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Abstract 

The increasing complexity of real-world problems drives the experts to consider complex linguistic 

expressions instead of single linguistic terms to represent their linguistic opinions under uncertainties. 

Based on some classical linguistic representational models, a number of techniques of modeling complex 

linguistic expressions have been proposed. The main purpose of this paper is to present a systematical 

overview on these techniques, especially their focused linguistic expressions and the associated 

computational essentials. According to the features of the underlying linguistic expressions, the existing 

techniques are classified into two categories: the models of natural linguistic expressions, such as 

uncertain linguistic terms and hesitant fuzzy linguistic term sets, which focus on frequently used 

expressions in natural languages, and the models of artificial linguistic expressions, such as discrete fuzzy 

numbers and probabilistic linguistic term sets, which consider special types of expressions artificially 

constructed by linguistic terms and additional information. After the presentation of comparative analyses 
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on the existing techniques, we figure out some current challenges and provide some possible directions 

for further developments. 

Keywords: Complex linguistic expressions; Fuzzy linguistic approach; Linguistic term sets; Hesitant 

fuzzy linguistic term set; Uncertain linguistic term. 

 

1. Introduction 

The increasing complexity and uncertainties of real-world problems drive agents to manipulate 

qualitative information for decision making. Qualitative decision making (QDM) is a kind of commonly 

considered process to operate qualitative information. To model the uncertainties involved in the decision 

information, fuzzy logic based on fuzzy set theory [1] has been widely acknowledged as a solution to 

develop QDM processes, such as linguistic decision making processes. Basically, fuzzy logic is not fuzzy 

but a precise logic of imprecision and approximate reasoning. It could be regarded as an attempt at 

formalization and mechanization of the remarkable human capability to converse, reason and make 

rational decisions in an imprecise, uncertain, incomplete and even conflicting environment [2]. Standing 

on fuzzy logic, the fuzzy linguistic approach [3], especially techniques for computing with words (CWW) 

[4-6], is exceedingly suitable for the QDM problems under various kinds of uncertainties. One noticeable 

feature of the fuzzy linguistic approach is the use of linguistic variables to collect information represented 

by natural or artificial languages. Thus, the developments of the fuzzy linguistic approach usually focus 

on: (1) the range of possible values which can be assigned to a linguistic variable; and (2) the techniques 

for operating and reasoning with these values. 

Classical linguistic models assume that the value of a given linguistic variable should be a single 
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linguistic term selected from a predefined, maybe discrete, linguistic term set (LTS) which is a granular 

partition of a domain [7, 8]. In the semantic model [9], linguistic terms are represented and computed by 

their semantics taking the form of fuzzy numbers. In the ordered structure model [10], a total order on the 

LTSs and some basic operations are predefined. Both models incorporate an approximation step, which 

may lead to the loss of information, to ensure the interpretability of the computational results. Two 

accurate linguistic models overcome this issue by extending the discrete LTS to a continuous version. The 

linguistic 2-tuple model [11] converts a LTS with g+1 terms into a numerical interval [0, g] by a symbolic 

translation. The virtual linguistic model [12, 13] introduces semantics of virtual linguistic terms by means 

of linguistic modifiers. The two models frequently serve as the basic model to develop sophisticated 

linguistic decision making processes.  

Although linguistic terms are the appropriate tools for describing vague concepts in natural language, 

the employment of individual linguistic terms might be very hard to express the experts’ opinions exactly 

due to the complex decision making situations and the experts’ granules of knowledge [14]. In fact, using 

a predefined linguistic term would restrict to present preferences freely, because: (1) the linguistic term 

selected from the LTS may not coincide with the expert’s preference; and thus (2) the expert has to 

balance among several linguistic terms [15]. To decrease such factitious uncertainties of selecting and 

balancing linguistic terms, it is rational to allow the experts to use more than one linguistic term. This 

results in the consideration of complex linguistic expressions in QDM. Roughly, complex linguistic 

expressions, such as comparative linguistic expressions, refer to the linguistic information involving more 

than one linguistic term, expressed by either natural or artificial languages by means of linguistic terms, 

connectives and linguistic hedges. The extension from a single linguistic term to a complex linguistic 

expression facilitates the elicitation and representation of the experts’ preferences in an elaborated manner. 



 

4 

 

Ideally, the use of complex linguistic expressions enables the experts to express their opinions naturally 

and freely. But handling such information is definitely much more complicated than computing with 

single terms. Till now, some researches have devoted several attempts to modeling and computing with 

some specific types of complex linguistic expressions, such as uncertain linguistic terms (ULTs) [16], 

hesitant fuzzy linguistic term sets (HFLTSs) [17], extended hesitant fuzzy linguistic term sets (EHFLTSs) 

[18], proportional terms [19], distribution assessments [20], discrete fuzzy numbers (DFNs) [21, 22], 

probabilistic linguistic term sets (PLTSs) [23], linguistic hesitant fuzzy sets (LHFSs) [24], 2-dimension 

linguistic terms (2DLTs) [25], the evidential reasoning (ER) algorithm [26], the label semantics model [27] 

and so on. These models are summarized in Table 1. 

  

Table 1. A summary of techniques for modeling complex linguistic expressions. 

Model Reference Characteristics 

ULTs [16] A linguistic interval formed by two terms 

HFLTSs [17] A subset of ordered finite consecutive terms 

EHFLTSs [18] A subset of ordered finite terms 

Label semantic model [27] Expressions formed by several terms and logical connectives 

ER algorithm [26] A basic probability assignment on the several terms 

Proportional terms [19] A probability distribution of two consecutive terms 

Distribution assessments [20] A probability distribution of several terms 

DFNs [21, 22] Several numerical scales associated with membership degrees 

PLTSs [23] An incomplete probability distribution of several terms 

LHFSs [24] Several terms with hesitant fuzzy membership degrees 

2DLTs [25] A term associated with another term to indicate confidence 
    

The consideration of multiple linguistic terms is a bit similar to the motivation of developing 

multi-granularity linguistic decision making techniques [28-30]. In reality, when the knowledge granule 

of an expert is coarser than that of a given LTS, he/she may consider expressing the opinion by complex 

linguistic expressions, or alternatively, he/she may seek for another LTS with a relatively coarse granule. 
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However, the techniques of modeling complex linguistic expressions will not totally substitute the 

multi-granularity techniques, and vice versa. For one thing, the multi-granularity techniques are 

frequently considered because the different granules come from distinct information sources. Taking the 

evaluation of students for instance, we may use a LTS to evaluate the grades of a lesson, and use another 

LTS to evaluate the research potential. For another, considering complex linguistic expressions is a much 

more natural pattern to express opinions than considering another LTS with coarser granularity. This is 

because the experts do not have to turn their attention to another LTS. But if multi-granularity linguistic 

information can be collected, computing with this information is generally easier than computing with 

information elicited by complex linguistic expressions. 

This paper is devoted to providing a systematic overview on the current techniques of modeling 

complex linguistic expressions. Especially, we shall focus on the types of linguistic expressions which 

can be represented and elicited. From the perspective of CWW, the current techniques are classified into 

the models of natural linguistic expressions (which frequently appear in natural languages) and the 

models of artificial linguistic expressions (which require some specific information, such as possibilities, 

that does not directly appear in natural languages). After exploring the main idea of current techniques, 

we will present a brief discussion on each technique and highlight some current issues and challenges of 

modeling complex linguistic expressions. In order that, the rest part is organized as follows: Section 2 

recalls the framework of linguistic decision making as well as some classical linguistic models. Section 3 

and Section 4 review the current techniques of modeling natural and artificial linguistic expressions 

respectively. We mainly pay our attention on the focused linguistic expressions and computational 

essentials. Section 5 presents a comparative discussion on the reviewed models. Some challenges and 

possible directions are figured out in Section 6. Finally, Section 7 concludes the paper. 
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2. The framework of linguistic decision making 

We will recall the framework of the fuzzy linguistic approach, the concept of linguistic variables, the 

developments of values of linguistic variables and several classical linguistic models in this section.  

2.1. Fuzzy linguistic approach and complex linguistic expressions 

The fuzzy linguistic approach based on fuzzy logic is a common scheme for solving complex real- 

world problems which are usually ill-defined because of the involved incomplete, vague and uncertain 

information. The key idea is the use of linguistic variables to manage and model the inherent vagueness 

and uncertainty of the linguistic descriptors. Basically, the values of a linguistic variable are not numbers 

but words or sentences in a natural or artificial language so that qualitative information can be modeled 

by simulating the human cognitive processes. The concept of a linguistic variable is defined by a 4-tuple 

as follows: 

 

Definition 1 [31]. A linguistic variable is characterized by a quintuple ( , ( ), , , )X S X U G M , where X  is 

the name of the variable; ( )S X  (or simply S ) denotes the term set of X  with each term being a fuzzy 

variable denoted generically by s  and ranging over the domain U  which is associated with the base 

variable u ; G  is a syntactic rule for generating the names, s , of values of X ; and M  is a semantic 

rule for associating with each s  its meaning, ( )M s , which is a fuzzy set of U . 

 

The three denotations, i.e., the name s , its semantics ( )M s  and its restriction ( )R s  can be used 

interchangeably [31]. Given a domain U , the set S  is a fuzzy partition of the domain which also 

implies the granularity of uncertainty. Generally, a set of g+1 linguistic terms, associated with their 

semantics, are denoted as: 

0 1{ , , , }gS s s s= K                                (1) 
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Generally, the semantics of linguistic terms is specified due to the problem in hand. Thus, the 

linguistic terms may be not uniformly distributed or balanced in the LTS. For example, some unbalanced 

LTSs can be found in Refs. [32, 33]. 

To highlight complex linguistic expressions, it is usually assumed that the linguistic terms in S  are 

words or phrases in a natural language. Complex linguistic expressions can be generated on the basis of 

the terms in S . According to the traditional and customary use of languages, we classify complex 

linguistic expressions by the following two classes: 

(1) Natural linguistic expressions: complex linguistic expressions which frequently appears in a 

natural language, like comparative linguistic expressions. For example, some natural linguistic 

expressions could be “between low and good”, “low or medium or good”, “at least very good”, 

“more or less medium”, “not good”.  

(2) Artificial linguistic expressions: complex linguistic expressions that are generated in an artificial 

manner that is not as close to natural languages as natural linguistic expressions. This is usually 

caused by the case where some additional information (maybe taking the form of numerical 

values) are required to mine individual opinions as precisely as possible. For instance, an 

artificial linguistic expression might be “low or medium or good, furthermore, the possibility of 

low is 0.2, the possibility of medium is 0.5 and the possibility of good is 0.3”. 

To make decisions with linguistic information, the following decision making scheme is frequently 

considered [34]: (1) the selection of LTSs with semantics; (2) the selection of aggregation operators for 

linguistic information; (3) aggregation; and (4) exploitation. The linguistic expressions cannot be operated 

directly in decision making processes. Usually, an elicitation process is required to transform the complex 

linguistic expressions into their symbolic or mathematical representation so that linguistic computational 
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models can work. 

2.2. Classical linguistic representational and computational models 

For a better understanding of the overview in the next sections, we recall some linguistic models that 

usually serve as the foundation of modeling complex linguistic expressions. 

The semantic based model [9] operates linguistic terms by computing with their semantics directly. 

Given n linguistic terms associated with semantics, the computational process is denoted as: 

1( )
appFnS F S→ →R

%
                              (2) 

where S  is the LTS, F%  is an aggregation operator based on the extension principle [35] and ( )F R  is 

the set of fuzzy sets over the set of real numbers R . As semantics are expressed by fuzzy sets defined on 

the reference domain, the aggregation results are generally fuzzy sets which might not match the 

semantics of any original linguistic terms. Thus, an approximation procedure is included to ensure the 

interpretability of the aggregation results. 

The ordered structure based model [10, 36, 37] does not operate semantics directly. Instead, it 

assumes that the following conditions are satisfied by a LTS S : 

(1) Linear order: if α β> , then s sα β> ;  

(2) Max and min operators: if s sα β≥ , then max( , )s s sα β α= , min( , )s s sα β β= ; 

(3) Negation operator: ( )neg s sα τ α−= . 

The framework of decision making within the ordered structure model can be depicted as: 

2[0, ] {0,1, , }
appAnS gτ→ → K                            (3) 

where A  is a linguistic aggregation operator, the approximation function 2app  is employed to provide 

interpretable computational results. Contrast to Eq. (2), it is obvious that the process depicted in Eq. (3) 
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extends the use of indices of linguistic terms.  

Notice that the above mentioned two models can serve as CWW techniques as their outputs are 

interpretable. But, the necessity of approximation leads to the loss of information. Thereafter, two 

accurate linguistic models have been proposed, which are the linguistic 2-tuple model [11] and the virtual 

linguistic model [12, 13].  

The linguistic domain of the linguistic 2-tuple model can be treated as continuous. Based on the 

ordered structure model, linguistic information is presented by a pair of values ( , )is α , where is  is a 

linguistic term in S  and [ 0.5,0.5)α ∈ −  is a number to represent the symbolic translation. Specifically, 

a numerical value [0, ]gβ ∈  is included to represent the equivalent information of a linguistic 2-tuple 

( , )is α . The linguistic 2-tuple that expresses the equivalent information to β  is obtained by: 

:[0, ] [ 0.5,0.5)

, ( )
( ) ( , ),

[ 0.5,0.5)

i

i

g S

s i round
s with

i

β
β α

α β α

∆ → × −
=

∆ =  = − ∈ −

                    (4) 

The inverse function of ∆ , denoted by 1−∆ , is also defined such that 1( , )is iα α β−∆ = + = . Based on 

the pair of functions ∆  and 1−∆ , the computational foundation can be defined: 

(1) Linear order: 1 2( , ) ( , )i js sα α≤ , if 1 1

1 2( , ) ( , )i js sα α− −∆ ≤ ∆ ; 

(2) Basic operation: 1 1

1 1 2 2 1 1 2 2( , ) ( , ) ( ( , ) ( , ))i j i js s s sλ α λ α λ α λ α− −⊕ = ∆ ∆ + ∆ , where 1 2, [0,1]λ λ ∈ ; 

(3) Negation operator: 1

1 1(( , )) ( ( , ))i ineg s g sα α−= ∆ − ∆ . 

where 1( , )is α  and 2( , )js α  are two linguistic 2-tuples. 

As another accurate linguistic model, the virtual linguistic model provides an approach to operate the 

indices of terms directly. Given a LTS S  with semantics, as depicted in Eq. (1), the virtual linguistic 

model extends S  to a continuous form: 

{ [0, ]}S s gα α= ∈                                 (5) 
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Given a linguistic term s Sα ∈ , if s Sα ∈ , then it is called an original term or atomic term; 

otherwise, it is called a virtual term. From the perspective of CWW, a virtual term can be generated by an 

atomic term and a real number. Moreover, based on the semantics of atomic terms, the semantics of a 

virtual term are defined on the basis of the semantics of its nearest atomic term and a linguistic modifier 

[13]. In some special situations, the following symmetric version of LTS would be more convenient [38]:  

{ , , 1,0,1, , }tS s t γ γ= = − −K K                            (6) 

Accordingly, Eq. (5) can be rewritten as { [ , ]}S sα α γ γ= ∈ − . Given two virtual terms ,s s Sα β ∈ , the 

computational model is characterized by the following aspects: 

(1) Linear order: s sα β α β≤ ⇔ ≤ ; 

(2) Basic operations: 
1 21 2s s sα β λ α λ βλ λ +⊕ =  and 

21

21 )) λλ βα
λ

β
λ

α sss =⊗（（ , where 1 2, [0,1]λ λ ∈ ; 

(3) Negation operator: ( )neg s sα τ α−= . If the LTS is denoted by Eq. (6), then ( )neg s sα α−= . 

From a mathematical point of view, the computational process and results of this model are 

equivalent to those of the linguistic 2-tuple model [39]. The virtual linguistic model is easier than the 

linguistic 2-tuple model because it computes the indices of term directly. However, it is not so 

straightforward to interpret the semantics of virtual terms. 

3. Techniques for modeling natural linguistic expressions 

This section focuses on four techniques, i.e., ULTs, HFLTSs, EHFLTSs and linguistic expressions 

based on the label semantics (LEoLS), which deal with natural linguistic expressions. Especially, the 

former three can be elicited by natural linguistic expressions directly. 
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3.1. Uncertain linguistic terms 

3.1.1. Elicitation and representation of ULTs 

Given a predefined LTS, ULTs may be considered if the individual granule of knowledge does not 

meet the granule defined by the LTS due to time pressure, lack of knowledge, and his/her limited 

expertise. An ULT is formally defined as: 

 

Definition 2 [16]. Given a continuous LTS S , an uncertain linguistic term, denoted as s% , is a linguistic 

interval with its lower and upper limits being linguistic terms. That is, [ , ]s s sα β=% , where ,s s Sα β ∈ .   

 

It is obvious that this model is based on the virtual linguistic model. An ULT is an ordered infinite 

consecutive subset of S  and can be elicited by the following natural linguistic expression: 

Between sα  and sβ  

An example of ULTs can be found in Fig. 1. As suggested by Rodríguez et al. [40], this form of 

expressions is named as comparative linguistic expressions. Specifically, the following transformation 

function can be employed to elicit ULTs by the above form of natural linguistic expressions: 

  

 

Fig. 1. An example of a ULT 

   

Definition 3. The transformation function, denoted by UTF , to obtain ULTs is defined as: 

   ,  ( ) [ ]U between s anT dF s s sα β α β= . 
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The set of ULTs based on S  is denoted by Υ . A relatively new version of ULTs was proposed by 

Zhang [41] recently, based on the linguistic 2-tuple model. Notice that the new version maintains the 

main idea of Xu [16]. The basic computational model is also equivalent to the Xu [16]’s version. 

3.1.2. Computational essential of ULTs 

The basic computational model of ULTs can be found in Xu [16]. Based on the virtual linguistic 

model, some basic operations were defined:  

 

Definition 4 [16]. Let ],[
11 βα ss  and ],[

22 βα ss  be two ULTs, ]1,0[, 21 ∈λλ , then 

],[],[],[
221122112211 21 βλβλαλαλβαβα λλ ++=⊕ ssssss  

 

According to the degree of possibility of one interval being greater than another, a partial order on 

the set of ULTs was proposed by Xu [16] as follows:  

 

Definition 5 [16]. Let ],[
11 βα ss  and ],[

22 βα ss  be two ULTs, then an order relation on Υ  is defined by:  

5.0]),[],([],[],[
22112211

>≥⇔< βαβαβαβα sssspssss  

where }1},0,)()(min{max{]),[],([ 2211212211
αβαβαββαβα −+−−=≥ ssssp . 

 

 A simple total order on Υ  can be found in Falco et al. [42]. A large number of aggregation 

operators, based on arithmetical mean [16], geometric mean [43], harmonic mean [44], Bonferroni mean 

[45], Choquet integral [46] and so on, have been defined for fusing a collection of ULTs.  

3.2. Hesitant fuzzy linguistic term sets 

3.2.1. Elicitation and representation of HFLTSs 

In some complex decision making situations, a single linguistic term might be not accurate enough 

to express linguistic opinions if uncertainty exists. In the case where the linguistic information could be 
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expressed by comparative linguistic expressions, the concept of HFLTSs is an outstanding tool to model 

the hesitation among several possible terms. Based on the ordered structure model, the concept is defined 

below: 

 

Definition 6 [17]. Given LTS S , a HFLTS, denoted by Sh , is an ordered finite subset of the consecutive 

LTS S .  

 

An example of a HFLTS is shown in Fig. 2. Formally, a HFLTS can be denoted by 

1{ , , , }S i i jh s s s+= K                               (7) 

where 1, , ,i i js s s S+ ∈K . Generally, comparative linguistic expressions could take several forms. To 

facilitate eliciting the most frequently used forms of comparative linguistic expressions, a more 

complicated transformation function was defined: 

  

 

Fig. 2. An example of a HFLTS (colored in red) and its fuzzy envelope (colored in blue) 

   

Definition 7 [17]. The transformation function, denoted by HTF , to transform comparative linguistic 

expressions into HFLTSs is defined as: 

 ( ) { }H i iTF s s= , 

 (   ) { | , }H i j j j iTF at most s s s S s s= ∈ ≤ , 

 (   ) { | , }H i j j j iTF lower than s s s S s s= ∈ < , 
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 (   ) { | , }H i j j j iTF at least s s s S s s= ∈ ≥ , 

 (   ) { | , }H i j j j iTF greater than s s s S s s= ∈ > , 

 (    ) { | , }H i j k k i k jTF between s and s s s S s s s= ∈ ≤ ≤ , 

where is S∈  and S  is a LTS. 

 

3.2.2. Computational essential of HFLTSs 

QDM with HFLTSs is being a hot topic in recent years. Basically, the computational strategies of 

HFLTSs are bipartite. 

The first strategy treats a HFLTS as an indivisible entity and transforms HFLTSs into their envelopes 

(or fuzzy envelopes). The concept of envelopes was defined as follows: 

 

Definition 8 [17]. Given a HFLTS Sh  as in Eq. (7), its envelope, denoted by ( )Senv h , is defined by an 

ULT whose limits are the upper and lower bounds of Sh , i.e.,  

( ) [ , ]S i jenv h s s=                                  (8) 

 

The concept of envelopes implies that the terms in a HFLTS are equally important. The fuzzy 

envelope of a HFLTS was initially defined to present a fuzzy representation of the HFLTS. 

 

Definition 9 [47]. Given a HFLTS Sh  as in Eq. (7), its fuzzy envelope, denoted by ( )F Senv h , is defined 

as: 

( ) ( , , , )F Senv h T a b c d=                                (9) 

where ( )T ⋅  is the trapezoidal fuzzy membership function. 

 

The use of envelopes makes computing with HFLTSs rely on the techniques of computing with 

ULTs. For instance, an order relation on the set of HFLTSs was defined by the preference degree of two 

intervals [17], which is similar to the order defined in Definition 5. The aggregation of a collection of 
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HFLTSs can be derived by aggregating the boundary terms which form the envelopes [40]. The use of 

fuzzy envelopes is somewhat similar to the framework of semantic decision making because HFLTSs are 

transformed into trapezoidal fuzzy numbers (see Refs. [48, 49] for examples). 

Bearing in the key idea of hesitant fuzzy sets [50], the second strategy tries to compute with all 

possible linguistic terms involved in a HFLTS. In order to deal with these possible terms at the same time, 

the representational form of HFLTSs is often rewritten as follows: 

 

Definition 10 [51]. Let { | 1,2, , }iX x i N= = K  be a reference set and 0 1{ , , , }S s s sτ= K  be a LTS. A 

HFLTS on X , denoted by SH , is in mathematical terms of  

{ , ( ) | }S i S i iH x h x x X= 〈 〉 ∈                             (10) 

where the hesitant fuzzy linguistic element ( )S ih x  is a set of some values in S  and can be expressed as: 

( ) { ( ) | ( ) , 1,2, , }
l lS i i ih x s x s x S l Lφ φ= ∈ = K                       (11) 

with L  being the number of linguistic terms in ( )S ih x . 

 

Here, the concept of hesitant fuzzy linguistic element is equivalent to the concept of HFLTS in 

Definition 6. Eq. (11) highlights each possible term and thus it enables us to compute with each term. 

More than a half of the current developments are based on this strategy. 

Some new operations have been defined for the convenience of computing with possible terms. For 

instance, the operations defined by Wei et al. [52] possess better mathematical properties than that of 

Rodríguez et al. [17]; the operations in Gou et al. [53] are based on the idea of operating hesitant fuzzy 

elements [54]. As can be seen in Liao et al. [55] and Wei et al. [52], several different versions of order 

relations on the set of all HFLTSs are based on the relations among each pair of possible terms. Based on 

the basic operations and the order relations, some aggregation methods, such as the ordered weighted 

averaging [52, 56] and the Bonferroni means [57], have been proposed.  
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3.3. Extended hesitant fuzzy linguistic term sets 

3.3.1. Elicitation and representation of EHFLTSs 

Initially, EFHLTSs were defined to handle more types of uncertainties in group decision making 

(GDM) [18]. Indeed, this concept extends the concept of HFLTS by canceling the limitation of 

consecutiveness. 

 

Definition 11 [18]. Given a LTS S , an EHFLTS, denoted by Sh& , is an ordered finite subset of the LTS 

S . Formally { | }Sh s s Sα α= ∈& . 

 

It is obvious that the EHFLTS is equivalent to the hesitant fuzzy linguistic element defined in 

Definition 10 from a mathematical point of view. Therefore, the abovementioned second computational 

strategy of HFLTSs is, actually, computing with EHFLTSs. The hesitant fuzzy linguistic sets defined in 

Zhang and Wu [58] are also EHFLTSs. Moreover, Ma et al. [15] suggested using a g+1 dimensional 

vector 0 1( , , , )T

gv v v v= K  to represent an EHFLTSs Sh&  based on the LTS in Eq. (1), where 1kv =  

means the linguistic term ks  is selected by the expert and 0 in otherwise, k = 0,1,…,g. The derivation of 

EHFLTSs can be implemented by two distinct manners. Firstly, an EHFLTS 
1 2

{ , , , }
nSh s s sα α α=& L  can be 

elicited by the following form of linguistic expressions: 

1 2
      

n
s or s or or sα α αL  

Therefore, it can be obtained by the following transformation function: 

 

Definition 12. The transformation function, denoted by ETF , to obtain EHFLTSs is defined as: 

1 2 1 2
(       ) { },  , ,  

n nUTF s or s or or s s s sα α α α α α=L L . 

 

The set of all EHFLTSs based on S  is denoted as ΕΗ . Secondly, according to the relation between 

Definition 6 and Definition 11, EHFLSs can be generated by combining a group’s opinion directly: 
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Theorem 1 (Construction axiom) [59]. The union of HFLTSs results in EHFLTSs.  

3.3.2. Computational essential of EHFLTSs 

To begin with, one may realize that some techniques of handling EHFLTSs have been developed in 

the literature reviewed in Section 3.2.2, where they are considered to operate each possible term of 

HFLTSs. Besides, some basic operations were proposed by Wang [18] and Zhang and Wu [58] based on 

the virtual linguistic model.  

 

Definition 13 [18]. Given two EHFLTSs 1

Sh& , ∈2

Sh& ΕΗ , ]1,0[∈λ , then: 

(1) }{21 ,

21

jihshsSS shh
SjSi

+∈∈=⊕ &&U&& ; 

(2) }{1

1

ihsS sh
Si

λλ &U&
∈= . 

 

After normalizing the numbers of linguistic terms in EHFLTSs, Wang and Xu [60] defined the 

following total orders on ΕΗ : 

 

Definition 14 [60]. The order ≤  is called a total order on ΕΗ  if 

(1) ≤  is a linear order on ΕΗ ; 

(2) Given },,,{ 1111

21 n
ssshS ααα K& = , },,,{ 2222

21 n
ssshS βββ K& = , 21

SS hh && ≤  whenever 21

ii
ss βα ≤  for any 

},,2,1{ ni K∈ . 

 

Based on Definition 14, total orders on ΕΗ  can be specified by a set of n  aggregation functions 

defined on ΕΗ . Obviously, this definition can serve as the total order of the set of HFLTSs as well. The 

following extension principle was provided to borrow the existing operators of aggregating virtual 

linguistic terms for synthesizing EHFLTSs. 

 

Definition 15 [18]. Let Θ  be a function SS n →Θ : , },,,{ 21 n

SSS hhhEH &K&&= . Then the extension of Θ  

on EH  is defined by: 
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1 2
1 2

1 2

1 2

( , , , )
( , , , ) { ( , , , )}n

nS S Sn

n

EH S S S s s s h h h
h h h s s s

α α α
α α α∈ × × ×

Θ = Θ& & &K L

& & &K U K  

 

Different from the above results based on accurate linguistic models, the computational model 

proposed by Ma et al. [15] utilizes the semantics of possible linguistic terms to measure the 

understandable degree and the consistent degree of linguistic expressions. The following definition of 

determinacy was proposed to measure the understandable degree which the expert has on an EHFLTS: 

 

Definition 16 [15]. The determinacy of an EHFLTS presented by an expert, denoted by ( )SDet h& , is: 

( ) 1 ( )
S

S hU U
Det h dU dU= − ∫ ∫&

& F                           (12) 

where 
Sh&

F  is the membership function of the EHFLTS Sh&  and U is the domain.  

 

This concept is to indicate the degree of uncertainty in the linguistic expression. Furthermore, the 

consistency was defined to imply the rationality of the provided linguistic expression as follows: 

 

Definition 17 [15]. Let Sh&  be an EHFLTS and iF  be the membership function corresponds to the 

linguistic term 
i

sα , where 
i Ss hα ∈ & . Then the consistency of Sh&  is: 

( ) { : ( ) 0}
Si

S is h
Con h

α αα ∈= ≠&
& U I F                           (13) 

where ( )i αF  is the α -cut of iF .  

 

Then an EHFLTS can be synthesized by assigning each possible linguistic term 
i

sα  a number 

derived by ( ) ( ) ( )
i S SDet s Det h Con hα ⋅ ⋅& & . 

3.4. Linguistic expressions based on label semantics model 

3.4.1. Representation of LEoLSs 

The label semantics model, developed by Tang and Zheng [27], is another methodology to represent 

natural linguistic expressions in term of label descriptions, appropriateness measures and mass 
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assignments. Different from the perspective of Zadeh’s CWW framework, this model does not utilize 

fuzzy sets to represent the semantics of linguistic terms. Based on a predefined LTS and logical 

connectives, the LEoLSs can be defined below: 

 

Definition 18 [27]. Let S be a LTS. The set of LEoLSs, denoted by LSLE , is defined recursively as 

follows: 

(1) if s Sα ∈  then LSs LEα ∈ ; 

(2) if ,  LSLEθ ϕ ∈  then ,  ,  ,  LSLEθ θ ϕ θ ϕ θ ϕ¬ ∨ ∧ → ∈ . 

 

It is explicit that, although the linguistic expressions in LSLE  do not begin with natural languages, 

the above definition provides a wide range of natural linguistic expressions. In fact, the recursively use of 

θ ϕ∨  includes the set of all EHFLTSs. The expression θ¬  means not θ . The expression θ ϕ∧  often 

appears in natural language as well. For instance, given a color described by RGB mode, one may say that 

it is “both red and pink”. The expression θ ϕ→  includes the assertions like “if someone is very tall then 

he is tall”.   

3.4.2. Computational essential of LEoLSs 

In the label semantics model, the collective linguistic opinion of an alternative can be also 

represented by a LEoLS according to Definition 18. Thus, the essential of decision making with LEoLSs 

is to understand the semantics of linguistic expressions in LSLE . This was achieved by defining fuzzy 

relation among linguistic expressions [27]. Firstly, the set of all appropriate expressions to describe an 

object was defined by a λ -mapping: 

 

Definition 19 [27]. Every linguistic expression LSLEθ ∈  is associated with a set of subsets of S , 

denoted by ( )λ θ  and defined recursively as: 
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(1) ( ) { | }S Ss h S s hα αλ = ⊆ ∈& &  for any s Sα ∈ ; 

(2) ( ) ( ) ( )λ θ ϕ λ θ λ ϕ∧ = I ; 

(3) ( ) ( ) ( )λ θ ϕ λ θ λ ϕ∨ = U ; 

(4) ( ) ( ( )) ( )cλ θ ϕ λ θ λ ϕ→ = U ; 

(5) ( ) ( ( ))cλ θ λ θ¬ = . 

 

A specific appropriateness measure was also presented in Lawry [61]. Then a mass assignment on 

the subset of S  can be defined and the membership function of each linguistic term s Sα ∈  could be 

derived. Accordingly, a fuzzy relation which reflects the semantic similarities among linguistic terms can 

be determined by the derived membership functions. The synthesized opinion can be approximated based 

on the similarities between a linguistic expression and the linguistic terms [27]. 

3.5. A comparative analysis 

From the perspective of modeling linguistic expressions, ULTs, HFLTSs and EHFLTSs start with 

specific types of natural linguistic expressions and thus can be employed straightforward in QDM. 

LEoLSs tend to model more expressions. Because of the use of logical operations, they are not direct 

enough for the decision makers. The effectiveness of LEoLSs could be exploited if they are considered in 

an expert system. Fig. 3 illustrates the ranges of values of HFLTS, EHFLTSs and LEoLSs. ULTs are 

incomparable because virtual linguistic terms are involved. 

The relationships among ULTs, HFLTSs and EHFLTSs are very interesting. The focused natural 

linguistic expressions are very similar to each other. HFLTSs can model more types of expressions than 

others. However, the computation of HFLTSs highly depends on ULTs and EHFLTSs. If HFLTSs are 

computed based on their envelopes, then ULTs play the central role; if they are computed based on 



 

21 

 

possible terms, then the computational items are actually EHFLTSs. In summary, HFLTSs are good at 

modeling comparative linguistic expressions, and ULTs and EHFLTSs are essential in the computational 

processes.  

   

 

Fig. 3. Graphical interpretation of the ranges of values of HFLTSs, EHFLTSs and LEoLSs 

   

Most of the four models treat their involved linguistic terms equally, except for HFLTSs. In fact, if 

HFLTSs are computed with fuzzy envelopes, some possible terms are treated more important than others. 

Taking the expression “greater than is ” for example, the terms which are closer to gs  are more 

important than others. 

The lack of consecutiveness may cause some limitations of applications. EHFLTSs are not 

reasonable for representing individual opinions if the involved linguistic terms are not consecutive in S . 

Although LEoLSs include more types of natural linguistic expressions, some of them may be useless in 

QDM. For instance, the expression “not medium or good” (based on S ={very low, low, medium, good, 

very good}) is a LEoLS. But it is difficult to make a decision based on the terms {very low, low, very 

good}. This is a major reason why an appropriateness measure was defined [61]. Some other features of 

the four models are summarized in Table 1. 
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Table 1. A summary on four techniques which model natural linguistic expressions 

 ULT HFLTS EHFLTS LEoLSs 

Base model 
Virtual linguistic 

model 

Ordered structure 

model 

Virtual linguistic 

model 

Not fuzzy set  

based model 

Number of terms Infinite  Finite Finite Finite 

Consecutiveness Consecutive on S  Consecutive on S  Not consecutive Not consecutive 

Importance of 

possible terms 

Indifferent Not clear Indifferent Indifferent 

Available setting IDM and GDM IDM and GDM GDM IDM and GDM 

Computational 

strategy 

Compute with  

boundaries 

Compute with  

envelopes; compute  

with possible terms 

Compute with  

possible terms 

Compute with  

similarity relation 

   

4. Techniques for modeling artificial linguistic expressions 

This section will focus on seven techniques which model specific types of artificial linguistic 

expressions, such as the ER algorithm, proportional terms, distribution assessments, DFNs, PLTs, LHFSs 

and 2DLTs.  

4.1. Linguistic expressions based on the ER framework 

4.1.1. Focused linguistic expressions and representation 

In some subjective evaluations under uncertainty, such as evaluating the quietness of an engine, an 

expert may state that he is “50% sure the engine is good and 30% sure it is excellent”. A belief structure 

is employed to describe this kind of information under the framework of multi-attribute decision making 

(MADM) with the ER algorithm [26]. For convenience, given a LTS { | 1,2, , }nS s n N= = K  and a set of 

L  attributes { | 1,2, , }iE e i L= = K  associated with weights 1 2( , , , )T

Lw w w w= K  such that 0 1iw≤ ≤  and 

1
1

L

ii
w

=
=∑ , the belief structure can be modeled by using the following expectations on the attribute ie  

( 1,2, ,i L= K ) [26]: 
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,( ) {( , ) | 1,2, , }i n n iB e s n Nβ= = K , 1,2, ,i L= K .                    (14) 

where , 0n iβ ≥  and ,1
1

N

n in
β

=
≤∑ . ,n iβ  is called a degree of belief. If ,1

1
N

n in
β

=
=∑ , then the assessment 

is complete; and if ,1
1

N

n in
β

=
<∑ , then it is incomplete and ,1

1
N

n in
β

=
−∑  is called the degree of 

ignorance.  

4.1.2. Computational essential of the ER algorithm 

The following ER algorithm [26] is widely acknowledged to aggregate the assessments represented 

in Eq. (14): 

, ,n i i n im w β= , 1, 2, ,n N= K , 1,2, ,i L= K , 

, , ,1 1
1 1

N N

S i n i i n in n
m m w β

= =
= − = −∑ ∑ , 1,2, ,i L= K , 

, ( 1) ( 1) , ( ) , 1 , ( ) , 1 , ( ) , 1{ }: ( )n n I i I i n I i n i n I i S i S I i n is m K m m m m m m+ + + + += + + , 1, 2, ,n N= K , 

, ( 1) ( 1) , ( ) , 1{ }: S I i I i S I i S iS m K m m+ + += , 

1

( 1) , ( ) , 11 1,
[1 ]

N N

I i t I i j it j j t
K m m −

+ += = ≠
= −∑ ∑ , 1,2, , 1i L= −K . 

where , ( )n I im  is the probability mass defined as the degree to which all the first i  attributes support the 

hypothesis that the object satisfies the linguistic term ns . The combined degree of belief is then given 

directly by: 

, ( )n n I Lmβ = , 1, 2, ,n N= K , 

, ( ) 1
1

N

S S I L nn
mβ β

=
= = −∑ . 

To enhance the capability of aggregating information under uncertainty, utility intervals, whose 

lower bound is nβ  and upper bound is n Sβ β+ , were generated to model the impact of ignorance [26, 

62].  
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4.2. Proportional terms 

4.2.1. Focused linguistic expressions and representation 

Wang and Hao [19] presented a novel version of the linguistic 2-tuple model for the case when the 

opinion is distributed between two consecutive linguistic terms. For instance, the evaluation grades could 

form the artificial linguistic expressions like “20% A and 80% B”. Based on the ordered structure model, 

the concept of proportional terms is defined as follows: 

 

Definition 20 [19]. Let S  be an ordered LTS, [0,1]I =  and 

{( , ) | [0,1], }i iIS I S s s Sα α= × = ∈ ∈                         (15) 

Given a pair of two successive terms 1( , )i is s + , two elements ( , )isα , 1(1 , )isα +−  of IS  is called a 

symbolic proportion pair, where 1,i is s S+ ∈ . 

 

A symbolic proportion pair ( , )isα , 1(1 , )isα +−  can be denoted by 1( , (1 ) )i is sα α +− . Let SP  be 

the set of all symbolic proportion pairs generated by S . Wang and Hao [19] assumed that if the opinion 

is a proportion of two linguistic terms, then the underlain real value should be another term located 

between the two, taking the form of a 2-tuple term. From this view, the proportional term is actually an 

alternative model of the linguistic 2-tuple model. Their relationship can be described by a one-to-one 

mapping:  

 

Definition 21 [19]. Let S , S%  and SP  be an ordered LTS, the set of linguistic 2-tuples and the set of all 

symbolic proportion pairs generated by S , respectively. The function : Sh S→ %P  is defined by:  

1

1

( , ), 0 0.5
(( , (1 ) ))

( ,1 ), 0.5 1

i

i i

i

s
h s s

s

α α
α α

α α
+

+

− ≤ ≤
− =  − < ≤

                     (16) 
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4.2.2. Computational essential of proportional terms 

Innovated by the linguistic 2-tuple model, a basic operation is defined below: 

 

Definition 22 [19]. Let S  and SP  be an ordered LTS and the set of all symbolic proportion pairs 

generated by S , respectively. The position index function of ordinal 2-tuples : [0, ]S gπ →P  is defined 

by: 

1(( , (1 ) )) (1 )i is s iπ α α α+− = + −                          (16) 

where 1,i is s S+ ∈  and [0,1]α ∈ .  

 

The position index function is bijective. Moreover, 1 hπ −= ∆ o . A linguistic computational model 

for proportional terms was developed based on the function [19]. 

Firstly, the order relation on SP  was defined. According to Eq. (16), for any 1( , (1 ) )i is sα α +− , 

1( , (1 ) )j j Ss sβ β +− ∈ P , 1 1( , (1 ) ) ( , (1 ) )i i j js s s sα α β β+ +− < − (1 ) (1 )i jα β⇔ + − < + − . Motivated by the 

traditional lexicographical order on the set of 2-dimentional vector ( , )i α , the following order was 

defined:  

(1) If i j< , then if 1i j= −  and 0α = , 1β = , 1 1( , (1 ) ) ( , (1 ) )i i j js s s sα α β β+ +− = − ; else 

1 1( , (1 ) ) ( , (1 ) )i i j js s s sα α β β+ +− < − ; 

(2) If  i j= , then: (a) if α β= , then 1 1( , (1 ) ) ( , (1 ) )i i j js s s sα α β β+ +− = − ; (b) if α β< , then 

1 1( , (1 ) ) ( , (1 ) )i i j js s s sα α β β+ +− < − ; 

The negation operator was defined by extending the traditional negation in the ordered structure 

model: 1 1 1(( , (1 ) )) ((1 ) ( ), ( )) ((1 ) , )i i i i g i g iNeg s s Neg s Neg s s sα α α α α α+ + − − −− = − = − . 

Some aggregation operators based on the idea of ordered weighted averaging and quasi-arithmetic 

averaging were also proposed in Ref. [19]. In fact, according to Definition 21, any aggregation operators 

defined for linguistic 2-tuple can be considered as well. 
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4.3. Distribution assessments 

4.3.1. Focused linguistic expressions and representation 

This model is devoted to generalizing proportional terms. In distribution assessments, symbolic 

proportions are assigned to all linguistic terms of a given LTS [20]. The focused form of linguistic 

expressions can be illustrated by an example of evaluating football players. Suppose that the coach uses 

the LTS S ={poor, medium, good} to evaluate the team of players. After a season of matches, the 

evaluation of one player might be: the frequencies of “poor”, “medium” and “good” performances are 

0.2, 0.3 and 0.5 respectively. This information could be collected by a distribution assessment: {(poor, 

0.2), (medium, 0.3), (good, 0.5)}. Formally: 

 

Definition 23 [20]. Let S  be a LTS. A distribution assessment is defined by: 

{( , ) | , 1, 0}
i

i i i i is S
m s s Sβ β β

∈
= ∈ = ≥∑                        (17) 

where 
i

β  is called the symbolic proportion of 
i

s .    

4.3.2. Computational essential of distribution assessments 

The computational model proposed in Zhang et al. [20] could serve as the basis of QDM with 

distribution assessments. Following the idea of expected value in probability theory, the expectation of a 

distribution assessment is defined as follows: 

 

Definition 24 [20]. Let m  be a distribution assessment defined above. The expectation of m  is: 

( )
i

i is S
E m sβ

∈
=∑                                (18) 

 

The operations included in Eq. (18) are the ones in the virtual linguistic model, which have been 

recalled in Section 2. Based on the expectation, a partial order on the set of distribution assessments is 
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defined by [20]: 

)()( 2121 mEmEmm <⇔<  

if )()( 21 mEmE = , then the two distribution assessments are said to be indifferent.  

The negation was defined by fetching the probability of each linguistic term from its negation [20]: 

))}((,|),{(})|),({( iijiiii sNegIndjSssSssNeg =∈=∈ ββ  

where the function Ind returns the index of the input linguistic term. 

Two aggregation operators based on the weighted aggregating and ordered weighted aggregating 

were defined as well [20]. Thanks to the use of probability distributions, the operators possess some 

wonderful properties, such as boundedness and monotonicity.  

4.4. Subjective evaluations based on DFNs 

4.4.1. Focused linguistic expressions and representation 

Riera et al. [22] demonstrated that the use of DFNs can offer a great flexibility for representing the 

experts’ subjective evaluations. Specifically, in the sense of HFLTSs, we are sure about which terms are 

involved. Besides, if the experts do not reject the possibility of other terms, then the other terms 

associated with the degrees of possibility should be modeled as well. For example, if an expert considers 

linguistic expression “between good and very good” to represent an alternative, and he/she cannot 

completely deny the possibility of the alternative being “medium” or “perfect”, then the opinion might be 

represented as: {0.5/medium, 1/good, 1/very good, 0.6/perfect}. 

Let ]1,0[: →RA  be a fuzzy subset of R , })(|{ αα ≥∈= xARxA  be the α -cut of A  (for any 

]1,0(∈α ), 1A  be the core of A , and }0)(|{)( >∈= xARxAsupp  be the support of A . In the 

framework of DFNs, an ordered infinite LTS with g+1 terms, as in Eq. (1), is usually mapped into a finite 
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chain  

},,1,0{ gLg K=                                 (19) 

DFNs are defined as follows: 

 

Definition 25 [21]. A fuzzy subset of R  with the membership function ]1,0[: →RA  is called a DFN if 

there exist Rxxx n ∈,,, 21 K  with nxxx <<< K21  m  such that },,,{)( 21 nxxxAsupp K= , and there 

are two natural numbers ts,  with nts ≤≤≤1  such that: 

(1) For any natural number ],[ tsi ∈ , 1)( =ixA ; 

(2) For each natural number ji,  with sji ≤≤≤1 , )()( ji xAxA ≤ ; 

(3) For each natural number ji,  with njit ≤≤≤ , )()( ji xAxA ≥ . 

 

The set of all DFNs, whose support is a sub-interval of gL , is denoted by gL
A . Based on the partial 

order on gL
A  defined in Riera and Torrens [63], a subjective evaluation could be interpreted as a normal 

convex fuzzy subset defined on an ordered chain: 

 

Definition 26 [22]. Let },,1,0{ gLg K=  be a finite ordered chain. We call a subjective evaluation to 

each DFN belonging to the partially ordered set gL
A .  

 

Comparative linguistic expressions in Definition 7 can be interpreted as the following subjective 

evaluations: 

ji ss  and Between : { | ( ) [ , ]}gL

i jA core A s s∈ =A ; 

is than Worse : 0 1{ | ( ) [ , ]}gL

iA core A s s −∈ =A ; 

ismost At : 0{ | ( ) [ , ]}gL

iA core A s s∈ =A ; 

isn Better tha : 1{ | ( ) [ , ]}gL

i nA core A s s+∈ =A ; 

isleast At : { | ( ) [ , ]}gL

i nA core A s s∈ =A . 

Fig. 4 illustrates that two DFNs could interpret the comparative linguistic expressions “between bad 
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and good”. For one thing, it could enhance the capability of incorporating more accurate information by 

assigning different membership degrees to the linguistic terms. For another, the necessity of membership 

degrees makes the model not be a representational tool for natural linguistic expressions like HFLTSs.  

  

  

(a) DFN whose support is {B, F, G} 

 

(b) DFN whose support is {VB, B, F, G, VG} 

Fig. 4. Graphical representations of DFNs which can interpret “between bad and good” 

  

4.4.2. Computational essential of DFN-based subjective assessments 

Let A  and B  be two DFNs and 1 2{ , , , }pA x x xα α α α= , 1 2{ , , , }kB y y y
α α α α=  be the corresponding 

α -cuts. A partial order on gL
A  can be defined by [63]: 

( , )A B MIN A B A≤ ⇔ =  (or equivalently ( , )MAX A B B= )              (20) 

where ( , )MIN A B  and ( , )MAX A B  are the DFNs whose α -cuts are min( , )A B α  and max( , )A B α , 
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respectively, and  

1 1min( , ) { ( ) ( ) | min( , ) min( , )}p kA B z supp A supp B x y z x yα α α α α= ∈ ∧ ≤ ≤  

1 1max( , ) { ( ) ( ) | max( , ) max( , )}p kA B z supp A supp B x y z x yα α α α α= ∈ ∨ ≤ ≤  

for each [0,1]α ∈ . The triplet ( gL
A , MIN, MAX) is a bounded distributive lattice [64].  

For aggregating a collection of DFNs, Riera and Torrens [63] suggested to extend the existing 

discrete aggregation functions on the chain gL  to the aggregation function on the bounded distributive 

lattice. The following definition was proposed to define a binary aggregation function on gL
A :   

 

Definition 27 [63]. Given a binary aggregation function F  on the finite chain gL , the binary operation 

on gL
A  defined as: 

:

( , ) ( , )

g g gL L L

A B A B

× →
→

F A A A

F
 

is called the extension of F  to gL
A , where ( , )A BF  is the DFN whose α -cuts are (for each 

[0,1]α ∈ ): 

{ | min ( , ) max ( , )}gz L F A B z F A Bα α α α∈ ≤ ≤  

 

The defined function F  is a binary aggregation function on gL
A . Based on which, other 

aggregation functions can be extended to suit the case where the number of inputs is greater than 2. 

4.5. Probabilistic linguistic term sets 

4.5.1. Focused linguistic expressions and representation 

PLTSs are proposed to capture the relative importance of linguistic terms included in a HFLTS [23]. 

For instance, according to an online survey of the comfortable degree of a vehicle, 20 respondents (out of 

100) stated it is “very high”, 65 respondents stated it is “high”, ten believed it is “slightly high” and 
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others did not say anything. The collective information can be denoted as: {(very high, 0.2), (high, 0.65), 

(slightly high, 0.1)}. Obviously, the focused linguistic expressions are similar to those of the ER 

framework. But there are some differences. The ER based model treats the numerical information as the 

degrees of belief, whereas this model considers it as probabilities. In order to propose a new CWW model, 

PLTSs were defined as follows: 

 

Definition 28 [23]. Given a LTS S , a PLTS is defined as: 

1),(#,,2,1,0,|)({)(
)(#

1

)()()()()( ≤=≥∈= ∑ =

pL

k

kkkkk ppLkpSspspL K } 

where )( )()( kk ps  is the linguistic term 
)(k

s  associated with its probability )(kp , and )(# pL  is the 

number of linguistic terms in )( pL . 

 

A PLTS permits that its probabilistic information is partial unknown, which means that a certain 

degree of ignorance is allowed. To facilitate the computational process, PLTSs can be normalized by two 

steps [23]: 

(1) Normalize the probabilistic distribution: replace )(kp  by ∑ =

)(#

1

)()( pL

k

kk pp , )(#,,2,1 pLk K= . 

(2) Normalize the lengths of PLTSs: for two PLTSs )(1 pL  and )(2 pL  with )(#)(# 21 pLpL > , 

add )0(min)_(ks  to )(2 pL  (repeat )(#)(# 21 pLpL −  times). 

For a given PLTS )( pL , the normalized PLTS is denoted by )( pLN . The set of all PLTSs based on 

S  is denoted by )( pΛ . 

4.5.2. Computational essential of PLTSs 

A partial order on )( pΛ  is defined as follows: 

 

Definition 29 [23]. Given a PLTS )( pL , let 
# ( ) # ( )( ) ( ) ( )

1 1
( ( )) ( )

L p L pk k k

k k
E L p Ind s p p

= =
=∑ ∑  and 

# ( ) # ( )( ) ( ) 2 1 2 ( )

1 1
( ( )) ( ( ( ( ) ( ( )))) )

L p L pk k k

k k
L p p Ind s E L p pσ

= =
= −∑ ∑ . Then for any two PLTSs )(1 pL , 
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)()(2 ppL Λ∈ ,  

))))(())((()))(())(((()))(())((()()( 11111121 pLpLpLEpLEpLEpLEpLpL σσ >∧=∨<⇔<  

 

Some basic operations were defined in Ref. [23] based on the virtual linguistic model. But the 

computational results are generally EHFLTSs rather than PLTSs. The improved version of basic 

operations defined by Zhang et al. [65] are as follows: 

 

Definition 30 [65]. Given two normalized PLTSs )()(),( 21 ppLpL NN Λ∈ , then 

(1) )}({)()(
)(

2

)(

1

)(

2

)(

1)}(#,,2,1{)},(#,,2,1{21
2121

2211

kkkk

pLkpLk

NN
ppsspLpL NN ⊕⊕∈⊕

∈∈
U

KK
; 

(2) )}({)(
)(

1

)(

1)}(#,,2,1{1
11

11

kk

pLk

N
pspL N λλ U

K∈
∈ , where ]1,0[∈λ . 

 

Some other basic operations and fuzzy measures can be found in Ref. [53, 66, 67]. For fusing PLTSs, 

two aggregation functions based on weighted arithmetical averaging and weighted geometric averaging 

were defined in Ref. [23]. 

4.6. Linguistic hesitant fuzzy sets 

4.6.1. Focused linguistic expressions and representation 

LHFSs were proposed to model a class of more complicated case where the degree of a linguistic 

term being the real value of a linguistic variable is represented by hesitant fuzzy elements. Taking the 

evaluation of the quietness of a refrigerator for example [24], an expert may hesitate to give the values 0.1 

or 0.2 for “slightly good”, the values 0.4 or 0.5 for “good” and 0.1, 0.2 or 0.25 for “very good”. This 

could be collected as {(slightly good, 0,1, 0,2), (good, 0.4, 0.5), (very good, 0.1, 0.2, 0.25)}. In each 

2-tuple, the numerical values imply the possible membership degrees caused by the expert’s hesitancy and 

uncertainty.  

 

Definition 31 [24]. Given a LTS S , a LHFS in S , denoted by LH , is a set that when applied to the 
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linguistic terms of S  it returns a subset of S  associated with several values in ]1,0[ . Formally,  

}},,,{,|),{( 21

)()()()(

km

kkkk rrrlhSslhsLH K=∈=  

 

The set of all LHFSs based on S  is denoted by ΛΗ . Recently, several extensions of LHFSs have 

been proposed from the perspective of generalizing the form of membership degrees, such as the 

linguistic interval-valued hesitant fuzzy sets [68].  

4.6.2. Computational essential of LHFSs 

Similar to the idea of Definition 29, a partial order on ΛΗ  was defined as follows: 

 

Definition 32 [24]. Given a LHFS ΛΗ∈LH , denote )()( LHesLHE =  and )()( LHvsLHD = , where 
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and )(LHind  returns the indices of linguistic terms included in LH  and the operation || ⋅  returns the 

cardinality of a set. Then given two LHFSs ΛΗ∈21 , LHLH ,  

)))()(())()((())()(( 21212121 LHDLHDLHELHELHELHELHLH >∧=∨<⇔<  

 

Some basic operations were developed as well: 

 

Definition 33 [24]. Given two LHFSs ΛΗ∈21 , LHLH ,  
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Based on the basic operations, two generalized hybrid aggregation operators and two Shapley 

weighted averaging operators were developed [24]. 
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4.7. 2-dimension linguistic terms 

4.7.1. Focused linguistic expressions and representation 

Instead of considering multiple linguistic terms under uncertainty, 2DLTs utilize a special linguistic 

term to express the confidence level of the provided linguistic term [25]. A normal instance can be found 

in the online blind review system of journal papers. Referees are required not only to express their 

opinions about the manuscript, but also to state the degree of confidence of the opinions. This kind of 

information is naturally collected by a 2-tuple, such as (familiar, very good), where the first component 

means that the expert is “familiar” with the field of the manuscript and the second component implies 

that he/she thinks the quality of the manuscript is “very good”. The definition is as follows: 

 

Definition 34 [25]. Given two LTSs 0 1{ , , , }gS s s s= K  and 0 1{ , , , }H h h hτ= K , a 2-tuple ˆ ( , )i jr s h=  is 

called a 2DLT, in which jh H∈  is the assessment information about the alternative and js S∈  

represents the self-assessment of the expert regarding the assessment. 

 

4.7.2. Computational essential of 2DLTs 

The computational model proposed in Ref. [25] is based on the direct product and the lattice 

implication algebra defined on two Lukasiewicz implication algebras [69]:  

 

Definition 35 [25]. Given two LTSs 0 1{ , , , }gS s s s= K , 0 1{ , , , }H h h hτ= K , and a lattice implication 

algebra ( 1) ( 1) ( , , , , )gLIA S Hτ+ × + = × ∨ ∧ → ¬ . Let a mapping ( 1) ( 1): gf S H LIA τ+ × +× →  be defined such that 

(( , )) ( , )i j i jf s h s h= && , where is S∈& , jh H∈& . Then if f  is bijective, for any ( , )i js h , ( , )k ls h S H∈ × , and  

(1) 1( , ) ( , ) ( (( , )) (( , )))i j k l i j k ls h s h f f s h f s h−∨ = ∨ , 

(2) 1( , ) ( , ) ( (( , )) (( , )))i j k l i j k ls h s h f f s h f s h−∧ = ∧ , 
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(3) 1( , ) ( , ) ( (( , )) (( , )))i j k l i j k ls h s h f f s h f s h−→ = → , 

(4) 1( , ) ( , ) ( (( , )))i j k l i js h s h f f s h−¬ ∧ = ¬ , 

then the lattice implication algebra 2DLLIA = 0 0( , , , , , ( , ), ( , ))gS H s h s hτ× ∨ ∧ → ¬  is called a 2-dimention 

linguistic lattice implication algebra. 

 

The Hasse Diagram of 2-dimention linguistic lattice implication algebra is shown in Fig. 5. 

Associated with the risk attitude of the decision maker, represented by a parameter δ , partial orders were 

defined as follows: 
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Fig. 5. The Hasse Diagram of 2-dimention linguistic lattice implication algebra 

  

Definition 36 [25]. Let ( , )i js h  and ),( tk hs  be two 2DLTs of 2DLLIA  defined in Definition 35, δ  be 

a positive real number. Then two weak partial orders are defined by: 

(1) less than: ))()(())()((),(),( tjkitjkihshs tkji <∧≤∨≤∧<⇔≤ ; 

(2) weakly less than: δ<−<∧≤⇔≤ )(0)(),(),( kitjhshs tkji . 

 

Inspired by the linguistic 2-tuple model, a 2DLT can be represented by two linguistic 2-tuples. 
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Accordingly, Zhu et al. [25] developed two aggregation operators for 2DLTs. Moreover, a number of 

aggregation operators were defined in Ref. [70] based on a generalized triangular fuzzy representation of 

2DLTs. 

4.8. A comparative analysis 

These models require not only linguistic terms but also additional numerical or linguistic 

information taking the form of probabilistic distributions, mass distributions, membership degrees and 

linguistic terms. The motivation of collecting the additional information is to represent the experts’ 

opinions as accurate as possible. On the surface, it seems that these models are more sophisticated than 

those in Section 3.  

The additional information is definitely helpful to distinguish and weight the possible terms. From a 

mathematical point of view, several types of numerical values are interpreted and modeled by probability, 

the degree of belief and the degree of membership. If probability and the degree of belief are considered, 

then the values should be normalized. Especially, as can be seen in ER-based model, proportional terms, 

distribution assessments, and PLTSs, frequencies are usually natural to be considered as the evidences of 

both probability and degree of belief. However, in the case of DFNs and LHFSs, there is not any clear 

statement about how the membership degrees can be derived. This fact might increase the potential 

difficulty of their applications.  

From the perspective of CWW, some sophisticated models do not compute with linguistic terms at 

all. As can be seen in the ER-based model and the distribution assessments, the computational essence is 

to compute with only the additional information, i.e., (g+1)-dimensional vectors (given a LTS with g+1 

linguistic terms). The linguistic terms in these cases only serve as a set of evaluation scales. Although this 
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is not enough to say the models suffer from drawbacks, the lack of computing with linguistic terms may 

lead to not sufficiently using of available information. 

Some of the features of these models are summarized in Table 2. 

  

Table 2. A summary on seven techniques which model artificial linguistic expressions 

 Base model Additional 

information 

Ignorance Computational strategy 

ER-based linguistic  

expressions 

Mass assignment  Degree of belief Enable Compute with degrees of  

believes 

Proportional terms Linguistic 2-tuple 

model 

Probabilistic 

distribution 

Disenable Compute with terms and  

probabilities 

Distribution 

assessments 

Linguistic 2-tuple 

model 

Probabilistic 

distribution 

Disenable Compute with probabilities 

Subjective 

evaluations 
Ordered structure 

model 

Membership 

degree 

N/A Compute with membership  

degrees 

PLTSs Virtual linguistic  

model 

Probabilistic 

distribution 

Enable Compute with terms and  

probabilities 

LHFSs Virtual linguistic  

model 

Membership 

degree 

N/A Compute with terms and  

membership degrees 

2DLTs Accurate 

linguistic model 

Condifence level N/A Compute with terms 

   

5. Further discussions  

We have reviewed the main ideas of models for both natural and artificial linguistic expressions. 

Techniques for natural linguistic expressions collect and model all the involved linguistic terms. Tools for 

artificial linguistic expressions require additional information which is associated with the linguistic terms. 

The former aims at handling natural languages in QDM. And the latter focuses on more elaborate 

presentation of human opinions. Fig. 6 lists the reviewed techniques graphically according to the focused 

linguistic expressions and the complexity degree of collecting required information. ULTs, HFLTSs and 

EHFLTSs model specific natural linguistic expressions which are frequently emerged in human thinking. 
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Thus, it is very easy to obtain these kinds of information, i.e., some linguistic terms. LHFSs model 

artificial linguistic expressions where each possible term should be associated with a hesitant fuzzy 

element. Therefore, we think that its required information is more complex than others. 
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Fig.6. A graphical summary of the techniques of modeling complex linguistic expressions 

   

Although the techniques are classified into two categories, it is irrational to say which class of 

techniques is generally better. The first class is devoted to modeling natural languages in which additional 

information such as probabilities and membership degrees is not necessary. The motivation of the other 

class is not to improve the first class. The models in the second class are proposed to model specific 

scenarios where the required types of additional information are available. The models are also valuable 

for some specific cases though the necessity of addition information leads to be less natural than the 

linguistic convention. 

However, it may be not so interesting to extend the forms of the additional information involved in 

some models for artificial linguistic expressions. Because the collection of required information in these 

models is more or less complicated, a principle of such extensions should be that they could facilitate the 
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representation of uncertainty and the collection of required information. For instance, in the ER 

framework, if the distribution of degrees of belief is hard to obtain, then an interval-valued degree of 

belief can be considered [71]. Analogously, LHFSs have been extended by generalizing each hesitant 

fuzzy element to an interval-valued hesitant fuzzy element [72] or an intuitionistic hesitant fuzzy element 

[73]. See Refs. [68, 74] for details. However, the use of hesitant fuzzy elements in LHFSs results in the 

complexity of both information collection and computing. Although the extension may alleviate the 

complexity of information collection to a certain degree, it would increase the computational complexity, 

and the effectiveness of the extension is miniature. 

When selecting certain models for applications, two criteria could be considered. (1) Simplicity. In 

order to represent the collected linguistic expressions, the simple model is the best. It is sufficient if the 

selected model could include all the available information in the linguistic expressions. For instance, 

HFLTSs can be regarded as special cases of PLTSs mathematically. Thus, it is generally better to 

represent comparative linguistic expressions by means of HFLTSs than PLTSs. (2) Accuracy. When 

facing uncertainties, any available information could be valuable for final decisions. The selected model 

should be capable to represent the information in a correct and accurate manner. For example, if the 

additional information associated with each possible term takes the form of probabilities, rather than 

membership degrees, then PLTSs would be more accurate than DFNs.  

6. Current challenges and possible directions 

Based on the above analysis and some recent developments of the reviewed techniques, we shall 

address some current challenges of both modeling complex linguistic expressions and using the existing 

models in QDM to point out some possible directions for further investigations. Generally, fuzzy logic is 
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useful and effective for modeling qualitative assessments, including single linguistic terms and complex 

linguistic expressions. To facilitate QDM by using the existing models, the following aspects could be 

considered: 

(1) Theories and processes should be developed strictly on the basis of real-world applications. 

Currently, some models have been proposed to extend and generalize the existing ones just from the 

theoretical perspective. This is not enough. The resultant models may be not applicable or practicable in 

real applications. Some QDM processes have also been developed by simply extending the idea of 

famous decision making processes. Especially, a large number of aggregation operators have been 

extended to several models reviewed in this paper. As advocated in Rodríguez et al. [75], simple 

extensions without sound theoretical or practical justification make no sense. New aggregation functions 

are welcome if they are driven by real world applications and/or if they fuse information in a novel 

manner. Simultaneously, it is not a good idea to extend the existing decision making processes arbitrarily. 

The extension is interesting only if it could solve at least one new problem. 

(2) Although there are many models, the corresponding decision making processes are quite limited. 

As stated in (1), many processes have been presented by extending some famous processes which are 

popular in uncertain decision making. But very little new idea has been introduced. For instance, the 

concept of aspiration levels rests at the central role of bounded rationality [76]. In practice, decisions 

could plausibly be made by accepting the first solution which meets a sufficient good aspiration level 

rather than seeking for the one with the highest performances [77]. This idea has been considered to deal 

with ULTs in a real case study [78]. However, it has not been considered in any other models reviewed in 

this paper. Other outstanding decision making patterns could also be employed if they could introduce 

new solutions for some applications. 
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(3) It is interesting if a new decision making process could handle multiple types of linguistic 

information. As have been discussed, the models for natural linguistic expressions focus on specific types 

of linguistic expressions and other models for artificial linguistic expressions pay their attention to 

linguistic information within specific scenarios. The definition of each model presents inherent limitation 

in applications. However, the real-world problems maybe not match the ideal situations defined in any 

models. Thus, it would be powerful if more than one model can be combined together to solve some 

practical problems. This is somewhat like the idea of decision making with heterogeneous information. 

To model complex linguistic expressions, the following aspects are interesting: 

(1) More types of complex linguistic expressions should be modeled. The existing models of natural 

linguistic expressions focus mainly on the comparative linguistic expressions. The other models do not 

essentially increase the ranges of linguistic phrases or expressions of a linguistic variable. Linguistic 

expressions which can be modeled currently are still limited. A typical instance is the linguistic hedges. 

The linguistic hedges, especially the weakened hedges such as “more or less” and “roughly”, are an 

exceedingly frequent manner to express the uncertainty of using linguistic terms. For example, a 

linguistic expression might be “more or less good”. It is not a linguistic term neighboring to “good”. 

Instead, it expresses the uncertainty of using the single term “good”. It means that “good” might be the 

real value of the linguistic variable. However, the terms neighboring to “good” might be possible as well. 

The possibility of other terms neighboring to “good” being the real value is less than that of “good”. If a 

similarity measure is defined appropriately, then it is intuitive that someone is “more or less good” if and 

only if it is similar to some others which are “good” [79]. Till now, linguistic hedges have not been 

systematically investigated in QDM.  

(2) It is excellent if a novel model could combine the strengths of the both classes of the existing 
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models [14]. The models of natural linguistic expressions start with natural languages and can be 

formalized by certain grammars. Mathematically, they can be regarded as the special cases of some 

models of artificial linguistic expressions. The latter class of models includes additional information and 

thus provides more flexibility of representing and handling information. It would be very interesting if a 

linguistic representational model or a decision making model could enhance the flexibility of the first 

class of models as well as keeping their features. 

(3) The underlying LTS in complex linguistic expressions should be paid more attention. Complex 

linguistic expressions are always generated based on the semantics of linguistic terms in the LTS. For 

example, the semantics of the expression “between good and very good” highly depend on the semantics 

of “good” and “very good”. Roughly, linguistic terms could be uniformly distributed or non-uniformly 

distributed, balanced or unbalanced, in the LTS. The models for modeling complex linguistic expressions 

should be constructed based on the consideration of the underlying LTS. 

Moreover, the techniques for modeling and operating linguistic expressions enable us to process 

natural language, especially in intelligent decision support system. For one thing, these techniques could 

help to understand the meaning, such as sentimental orientations, of customers. The opinions and feelings 

included in texts and videos are frequently expressed by means of linguistic expressions, such as single 

terms, comparative linguistic expressions, and linguistic hedges. Based on specific models, the meaning 

of these expressions could be understood exactly. And then the overall opinions can be computed by the 

techniques of information fusion. For another, when dealing with massive data, linguistic expressions are 

the natural way to present an understandable view for users. Complex linguistic expressions enable a 

flexible manner to exhibit different views with different granules. This is essential for human-computer 

interaction in the big data era.  
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7. Conclusions 

Because of the sharply increasing complexity of real-world problems, the use of single linguistic 

terms is often not enough to cope with uncertainties which come from multiple information sources. 

Thereby, the experts have to consider complex linguistic expressions from a natural or artificial way. Till 

now, there are a number of models to represent and operate several types of complex linguistic 

expressions, such as ULTs, HFLTS, EHFLTS, LEoLSs, ER-based model, proportional terms, distribution 

assessments, DFN-based subjective evaluations, PLTSs, LHFSs and 2DLTs. The models provide the 

excited tools to enhance the capability of QDM. 

This survey has been devoted to presenting a systematical review on the existing models, especially 

on the focused linguistic expressions and the computational essentials. The main contribution can be 

concluded as follows: 

(1) The existing models are reviewed based on a novel taxonomy which classifies the models by the 

focused natural or artificial linguistic expressions. Thereafter, the characteristics of each class of models 

can be exploited and compared.  

(2) The major limitations of the existing models are addressed. Based on which, we outline the 

principles and the directions of further developments of the models. Especially, we argue that simple 

extensions of the existing ideas of decision making processes should be eliminated. Superior and fresh 

decision making processes are welcome for the purpose of solving real-world decision making 

applications. 

(3) Some possible directions of developing new tools are figured out to model more types of 

complex linguistic expressions. Especially, we highlight the necessity and a possible solution of modeling 

the weakened linguistic hedges in QDM. 
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