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Abstract

Social networks are typical attributed networks with node attributes. Different
from traditional attribute community detection problem aiming at obtaining
the whole set of communities in the network, we study an application-oriented
problem of mining an application-aware community organization with respect to
specific concerned attributes. The concerned attributes are designated based on
the requirements of any application by a user in advance. The application-aware
community organization w.r.t. concerned attributes consists of the communities
with feature subspaces containing these concerned attributes. Besides concerned
attributes, feature subspace of each required community may contain some other
relevant attributes. All relevant attributes of a feature subspace jointly describe
and determine the community embedded in such subspace. Thus the problem
includes two subproblems, i.e., how to expand the set of concerned attributes
to complete feature subspaces and how to mine the communities embedded in
the expanded subspaces. Two subproblems are jointly solved by optimizing a
quality function called subspace fitness. An algorithm called ACM is proposed.
In order to locate the communities potentially belonging to the application-
aware community organization, cohesive parts of a network backbone composed
of nodes with similar concerned attributes are detected and set as the community
seeds. The set of concerned attributes is set as the initial subspace for all
community seeds. Then each community seed and its attribute subspace are
adjusted iteratively to optimize the subspace fitness. Extensive experiments on
synthetic datasets demonstrate the effectiveness and efficiency of our method
and applications on real-world networks show its application values.
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1. Introduction

Community structure is one of the most prominent features of social net-
works, as it helps to visualize the network structures [1], enhance the information
retrieval and promote the products recommendation [2], etc.. Social networks
are typical attributed networks whose nodes are associated with attributes. Dif-
ferent from communities detected only based on structure cohesiveness property
[3, 4, 5], communities with attribute subspaces [6, 7, 8, 9] not only have structure
cohesiveness property, but also have attribute similarity property. An attribute
subspace is a subset of the whole attribute dimension set. The subspace of
a community should contain all attributes dimensions in which nodes in this
community are similar to each other while different from nodes outside. Dif-
ferent communities usually have different subspaces [6, 7]. In the real world,
applications usually require the set of communities whose subspaces containing
specific concerned attributes rather than all communities in the network. These
communities is called the application-aware community organization, and a sub-
space containing concerned attributes is called a feature subspace in this paper.
It is noteworthy that besides the concerned attributes, each feature subspace
may contain some other relevant attributes in which nodes in its embedded
community are also similar to each other while different from nodes outside.

In this paper, we study the problem of mining the application-aware com-
munity organization w.r.t. some concerned attributes. Application-aware com-
munity organization is called community organization for short. The concerned
attributes are designated in advance by a user based on the requirements of ap-
plications. Compared to the whole set of communities detected by traditional
unsupervised clustering techniques [4, 5], the specific community organizations
are more suitable for applications. Take marketing as an example, a product is
more likely to be prevalent in set of customer communities where people inter-
act frequently and have some demand attributes about such product. When a
merchant wants to advertise a product, he usually only have the basic idea of
some demand attributes that the potential customers may have, while detecting
the community organization w.r.t. these demand attributes will be great help-
ful for advertising such product. Take information propagation maximization
in social networks as another example, the information with specific keywords
is more easily to propagate in communities where people interact frequently
and are interested in those keywords. When maximizing the propagation of a
piece of information, its keywords are first extracted, and then the community
organization with feature subspaces containing these keywords is ideal for re-
leasing the information. Recently, several semi-supervised attribute community
detection methods which can adjust the detection results based on user inter-
ests were proposed. FocusCO [10] aims to extract communities whose nodes are
similar to the exemplar nodes that a user provides in advance. DCM [11] mines
communities with descriptions from a set of provided candidate communities.
They are different from the problem of mining the application-aware community
organization in this paper.

To solve the proposed problem, we put forward ACM, an Application-aware
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Community organization Mining method. A set of concerned attributes is des-
ignated in advance. Since feature subspaces may contain some other implicit
relevant attributes besides the designated ones, the set of designated concerned
attributes should be expanded to complete feature subspaces so that the sub-
spaces and their embedded communities match with each other. The set of
concerned attributes is set as the initial subspace. In order to locate the po-
tential communities belonging to the community organization, edges between
nodes having large similarity in initial subspace are sampled to construct a net-
work backbone and the cohesive parts of the network backbone are detected
and set as the initial communities. Then each community and its subspace are
adjusted based on each other so that the nodes inside the community are as
similar as possible while as different from the nodes outside as possible in its
subspace. The adjustment goals of each community and its subspace are consis-
tent. Thus, they are adjusted iteratively by optimizing a unified quality function
called subspace fitness. Finally, the redundant communities and subspaces are
eliminated.

The rest of this paper is organized as follows. Some related works are dis-
cussed in section 2. Section 3 describes and models the proposed problem.
Section 4 presents the greedy ACM algorithm in details. Experiments results
are analyzed in section 5. Finally, section 6 concludes the paper.

2. Related Work

Most of attribute community detection methods take unsupervised cluster-
ing techniques on link structure and node attributes simultaneously. In the
early stage of the development, they require the nodes in each community to be
similar in attribute full space [12, 13, 14, 15, 16, 17, 18, 19, 20]. The SA-Cluster
[12, 14] and its extended version Inc-Cluster [13, 15] define a unified neighbor-
hood random walk distance on an augmented graph by considering all available
attributes as additional attribute vertices, and then take a K-Medoids method
to cluster the network based on this unified distance. CESNA method [18] and
BAGC method [17, 21] statistically model the link structure and all available
node attributes, and then obtain communities by inferring parameters of their
statistical models. PICS method [16] defines an encoding cost used to describe
the adjacency matrix and attribute matrix of a network and gets communities
by minimizing the cost. CODICIL method [19] creates content edges based on
content similarity and combines content edges with structure edges. Then it
samples edges that are locally relevant for each node and cluster the resulting
backbone network by using standard community detection methods. With the
increasing dimensionality of attribute space, the discrimination power of the
attribute distance or similarity in full space may decrease [8]. Thus attribute
subspace community detection methods [22, 6, 7, 8, 23, 9, 24, 25, 26, 27] mining
communities with nodes similar in attribute subspaces are preferred in most
cases. CoPaM method [22] mines dense and connected subgraphs with homo-
geneous values in attribute subspaces by efficient pruning strategies. SCPM
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method [6] combines search and pruning strategies to mine structural correla-
tion patterns which are dense subgraphs induced by attribute subspaces. SSCG
method [7] adopts spectral clustering on an affinity matrix. It simultaneously
learns communities and updates the affinity matrix by optimizing an objective
function. GAMer method [8] defines twofold clusters by combing the paradigms
of dense subgraph mining and attribute subspace clustering and mines them by
various pruning strategies. SCMAG method [9] identifies cell-based subspace
clusters composed of cells with dense coverage and connectivity in the subspace.
Both of attribute full space and subspace methods mentioned above are unsu-
pervised. Their results can not be guided based on the requirements of some
application.

Two approaches using semi-supervised techniques have recently been pro-
posed. FocusCO [10] allows user to steer the communities by providing a small
set of exemplar nodes that are similar to one another as well as similar to the
type of nodes the communities of his interest should contain. The applica-
tion scenarios of their problem are different from ours, as we require a user to
designate a set of concerned attributes which are contained by the mined sub-
spaces. DCM [11] aims to mine communities with descriptions from a set of
candidate communities. The candidate communities can be inferred from desig-
nated descriptions. However, the community descriptions in DCM are different
from general attribute subspaces in our method, as the descriptions are de-
fined as queries composed of disjunctions of conjunctions over basic conditions.
Moreover, one designated description can only obtain one initial candidate com-
munity, and in turn one final community in DCM, while one set of designated
attributes can obtain an community organization in our method.

3. Problem Formulation

In this section, the unified quality function of the community and its sub-
space is first defined and then the formal problem of mining application-aware
community organization is given. An attributed network is defined as a 3-
tuple G = (V , E ,F), where V is a set of n nodes, E is a set of m edges and
F : V → D1 × · · · × Dr is an attribute function (F(v), v ∈ V is an attribute
vector of node v). Dim = {1, 2, · · · , r} is the set of dimensions of attribute full
space and Dr is the domain of values of attribute dimension r.

3.1. Quality Function Definition

In general, a community is a node subset densely intra-connected while
sparsely connected to the rest of the network. Among multiple quality func-
tions evaluating the structure cohesiveness of a single local community, we fo-
cus on the fitness [28] because of its simple expression and good results. Let
A = [Au,v]

n
u,v=1 be the adjacency matrix of a network. The fitness of a commu-

nity C is defined as

fitCA =
involCA
volCA

, (1)
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where involCA =
∑

u,v∈C Au,v is the total internal degrees of community C, and

volCA =
∑

u∈C,v∈V Au,v is the total degrees of community C. The fitness of a
community gets larger when it has more edges inside while less edges across
the boundary. Thus the maximization of the fitness can be used to guide the
adjustment of a community in the plain network without attributes.

Besides structure requirements, a community with attribute subspace should
also satisfy the attribute requirements that nodes in a community should be
similar with each other while be different from the nodes outside. Attribute and
structure requirements can be synthesized by regarding the attribute similarities
of connected nodes as the edge weights. Then maximizing the total edge weights
inside a community while minimizing the total edge weights across the boundary
will satify structure requirements and attribute requirements, simultaneously.
We adopt radial basis function kernels (RBF kernels) of attribute vectors as
the attribute similarity, i.e., s(F(v),F(u)) = k(||F(v) − F(u)||), where k(·) is
a RBF kernel and ||F(v) − F(u)|| is the norm of F(v) − F(u). In order to
make the similarity increase as the norm decreases, the kernels are restricted
to those having a non-positive derivative, such as the Gaussian, Epanechnikov
or Exponential kernel [29]. As suggested in [7], we adopt Exponential kernel
kθ(x) = e−

x
θ where θ is a scaling parameter and x is the norm, because it

helps a unbiased subspace fitness computation discussed later. Since we aim
to extract communities embedded in specific attribute subspaces, we use the
subspace weighted Euclidean norm:

||F(v) −F(u)||lD

=
√

(F(v) −F(u))T diag(lD)(F(v)−F(u)),
(2)

where lD is a subspace vector corresponding to an attribute subspace D, and
diag(lD) denotes a diagonal matrix whose main diagonal is lD. The subspace
vector satisfies the normalized condition, i.e.,

∑r

i=1 l
D
i = 1, lDi ≥ 0. The element

lDi represents the importance of attribute dimension i in the subspace D. We
simplify the problem by only considering the existence of attribute dimensions
in the subspace while ignoring their relative importance. Thus for a subspace
D = {i1, · · · , it} (we use the set of attribute dimensions D = {i1, · · · , it} to
represent the subspaceD = {Di1 , · · · ,Dit}), the importance weights of attribute
dimensions inside are set equal, while outside are set as 0, i.e.,

lDi =

{

1
t
, i ∈ D = {i1, · · · , it}

0, otherwise
,

The attribute similarity is computed by applying Exponential kernel on subspace
weighted Euclidean norm. Based on the attribute similarity, the network is
projected to a subspace D and re-weighted as AD = [AD

u,v]
n
u,v=1, where

AD
u,v = kθ(||F(u)−F(v)||lD ) · I((u, v) ∈ E),

where I is the indicator function indicating whether the expression inside is true
or not. If we want to mine a community C embedded in a subspace D, the
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fitness should be modified as the subspace fitness fitC
AD by substituting original

adjacency matrix with the re-weighted one. In this case, the maximization of
the subspace fitness fitC

AD not only drives the community to have more edges
inside while fewer edges across the boundary, but also makes nodes inside the
community more similar with each other while less similar with nodes outside
under the subspace.

In the above, the subspace for a community is assumed to be known in
advance. However, in our problem the subspace is unknown except that it must
contain some concerned attributes. Given a community, its subspace should
match with it, i.e., its subspace should make the nodes inside as similar as
possible while as different from the nodes outside as possible. By setting the
attribute similarities as the edge weights in network, the adjustment goal of
subspace is similar to that of community. Thus the optimization of subspace
fitness can also be used to adjust the subspace. In order to make the subspace
fitness fairly evaluate the subspaces with different number of dimensions, the
computation of subspace fitness should be unbiased w.r.t. number of dimensions,
i.e., the subspaces with different number of dimensions should have comparable
subspace fitness values. The weighted Euclidean norm is the bridge between
attribute subspace and the subspace fitness, thus the subspace fitness is unbiased
iff the weighted Euclidean norm is unbiased w.r.t. the number of dimensions. As
suggested in [7], the z-score normalized version of Euclidean norm is unbiased
w.r.t. number of dimensions. Thus, we should substitute the Euclidean norm
in subspace fitness with its z-score normalized version defined as

||F(v)−F(u)||zlD

=
||F(v)−F(u)||lD − E[||F(v)−F(u)||lD ]

√

V ar(||F(v) −F(u)||lD )
+Q,

where Q is a constant to guarantee the z-score to be non-negative. With the
similar proof procedure in [7], it can be proved that when computing the sub-
space fitness, the Exponential kernel with scaling parameter θ using z-score
normalized version of the weighted Euclidean norm is equivalent to the Expo-
nential kernel with scaling parameter θ·

√

(V ar(||F(v) −F(u)||lD ) using original
weighted Euclidean norm. Thus the z-score normalized version of the weighted
Euclidean norm does not need to be computed in practice. Unbiased subspace
fitness is guaranteed by using original Euclidean norm with the scaling parame-
ter θ ·

√

(V ar(||F(v) −F(u)||lD ). Since θ has little to do with our major work,
it is set default as the recommended value, i.e., θ = 1.

3.2. Problem Definition

Having defined the subspace fitness, the problem of mining community or-
ganization is defined as follows.

Definition 1 (Application-aware community organization mining problem).
Given an attributed network G = (V , E ,F), and the set of concerned attributes
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D′ = {i1, · · · , it}, the application-aware community organization mining prob-

lem is to mine the set of community-subspace pairs P = {(C,D)}, where C ⊆ V,
D′ ⊆ D ⊆ Dim, and (C,D) locally maximizes the subspace fitness:

fitCAD =

∑

u,v∈C AD
u,v

∑

u∈C,v∈V AD
u,v

, (3)

where

AD
u,v = e

−
||F(u)−F(v)||

lD

θ·
√

V ar(||F(u)−F(v)||
lD

) · I((u, v) ∈ E). (4)

Locally maximizing the subspace fitness means that given a subspace D,
neither adding any node to nor removing any node from C can increase the
subspace fitness, while given a community C, neither adding any attribute to
nor removing any attribute from D can increase the subspace fitness.

Since mining each community-subspace pair independently optimizes its own
subspace fitness, some community-subspace pairs which are too similar to some
others are redundant in the mined community organization. Given two re-
dundancy parameters βC , βD ∈ [0, 1], a community-subspace pair (C′, D′) is

redundant w.r.t. (C,D) ((C′, D′) 4red (C,D)), iff fitC
′

AD′ ≤ fitC
AD ∧ |C′∩C|

|C′∪C| ≥
βC ∧ |D′∩D|

|D′∪D| ≥ βD. The final diverse community organization H is output by

eliminating all redundant pairs. βC , βD control the overlapping degree between
different community-subspace pairs in the diverse community organization. We
recommend βC = βD = 0.5 to allow moderate overlaps if there is no specific
preferences.

At least three types of attributes exist in real-world networks, i.e., numerical,
binary and categorical attributes. The value differences of three attribute types
are defined uniformly to make them be treated fairly. The value of any numerical
attribute is normalized to the range Fi(v) ∈ [0, 1] first. Then the difference is
defined as Fi(v) − Fi(u). The difference of a categorical attribute is set as 0
if two values are the same, otherwise 1. For a binary attribute, 1-0 indicate
whether a node has the attribute or not. Thus the difference is set as 0 if two
nodes have the attribute, otherwise 1. By the uniform definition, the differences
of all types of attributes range from 0 to 1.

4. Algorithm

In the following section, we introduce our heuristic approximation algorithm
ACM for the community organization mining problem. Since our problem is
mining the community organization w.r.t. the concerned attributes, we first
locate the communities potentially belonging to the community organization by
constructing the set of initial community seeds. The set of concerned attributes
is set as the initial attribute subspace for all community seeds. Then the set
of community seeds and their subspaces are iteratively improved by two local
expansion optimization processes. The overall algorithm will be first introduced.
Then the key individual procedures will be explained in details.
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4.1. The ACM Algorithm

The overall ACM algorithm is given in Algorithm 1. It first locates the re-
quired communities by constructing the set of community seeds. The concerned
attributes guide the construction of community seeds. Since each required com-
munity is cohesive and has subspace containing the concerned attributes, the
community seed should be cohesive and have similar values on all concerned at-
tributes. A network backbone composed of edges between nodes having similar
values on all concerned attributes is first constructed. Two values of an attribute
are considered to be similar if their difference is smaller than π percent of the
average difference between values of any connected nodes. π is a size parameter
controlling the size of the network backbone. Experiments show that π = 1 is
appropriate to extract edges with significant large similarity. Thus π is set as
1 if there is no specific preference. Cohesive parts of the network backbone are
detected by a community detection algorithm LPA [30]. All cohesive parts with
size larger than a threshold are set as the community seeds.

Algorithm 1 ACM

Input: attributed network G = (V , E ,F), redundancy parameters βC , βD, size
parameter π, and the set of concerned attributes D′ = {i1, · · · , it}.

Output: the diverse community organization H.
1: H ← ∅; visitedNodes← ∅;
2: C ← CONSTRUCT SEED SET(G, D′, π);
3: for each C ∈ C do

4: if C * visitedNodes then

5: D ← D′;
6: AD ← REWEIGH(G, D);
7: repeat

8: C←ADJUST COMMUNITY(AD, C);
9: (D,AD)← ADJUST SUBSPACE(AD, C,D);

10: until (C,D) unchanged
11: if D′ * D then

12: continue;
13: end if

14: H ← H∪ {(C,D)};
15: visitedNodes← visitedNodes ∪ C;
16: end if

17: end for

18: H ← SELECT DIVERSE PAIRS(H, βC , βD);
19: return H;

A simple heuristic strategy is taken to avoid redundant communities and un-
necessary running time. Nodes in any mined community are labeled as visited
nodes. If all nodes of a community seed are visited, such seed is discarded as
it has large potential to grow to a redundant community. For each remaining
community seed, its initial subspace is set as the set of concerned attributes.
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The network is first re-weighted based on initial subspace by equation (4). The
community and the subspace are iteratively adjusted by two similar greedy hill-
climbing techniques to maximize the subspace fitness. The adjustment proce-
dures are described in the next subsection. The iterations do not stop until the
community-subspace pair no longer changes. The iteration convergence is guar-
anteed, because both adjustment processes improve the subspace fitness and
the subspace fitness has a maximum value 1. Since our problem aims to mine
the subspaces containing the set of concerned attributes, the mined subspaces
which do not contain the set of concerned attributes are discarded.

After all community seeds have been processed, a post-processing step is per-
formed to select the diverse community-subspace pairs. The diverse community
organization is initially set as empty. All mined pairs are sorted in descending
order of their subspace fitness and considered one by one. If the considered pair
is not redundant to any one in the diverse community organization, it is added
to the diverse community organization. The diverse community organization is
returned as the final output.

4.2. Adjustment Procedures

It is observed from the equation (3) that community and subspace jointly
determine the subspace fitness, so the subspace fitness can be maximized by it-
eratively adjusting them. Inspired by the algorithm in [28], we take two similar
greedy hill-climbing techniques to adjust the community and subspace, respec-
tively. The pseudo-codes of two adjustment procedures are given in Procedure
1 and 2, respectively.

Procedure 1 ADJUST COMMUNITY

Input: re-weighted network adjacency matrix AD, initial community C.
Output: improved community C.
1: repeat

2: ∆fbest ← 0;
3: Actions← {REMOVE(v)|v ∈ C}∪{ADD(v)|v ∈ V \C∧∃u ∈ C : (v, u) ∈

E};
4: for each a ∈ Actions do

5: ∆f ← GET ∆ FITNESS(AD, a, C);
6: if ∆f > ∆fbest then
7: ∆fbest ← ∆f ; bestAction← a;
8: end if

9: end for

10: if ∆fbest > 0 then

11: C ← MODIFY(C, bestAction);
12: end if

13: until ∆fbest = 0
14: return C;

ADJUST COMMUNITY updates the community while fixes the subspace.
It iteratively either adds a neighbor to or removes a node from the current
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community if such operation increases the subspace fitness. For a current com-
munity, a set of possible actions including removing nodes from it and adding
neighbors to it is determined. The subspace fitness change of each action is cal-
culated. The action leading to the largest positive change is selected to modify
the community. The iteration continues until no action leads to the increase of
the subspace fitness. The convergence is guaranteed, because each modification
increases the subspace fitness and its maximum value is 1. The most time con-
suming step of ADJUST COMMUNITY is computing the fitness change of an
action. For adding/removing a node v, the fitness change is calculated as

∆f =
involC

AD ± wdinv
volC

AD ± wdv
− involC

AD

volC
AD

;

where wdinv is the internal weighted degree of v w.r.t. current community C,
and wdv is the total weighted degree of v. Thus by saving the total internal
degree involC

AD and the total degree volC
AD , the fitness change can be calculated

with time complexity O(dv), where dv is the degree of v. Accordingly, the
calculation of subspace fitness of a community C requires O(|C| · d) according
to the equation (3), where d is the average node degree, and |C| is the size of
C.

Procedure 2 ADJUST SUBSPACE

Input: re-weighted network adjacency matrix AD, initial community C, initial
subspace D.

Output: improved subspaceD, updated re-weighted network adjacency matrix
AD.

1: repeat

2: ∆fbest ← 0;
3: Actions← {REMOVE(i)|i ∈ D} ∪ {ADD(i)|i ∈ Dim \D};
4: for each a ∈ Actions do

5: (∆f,AD
temp)← GET ∆ FITNESS(AD, a, C,D);

6: if ∆f > ∆fbest then
7: ∆fbest ← ∆f ; bestAction← a; AD

best ← AD
temp;

8: end if

9: end for

10: if ∆fbest > 0 then

11: D ← MODIFY(D, bestAction); AD ← AD
best;

12: end if

13: until ∆fbest = 0
14: return D and AD;

ADJUST SUBSPACE updates the subspace while fixes the community. Most
of its steps are similar to those of ADJUST COMMUNITY, except that it it-
eratively either adds an attribute to or removes an attribute from the current
subspace. The most time consuming step of ADJUST SUBSPACE is also com-
puting the fitness change of an action. Though the GET ∆ FITNESS has the
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same name as that in ADJUST COMMUNITY, they have different steps in-
side. In ADJUST SUBSPACE, the action changes edge weights which, in turn,
changes the subspace fitness. For adding/removing an attribute i, the update
of Euclidean norm can be calculated as

|| · ||lD∗ =

√

|D| · || · ||2
lD
± (Fi(v)−Fi(u))2

|D∗| ;

where || · || is short for ||F(v)−F(u)||, D∗ is the update of D after the action,
and |D| is the size of D. By saving || · ||lD , || · ||lD∗ can be computed in constant
time. Thus by saving the current Euclidean norms of all edges, the updates
of Euclidean norms and edge weights of all edges can be calculated with time
complexity O(m). After calculating the updates of edge weights, the update of
fitness can be calculated according to equation (3) with time O(|C| · d).

4.3. Computational Complexity

Given an attributed network with n nodes, m edges and r attributes, the
time complexity of ACM is analyzed as follows.

CONSTRUCT SEED SET requires O(m) to construct the network back-
bone and O(m) to extract the seeds from backbone by a community detection
algorithm with linear time complexity. For each community seed containing at
least one unvisited node, REWEIGH takes O(m · r), ADJUST COMMUNITY
takes O(|C|·n·d), as performing each action averagely needs O(d), at most n ac-
tions are performed to adjust one node of the community and around about |C|
nodes need to be adjusted. ADJUST SUBSPACE requiresO(|D|·r·(m+|C|·d)),
as performing each action takes O(m+|C|·d), at most r actions are performed to
adjust one attribute dimension of the subspace and around about |D| dimensions
need to be adjusted. Assuming that the number of mined community-subspace
pairs is c, all community-subspace pairs are sorted with time O(c · log(c)). As-
suming that the size of final diverse community organization is h, each candi-
date pair is checked with all pairs in diverse community organization with time
at most O(h · (|C| + |D|)), where |C| and |D| are the average size of a com-
munity and a subspace, respectively. Thus SELECT DIVERSE PAIRS takes
O(c · log(c)+ c ·h · (|C|+ |D|)). Assuming that the average number of iterations
required to converge a community-subspace pair is q, then the total time com-
plexity isO(m+c·(m·r+q·(|C|·n·d+|D|·r·(m+|C|·d)))+c·log(c)+c·h·(|C|+|D|)).
q and d usually do not increase as the network size increases and are far smaller
than the attributed network size, i.e., n, m, r. Thus they can be regarded
as constants in time complexity. Meanwhile, |C|, log(c) and h are usually far
smaller than m. Based on the operational rules of the symbol O, the total time
complexity is simplified to O(c · (|C| · n+ |D| · r ·m)).

5. Experimental Results

In this section, we thoroughly evaluate the effectiveness and efficiency of
ACM on synthetic networks and show its application values on real-world net-
works.
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5.1. Evaluation on Synthetic Networks

The Experiments Settings are described first. Then the comparison results
are analyzed.

5.1.1. Experiments Settings

The synthetic attributed networks with ground truth communities are gen-
erated based on the LFR benchmarks [31]. Their degree and community size
distribution are governed by power laws with exponents τ1 and τ2, respectively.
The benchmarks are controlled by several parameters, i.e., node number n,
average node degree davg, maximum node degree dmax, minimum community
size cmin, maximum community size cmax and mixing parameter µ. Each node
shares a fraction 1−µ of edges with nodes in its own community and a fraction µ
of edges with the rest of the network. The larger the µ is, the fuzzier the bench-
mark is. We attach three types of attribute vectors to each node to generate
three types of attributed benchmarks, i.e., numerical, binary and categorical, re-
spectively. Each method will run on the most suitable type of benchmark. The
generation of attribute vectors is controlled by three parameters, i.e., attribute
number r, attribute subspace size t for each community and similarity proba-
bility p. All nodes of a community have similar attribute values in its subspace
with probability p. The larger the p is, the more homogeneous the community
is in its subspace. The default parameter settings are as follows, τ1 = 2, τ2 = 1,
n = 5000, davg = 30, dmax = 100, cmin = 40, cmax = 2cmin = 80, µ = 0.2,
r = 20, t = 6, p = 0.9. Six sets of benchmarks are generated by separately
varying n, cmin, µ, r, t, and p, while fixing all others.

A variety of related methods are compared to ACM on synthetic networks.
Louvain [32] is an outstanding method only based on network structure. BAGC
[17] and PICS [16] are two attribute full space methods. They run on categorical
and binary benchmarks, respectively. BAGC requires the possible maximum
community number as input. 1 to 5 times of real community number are set
as input for BAGC respectively and the best result is reported. GAMer [8] is
an attribute subspace method and it runs on numerical benchmarks. Finally,
FocusCO [10] is a semi-supervised method. It controls the detected communities
by providing a set of exemplar nodes. FocusCO is a randomized algorithm. Its
average results and standard deviation over 20 runs are reported. FocusCO
and ACM can run on all three types of benchmarks. Results on three types of
benchmark are represented with a suffix ’-num’, ’-bin’, and ’-cate’, respectively.
The parameters of other methods are set as default described in their papers.

In the experiments, we simulate the application scenarios of our problem.
Since the goal of our problem is mining the community organization w.r.t. the
concerned attributes, we randomly select two attributes as the concerned at-
tributes in each benchmark. Once concerned attributes are determined, the
ground truth community organization consists of ground truth communities
whose subspaces containing these concerned attributes. In order to make the
communities detected by FocusCO as similar to the communities in ground truth
community organization as possible, 6 nodes with similar concerned attributes
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Figure 1: Q vs. (a) n, (b) µ, (c) cmin, (d) r, (e) p, (f) t. Bars depict standard deviations.
GAMer can’t obtain results on networks larger than 25000, due to an out of memory problem.
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are selected as exemplar nodes for FocusCO. Other compared unsupervised
methods can not use the concerned attributes to guide the detected communi-
ties. They partition the whole network. For every method, the detected commu-
nities which are the most similar to communities in the ground truth community
organization are selected to evaluate its quality. The method quality is mea-
sured via an evaluation indicator Q defined based on F1 score. Let P = {Pi}
denote the set of communities in the ground truth community organization. Let
R = {Rj} denote the set of communities detected by a method. The F1 score
between each community Pi in P and each community Rj in R, F1(Pi, Rj), is
computed. Since our goal is mining all communities in P accurately, the quality
of each community Pi in P is measured by the maximum F1 score between it
and all detected communities in R, i.e., QI(Pi) = maxRj∈R F1(Pi, Rj). The
evaluation indicator Q of a method is defined as the average quality of all com-
munities in P , i.e., Q =

∑

Pi∈P QI(Pi)/|P|. The larger the Q is, the better the
method solves the studied problem.

5.1.2. Results Analysis

The experiments are carried on six sets of benchmarks. Fig. 1(a) shows
the results on benchmarks w.r.t. network size. Most of methods decrease their
quality as n increases. This is because when network gets larger, the size of
ground truth community organization may increase and the problem becomes
more challenging. However, ACM can mine the community organization per-
fectly in all cases. Fig. 1(b) shows the methods’ quality change with mixing
parameter. The quality of Louvain decreases a lot while that of others de-
creases not so much as µ gets larger. This illustrates that attribute information
is beneficial to community detection in fuzzy networks. ACM nearly maintains
the perfect quality even though µ reaches 0.8. Fig. 1(c) shows the methods’
quality versus community size. The quality of GAMer decreases, as it tends to
mine smaller communities. PICS has an increase tendency, as it tends to detect
larger communities. ACM has the perfect quality all the time. Fig. 1(d) shows
methods’ quality for an increasing attribute number. ACM always has perfect
quality. In Fig. 1(e), attribute similarity probability varies. ACM-num, BAGC
and GAMer increase their quality as p increases. ACM has the best quality in
all cases. Finally, Fig. 1(f) shows the methods’ quality versus subspace size.
PICS increases its quality, as it is an full space method and larger subspace is
closer to full space. ACM still has the perfect quality. In all six experiments,
the performance of FocusCO has big oscillations. This is because the provided
exemplar nodes in FocusCO cannot always infer all possible subspaces contain-
ing the set of concerned attributes. Thus it easily misses some communities
in the ground truth community organization in many cases and its quality is
oscillated. ACM has almost perfect quality all the time. This is because ACM
can use the set of concerned attributes to accurately locate nearly all commu-
nities in the ground truth community organization, and it mines the subspace
associated with each community which helps extract such community more ac-
curately. The major reason for poor performance of other methods is that they
are not specially designed for community organization mining problem, and can
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Figure 2: Time vs. (a) n, (b) cmin, (c) r. Bars depict standard deviations.

not adopt concerned attributes to guide their detection procedures.
The methods’ efficiency is shown in Fig. 2. In Fig. 2(a), all methods’

running time increases as n gets larger. In Fig. 2(b), the increase of community
size makes the running time of GAMer increase, while it has little influence on
other methods. Fig 2(c) shows the running time of GAMer increases a lot while
that of others changes little as t gets larger. In general, ACM and FocusCO are
much faster than other methods, as they do not partition the whole network,
but mine the required communities.

5.2. Applications on Real-world Networks

Since there is no ground truth about the community organization w.r.t. the
concerned attributes in real-world networks, and other compared methods are
not designed for community organization mining problem, it is inherently hard
to quantitatively analyze our method on real-world networks. Our following
case studies on real-world networks mainly illustrate the application values of
ACM. IMDb 1 [7] is a movie network where nodes represent movies with at least
200 rankings and an average ranking of at least 6.5. Two movies are connected
if they share actors or if there exists a reference to each other. 21 movie genres
are selected as attributes. Harvard [33] is a Facebook network consisting of
complete set of users from Harvard on one particular day in September 2005.
Edges represent friendships among users. Each user is assigned with seven
attributes, i.e., status flag, gender, major, second major, dorm, year, and high

school. arXiv 2 is a citation network where papers are represented by nodes
and citations by edges. 400 keywords extracted from abstracts of papers are set
as binary attributes and each attribute of a node indicates whether the specific

1http://www.imdb.com/
2http://www.cs.cornell.edu/projects/kddcup/datasets.html
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Table 1: Dataset Statistics. n: node number, m: edge number, r: attribute number.

Dataset n m r
IMDb 862 4388 21
Harvard 15126 824617 7
arXiv 29555 352807 400
DBLP 74373 586515 21

Table 2: Experiment Statistical Results. #: number of community in mined organization,
|C|: average community size, Time: Running time, f : subspace fitness averaged over mined
communities. DBLP1 and DBLP2 are two results in DBLP with two different designated
attributes sets, respectively.

Dataset # |C| Time (sec) f
IMDb 3 8.3 5.622e-1 1.000
Harvard 234 15.3 3.632e+2 0.703
arXiv 38 49.0 4.545e+3 1.000
DBLP1 23 57.2 2.750e+2 0.832
DBLP2 22 23.5 8.967e+1 0.890

keyword appears in the node’s abstract or not. DBLP 3 is a co-authorship
network where nodes represent computer science authors and edges represent co-
authorships. 21 conferences from five areas, database (DB), data mining (DM),
information retrieval (IR), artificial intelligence (AI) and multimedia (MM), are
set as attributes and the value of an attribute indicates how often the author has
published papers in the specific conference. Authors attending at least one of
the 21 conferences are included in the dataset. Dataset statistics and experiment
statistical results are given in Table 1 and Table 2, respectively.

In IMDb, the community organization w.r.t. attribute genres are mined.
Assuming that a user wants to watch movies with genres Action and Adven-
ture, action and adventure are set as concerned attributes. Three communities
are mined in less than one second. The average community size is 8.3. The
subspaces of two of them have genres action, adventure and sci-fi, and that of
the remaining one has genres action, adventure and family. Due to the sparsity
of networks and attributes, the subspace fitness values of all three communities
are closed to 1. Thus the mined communities are densely intra-connected and
sparsely connected with the rest of the network in the subspace re-weighted
network. This case study shows ACM can help to recommend movies according
to user’s interest, and give the recommended movies a finer classification.

In Harvard, major and dorm are set as concerned attributes as we are as-
sumed to mine communities having the same major and in the same dorm. 234
communities are extracted in about half minute. The average community size
is 15.3. Besides some communities with subspace {major,dorm}, other com-

3http://dblp.uni-trier.de/
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munities with subspaces {major,dorm,second major}, {major,dorm,year} and
{major,dorm,high school} etc. are also mined by ACM. Their subspaces include
other relevant attributes to better describe them.

In arXiv, community organization w.r.t. some feature keywords are ex-
tracted. Assuming that we are interested in papers about theme Quantum
Gravity, keywords quantum and gravity are set as concerned attributes. 38
communities about different aspects of Quantum Gravity have been mined in
about 75 minutes. For example, a community of 35 papers concerning Quanti-
zation of Superstring has attributes quantum, gravity, superstring, quantization,
fermion, curve, etc. A community of 25 papers concerning Lorentzian and Eu-
clidean Quantum Gravity has attributes quantum, gravity, Lorentz, space-time,
Euclidean, integral, etc. A community of 79 papers concerning Loop Quantum
Gravity has attributes quantum, gravity, loop, nonperturbative, perturbative, flat,
etc. Due to the sparsity of networks and attributes, the subspace fitness values
of all mined communities are closed to 1 which means the mined communities
are cohesive and well separated from the rest of the network in the subspace
re-weighted network. Thus ACM can be used to analyze citation network and
recommend relative papers with keywords pertaining to user interest. Moreover,
it can group papers about different aspects of designated theme into different
communities and give each of them a keyword subspace which describes the
theme in more details.

In DBLP, assuming that we want to advertise some journals about data min-
ing to researchers, conferences ICDM and SIGKDD from data mining are set
as concerned attributes. DBLP1 in TABLE 2 records the experiment statistical
results in this situation. 23 communities with average community size 57.2 are
mined in about 5 minutes. All extracted subspaces contain some conferences
from data mining field. Some of them also contain conferences from other fields.
For example, one subspace has attributes ICDM, SIGKDD, PKDD, SIGIR. The
first three conferences are from data mining and the last one is about informa-
tion retrieval. Another subspace has attributes ICDM, SIGKDD, PKDD, SDM,
NIPS. The first four conferences are from data mining and the last one is from
artificial intelligence. A subspace containing conferences from different areas is
meaningful, as different areas in computer science overlap heavily. The jour-
nals about data mining can be advertised in the mined 23 communities where
authors are likely to be interested in data mining. We also mine another com-
munity organization w.r.t. concerned attributes MM and SIGGRAPH from
multimedia. DBLP2 in TABLE 2 records the experiment statistical results in
this situation. 22 communities with average community size 23.5 are mined in
about 1.5 minutes. The community organization with concerned attributes MM

and SIGGRAPH is different from that with concerned attributes ICDM and
SIGKDD. The average community size in former organization is smaller than
that in the latter one. This may be because the academic circles in multimedia
are smaller than those in data mining.
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6. Conclusion

In this paper, we study an application oriented problem of mining application-
aware community organization w.r.t. concerned attributes in social networks. A
unified quality function called subspace fitness is defined to evaluate the quality
of both subspace and community. A greedy algorithm ACM is developed to
mine the application-aware community organization by optimizing the quality
function. The experiments demonstrate the effectiveness and efficiency of ACM
and show its application values.
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