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Abstract
This paper deals with a new filter algorithm for selecting the smallest subset
of features carrying all the information content of a data set (i.e. for remov-
ing redundant features). It is an advanced version of the fractal dimension
reduction technique, and it relies on the recently introduced Morisita esti-
mator of Intrinsic Dimension (ID). Here, the ID is used to quantify depen-
dencies between subsets of features, which allows the effective processing
of highly non-linear data. The proposed algorithm is successfully tested
on simulated and real world case studies. Different levels of sample size
and noise are examined along with the variability of the results. In addi-
tion, a comprehensive procedure based on random forests shows that the
data dimensionality is significantly reduced by the algorithm without loss
of relevant information. And finally, comparisons with benchmark feature
selection techniques demonstrate the promising performance of this new
filter.
Keywords: Unsupervised feature selection, Morisita index, Intrinsic
dimension, Redundancy minimization, Data mining

1. Introduction

Recent breakthroughs in technology have radically improved our ability
to collect and store data. Consequently, more and more variables (or fea-
tures 1) are available to perform data mining tasks, but in general, a lot of
them are redundant (i.e. they do not carry additional information beyond
that subsumed by other features), or partially redundant, and contribute

1In this paper, the term “feature” is used as a synonym for “variable”.
Preprint submitted to Elsevier June 6, 2017
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to the emergence of four major issues: (1) the reduction in the accuracy of
learning algorithms because of the curse of dimensionality [1], (2) the com-
puter performance limitations related to memory and processing speed, (3)
the difficulty in visualizing large amounts of complex and high-dimensional
data and (4) the interpretability of the results which becomes less tractable
making it difficult to gain an insight into the mechanisms that generated
the data.

Due mainly to these redundant and partially redundant features, data
points do not occupy the full E-dimensional space RE (E is the number of
features in a data set) in which they are embedded. Instead, they are often
regarded as residing on a lower M -dimensional manifold where M(6 E) is
the Intrinsic Dimension (ID) of data [2]. Dimensionality Reduction (DR)
methods [3, 4] can help remove redundant information by trying to map
the original data space coordinates to an intrinsic coordinate system of
dimensionalityM . Depending on the assumptions made about the shape of
the manifold, the mapping can be either linear (e.g. PCA [5]) or non-linear
(e.g. kernel-PCA [6]), and a great advantage of the DR approach is its
potential to capture complex dependencies. On the other hand, DR often
leads to a deterioration in the physical interpretability of the data and to
difficulties in the understanding of subsequent results. A possible solution
to these drawbacks is the implementation of feature selection methods.

The goal of feature selection [7–11] is to select the smallest subset of orig-
inal features which maintains some meaningful characteristics with respect
to a chosen criterion. According to the possible use of output information
(e.g. class labels), feature selection methods can be broadly classified as
either supervised or unsupervised. Advanced supervised methods aim to
select features which are both relevant to the prediction (i.e. classification
or regression) of some output information and related as little as possible to
one another (i.e. select relevant and non-redundant features). In contrast,
unsupervised methods do not make use of any a priori knowledge regarding
an output, and they can be further divided into two categories: Cluster
Recognition (CR) and Redundancy Minimization (RM).

The CR methods aim to find the smallest subset of features that uncov-
ers the most “interesting” and “natural” groupings (i.e. clusters) of data
points [12–15]. They rely on criteria of relevance that do not involve any
output information, and they can be categorized into filters and wrappers
[16]. The former (e.g. the Laplacian score method [17], SPEC [18, 19] and
MCFS [20]) do not incorporate the clustering algorithm that will ultimately
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be applied, while the latter do (e.g. methods introduced in [12, 21] or re-
viewed in [13]). In contrast, the RM methods are often not restricted to
clustering problems, and they can be used as preprocessing tools in a wide
variety of data mining approaches. Their goal is to select the smallest sub-
set of features in such a way that all the information content of a data set
is preserved as much as possible. In other words, they aim to eliminate all
the redundant information by selecting the most informative features (i.e.
the non-redundant features). To achieve this goal, the RM methods often
use criteria based on PCA loading values [22] or on measures of feature
dependency, such as the maximal information compression index [23], mu-
tual information [24, 25] and fractal-based measures of ID [26–28]. More
recently, Wang et al. [29] proposed a criterion that minimizes the recon-
struction error of a linear projection of the original features, while ensuring
low redundancy. Further, the RM methods can be thought of as filters, and
like many other methods of feature selection, they can rely on greedy (e.g.
Sequential Forward Selection (SFS) [30] and Sequential Backward Elimina-
tion (SBE) [31, 32]) or randomized (e.g. simulated annealing [33]) search
strategies if they consider multivariate interactions and aim to find the best
subset among the 2E − 1 combinations of features. Lastly, methods com-
bining the CR and the RM approaches have also been developed. Many
of them use a graph Laplacian matrix to preserve the data structure and
involve a low redundancy constraint or a more advanced regularization term
[34].

More specifically, the use of ID for unsupervised feature selection was
introduced by Traina et al. [26, 35]. They extended the concept of ID to
fractal dimensions and proposed the Fractal Dimension Reduction (FDR)
algorithm. FDR is a filter algorithm for non-linear RM that follows a SBE
search strategy. It aims to eliminate the features which do not contribute
to increasing the value of the data ID (i.e. the ID of the studied data set),
and it relies on Rényi’s dimension of order 2 [36], D2, for the ID estimation.
An extension to FDR was proposed by De Sousa et al. [27] to identify
subsets of correlated attributes in databases according to user-defined levels
of correlation. Finally, Mo and Huang [28] modified FDR by replacing D2
with the correlation dimension dfcor [37].

The present paper deals with a novel ID-based filter algorithm for RM.
It relies on the recently introduced Morisita estimator of ID,Mm, which was
shown to be more effective than D2 and dfcor in situations where the data
points were sparsely distributed [38]. Besides, the proposed algorithm fol-
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Figure 1: The Morisita estimator of ID, M2, applied to two features of the R data set
“Trees” [41]. The red square in the left-hand panel indicates the ln value of the multipoint
Morisita index computed with the grid displayed on the right.

lows a SFS search strategy; it can process large and highly non-linear data,
and its implementation is straightforward in R and Matlab. Another ad-
vantage is that the number of features to be selected can be determined
directly from the results. And it is also worth mentioning that Mm was al-
ready used successfully to perform supervised feature selection in regression
problems [39].

The remainder of this paper is organized as follows. Section 2 presents
the Morisita estimator of ID, and Section 3 explains the relationship between
ID and data redundancy. In Section 4, the proposed algorithm for RM is
introduced, and Section 5 is devoted to numerical experiments conducted
on simulated data and on real world case studies from the UCI machine
learning repository. The quality of the results is assessed using a compre-
hensive methodology based on random forests [40], and comparisons with
benchmark feature selection techniques (including FDR) are also discussed.
Finally, conclusions are drawn in the last section with a special emphasis
on potentialities and future challenges.

2. The Morisita Estimator of Intrinsic Dimension

2.1. Overview
The Morisita estimator of ID [38], Mm, is derived from the multipoint

Morisita index Im,δ [42–44]. Im,δ is computed by means of an E-dimensional
grid of Q cells (or quadrats) of diagonal size δ superimposed over the data
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points (see Figure 1). It measures how many times more likely it is that m
(m ≥ 2) points selected at random will be from the same cell than it would
be if the N points of the studied data set were distributed according to a
random distribution generated from a Poisson process (i.e. complete spatial
randomness). Im,δ is given by the following formula:

Im,δ = Qm−1
∑Q
i=1 ni(ni − 1)(ni − 2) · · · (ni −m+ 1)
N(N − 1)(N − 2) · · · (N −m+ 1) (1)

where ni is the number of data points in the ith cell. In general, m is set to
2, and the computation of the index is iterated for R different values of δ.
These values must be chosen by the user and determine the scales at which
the phenomenon will be characterized. Within the range of these scale
values, if the data set follows a fractal behaviour (i.e. is self-similar), the
functional relationship between log (Im,δ) and log (1/δ) is linear, its slope,
Sm, is the Morisita slope, and Mm can be written as:

Mm = E −
(

Sm
m− 1

)
. (2)

In practice, each feature is rescaled to the [0, 1] interval (so is the grid),
and δ is replaced with the edge length, `, of the cells. In this context, `−1

is simply the number of cells along each axis of the E-dimensional space
where the data points are embedded.

2.2. Detailed Procedure
In the remainder of this paper, the Morisita estimator of ID will be used

only with m = 2 as advocated in [38]. The following steps summarize how
to compute the ID of a data set using Mm=2:

1. Rescale each of the E features to the [0, 1] interval.
2. Choose the values of the parameter `−1 so that the functional relation-

ship of Step 6 can be well approximated by a linear regression model
(see Subsection 2.3).

3. Superimpose an E-dimensional grid over the data points. The size
of the grid cells is controlled by the user through the parameter `−1

which is simply the number of cells along each axis of the grid.
4. Count the number of data points falling into the cells of the grid. This

step must be repeated for each value of the parameter `−1 chosen by
the user.
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5. Compute the multipoint Morisita index Im=2,`−1 for each value of the
parameter `−1 using Equation 1. Notice that the values of Im=2,`−1

are equal to those of Im=2,δ, since δ and `−1 are two different ways of
characterizing the size of the same cells.

6. Carry out the linear regression of log (Im=2,`−1) on log (`−1). Then
Sm=2 is simply the slope of the regression model.

7. Compute Mm=2 using Equation 2.

The procedure is illustrated in Figure 1 for E = 2. On the right, the
two features F1 and F2 have been rescaled to the [0, 1] interval and a 2-
dimensional grid is superimposed over the data points. The number of cells
along each of the two axes of the grid is equal to 4. This is the value of
the parameter `−1 which allows the user to control the grid resolution. The
calculation of Im=2,`−1 was iterated four times (R = 4) for `−1 ∈ {1, 2, 3, 4},
and the results were used to draw the log-log plot shown on the left of the
figure. The dashed line represents the linear regression model of Step 6. Its
slope is the Morisita slope S2.

In the next sections, M2 will be computed using the MINDID algorithm
[38] whose complexity is O(N ∗ E ∗ R). MINDID is part of the R package
“IDmining” [45]. It is its high execution speed that allows the efficient
implementation of the unsupervised feature selection technique introduced
in this paper. For instance, MINDID is able to compute the ID of the
butterfly data set (see Section 5.1) in 0.07 seconds (s), 0.17 s and 0.94 s
for respectively N = 103, 104, 105. The experiment was carried out in the R
environment using an Intel Core i7-2600 CPU @ 3.40 GHz along with 16.0
GB of RAM under Windows 7.

2.3. Discussion About the Parameter `−1

The values of the parameter `−1 can be chosen by drawing the log-log
plot relating log (Im=2,`−1) to log (`−1) for a sufficiently large set of values
of `−1. Then the values to be retained for the ID estimation are those
corresponding to the linear part of the plot. Here is some guideline for
drawing the plot:

1. The minimum value that `−1 can take on is 1.
2. The maximum value of `−1 must ensure that one grid cell at least

contains two points. If all the occupied cells contain no more than
one point, the value of the multipoint Morisita index falls down to
zero and does not reflect the scaling behaviour of the data anymore.
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Figure 2: Illustration of the three scenarios used to describe the possible redundancies
between two variables (or features). Typically, two variables, F1 and F2, can be either
(a) not redundant, (b) linearly redundant or (c) non-linearly redundant. In addition, the
marginal point distributions are provided for the three scenarios.

3. Between the minimum and the maximum, `−1 can take on any integer
value. In general, it follows a geometric sequence of ratio 1 or 2.

Once the plot has been drawn, only the values of `−1 consistent with a
linear regression model must be kept for the ID estimation. Although a
linear dependency is possible only for data sets exhibiting self-similarity
over several scales, it is hardly ever a limitation, since many real world data
sets follow such a behaviour [27].

It was also shown that the range of selected scales does not need to be
very large in order to achieve good results in terms of redundancy detection
and quantification [38, 39]. However, in some extreme cases where N is
very low with regard to E, it may happen that the maximum value of `−1

cannot be greater than 1, making it impossible to compute the data ID. But
this limitation does not prevent the application of the Morisita estimator to
challenging case studies. And it is also worth mentioning that M2 is more
robust to small sample sizes than Rényi’s dimension of order 2, D2, that is
used in most ID-based methods of data mining [38].

3. Intrinsic Dimension and Redundancy

This section focuses on the use of the data ID to find redundancies among
variables (or features). The case with only two variables is first presented
and then extended to multivariate interactions.

Three scenarios are used to summarize the possible redundancies that
can exist between two random variables. Each scenario considers 50 sampled
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data points and is illustrated in one of the panels of Figure 2. In the left-
hand panel, two variables, called F1 and F2, are not redundant and, with
ID(·) denoting the ID of a data set, one can write that:

ID(F1, F2) ≈ ID(F1) + ID(F2) ≈ 1 + 1 = 2. (3)

This result follows from the fact that the data points cover both the 1-
dimensional spaces constructed with the two variables taken separately and
the 2-dimensional space of the two variables considered together. In con-
trast, if F1 and F2 are linearly or non-linearly redundant, as illustrated in
the other two panels, their joint ID is approximately equal to 1:

ID(F1, F2) ≈ ID(F1) ≈ ID(F2) ≈ 1. (4)

The resulting point patterns do not cover the 2-dimensional space. Instead,
they cover a line in a similar way to what can be observed when F1 and
F2 are taken separately. In the third scenario, the non-linear redundancy
implies that the marginal distributions of the two features are not identical
to the point distribution on the arc. However, it has only a small impact
on the ID estimates as reported in [26]. This is the reason why ID-based
estimators can effectively deal with non-linear redundancies.

In other words, a feature (or variable) that is redundant does not (or
hardly) contribute to increasing the ID of a data set. For instance, in the
last two scenarios, one of the features is redundant with the other and can
be disregarded without any loss of information. As a consequence, the data
ID remains approximately unchanged after the addition of F2 to the data
set consisting solely of F1 (and vice versa). In contrast, the first scenario
requires that the two features be kept (i.e. none of them is redundant),
and the data ID increases from 1 to 2 when F2 is added to the data set
consisting of F1 (and vice versa).

The same reasoning applies to multivariate redundancy. Let F1, . . ., Fk
be k random variables. Then, in the case where Fk is not redundant with
the k − 1 other variables, Equation 3 can be generalized as follows:

ID(F1, . . . , Fk−1, Fk) ≈ ID(F1, . . . , Fk−1) + ID(Fk) (5)

and, in the case where Fk is completely redundant, the multivariate version
of Equation 4 can be written as:

ID(F1, . . . , Fk−1, Fk) ≈ ID(F1, . . . , Fk−1). (6)
8



Finally, in the case where Fk is only partially redundant, and according to
the extension of ID to fractal dimensions (see e.g. Traina et al. [35] and De
Sousa et al. [27]), one can write that:

ID(F1, . . . , Fk−1, Fk)− ID(F1, . . . , Fk−1) ≈ W (7)

where W ∈ ]0, ID(Fk)[ and where the less redundant Fk is, the greater W .
In the next subsection, the proposed algorithm executes a procedure of

feature selection which follows directly from Equations 5, 6 and 7. However,
in real world applications, variable distributions can often greatly depart
from the simple ones shown in Figure 2. In such situations, Equations 5, 6
and 7 remain unchanged, but it must be noticed that:

ID(Fi) 6 1 ∀i ∈ {1, 2, . . . , k} (8)

where the equality holds only if the variables are uniformly distributed.
Thus, for Equations 5, 6 and 7, one can specify that:

ID(F1, . . . , Fk−1, Fk) ≤ k. (9)

4. The Morisita-Based Filter for Redundancy Minimization

The Morisita-Based filter for Redundancy Minimization (MBRM) aims
to select the smallest subset of features necessary to carry all the information
content of a data set. MBRM follows a SFS search strategy and, in each step
of the procedure, it searches for the feature which yields the greatest value
of W (i.e. the feature which carries the largest amount of new information
according to Equation 7). To achieve this goal, a fast solution, robust to
sample size and noise, is to reduce the following difference to zero (see
Algorithm 1):

Diff(F ) := |M2(A)−M2(F )| (10)
where A is a data set consisting of E features F1,...,E, F is a set of i features
of A with i 6 E and M2(·) denotes the estimation of the data ID using
the Morisita estimator M2. More precisely, MBRM starts with i = 1 and
searches for the individual feature which contributes the most to reducing
Diff . Once identified, this feature is retained. Then the algorithm carries
on in searching for the second feature (i = 2) which leads to the largest
possible decrease in Diff when combined with the previously retained fea-
ture. The operation is iterated until i = C with C 6 E. Typically, C can

9



Algorithm 1 MBRM
INPUT:
A dataset A with E features F1,...,E.
A vector L of values `−1.
An integer C (≤ E) indicating the number of steps of the SFS procedure
to be performed (by default C = E).
Two empty vectors of length C: SelF and IDF for storing, respectively,
the names of the selected features and the data ID estimates.
An empty matrix Z for storing the selected features.
Optional: the ID estimate IDA of the full data set A.
OUTPUT: SelF and IDF .
1: Rescale each feature to [0, 1].
2: Unless IDA is given: IDA = M2(A) (MINDID used with L)
3: for i = 1 to C do
4: for j = 1 to (E + 1− i) do
5: Diff(Z, Fj) = |IDA−M2(Z, Fj)| (MINDID used with L)
6: end for
7: Store in SelF [i] the name of the Fj yielding the lowest value of Diff .

8: Store the corresponding value of M2(Z, Fj) in IDF [i].
9: Remove the corresponding Fj from A and add it into Z.
10: end for

be set to a value lower than E (by default C = E) if it is assumed that A
is highly affected by redundancy. Finally, the set of features contributing
to decreasing the value of Diff to approximately 0 (i.e. Diff ≈ 0) is the
smallest set of features carrying all the information content of A.

Figure 3 illustrates how MBRM works. In this example, the data set A
consists of four features, namely F1, F2, F3 and F4, and the full data ID
is equal to 2.20. In Step 1 (i = 1), the feature that contributes the most
to reducing Diff is F4, and the value of M2(F4) is reported in the plot.
Then MBRM moves on to Step 2 (i = 2) where F3 is identified as the feature
leading to the largest decrease in the value of Diff when combined with F1.
Therefore, the value of M2(F4, F3) is added to the plot in second position.
It appears before the values of M2(F4, F3, F2) and M2(F4, F3, F2, F1) which
result from Steps 3 (i = 3) and 4 (i = 4). Eventually, the plot highlights that
only F4, F3 and F2 contribute to increasing the ID estimates of the data.
Hence, it can be concluded that the removal of F1 will have no impact on
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Figure 3: Illustration of how MBRM works. A data set A is used. It consists of four
features F1, F2, F3 and F4. The result shows that F1 is redundant and the three other
features are enough to carry all the information content of A.

the information content of A. In this simple example, if C had been set
to 3, MBRM would have returned only F4, F3 and F2. No information
would have been lost as indicated by the equality between M2(F4, F3, F2)
and M2(A).

MBRM relies on the recent MINDID algorithm [38] for the computation
of M2 (see Section 2). Consequently, MBRM takes as input a vector L
consisting of R values of `−1. It will be shown in the next section that
these values can be chosen with regard to the full data set A and remain
unchanged throughout the steps of the sequential forward search. In the
same way as MINDID, MBRM is linear on both the number N of points
and the number R of scales. But the complexity of the sequential search
is quadratic on the number E of features. In spite of this limitation, the
execution time remains competitive thanks to the fast computation speed
of MINDID. It can also be significantly reduced by setting C to a low
value. For instance, when applied to the butterfly data set (see Section
5.1), MBRM runs in 2.14 seconds (s), 3.06 s and 12.45 s for respectively
N = 103, 104, 105 and C = E. And, with C = 3 (i.e. the number of features
necessary to carry all the information content of the data), the execution
time of MBRM is reduced to 0.68 s, 1.04 s and 4.07 s for the same numbers
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of points. The computations were performed in the R environment using
an Intel Core i7-2600 CPU @ 3.40 GHz along with 16.0 GB of RAM under
Windows 7.

Finally, a possible extension of MBRM would be to allow the user to
provide the value of the full data ID in cases where it is known a priori.
As a result, MBRM would never need to be applied to spaces with more
than C dimensions. However, in this paper, the full data ID will always
be estimated using M2(·) within MBRM, since it is hardly ever available in
advance.

5. Experimental Study

In this section, numerical experiments designed to test the MBRM algo-
rithm are presented. A simulated data set (see Subsection 5.1) was used to
examine the impact of sample size and noise as well as the ability of the al-
gorithm to capture non-linear relationships between features. Monte-Carlo
simulations were also performed in order to quantify the variability of the
results. In addition, MBRM was applied to real world case studies (see Sub-
section 5.2). In this context, the preserved amount of relevant information
was assessed by comparisons with benchmark feature selection techniques
through the use of Random Forests [40]. Notice that all the experiments
were carried out in the R environment [41, 45].

5.1. Simulated Data Set
The MBRM algorithm was applied to the input space of the butterfly

data set [39]. It consists of eight variables (or features): two uniformly
distributed variables F1, F2 ∈ ]−5, 5[, F3 = log10(F1 + 5), F4 = F 2

1 − F 2
2 ,

F5 = F 4
1 − F 4

2 , a third uniformly distributed variable F6 ∈ ]−5, 5[, F7 =
log10(F6 + 5) and F8 = F6 +F7. The butterfly data set is then generated by
random sampling of F1, F2 and F6. In this paper, the following sample sizes
were considered: N = 1000, 2000, 10000, and for each of them, 100 versions
of the data set were produced.

The MBRM algorithm was applied to the butterfly data set for each
of the above-mentioned sample size. The results are displayed in Figure
4. The first panel shows the plot provided by MBRM when applied to one
simulation of 1000 data points. After the addition of F8 to F2 and F1, the
ID estimate is equal to 3.02 (i.e. M2(F2, F1, F8) = 3.02) and a clear cut-
off point can be observed, since the remaining features hardly contribute to
increasing the value of the full data ID (i.e. hardly contribute to reducing the
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Figure 4: MBRM applied to the input variables of the butterfly data set: (a) 1 simulation
with N = 1000, (b) 100 simulations with N = 1000, (c) 100 simulations with N = 2000,
(d) 100 simulations with N = 10000. In each panel, the dashed line indicates the ID of
the full data set and, when 100 simulations are used, the mean ID estimates are given
along with error bars indicating ± the standard deviations. Notice that the names of
the features were shortened to F because the way they are ordered by the SFS search
strategy can change between the simulations.

value ofDiff defined in Equation 10). Consequently, the MBRM algorithm
has detected that only three features, namely F1, F2 and F8, are enough to
carry all the information content of the butterfly data set. This is correct
by construction, since the full data set was generated from F1, F2 and F6
and since F8 is redundant with F6. MBRM has thus successfully fulfilled
its goal.

The remaining panels focus on the variability of the ID estimates with
regard to the number of data points. The plots depict the evolution of the
mean ID estimates during the SFS search procedure, and the errors bars
represent ± the standard deviations of the estimates. The mean value and
the standard deviation of the full data ID estimates are also given. They
are denoted respectively by the dashed and solid black lines. As expected,
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N First Three Features (Occurrences)
1000 F1,F2,F6 (72); F1,F2,F8 (19); F1,F2,F7 (7); F1,F3,F6 (1); F1,F4,F6 (1)
2000 F1,F2,F6 (82); F1,F2,F8 (18)
10000 F1,F2,F6 (100)

Table 1: The first three features selected by MBRM (not necessarily in that order) when
applied successively to 100 simulations of the butterfly dataset for 3 different sample
sizes. The number of occurrences of each triplet is indicated in brackets.

the variability tends to be higher for lower sample sizes. This is clearly
visible for the full data ID estimates, but it never prevents MBRM from
detecting that only three features can convey all the information content of
the butterfly data set. Notice, however, that the ordering of the features
resulting from the SFS search procedure can change from one simulation to
the next. Consequently, the names of the features were shortened to F in
each panel.

Another interesting point is the composition of the set of features picked
first by MBRM. By construction, three features should be identified by
the algorithm as being necessary to preserve the information content of
the butterfly data set. Several triplets of features could work, but MBRM
favours F1, F2 and F6 as indicated in Table 1. This is mainly due to the non-
linear construction of F3, F4, F5 and F7 (because non-linearity influences
the way the data points are distributed over the data manifold as shown
in the right-hand panel of Figure 2, which can in turn have a slight effect
on the ID estimates) and to the fact that F4 and F5 are fully redundant
with F1 and F2 considered jointly rather than independently. For these
reasons, when the sample size is large enough, the features constructed to
be redundant do not maximize the ID estimates as much as F1, F2 or F6
and, consequently, they are not picked first by MBRM.

A good algorithm should also be robust to noise. Consequently, another
experiment was carried out for which F3, F4, F5, F7 and F8 were corrupted
with a Gaussian noise. For each of these features, the mean of the noise
was fixed at 0, and the standard deviation (sd) was successively set to 1%,
10%, 20% and 40% of the standard deviation of the original feature. The
left-hand panel of Figure 5 shows the results. At 1%, the noise hardly affects
MBRM, and the cut-off point is visible up to 20%. Beyond this threshold,
the algorithm has difficulty fulfilling its task, but it is quite normal, since it
could be argued that a data set affected by more than 40% of noise should
be used with caution. Moreover, it is also clear that the full data ID and
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Figure 5: MBRM applied to the input variables of the butterfly data set with N = 10000:
(left) 100 simulations with different levels of Gaussian noise, (right) 1 simulation after
the shuffling of F5 and F7. The dashed lines indicate the ID of the full data sets, and in
the left-hand panel, the mean ID estimates are given along with error bars indicating ±
the standard deviations.

the variability of the estimates increase with the level of noise. This result
is simply a consequence of the fact that the noise enlarges the portion of
space occupied by the data points.

Finally, the right-hand panel of Figure 5 displays the results provided by
MBRM after the shuffling of F5 and F7. The shuffling makes the two fea-
tures completely independent of, respectively, F1 and F6 (i.e non-redundant
with F1 and F6) and, consequently, MBRM detects that they carry new
information, which is correct. Notice also that the full data ID is lower
than 5, as expected from Equation 9: since F5 and F7 are not uniformly
distributed, the data ID is lower than k = 5. This means that, in general,
the value of the full data ID cannot be used as the number of features to
be retained. It must only be considered a lower bound. And, of course,
selecting less features than the value of the ID will always lead to a loss
of information. For instance, M2(F1, F2, F4) ≈ 2, which implies that two
features, say F1 and F2, are necessary to correctly synthesize the data, but
F4 alone cannot account for all the available information. Differently put,
it is possible to reconstruct F4 from F1 and F2, but neither F1 nor F2 can
be perfectly retrieved from F4.

5.2. Real World Case Studies
Four real world data sets from the UCI machine learning repository [46]

were used: PageBlocks, Parkinson, Ionosphere and LIBRAS movements.
Duplicate data points were removed, and the main characteristics of the
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Data Sets N E # Classes Parameter `−1 ∈
PageBlocks 5393 10 5 {2n | n = 0, 1, 2, . . . , 11}
Parkinson 195 22 2 {1, 2, 3, . . . , 8}
Ionosphere 350 34 2 {1, 2, 3, . . . , 13}
LIBRAS 330 90 15 {1, 2, 3, 4, 5}

Table 2: Data set characteristics and values of the parameter `−1.

resulting data are briefly summarized in Table 2. In addition, the last
column of the table provides the values of the parameter `−1 used to apply
the MBRM algorithm to the input space of the data sets. The complete
feature selection procedure was performed as follows (for each data set):

1. The plot relating log (Im=2,`−1) and log (`−1) was drawn for the E
features taken together and for values of `−1 ranging from 1 to the
highest possible value (i.e. the value ensuring the presence of two
points in at least one of the Q cells).

2. The range of values of `−1 corresponding to the linear part of the log-
log plot was retained. For each of the four data sets, this final range
was that of step 1.

3. If the upper bound of the range was lower than 30, each integer value
of the range was used in the final set given in Table 2. If not, for
efficiency purposes, only the values following a geometric sequence of
ratio 2 were retained.

4. MBRM was applied to each data set with the parameter values of Step
3, and the features necessary to approximately reach the full data ID
were selected.

The results are given in Figure 6 and summarized in Table 3. For each data
set, MBRM offers a clear cut-off point allowing an easy distinction between
the features to be selected and those considered redundant. Moreover, it
leads to a significant reduction in the data dimensionality. In the case of
LIBRAS, only 24% of the original features were selected, and the other data
sets were reduced by half.

In terms of efficiency, MBRM is linear on N , but its bottleneck is the
number of features. Therefore, it takes 3.45 seconds (s) to run the algorithm
on PageBlocks (using R and an Intel Core i7-2600 CPU @ 3.40 GHz along
with 16.0 GB of RAM under Windows 7), while 130.81 s are necessary for
LIBRAS. Nevertheless, if it can be assumed that a data set contains many
redundant features, the parameter C can be set to a value lower than E to
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Figure 6: Results of MBRM: (a) PageBlocks, (b) Parkinson, (c) Ionoshpere, (d) LIBRAS
Movements. The features to be selected are indicated in bold red, and the dashed lines
correspond to the ID of the full data sets.
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Data Sets # Sel. Feat. M2(All Feat.) Execution Time (s)
PageBlocks 5 (50%) 2.13 3.45
Parkinson 12 (52%) 4.87 5.32
Ionosphere 16 (47%) 3.19 25.68
LIBRAS 22 (24%) 6.43 130.81

Table 3: Summary of the results provided by MBRM and execution time (in seconds). In
the column “# Sel. Feat.”, the values in brackets are the percentages of selected features
with regard to the total numbers of features.

shorten the execution time. For instance, for the LIBRAS data set, if C is
set to the number of selected features, the execution time of MBRM is cut
down to 17.69 s.

The effectiveness of MBRM in fulfilling redundancy minimization must
also be assessed. In the case of the PageBlocks data set, it is straightfor-
ward, since the five features considered redundant by the algorithm are truly
redundant. In other words, they can be computed from the selected features
as explained on the UCI machine learning repository [46]. Regarding the
remaining data sets, no a priori knowledge about the redundancy between
the features is available, and a more complex procedure is required to eval-
uate the amount of information kept by the selected features. A possible
solution is to use an algorithm, such as Random Forest (RF), to classify the
data points according to the output variables. In this paper, the choice of
RF was motivated by its recently recognized benchmark performance and
its reputation of working well in high-dimensional spaces [40, 47, 48]. Then
the fundamental idea consists in performing the classification task twice,
once with all the input features and once with only the selected features. If
the reduced subset does not lead to a higher error rate than that obtained
with the full data set, the relevant information has been preserved, and the
feature selection can be considered successful.

The same idea can also be extended to compare different techniques of
feature selection. A technique that leads to a significant increase in the clas-
sification error does not perform as well as a technique that maintains the
accuracy obtained with the full data set. Here, four benchmark algorithms
were used: Fractal Dimension Reduction (FDR) [26], Feature Similarity
Feature Selection (FSFS) based on the maximum information compression
index [23], Laplacian Score (LScore) [17] and Multi-Cluster Feature Selec-
tion (MCFS) [20]. For FSFS, LScore and MCFS, the number of selected
features was set to the number of features selected by MBRM, and the num-
ber of nearest neighbours, k, of LScore and MCFS was fixed at 5. Finally,
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regarding MCFS, the number of used eigenvectors was set to the number of
classes.

The exact evaluation procedure implemented in this research was re-
peated six times for each data set: once with all the features, once with the
features selected by MBRM and four more times with the features selected
by FDR, FSFS, LScore and MCFS. This procedure follows four steps and
is inspired by similar procedures suggested in [49, 50]:

1. 20% of the data points were randomly assigned to a test set and the
remaining ones were passed on to Step 2.

2. 10-fold cross-validation was performed to tune the two parameters of
RF (these two parameters are the number of trees and the number of
predictors processed at each split of the trees). The Overall Accuracy
(OA) was used as evaluation metric.

3. A RF model was trained with the values of the two parameters of
Step 2 and was then used to classify the data points of the test set.
Finally, the test OA, OAt, was computed using the following formula:

OAt = 1
Nt

Nt∑
i=1

I(yi = ŷi) (11)

where I(yi = ŷi) is an indicator variable, Nt is the number of data
points in the test set, yi refers to the true class label of the ith obser-
vation and ŷi is the predicted class label.

4. Steps 1 to 3 were repeated 20 times, and the mean test OA (in per-
cent) along with the corresponding standard deviation were computed.
These two values are given in Table 4 for each data set.

Table 4 shows that the mean overall accuracies obtained using the fea-
tures selected by MBRM are better than or close to those computed from
the full data sets. By “close”, it is meant that they are within half a stan-
dard deviation of one another. This suggests that the selected features carry
all the information content relevant to the classification tasks and that the
MBRM algorithm has fulfilled its purpose. Moreover, compared to the four
benchmark techniques used in the experiments, MBRM always provided
equal or better results. For instance, in the case of the LIBRAS data set,
LScore, FSFS and MCFS led to a significant increase in the mean overall
accuracy, while MBRM maintained the value obtained using all the fea-
tures. Regarding FDR, the algorithm could not be run because the log-log
plot necessary to estimate the ID did not exhibit any linear behaviour. The
same remark holds for the Ionosphere data.
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Data Sets MBRM FDR FSFS LScore MCFS All Feat.
PageBlocks 97.37 (0.51) 97.14 (0.52) 97.09 (0.63) 96.79 (0.53) 97.36 (0.58) 97.54 (0.56)
Parkinson 92.05 (5.32) 91.54 (5.46) 91.92 (5.41) 89.49 (4.77) 90.13 (3.93) 90.38 (5.93)
Ionosphere 91.93 (3.29) - 90.43 (2.94) 91.29 (3.31) 91.21 (3.08) 92.57 (2.92)
LIBRAS 76.29 (3.82) - 66.74 (5.91) 57.80 (5.76) 69.62 (5.81) 75.68 (4.68)

Table 4: Mean overall accuracies (over 20 random splits and in percent) yielded by Random Forests when applied to the features
selected by MBRM, FDR, FSFS, LScore, MCFS and to the full data sets. The standard deviations are indicated in brackets.
Besides, the best results provided by the feature selection techniques are shown in bold, and the second best results are underlined.
The goal is to be higher than or (if smaller) as close as possible to the reference values given in the column “All Feat.”.

Data Sets MBRM FDR FSFS LScore MCFS All Feat.
PageBlocks 84.53 (2.44) 83.04 (2.53) 82.78 (3.18) 80.73 (2.38) 84.41 (3.01) 85.56 (2.95)
Parkinson 77.06 (15.15) 75.40 (15.84) 76.54 (15.70) 71.13 (13.27) 72.41 (10.20) 71.94 (18.55)
Ionosphere 82.36 (7.10) - 78.91 (6.64) 81.02 (6.79) 80.68 (6.87) 83.84 (6.16)
LIBRAS 74.40 (4.11) - 64.12 (6.33) 54.54 (6.29) 67.24 (6.16) 73.73 (5.04)

Table 5: Mean Kappa coefficients (over 20 random splits and multiplied by 100) yielded by Random Forests when applied to
the features selected by MBRM, FDR, FSFS, LScore, MCFS and to the full data sets. The standard deviations are indicated in
brackets. Besides, the best results provided by the feature selection techniques are shown in bold, and the second best results
are underlined. The goal is to be higher than or (if smaller) as close as possible to the reference values given in the column “All
Feat.”.
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In addition to the overall accuracy, Cohen’s Kappa coefficient of agree-
ment κ [51] was also computed in Step 3 of the evaluation procedure (see
Table 5). Cohen’s kappa is an evaluation metric that takes into account the
number of correctly classified data points that may occur by chance. This
way, the possible bias of the OA towards large classes is reduced. Cohen’s
Kappa is commonly used in data mining (see e.g. [52, 53]), and it is given
by:

κt = Nt
∑B
c=1 Tc −

∑B
c=1 GcPc

N2
t −

∑B
c=1 GcPc

(12)

where the subscript t indicates that the coefficient is computed on a test set,
B is the number of classes, Tc indicates the number of correctly classified
samples for class c and Nt is the number of data points in the test set.
Finally, Gc and Pc are the actual number of samples belonging to class c
and the number of samples classified in this class. Cohen’s Kappa ranges in
[−1, 1], but negative values are hardly ever met. It is equal to 1 in case of
complete agreement and to zero (or below) if a classifier does not perform
better than what would be expected from pure randomness. The results
are provided in Table 5 and confirm those of Table 4. Notice, however, that
they are lower and more prone to variability than the results yielded by
the overall accuracy. But this is consistent with the way Cohen’s Kappa
accounts for the agreement due to chance.

Based on the numerical experiments presented in this section, it can be
concluded that MBRM performed well and that it is a new promising tool
for redundancy minimization.

6. Conclusion

This paper introduces a new algorithm for unsupervised feature selec-
tion called Morisita-Based filter for Redundancy Minimization (MBRM).
MBRM relies on the Morisita estimator of Intrinsic Dimension (ID) and
aims to identify the smallest subset of features containing all the informa-
tion content of a data set. It was successfully tested on simulated data with
different levels of sample size and noise. In addition, real world case studies
from the UCI machine learning repository were used. MBRM turned out
to be effective in a wide range of situations characterized by different num-
bers of data points, features and classes. When no information about the
redundancy between the features was available in advance, a comprehensive
procedure based on random forests was implemented to assess the perfor-
mance of the feature selection. The classification results demonstrated that
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MBRM did not lead to any loss of relevant information, while it cuts down
the size of every data set by half or more. Comparisons with benchmarks
techniques confirmed the promising performance of the proposed algorithm.
MBRM has also a couple of practical advantages over more traditional tech-
niques of unsupervised feature selection. First, it is able to determine how
many features should be kept. Second, the values of its parameter `−1 can
be set without resorting to any learning machine or a priori knowledge. Fi-
nally, it was shown that MBRM was able to outperform the FDR algorithm
due to the Morisita estimator of ID.

From a broader perspective, this research contributes to highlighting
that the concept of ID can help mitigate issues raised by large data sets.
Future research will be devoted to challenging applications in hyperspectral
remote sensing. In this context, comparisons between ID-based and tradi-
tional methods will be carried out, and the use of ID to perform advanced
data mining tasks other than feature selection will be thoroughly explored.
In addition, the automatic parallelization of the inner loop of the MBRM
algorithm will also be examined.
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