 

that single point crossover performs better than the multi-

point crossover. 

Therefore, in the proposed technique the single point 

crossover is used where it randomly generates a crossover 

point for each chromosome of the pair in order to divide a 

chromosome into two segments and then swaps the segments 

between the chromosomes.  

 

2.2.6 Component 6: Twin Removal 

Two identical genes can somehow be generated in a 

chromosome [4]. Therefore, we use the twin removal 

approach [4] to remove/change the identical genes. If the 

length of a chromosome is more than two then while there 

are two identical genes we delete one of the two identical 

genes. Thus the length of the chromosomes is decreases by 

one. If the length of a chromosome is two and both the genes 

are identical then we randomly change one of the two 

identical genes in order to make sure that the genes are not 

identical. 

 

2.2.7 Component 7: Three Steps Mutation Operation 

This is another new contribution of HeMI that changes a 

chromosome using three steps/operations: division, 

absorption and a random change. Note that the division and 

absorption operations are also used in some existing 

techniques [5, 7, 9], but there are differences between them 

and HeMI as follows. 



Chang et al [9] applies both division and absorption on a 

chromosome where clusters are chosen randomly for division 

and absorption, unlike HeMI that carefully chooses clusters 

for division and absorption. Blas et al [7] also chooses a 

cluster for division carefully, where the largest cluster is 

chosen for division. We argue that a large cluster can also be 

compact and may not always require to be divided into 

smaller clusters. Therefore, HeMI applies division on the 

sparsest (not largest) cluster of a chromosome. Moreover, 

Blas et al [7] chooses two random clusters for absorption, 

whereas HeMI chooses the two closest clusters for 

absorption. 

Liu et al [5] also chooses the sparsest cluster for division 

and two closest clusters for absorption. However, they 

randomly apply either division or absorption on a 

chromosome, regardless of the improvement of its fitness. 

However, HeMI applies both division and absorption on a 

chromosome. Division/absorption is applied only if it 

improves the fitness of a chromosome. Additionally after the 

division and absorption operation, HeMI also applies the 

random change operation on a chromosome based on a 

mutation probability in order to support the exploration 

nature of genetic algorithms. 

In the division operation HeMI identifies the sparsest 

cluster  𝐶i
  of a chromosome  𝑃i

   and then divides the cluster 

 𝐶i
  into two clusters by applying K-means on  𝐶i

  where the 

value of k is set to 2. If the fitness of the chromosome after 

division 𝑃𝑖
𝑑  is better than the fitness of the chromosome 𝑃i

  

then 𝑃𝑖
𝑑  is selected, otherwise  𝑃i

  is selected for the 

absorption operation. The absorption operation finds the two 

closest clusters  𝐶i
  and  𝐶j

  of the chromosome  𝑃i
  or 

  𝑃𝑖
𝑑 (whichever is selected from the division operation), and 

merges them into one cluster. Thus it forms a new 

chromosome 𝑃𝑖
𝑎 . If the fitness of  𝑃𝑖

𝑎  is better than the fitness 

of  𝑃i
  and  𝑃𝑖

𝑑 then   𝑃𝑖
𝑎  is selected, otherwise either  𝑃i

  or 

  𝑃𝑖
𝑑 (whichever is selected from the division operation) is 

selected for the random change operation. 

Once the division and absorption operations for all 

chromosomes of a population are completed then the random 

change operation is carried out. In the random change 

operation the mutation probabilities for each chromosome 

are computed. The mutation probability of a chromosome 

 𝑃j
  is calculated using its fitness 𝑓j

 , and the maximum fitness 

value 𝑓max
  and average fitness value  𝑓mean

  of all 

chromosomes in the current population. The mutation 

probability [6, 44] of the j-th chromosome is calculated as 

follows, where 𝑘1 and 𝑘2 are equal to 0.5.  

 

𝑇𝑗 = {
𝑘1 ∗

𝑓𝑚𝑎𝑥 − 𝑓𝑗

𝑓𝑚𝑎𝑥 −𝑓𝑚𝑒𝑎𝑛
  𝑖𝑓 𝑓𝑗 > 𝑓𝑚𝑒𝑎𝑛 ,

  
𝑘2 ,                      𝑖𝑓  𝑓𝑗 ≤ 𝑓𝑚𝑒𝑎𝑛

  (1)

       

The intuition behind this is to reduce the amount of 

random changes on good chromosome. The 𝑇𝑗 value for the 

chromosome having the best fitness is zero. The 𝑇𝑗   value 

increases for the chromosome with lower fitness value. The 

𝑇𝑗 value is 0.5 for all chromosomes having fitness less than 

the average fitness. 

If the mutation probability of a chromosome is greater 

than a random number (between 0 and 1) then the 

chromosome is selected for the random change operation, 

otherwise it remains unchanged. In the random change 

operation, a gene of the chromosome is randomly chosen 

where an attribute value of the gene is randomly changed to 

another value within its domain. 

 

2.2.8 Component 8: Health Improvement Operation 

This is an original contribution of HeMI. The aim of this 

component is to continuously improve the health of 

chromosomes in every generation in order to ensure the 

presence of high quality chromosomes within a population. 

Crossover and mutation operations are likely to improve 

health/fitness of some chromosomes, but they can also 

decrease health/fitness of some chromosomes. Therefore, 

after the crossover and mutation operations HeMI identifies 

sick chromosomes and replaces them through three phases. 

In Phase 1, HeMI identifies the healthy and sick 

chromosomes. It sorts the chromosomes in descending order 

of their fitness values and identifies 50% of the chromosomes 

to be sick. For example, if there are 20 chromosomes in a 

population (i.e. population size = 20) then it identifies the 10 

sickest chromosomes to be sick and the others to be healthy. 

The sick chromosomes are then removed from the 

population. So the population size temporarily decreases to 

50% where all of them are considered to be healthy. In the 

following two phases 50% new chromosomes are added to 

bring the population size back to 100%. 

In Phase 2, HeMI generates 20% new chromosomes i.e. 

if the original population size is 20 then it generates 4 

chromosomes. For this, it first picks the healthiest 20% 

chromosomes from the set of healthy chromosomes found in 

Phase 1. Applying the same approach of Component 5 it then 

chooses pairs of chromosomes from these 20% healthy 

chromosomes. It next applies the crossover operation on each 

pair in order to generate offspring chromosomes which are 

then added into the population. Hence, at this stage the 

population size is back to 70% of the original size. 

In Phase 3, HeMI adds the remaining 30% chromosomes 

in the population. These chromosomes are chosen from the 

pool of chromosomes that was obtained through the 

deterministic phase of Component 3 which are supposed to 

be healthy chromosomes due to the use of K-means/K-

means++. Moreover, in this phase HeMI chooses the best 

chromosomes of the pool. For each of these chromosomes 

HeMI then randomly changes an attribute value of a gene 

within its original domain. These chromosomes are then 

added into the population to bring the population size back to 

100%.  

 

2.2.9 Component 9: The Elitist Operation 

The Elitist operation keeps track of the best chromosome 

throughout the generations in order to ensure the continuous  



 
Algorithm 1: HeMI 

Input: A dataset D having N records and |A| attributes, where A is the set of attributes  

Output:  A set of cluster C 

Require:  

        Ps ← ∅  /* 𝑃s is the set of initial population (20 chromosomes), initially set 𝑃s to empty */ 

        Po ← ∅  /* 𝑃𝑜 is the set of offspring chromosomes, initially set 𝑃𝑜 to empty*/ 

        Pm  ← ∅ /*  𝑃𝑚 is the set of mutated chromosomes, initially set  𝑃𝑚 to empty*/ 

        pc  ← ∅ /* 𝑝𝑐 is the set of healthy chromosomes, initially set  𝑝𝑐 to empty*/ 

        D′ ← Normalized ( 𝐷) /* normalize each attribute of the data set in the normalized data set (𝐷′) */ 

        Pd← ∅ /* 𝑃𝑑 is the set of deterministic chromosome (45 chromosomes), initially set 𝑃𝑑 to empty */ 

        Pr← ∅  /* 𝑃𝑟  is the set of random chromosome (45 chromosomes), initially set 𝑃𝑟  to empty */ 

end  

for k= 1 to m do /* m=4, user defined number of streams, default value of m is set to 4 and k is the counter of m */  

     Step 1:  /* Population Initialization */  

           Pd ←GenerateDeterministicChromosome (D′) /* generate 𝑃𝑑 through K-means, the number of initial seeds for k-means are chosen  deterministically */ 

           Pd ←SelectedDeterministicChromosome (Pd ) /* select 10 chromosomes (50% chromosomes of the initial population) based on fitness */  

           Pr ←GeneratRandomChromosome (D′) /* generate 𝑃𝑟  randomly, the number of initial seeds are chosen randomly and the seeds also chosen randomly */ 

           Pr ←RandomChromosomeSet (Pr) /* select 10 chromosomes (50% chromosomes of the initial population) based on fitness */ 

           Ps ← Ps ∪ (Pr ∪ Pd) /* insert 𝑃𝑟  and 𝑃𝑑 into 𝑃𝑠  */             

            Pb= FindBestChromosome (Ps) /* 𝑃𝑏 is a chromosome that has the  maximum fitness value in 𝑃𝑠 */ 

     end 

end 

for j=1 to G do /* default G=5, G is the number of intervals of the total number of iterations and j is the counter of G */ 
      for k= 1 to m do /* default m=4, m is the user defined number of streams, and k is the counter of m */   

           for t=1 to I do /* default I = 10, I is the user defined number of iterations for each interval and t is the counter of I */        

                Step 2: /* Noised Based Selection */ 
                      if  t >1 then 

              Ps = NoiseBasedSelection(Ps
i, Ps

i−1) /* perform noise based selection between current ( 𝑃𝑠
𝑖 ) and  previous (𝑃𝑠

𝑖−1) generation*/ 

       end 
                 end             

                 Step 3: /* Crossover operation */ 

             Po ← PerformCrossover (Ps) /*perform single point crossover on 𝑃𝑠 and get offspring 𝑃𝑜*/ 

        end  

                Step 4:  /*Twin Removal */ 

             P0 =Twin Removal (P0)  /*perform twin removal on 𝑃0 and get a set of chromosome 𝑃0 */ 

                 end                      

               Step 5: /* Three Steps Mutation operation */   

     while |P0 | ≥ 0 do 

             Pm ← DivisionOperation (P0) /*perform division operation on 𝑃𝑜 and get chromosome 𝑃𝑚 */ 

               Pm ← AbsorptionOperation (Pm) /*perform absorption operation on 𝑃𝑚 and get chromosome 𝑃𝑚 */ 

               Pm ← RandomChangeOperation (Pm) /*perform random change operation on 𝑃𝑚 and get chromosome 𝑃𝑚 */   

             end   

  end       
                Step 6: /* Health Improvement Operation */  

          Px = MajoritySelection (Pm) /* select 10 best chromosomes from 𝑃𝑚 based on their fitness */ 

           Py = MinoritySelection (Pm) /* select 4 best chromosomes from 𝑃𝑚 and perform single point crossover and get offspring 𝑃𝑦  */ 

           Pz = MidSelection (Pd) /* select 6 best chromosomes from 𝑃𝑑 and perform random mutation and get chromosomes 𝑃𝑧 */ 

           Pc ∪ (Px ∪ Py  ∪ Pz) /* insert 𝑃𝑥, 𝑃𝑦  and 𝑃𝑧 into 𝑃𝑐  */ 

            end  

          Step 7: /* Elitist Operation */ 

         Pb
k ←ElitistOperation (Pc &  Pb )  /* apply elitist operation on 𝑃𝑐 &  𝑃𝑏 and find the best chromosome 𝑃𝑏

𝑘 */ 

         Pg← Pb
k /* insert 𝑃𝑏

𝑘 into 𝑃𝑔, 𝑃𝑔 is the set of chromosomes that contains the best chromosome of each stream */ 

          end 

           end  

      end 

     Step 8: /* Neighbor Information Sharing  */  

           for k= 1 to m do /* default m=4, m is the user defined number of streams and k is the counter of m */   

                   Pw
k  = FindWorstChromosome (Pc) /* find the worst chromosome 𝑃𝑤

𝑘   in 𝑃𝑐  */ 

    Pw
k ← ReplaceWithNeighborBestChromosome (Pg) /* replace Wp

k with the best chromosome of its neighbor */ 

   Pb
k ←FindLocalBestChromosome (Pc) /* find the local best chromosome */    

   Lb← Pb 
k /* insert 𝑃𝑏

𝑘 into 𝐿𝑏, 𝐿𝑏 is the set of chromosomes that contains the best chromosome of each k */ 

          end 
     end    

end 

Step 9: /* Global Best Selection*/ 

       C ←FindGlobalBestChromosome (Lb )  /* find the global best chromosome 𝐶  from 𝐿𝑏*/  

       Return C 

end 



improvement of the quality of the best chromosome found so 

far over the iterations. The operation is applied on a 

population at the end of all other operations in a generation. 

If the fitness of the worst chromosome 𝑃𝑤
𝑖  of the i-th 

population (i.e. the current population) is less than the fitness 

of the best chromosome 𝑃𝑏
𝐴𝑙𝑙 found so far from all previous 

generations then 𝑃𝑤
𝑖  is replaced by 𝑃𝑏

𝐴𝑙𝑙 in the current 

population. Moreover, if the best chromosome of the current 

population 𝑃𝑏
𝑖  has higher fitness than the fitness of 

𝑃𝑏
𝐴𝑙𝑙 then  𝑃𝑏

𝑖  is copied in 𝑃𝑏
𝐴𝑙𝑙 , replacing its old value.  

 

2.2.10 Component 10: Neighbor Information Sharing 

This is a new contribution of HeMI where neighboring 

streams share/exchange the best chromosome among them, 

at a regular interval such as at every 10th generation. If a 

stream somehow suffers from the low quality of its best 

chromosome then it gets an opportunity to borrow the best 

chromosome from its neighboring streams. 

For a stream Si, HeMI first identifies its neighboring 

streams. The streams S= {S1, S2 … S|S|} are number 

sequentially where |S| is the user defined number of streams. 

The default number of streams is four in this study. For any 

stream Si, the two streams Si+1 MOD |S| and Si+2 MOD |S| are 

considered to be the neighboring streams. The MOD 

operation ensures that the neighbors are found in a wrap up 

fashion where for the stream S|S| the neighboring streams will 

be S1 and S2. 

For a stream Si, HeMI spots out the best chromosome Pb 

out of its neighboring streams and Si. It then replaces the 

worst chromosome of Si by Pb, if Pb comes from a 

neighboring stream of Si. The chromosomes of Si are then 

sorted and the best chromosome is stored as Pb
All which is the 

best chromosome found so far for Si, as explained in Section 

2.2.9. 

While the sharing of the best chromosome from the 

neighboring streams increases the fitness of the best 

chromosome Si, it maintains the divergence among the 

streams since the sets of neighboring streams for any two 

streams Si and Sj are different.  

 

2.2.11 Component 11: Global Best Selection 

This is another contribution of HeMI. At the end of all 

iterations/generations each stream has a best chromosome for 

the stream. HeMI compares all such best chromosomes from 

all streams and then select the best of the best chromosomes 

as the final clustering solution. The genes of the best 

chromosome represent the cluster centers and records are 

allocated to their closest seeds to form the final clusters. 

2.3 The HeMI Algorithm: 

After introducing the main components we are now ready 

to present the overall algorithm of HeMI. HeMI takes a 

dataset D as input. It first normalizes all numerical attributes 

separately as explained in Section 2.2.1. HeMI uses a user 

defined number of multiple streams as explained in Section 

2.2.2. The use of multiple streams aiming to improve 

clustering results is an original contribution of HeMI. The 

default number of multiple streams is four (4) in this study. 

Each stream contains a subpopulation (see Section 2.2.2) in 

the sense that the total number of chromosomes is equally (or 

as equally as possible) divided among the streams.    

HeMI then generates initial chromosomes for each stream 

separately through its proposed Population Initialization 

component (see Section 2.2.3 and Step 1 of Algorithm 1). It 

skips the Noise Based Selection operation in the first iteration 

as shown in Step 2 of Algorithm 1. The Noise Based 

Selection operation is applied from the 2nd iteration.  

The single point crossover, Twin Removal, Mutation, 

Health Improvement and Elitist operation are then applied 

sequentially. All these operations are described before (see 

from Section 2.2.5 to Section 2.2.9). They can also be studied 

in various steps (from Step 3 to Step 7) of Algorithm 1. The 

Mutation and Health Improvement operation are also original 

contributions of HeMI.  

In order to take the advantage of the multiple streams 

HeMI then performs the Neighbor Information Sharing 

operation at a regular interval, which is by default 10 

iterations. This operation has been explained in Section 

2.2.10 and Step 8 of Algorithm 1. This is another original 

contribution of HeMI. At the end of all iterations HeMI 

applies the Global Best Selection operation in order to find 

the final clustering solution (see Section 2.2.11 and Step 9 of 

Algorithm 1). This is also an original contribution of HeMI. 

3. Experimental Results and Discussion 

3.1 The Datasets and the Evaluation Criteria 

We empirically compare our proposed technique called 

HeMI with five existing techniques namely K-means [2], K-

means ++ [3], GAGR [6], AGCUK [5] and GenClust [4] on 

twenty (20) natural datasets that are available from the UCI 

machine learning repository [31]. HeMI is compared with 

these existing techniques because they are recent and were 

shown to be better than many other high quality techniques 

[45-49].  

Detailed information on the datasets is provided in Table 

1. We choose datasets with wide variety. For example, some 

datasets (such as Glass identification) have only numerical 

attributes, and some datasets (such as BC) have categorical 

attributes. The Credit Approval (CA) dataset has 6 numerical 

and 9 categorical attributes. The reason why we choose most 

of the datasets with only numerical attributes is that all 

techniques (except HeMI and GenClust) that we use in this 

study can handle only numerical attributes.  

Some datasets have low number of attributes such as 

Blood Transfusion (BT) that has only 4 attributes and some 

datasets have high number of attributes such as Dermatology 

(DT) that has 34 attributes. Similarly, some datasets have low 

number of records such as Glass identification that has 214 

records and some datasets have relatively high number of 

records such as MGT that has 19,020 records. Also some 

datasets have low number of class values (i.e. low domain 

size of class attributes) such as BC that has only two class 



values, but some datasets have high number of class values 

such as LF that has 36 class values.  

Class values are the labels of records which show an 

important property of a dataset. Typically, clustering 

algorithms are applied on datasets that do not have any class 

values. Hence, we delete the class attributes from all datasets 

prior to any experimentation.  

Some of the datasets contain missing values in them, 

meaning that for some records some attribute values are 

missing. Column 2 of Table 1 shows the total number of 

records of the datasets including the records that have some 

missing values. We first delete the records having any 

missing value/s. Column 3 of Table 1 shows the number of 

records without missing value/s. For example, the BC dataset 

has altogether 286 records, but 9 of them have one or more 

missing values. Hence, after these 9 records are deleted the 

dataset has 277 records without any missing values. In all 

experiments, we use the datasets without any missing values.   

We evaluate and compare the clustering techniques based 

on two well-known evaluation criteria namely Silhouette 

Coefficient [1, 7] and DB Index [40]. Note that higher values 

of Silhouette Coefficient represent better clustering results, 

whereas lower values of DB Index indicate better clustering 

results.  

 

3.2 The Parameters used in the Experiments 

In the experiments on AGCUK [5], GAGR [6], GenClust 

[4] and HeMI we consider the population size to be 20 and 

number of iterations/generations to be 50. We maintain this 

consistency for all of these techniques in order to ensure a 

fair comparison among them.  

In the experiments, the number of iterations of K-

means/K-means ++ in HeMI is set to 50 and the number of 

iterations of K-means in GenClust is also set to be 50. The 

cluster numbers in GAGR, K-means and K-means ++ is user 

defined. However in order to simulate a natural scenario, the 

cluster number for GAGR, K-means and K-means ++ are 

generated randomly between 2 and √𝑁, where N is the 

number of records in a dataset.  

The number of iterations for K-means and K-means ++ is 

also set to 50 and the threshold value is set as 0.005 that was 

suggested in GenClust. The value of  𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛   for 

AGCUK and HeMI is set to be are 1 and 0 respectively as 

suggested in AGCUK.  

 

3.3 The Experimental Setup 

For each dataset, we run HeMI 20 times since it can 

produce different clustering results in different runs. We then 

present the average and standard deviation of the clustering 

results. We also run all other techniques AGCUK, GAGR, 

K-means, K-means ++ and GenClust 20 times. We present 

the average and standard deviation of the clustering results.  

We run each of the techniques 20 times on all 20 datasets. 

Moreover, in order to evaluate the effectiveness of various 

components of HeMI we use 5 datasets where we run the 

techniques 20 times.  

3.4 Experimental Results on All Techniques  

In this section we experimentally evaluate the 

performance of HeMI by comparing it with K-means, K-

means ++, GGAR, AGCUK and GenClust on all 20 datasets 

where each technique runs 20 times on each dataset. Since 

there are 2 datasets with categorical attributes AGCUK, 

GAGR, K-means and K-means++ cannot handle these 

datasets and therefore, these techniques are tested on 18 

(instead of 20) datasets. However, HeMI and GenClust are 

tested on all 20 datasets. 

Fig. 1a and Fig. 1b show the average and standard 

deviation of the Silhouette Coefficient of the clustering 

solutions, where HeMI achieves better results than GenClust 

in 20 out of 20 datasets. That is, in 20 out of 20 datasets the 

average Silhouette Coefficient of 20 runs of HeMI is higher 

than the average Silhouette Coefficient of 20 runs of 

GenClust. Moreover, in 17 out of 20 datasets the standard 

deviations of HeMI do not overlap the standard deviations of 

GenClust and the average Silhouette coefficient of HeMI is 

higher than GenClust. Note that the cases where the standard 

deviations of HeMI overlap with the standard deviations of 

other techniques are indicated with an arrow in Fig. 1a, Fig. 

1b, Fig. 2a and Fig. 2b. That is, for all cases without an arrow 

HeMI achieves better result with no overlap of standard 

deviations.  

HeMI achieves higher Silhouette Coefficient than 

AGCUK in 20 out of 20 datasets. The standard deviations of 

HeMI do not overlap the standard deviations of AGCUK in 

19 out of 20 datasets. HeMI also achieves higher Silhouette 

Coefficient than K-means, K-means++ and GAGR in all 20 

datasets. In 20 out of 20 datasets the standard deviations of 

HeMI do not overlap with the standard deviations of any of 

these techniques.  

All bar graphs in Fig. 1a, Fig. 1b, Fig. 2a and Fig. 2b are 

in the same sequence: K-means, K-means++, GAGR, 

AGCUK, GenClust and HeMI. As we can see in Fig. 2a and 

Fig. 2b, HeMI achieves better clustering results (on an 

average) than GenClust in 19 out of 20 data sets, based on 

DB Index for which a lower value indicates a better result. In 

18 out to 20 datasets HeMI does not have any overlap of 

standard deviations with the standard deviations of GenClust. 

Moreover, HeMI performs better than K-means, K-means 

++, GAGR and AGCUK on all 20 datasets based on DB 

Index. In 20 out to 20 datasets HeMI does not have any 

overlap of standard deviations with the standard deviations 

of these techniques. 

The right most columns of Fig. 1b and Fig. 2b show the 

average Silhouette Coefficient and DB Index of all 

techniques on all datasets. HeMI achieves clearly better 

results on an overage than all other techniques without any 

overlapping of standard deviations. We believe that this is a 

very strong result in order to demonstrate the superiority of 

HeMI over a number of recent and high quality clustering 

techniques. We next present some interersting results 

supporting the effectivenss of various proposed components 

of HeMI. 

 



  
Table 1.  

A brief description of the datasets 

 

Dataset No. of Records 

with missing 

No. of Records 

without missing 

No. of numerical 

attributes 

No. of categorical 

attributes 

Class size  

Glass Identification (GI) 214 214 10 0 7 

Breast Cancer (BC) 286 277 0 9 2 

Vertebral Column (VC) 310 310 6 0 2 

Ecoli (EC) 336 336 8 0 8 

Leaf (LF) 340 340 16 0 36 

Liver Disorder (LD) 345 345 6 0 2 

Dermatology (DT) 366 358 34 0 6 

Credit Approval (CA) 690 653 6 9 2 

Breast Cancer Wisconsin Original (WBC) 699 683 10 0 2 

Blood Transfusion (BT)  748 748 4 0 2 

Pima Indian Diabetes (PID) 768 768 8 0 2 

Statlog Vehicle Silhouettes (SV) 846 846 18 0 4 

Mammographic Mass (MGM) 961 830 5 0 2 

Bank Note Authentication  (BN) 1372 1372 4 0 2 

Contraceptive Method Choice (CMC) 1473 1473 9 0 3 

Yeast (YT) 1484 1484 8 0 10 

Image Segmentation (IS) 2310 2310 18 0 7 

Wine Quality (WQ) 4898 4898 11 0 7 

Page Blocks Classification (PBC) 5473 5473 10 0 5 

MAGIC Gamma Telescope (MGT) 19020 19020 11 0 2 

 
 

Fig. 1a. Comparative results between HeMI and other techniques on ten datasets based on Silhouette Coefficient 

 

 
 

Fig. 1b. Comparative results between HeMI and other techniques on ten datasets based on Silhouette Coefficient 



 

 
 

Fig. 2a. Comparative results between HeMI and other techniques on ten datasets based on DB Index 

 

 
 

Fig. 2b. Comparative results between HeMI and other techniques on ten datasets based on DB Index 

3.5 An Analysis of the Impact of Various Properties of 

HeMI 

We now explore the effectiveness of some novel 

properties/components of HeMI in the following 

subsections. For the experiments, we add a component of 

HeMI to an existing technique called AGCUK, and 

investigate its impact on AGCUK.  

3.5.1 An Analysis of the Impact of Multiple Streams that 

Exchange Information  

An important contribution of HeMI is its multiple streams 

that share/exchange information at a regular interval. Due to 

having multiple streams HeMI can accommodate more 

chromosomes than existing techniques. Hence, in this section 

we carry out experiments to first investigate whether higher 

number of chromosomes improves the clustering results. We 

next investigate the impact of exchanging information among 

the streams at a regular interval. The results justify the 

usefulness of the components. 

Table 2 demonstrate that AGCUK achieves better 

clustering results (in terms of Silhouette Coefficient and DB 

Index) when it uses 40 chromosomes instead of 20 

chromosomes and 80 chromosomes instead of 40 

chromosomes. We run 50 iterations as usual. Average results 

of 20 runs are presented in the tables. 

Table 3 present clustering results obtained by AGCUK 

with 80 chromosomes in single stream and AGCUK with 80 

chromosomes equally divided among 4 streams called 

AGCUK with Multiple Streams. In this case the streams do 

not exchange information. We pick the best clustering result 

of 4 streams at the end of 50 iterations. It clearly shows that 

multiple streams help AGCUK to achieve better results. 

Table 4 compare clustering results obtained by AGCUK 

with 4 streams that do not exchange information and 

AGCUK with 4 streams called AGCUK with Neighbor 

Exchange that exchange information among neighbors 

regularly at 10 iterations. We can clearly see the impact of 

information exchange on the final clustering results. 

The total number of chromosomes and iterations in all 

versions of AGCUK are same, but still AGCUK with 

multiple streams that exchange information achieves better 

results than others. This clearly indicates the effectiveness of 

the component. 

Similar experiments are then carried out on another 

existing technique called GenClust. The results are consistent 

with AGCUK and indicate the effectiveness of the proposed 

component. See Table 5. 



  
Table 2  

Comparative results between AGCUK, AGCUK with 40 Population and AGCUK with 80 Population 

 

Dataset DB Index (lower the better) 

AGCUK         AGCUK with AGCUK  with
  40 Population   80 Population 

Silhouette Coefficient (higher the better) 

AGCUK             AGCUK with  AGCUK with
  40 Population  80 Population 

PID 1.40 1.30 1.32 0.27 0.31 0.29 

BT 0.54 0.53 0.47 0.64 0.63 0.66 

GI 0.62 0.53 0.54 0.65 0.70 0.69 

LD 0.87 0.82 0.79 0.46 0.50 0.51 

BN 0.79 0.76 0.67 0.47 0.49 0.55 

Average 0.84 0.78 0.75 0.49 0.52 0.54 

Table 3  

Comparative results between AGCUK with 80 Population and AGCUK with Multiple Streams  

 

Dataset DB Index (lower the better) 

AGCUK with 80 Population   AGCUK with Multiple Streams 

Silhouette Coefficient (higher the better) 

AGCUK with 80 Population      AGCUK with Multiple Streams 

PID 1.32 1.30 0.29 0.31 

BT 0.47 0.43 0.66 0.69 

GI 0.54 0.40 0.69 0.78 

LD 0.79 0.77 0.51 0.55 

BN 0.67 0.68 0.55 0.55 

Average 0.75 0.71 0.54 0.57 

Table 4  

Comparative results between AGCUK with Multiple Streams and AGCUK with Neighbor Exchange 

 
Dataset DB Index (lower the better) 

AGCUK with   AGCUK with 
Multiple Streams   Neighbor Exchange 

Silhouette Coefficient (higher the better) 

AGCUK with   AGCUK with 
Multiple Streams   Neighbor Exchange 

PID 1.30 1.25 0.31 0.33 

BT 0.43 0.44 0.69 0.70 

GI 0.40 0.40 0.78 0.74 
LD 0.77 0.46 0.55 0.67 

BN 0.68 0.53 0.55 0.63 

Average 0.71 0.61 0.57 0.61 

 

Table 5  

Comparative results between GenClust, GenClust with Multiple Streams and GenClust with Neighbor Exchange

 
Dataset DB Index (Lower the better) 

GenClust              GenClust with GenClust with 

              Multiple Streams         Neighbor Exchange 

Silhouette Coefficient (higher the better) 

GenClust                 GenClust with  GenClust with 

                 Multiple Streams           Neighbor Exchange 

PID 1.11 1.03 0.95 0.37 0.42 0.47 

BT 0.89 0.80 0.77 0.41 0.44 0.47 

GI 0.71 0.69 0.65 0.62 0.63 0.65 

LD 0.85 0.83 0.75 0.56 0.57 0.63 

BN 0.85 0.82 0.76 0.41 0.42 0.46 

Average 0.88 0.83 0.77 0.47 0.49 0.53 

Table 6 

Comparative results between HeMI, AGCUK with Neighbor Exchange and GenClust with Neighbor Exchange 

 
Dataset DB Index (lower the better) 

AGCUK with  GenClust  with      HeMI 
Neighbor Exchange Neighbor Exchange 

Silhouette Coefficient (higher the better) 

AGCUK with GenClust  with      HeMI  
Neighbor Exchange Neighbor Exchange     

PID 1.25 0.95 0.40 0.33 0.47 0.73 

BT 0.44 0.77 0.17 0.70 0.47 0.86 

GI 0.40 0.65 0.26 0.74 0.65 0.82 

LD 0.46 0.75 0.26 0.67 0.63 0.81 

BN 0.53 0.76 0.39 0.63 0.46 0.70 

Average 0.61 0.77 0.29 0.61 0.53 0.78 

 

 

 



Table 7 

Comparative results between AGCUK and AGCUK with HeMI Population  

 
Dataset DB Index (lower the better) 

AGCUK               AGCUK with HeMI Population 

Silhouette Coefficient (higher the better) 

AGCUK            AGCUK with HeMI Population 

PID 1.40 1.29 0.27 0.30 

BT 0.54 0.48 0.64 0.66 

GI 0.62 0.57 0.65 0.70 

LD 0.87 0.87 0.46 0.45 
BN 0.79 0.75 0.47 0.50 

Average 0.84 0.79 0.49 0.52 

Table 8  

Comparative results between AGCUK and AGCUK with HeMI Mutation  

 

 

Dataset DB Index (lower the better) 
AGCUK                   AGCUK with HeMI Mutation 

Silhouette Coefficient (higher the better) 
AGCUK    AGCUK with HeMI Mutation 

PID 1.40 0.84 0.27 0.53 

BT 0.54 0.23 0.64 0.83 

GI 0.62 0.32 0.65 0.79 

LD 0.87 0.32 0.46 0.78 

BN 0.79 0.60 0.47 0.52 

Average 0.84 0.46 0.49 0.69 

 

Table 9 

Comparative results between HeMI and HeMI without Mutation  
 

Dataset DB Index (lower the better) 

HeMI    HeMI without Mutation 

Silhouette Coefficient (higher the better) 

HeMI    HeMI without Mutation 

PID 0.40 0.46 0.73 0.69 

BT 0.17 0.23 0.86 0.82 
GI 0.26 0.28 0.82 0.80 

LD 0.26 0.31 0.81 0.78 
BN 0.39 0.47 0.70 0.66 

Average 0.29 0.35 0.78 0.75 

Table 10 

Comparative results between HeMI and HeMI without Health Improvement Operation 

 

Dataset DB Index (lower the better) 
HeMI    HeMI without Health  

   Improvement Operation 

Silhouette Coefficient (higher the better) 
HeMI    HeMI without Health  

   Improvement Operation 

PID 0.40 0.80 0.73 0.50 
BT 0.17 0.18 0.86 0.86 

GI 0.26 0.28 0.82 0.81 

LD 0.26 0.27 0.81 0.80 
BN 0.39 0.44 0.70 0.68 

Average 0.29 0.39 0.78 0.73 

Since we see a clear evidence of improvement in 

AGCUK and GenClust with the inclusion of multiple streams 

that exchange information, we now compare them with 

HeMI in order to investigate the effectiveness of other 

components of HeMI. 

Table 6 present that HeMI achieves better clustering 

result than GenClust with multiple streams that exchange 

information in 5 out of 5 datasets based on Silhouette 

Coefficient and DB Index. HeMI performs better than 

AGCUK with multiple streams that exchange information in 

all 5 datasets based on Silhouette Coefficient and DB Index. 

Moreover, the average clustering result of 5 datasets based of 

HeMI on Silhouette Coefficient and DB Index shows the 

clear domination of HeMI over AGCUK and GenClust with 

multiple streams that exchange information. All results 

presented in the tables are average of 20 runs. 

3.5.2 An Analysis of the Impact of the Population 

Initialization 

In order to evaluate the effectiveness of our proposed 

population initialization we incorporate this component (see 

Component 3 in Section 2.2.3) with an existing technique 

called AGCUK, and then see how the component impacts 

AGCUK. 

We generate 20 initial chromosomes through the 

proposed component. We then use these chromosomes in 

AGUCK as the initial population and run AGCUK for 50 

iterations on 5 data sets. We call this as AGCUK with HeMI 

population.  

Table 7 clearly indicates that AGCUK with HeMI 

population achieves better clustering result compared to 

AGCUK according to the Silhouette Coefficient and DB 

Index. The average clustering result of   AGCUK with HeMI  

 



 

 
Fig. 3. Average Fitness versus Iteration. Each line represents the average fitness of the best chromosome of  5 consecutive runs of HeMI on a data set 

population on 5 datasets is also better than AGCUK in 

terms of the both evaluation criteria. 

3.5.3 An Analysis of the Impact of the Mutation 

Operation 

In order to evaluate the effectiveness of the proposed 

mutation operation of HeMI we incorporate the component 

(see Section 2.2.7) with AGCUK by replacing its own 

mutation operation. We call this version of AGCUK as 

AGCUK with HeMI mutation. We run both AGCUK and 

AGCUK with HeMI mutation for 50 iterations on 5 data sets. 

Table 8 shows that AGCUK with HeMI mutation achieves 

better clustering result compared to AGCUK in 5 out of 5 

datasets according to both Silhouette Coefficient and DB 

Index. 

We also extend this analysis by introducing a version of 

the proposed HeMI where we remove its mutation operation 

(let us call this version to be HeMI without mutation) and 

then compare this with complete HeMI.  

We run both HeMI and HeMI without mutation for 50 

iterations. Table 9 shows that HeMI achieves better 

clustering results than HeMI without mutation in 5 out of 5 

datasets based on Silhouette Coefficient and DB Index. This 

clearly indicates the effectiveness of the proposed mutation 

operation used in HeMI. 

3.5.4 An Analysis of the Impact of Health Improvement 

We also explore the effectiveness of the health 

improvement operation (see Section 2.2.8 for Component 8) 

of HeMI. In Table 10 we present the experimental results of 

HeMI comparing with a different version of HeMI called 

HeMI without health improvement operation that is exactly 

same as HeMI except that it does not have Component 8 in 

it. We run both HeMI and HeMI without health improvement 

operation for 50 iterations on 5 datasets. 

We can see in Table 10 that HeMI achieves better 

clustering results than HeMI without health improvement 

operation based on Silhouette Coefficient and DB Index.  

3.5.5 An Analysis of Improvement in Chromosomes over 

the Iterations. 

In Fig. 3 we present the average fitness (in terms of DB 

Index, where Fitness = 1/DB Index) values of the best 

chromosomes over 5 separate runs of HeMI. We run HeMI 5 

times and then present the average fitness of these 5 runs. 

Average fitness values are plotted against the iterations, for 

all 20 datasets. Most of the datasets achieve a rapid 

improvement within first 5 to 10 iterations, and then 

continues to steadily increase over the iterations. This is also 

clear from Fig. 4 that presents the grand average fitness of 

the best chromosomes over all 20 datasets, instead of each 

dataset separately. In Fig. 5 we present the average fitness of 

the best chromosome of HeMI, AGCUK and HeMI with a 

single stream on the PID dataset. Both HeMI and AGCUK 

use the same fitness function (DB Index [40]) to calculate the 

fitness of a chromosome. Average fitness values of the best 

chromosomes of HeMI are always higher than those of HeMI 

with a single stream and AGCUK, clearly indicating the 

effectiveness of various components of HeMI including its 

multiple streams.  



 
Fig. 4. Average Fitness (best chromosome) versus Iteration over the 20 
datasets 

 
Fig. 5. Average Fitness (best chromosome) versus Iteration. Each line 
represents the average fitness of 5 consecutive runs on PID data set 

 

3.6 Statistical Analysis 

We now analyze the results by using a statistical sign test 

[51, 52] on all 20 datasets for all 20 runs to evaluate the 

superiority of the results (Silhouette Coefficient and DB 

Index) obtained by HeMI over the results obtained by the 

existing techniques. We observe that the results do not follow 

a normal distribution and thus do not satisfy the conditions 

for a parametric test. Hence, we perform a non-parametric 

sign test on the Silhouette Coefficient and DB Index as 

shown in Fig. 6a, Fig. 6b, Fig. 7a and Fig. 7b. The first five 

bars for each dataset in Fig. 6a, Fig. 6b, Fig. 7a and Fig. 7b 

show the z-values (test statistics) values for HeMI and the 

five existing techniques while the sixth bar shows the z(ref.) 

value. If the z value is greater than the z(ref.) value then the 

results obtained by HeMI are significantly better than the 

results of existing techniques.  

In Fig. 6 a and Fig. 6 b we present the sign test of HeMI 

compared with the existing techniques on 20 datasets in 

terms of Silhouette Coefficient, where HeMI significantly 

performs better than other techniques on 19 out of 20 

datasets. Fig. 7a and Fig. 7b show the statistical significance 

of HeMI compared with other existing techniques based on 

DB Index, where HeMI significantly performs better than 

other techniques on 19 out 20 datasets. We carry out the 

statistical analysis at z > 1.96, p < 0.025 and right-tailed in 

terms of Silhouette Coefficient and DB Index. Note that the 

cases where we have a lower z value than z(ref.) are indicated 

with arrows in Fig. 6a and Fig. 7b. 

3.7 An Analysis on the use of K-means++ instead of K-

means in HeMI 

The HeMI algorithm allows us to use any light weight 

clustering techniques for the initial population including K-

means and K-means++. In our experiments so far we used K-

means for the initial population and we see that HeMI clearly 

outperforms all other existing techniques used in this study. 

Table 11 indicate that HeMI with K-means++ for the initial 

population achieves better clustering results than HeMI with 

K-means. Hence, we are confident that HeMI with K-

means++ will win against other existing techniques even 

more strongly. 

 

3.8 Complexity Analysis 

In this section we estimate and present the complexity of 

HeMI and compare it with the complexities of the existing 

techniques used in this study. The main factors involving the 

complexity of HeMI are number of records n in a dataset D, 

number of attributes m in D, number of genes k in a 

chromosome, number of chromosomes z in a population of a 

stream, number of iterations N ˊ of k-means and number of 

iterations N of HeMI. Out of these factors we consider that n, 

m, k and z can be much bigger than others and hence we 

compute the complexity in terms of them. 

For the initial population HeMI uses K-means to get a 

number of deterministic chromosomes, the complexity of 

which is O(nmkz). It also randomly selects some 

chromosomes, for which the complexity is O(kz). The fitness 

function is DB index which has a complexity of O(nmkz).  

Once fitness is computed the noising selection requires 

pairwise comparison which can be done in O(z) complexity. 

The crossover operation requires roulette wheel for which we 

need O(z2) complexity. For the twin removal we need 

O(mk2z) complexity. In the mutation operation, complexities 

for the division, absorption and random change are O(nmkz), 

O(mkz) and O(z), respectively. 

Complexities for Phase 1, Phase 2 and Phase 3 of the 

Health Improvement component are O(nmkz), O(z) and O(z), 

respectively. The elitist operation has a complexity of O(z) 

once the fitness is calculated with the cost of O(nmkz). 

Information exchange among neighboring streams requires 

O(z) complexity. Similarly, the global best selection also 

requires O(nmkz)+O(z) complexity. Hence, the overall 

complexity of HeMI is O(nmk2z2). With respect to n and m 

(the two most significant factors) it has a linear complexity 

O(nm). The complexity of K-means, K-means ++, AGCUK, 

GAGR and GenClust are O(nm) [2], O(nm) [3], O(nm) [5], 

O(nm) [6] and O(nm2 +n2m) [4] respectively. 

 

3.9 Comparison Between HeMI and Multiple Runs of K-

means 

Although the complexity of K-means and HeMI in terms 

of n and m are the same, i.e. O(nm), we realize that HeMI 

may require higher execution time than K-means. For 

example, it will require executing the distance calculation  



 

 
 
Fig. 6 a. Sign test of HeMI based on Silhouette Coefficient on ten datasets  

 

 
 
Fig. 6 b. Sign test of HeMI based on Silhouette Coefficient on ten datasets 

 

 
 
Fig. 7 a. Sign test of HeMI based on DB Index on ten datasets 

 

 
 
Fig. 7 b. Sign test of HeMI based on DB Index on ten datasets 



Table 11 

Comparative results between HeMI and HeMI with K-means++ 

 
Dataset DB Index (lower the better) 

HeMI          HeMI with K-means ++ 

Silhouette Coefficient (higher the better) 

HeMI         HeMI with K-means ++  

PID 0.40 0.17 0.73 0.86 

BT 0.17 0.17 0.86 0.87 

GI 0.26 0.24 0.82 0.83 

LD 0.26 0.26 0.81 0.82 

BN 0.39 0.38 0.70 0.71 

Average 0.29 0.24 0.78 0.81 

 
Fig. 8. Comparative result between HeMI and K-means 

 

more frequently than K-means. Therefore, by the time we run 

HeMI once we can perhaps run K-means multiple times. 
We compute that K-means requires executing the distance 

calculation approximately nmki times, where i is the number 
of iterations and k is the number of seeds. Considering 50 
iterations (i.e. i = 50) for K-means, it requires the distance 
calculation 50nmk times. 

On the other hand, HeMI requires executing the distance 
calculation approximately nmkzi (for initial population) + 
8nmkzG (for genetic operations) times, where z is the number 
of chromosomes, i is the number of iteration in K-means and 
G is the number of generations. Considering, i=50, z =20 and 
G = 50, HeMI requires the distance calculation 9000nmk 
times. That is, HeMI requires the distance calculation 

(
9000𝑛𝑚𝑘

50𝑛𝑚𝑘
) = 180 times more than K-means. As a result, by the 

time we can run HeMI once we can run K-means 
approximately 180 times. 

Therefore, in this section we run K-means up to 500 times 
and pick the best result out of these 500 runs. We also run 
HeMI 20 times and pick the worst result out of the 20 runs. 
Finally in Fig. 8, we compare the best result of K-means with 
the worst result of HeMI on three randomly chosen datasets. 
The top three lines in Fig. 8 show the worst result of HeMI 
on three datasets and the bottom three lines represent the best 
results of K-means at different runs starting from 50 to 500 
for the same three datasets. The results clearly indicate that 
K-means cannot beat HeMI (in terms of the Silhouette 
Coefficient) even if K-means runs 500 times.  

CONCLUSION 

In this paper we greatly extend our conference paper [32] 
that we have never published in any journal. The only 
overlapping contribution between this paper and our 
conference paper [32] is the initial population selection 

process. However, this paper has a number of useful 
contributions including multiple streams, mutation operation, 
health improvement operation, neighbor information 
exchange, and global best selection operation in addition to 
the initial population selection.   

We evaluate the proposed technique (HeMI) by 
comparing its clustering quality with five existing techniques 
namely K-means [2], K-means ++ [3], GAGR [6], AGCUK 
[5] and GenClust [4] on twenty (20) natural datasets that are 
publicly available from the UCI machine learning repository 
[31] in terms of two well-known evaluation criteria: 
Silhouette Coefficient and DB Index. Our experimental 
results indicate a statistically significant superiority of HeMI 
over the existing techniques. We also carry out thorough 
investigation to evaluate major components of HeMI one by 
one. It is evident that all of these components have positive 
impact on the final clustering quality. 

We also present a complexity analysis which shows that 
HeMI has a complexity of O(n), where n is the number of 
records in a dataset. Note that like HeMI, GenClust also uses 
an initial population selection approach in order to get a good 
quality initial population. However, the approach used in 
GenClust requires a complexity of O(n2). 

Our future research plan includes more investigation on 
the results in order to discover knowledge from the datasets 
through clustering and then evaluate the quality of the 
knowledge discovered by our technique and some existing 
techniques. We plan to propose clustering techniques that 
will improve the quality of discovered knowledge.   
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