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Abstract

With the rapid prevalence of smart mobile devices and the dramatic prolifera-

tion of mobile applications (Apps), App recommendation becomes an emergent

task that will benefit different stockholders of mobile App ecosystems. However,

the extreme sparsity of user-App matrix and many newly emerging Apps create

severe challenges, causing CF-based methods to degrade significantly in their rec-

ommendation performance. Besides, unlike traditional items, Apps have rights to

access users’ personal resources (e.g., location, message and contact) which may

lead to security risk or privacy leak. Thus, users’ choosing of Apps are influenced

by not only their personal interests but also their privacy preferences. Moreover,

user privacy preferences vary with App categories.

In light of the above challenges, we propose a mobile sparse additive genera-

tive model (Mobi-SAGE) to recommend Apps by considering both user interests

and category-aware user privacy preferences in this paper. To overcome the chal-

lenges from data sparsity and cold start, Mobi-SAGE exploits both textual and
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visual content associated with Apps to learn multi-view topics for user interest

modeling. We collected a large-scale and real-world dataset from 360 App store -

the biggest Android App platform in China, and conducted extensive experiments

on it. The experimental results demonstrate that our Mobi-SAGE consistently and

significantly outperforms the other existing state-of-the-art methods, which im-

plies the importance of exploiting category-aware user privacy preferences and

the multi-modal App content data on personalized App recommendation.

Keywords: recommender system, mobile applications, user modeling, privacy,

sparse additive generative model, cold start

1. Introduction

Recent years have witnessed the rocketing development and prevalence of

smart mobile devices, such as smart phones. An important driver behind the wide

adoption of smart mobile devices is the emergence of application (“App”) stores,

where the third party developers publish mobile Apps that users can download to

augment their mobile devices’ functionality. According to a recent report1, as of

November 2015, there were over 1.8 million Apps with over 60 billion cumula-

tive downloads on Google Play (one of the largest App markets), and the number

of Apps grew by around 80% between July 2013 and November 2015. With the

dramatically increasing number of Apps, it is hard for users to explore the huge

world of Apps and locate relevant Apps. Thus, effective personalized App recom-

mender systems are in a urgent need. However, we discover that most mainstream

App markets (e.g., Google Play and Apple App Store) currently do not provide

the functionality of personalized App recommendation. In this paper, we focus on

1http://www.statista.com/
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developing an effective mobile App recommender system. App recommendation

is highly challenging for the following reasons:

Privacy Concern. Apps are very different from the items in traditional rec-

ommender systems such as movies, products and locations, as they have the priv-

ileges to access users’ personal information such as messages, contacts and lo-

cations. Android and Iphone use permission systems to control the privileges of

Apps. Apps can only access privacy and security-relevant resources if the user

approves an appropriate permission request. For example, an Android application

can only send text messages if it has the permission “SEND SMS”. As reported by

NBC news2, users have grown so concerned about privacy on their mobile phones.

For instance, many users have avoided downloading some mobile Apps, and many

others have removed Apps which may have acess to their personal data. Besides,

different users might have varying privacy preferences, e.g., user ua does not want

the Apps to share contacts while user ub tends to keep his/her personal locations

(e.g., home locations or workplaces) hided from the third party Apps. Moreover,

user privacy preferences tend to vary with App categories/functionalities3. For in-

stances, users tend to permit navigation Apps to access their locations, while they

might forbid entertainment Apps from doing that.

Cold Start. Cold start problem has been a major challenge for conventional

recommender systems [1, 2, 3]. As App stores or platforms are expanding rapidly

and the number of mobile Apps is increasing dramatically, cold start remains a

critical problem in the domain of mobile App recommendation, which consists

2http://www.nbcnews.com/
3App categories and functionalities are equivalent, as categories in the App stores are defined

according to the Apps’ functionalities.
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of the cold-start App problem and the cold-start user problem. Apps which have

not received any rating or download are called cold-start Apps. Similarly, users

who have not rated or downloaded any App are called cold-start users. There are

thousands of new mobile Apps released daily on the App stores, and more and

more users are beginning to use mobile devices. Therefore, collaborative filtering

and matrix factorization methods that only use user-item interaction information

are ineffective.

Conventional recommender systems [4, 5, 6, 7, 8, 9] essentially aim to learn

each user’s interests and each item’s functionalities, given the interaction activi-

ties between the users and items. Based on the learned knowledge, given a user,

the systems recommend the items whose functionalities are highly similar to the

interests of this user. For instance, latent factor-based approaches [10, 6, 7, 11]

model a user with a latent vector and an item with another latent vector; and an

item is recommended to a user if the item’s latent vector is similar to the user’s

latent vector. Such recommender systems have been successfully applied to rec-

ommend many different items such as movies (e.g., Netflix) [12], music [13], and

points-of-interest [14, 15]. However, these approaches cannot address the above

two problems.

Recently, a mobile App recommender system has been proposed by Zhu et al.

in [16] in which recommendations are made by considering both Apps’ popularity

and the privacy risks. However, this system provides the same recommendations

to all the users and thus it is not a personalized App recommender system. Liu et

al. [17] extended the matrix factorization model for personalized App recommen-

dation by integrating user privacy preferences. But, both [16] and [17] ignored

that user privacy preferences are not always stable, and tend to vary with App
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categories. Moreover, their methods cannot overcome the cold-start user issues.

Lin et al. [18] integrated the follower information of the App’s official Twitter ac-

count to address the cold-start App problem, but only a small portion of Apps in

the real-life App markets have an official Twitter account. Besides, their method

[18] cannot address the challenges from cold-start users and security or privacy

risk.

In light of this, we propose a mobile sparse additive generative model (Mobi-

SAGE) for mobile App recommendation in this paper, which jointly learns user

interests and category-aware user privacy preferences in a unified way. Although

an App’s functionalities may match a user’s personal interests, the user could still

refuse to install it if it does not respect his/her privacy preferences w.r.t. the spe-

cific category of that App. Therefore, our Mobi-SAGE model considers both per-

sonal interests and category-aware personal privacy preferences. However, given

a user, his/her rated or downloaded Apps with a specific category are extremely

sparse. It is very difficult to directly learn the user-category-specific privacy pref-

erences without overfitting. To combat the data sparsity issue, we decompose

user-category-specific privacy preferences into two parts: user-specific privacy

preferences and category-specific privacy preferences. The first part captures the

user’s stable privacy preferences, while the second part exploits the public’s col-

lective privacy preferences for a specific category of Apps (i.e., the wisdom of

crowds) that captures the common patterns in permission requests for Apps with

that specific category. Thus, an App with “unusual” permission requests (e.g.,

malware Apps) will enjoy low priority to be recommended.

To address the cold-start App problem, we exploit the wealthy of multi-modal

content data associated with Apps (e.g., text descriptions and screenshot images)
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to learn multi-view topics for user interest modeling. Meanwhile, we assume that

each topic corresponds to an App category. Thus, both user interests and category-

aware user privacy preferences can be learnt in a unified process. Inspired by [19],

to leverage the collaborative filtering information, a topic is extended to gener-

ate App-IDs besides the multimodal content, to capture the App co-occurrence

patterns. To our best knowledge, ideas for unifying the influence of user pri-

vacy preferences, collaborative filtering, content-based recommendation are un-

explored and very challenging. To overcome the cold-start user problem, we in-

tegrate the general public’s collective interests that can capture the trends of App

categories by latent topics. Thus, our Mobi-SAGE can provide App recommenda-

tion to new mobile users by considering both the public’s collective interests and

their functionality-aware collective privacy preferences.

We summarize the key contributions as follows:

1. We are the first one exploiting both user interests and category-aware user

privacy preferences in personalized App recommendation.

2. To the best of our knowledge, we are the first to exploit and integrate the

public’s collective interests and their collective privacy preferences to ad-

dress the cold-start user problem and to explore the multi-modal content

data of Apps to address the cold-start App problem.

3. We propose a probabilistic generative model Mobi-SAGE to jointly learn

multi-view topics, user interests and category-aware user privacy prefer-

ences.

4. We collect a large-scale App dataset from 360 App store, and use it to com-

prehensively evaluate our approach and state-of-the-art App recommenda-

tion techniques. The experimental results show the superiority of our Mobi-
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SAGE, especially in addressing the cold-start problem.

Note that we presented our preliminary study of mobile app recommendation

in the prior work [20] as an abstract paper. In this article, we make significant

revision and add substantial new materials compared with the work presented in

[20]. Specifically, this article makes the following new contributions:

1 We provide the preliminaries in Section 3.1, a system overview in Section

3.2 and more technical details about Mobi-SAGE in Section 3.3, Section

3.4 and Section 3.6.

2 We impose sparse coding on user interest modeling and topic representa-

tion by introducing zero-mean Laplace distributions as prior distributions in

Section 3.5.

3 We conduct a detailed analysis of time complexity of the proposed model

in Section 3.6.

4 An efficient online recommendation scheme is designed to significantly

speed up the online recommendation by separating the online computation

from the offline computation to the maximum in Section 3.7. We also de-

velop a recommendation scheme for cold-start users and cold-start apps in

this section.

5 In Section 4, we have conducted much more comprehensive evaluations.

First, we add the evaluation of the impact of different features in Mobi-

SAGE by comparing with its four variants. Second, we also evaluate the

recommendation effectiveness for cold-start users and apps. Third, the im-

pact of tuning model parameters is also studied. Last, the efficiency of the

newly designed online recommendation scheme is also evaluated.
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6 We provide a more thorough analysis of Mobi-SAGE and also a more com-

prehensive review of the related work in Section 5.

The paper is organized as follows. In Section 2, we first present the preliminar-

ies about the private resources and permissions, and then formulate the research

problem in this paper. In Section 3, we detail our proposed model Mobi-SAGE.

In Section 4, we first describe the experimental setup and then report the experi-

mental results. Section 5 includes the related work analysis and then we conclude

our paper in Section 6.

2. Preliminaries and Problem Formulation

In this section, we first present the private resources and permission system in

mobile devices, and then formulate the problem of mobile App recommendation.

2.1. Private Resources and Permissions

We focus on Android Apps in this paper, although our approach is also ap-

plicable to other types of Apps (e.g., Iphone Apps). We follow the description

of Android resources and permissions in [17]. Specifically, Android system is a

permission-based framework to control the privileges of Apps. A permission con-

sists of two elements: resources (e.g., Internet, contact, camera and location) and

operations (e.g., read and write), and granting a permission to an App allows the

App to operate the corresponding resource in the predefined way. Table 1 shows

the permissions related to 10 critical resources. For example, given the permission

“READ CONTACTS”, an App is authorized to read a user’s contact data. Apps

access users’ private data by requesting the corresponding permissions.

Apps access users’ private data for two main reasons. First, some Apps need

to access users’ certain types of private data to operate the functionality. For
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example, Google Map has to acquire users’ location data to provide the navi-

gation functionality and thus requires the “ACCESS FINE LOCATION” permis-

sion. However, some other Apps might manipulate users’ certain types of private

data intentionally or unintentionally for non-functionality purpose (i.e., advertise-

ments). According to a survey in [21], around 25% of Android Apps require the

access to users’ location just for advertisements. According to another survey in

[22], 30% Android Apps request the permissions over the sensitive resources that

are not used by themselves. Users might have different privacy concerns. Some

users might have low privacy concerns and they feel fine to use the Apps at the

cost of their privacy, while some other users might pay more attention to their pri-

vacy and tend to give up an App or transfer to another App that provides the same

or similar functionality but request less private resources.

2.2. Problem Definition

In this section, we first introduce some key concepts and then formulate the

problem.

Notation. Through this paper, all vectors are column vectors and are denoted

by bold lower case letters (e.g., θ and φ). We use calligraphic letters to represent

sets, e.g., U and A represent the user set and App set. For simplicity, we use their

corresponding normal letters to denote their cardinalities (e.g., A = |A|). For ease

of presentation, Table 2 lists the notations.

Definition 1. (Mobile App) A mobile App is a computer program designed to run

on mobile devices such as smart phones.

In our work, a mobile App has four attributes: identifier, description, images

and permissions, as shown in Figure 1. We use a to represent an App identifier
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Table 1: Privacy-Sensitive Permission Requests.

Resources Privacy-Sensitive Permission Requests

Contact
READ CONTACTS

WRITE CONTACTS

Message

READ SMS

WRITE SMS

SEND SMS

RECEIVE SMS

RECEIVE MMS

SEND RESPONSE VIA MESSAGE

Location
ACCESS FINE LOCATION

ACCESS COARSE LOCATION

Audio
RECORD AUDIO

MODIFY AUDIO SETTINGS

Camera CAMERA

Phone state
MODIFY PHONE STATE

READ PHONE STATE

Phone call
CALL PHONE

CALL PRIVILEGED

Calendar
READ CALENDAR

WRITE CALENDAR

Call log
READ CALL LOG

WRITE CALL LOG

Browser history
READ HISTORY BOOKMARKS

WRITE HISTORY BOOKMARKS

10
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and Pa to denote a’s permission request set. Ta and Va are used to denote a’s

textual content and visual content, and we apply bag of words (BoW) to represent

an App in both textual and visual spaces. Specifically, Ta is a collection of words

(i.e., a textual document) extracted from a’s description and name, and Va is a

collection of visual words (i.e., a visual document) extracted from the images

associated with a. Specifically, for each image, we first adopt the Scale Invariant

Feature Transform (SIFT) [23] method, which is a widely used computer vision

technique, to produce a set of key points and each keypoint is denoted by a 128-

dimensional vector. Subsequently, the keypoints extracted from all the images are

grouped into k clusters by a fast k-means algorithm. These clusters form a “visual

vocabulary” V , where each cluster is considered as a “visual word” v (v ∈ V).

Finally, each key point is assigned to its closest cluster, and then this key point

is represented by the visual word assigned to its closest cluster. As a result, each

image is represented as a bag of visual words. There might be more than one

image for each App. Thus, for an App a, we combine the visual words extracted

from all its images to get a big visual document Va.

Definition 2. (User Profile) For each user u, we create a user profile Du =

{(a, t)}, which is a set of u’s downloading records in the App store. t is the

timestamp of u downloading a. Thus, the whole App downloading dataset D con-

sists of all user profiles, i.e., D = {Du : u ∈ U} where U is the set of users.

Although rating is a good indicator to represent users’ preferences, users’ rat-

ing behaviors are extremely rare in the App markets. Even for the most popular

Apps, the proportion of users who provide ratings are rather small. Thus, we col-

lect the users’ downloading behaviors in our dataset, which are implicit feedback.

Below we formally formulate our problem as:

11
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Problem 1. (Mobile App Recommendation) Given a user set U , a mobile App

setA and a user downloading history dataset D, for each user u ∈ U , our goal is

to recommend top-k mobile Apps that u is most interested in. If user u or App a

never appears in the historical dataset D, this recommendation scenario is called

out-of-matrix recommendation or cold start recommendation.

3. The Mobi-SAGE Recommender System

In this section, we first present preliminaries about the SAGE model [24], and

then describe our Mobi-SAGE model based on it.

3.1. Preliminaries about SAGE

Our proposed model is built based on the Sparse Additive Generative Model

(SAGE), which is an effective generative model proposed in [24]. The major

feature that distinguishes SAGE from other generative models is that, if a variable

is affected by several different factors, it can be generated by the mixture of these

factors without learning any explicit indicator variables (i.e., mixture weights) in

the log space. SAGE is well known for its robustness to the sparsity problem

because of that it reduces the number of variables to learn [19, 25]. The data

sparsity problem in Mobile App recommendation motivates us to build our model

based on SAGE.

To provide a further illustration of SAGE, we compare a traditional proba-

bilistic mixture generative model (e.g., LCA-LDA [26] and TCAM [27]) with it.

Give a user u, we simply assume that u’s choosing of Apps to download is influ-

enced by her interests θuseru . To overcome the data sparsity issue, we introduce the

general public’s preferences θ0 as the background model to smooth θuseru . Thus,

12
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Name: Basketball Starts

Description: The world’s best multiplayer Basketball game on mobile, 

from the creators of multiple smash-hit online sports games! 

Images:

Permissions: READ_PHONE_STATE; MODIFY_AUDIO_SETTINGS;

ACCESS_FINE_LOCATION …   

Figure 1: An Example App.

the likelihood that user u will prefer App a in the traditional probabilistic mixture

model is computed as follows.

P (a|θuseru ,θ0) = λuP (a|θuseru ) + (1− λu)P (a|θ0) (1)

where the two factors, θuseru and θ0, are combined through a linear combina-

tion, and λu is the personalized mixture weight that can be inferred for each user

through a “switching” variable. Note that, in LCA-LDA and TCAM, we need

to learn a switching variable for each user. However, in recommender system,

this learning can be inaccurate as the data for each user is sparse. As we men-

tioned before, SAGE combats this problem by avoiding the learning of switching

variables. Specifically, SAGE combines personal interests with general public’s

preferences by simple addition in log space as Equation 2. Besides, SAGE mod-

els the difference in log-frequencies from a background model. More specifically,

we chooses θ0 to denote the (background) log frequency of a in the whole App
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downloading dataset while the component θuseru is used to model the deviation

in log-frequency from a constant background model. This increases predictive

accuracy and robustness to limited training data.

P (v|θuseru ,θ0) = P (a|θuseru + θ0) =
exp(θuseru,a + θ0a)∑
a′ exp(θ

user
u,a′ + θ0a′)

(2)

3.2. System Overview

To make accurate App recommendation, we propose a sparse additive gen-

erative model based recommender system Mobi-SAGE-RS to solve both the pri-

vacy concern and cold start problem. As shown in Figure 2, Mobi-SAGE-RS

consists of two main parts: offline modeling and online recommendation. The

offline model, Mobi-SAGE, is a generative model jointly trained over the textual

words, visual information, App-IDs and permission requests in the users’ down-

loading profiles. It is designed to model user preferences to Apps by simultane-

ously considering the following two factors in a unified manner. 1) Personal Inter-

ests and Privacy Preferences. Mobi-SAGE models user interest by mining multi-

modal content information including textual information and image information

to solve the data sparsity problem and make the recommendation for cold-start

items. In addition, Mobi-SAGE also mines users’ personal privacy preferences to

provide privacy-aware recommendation. 2) Public Interests and Privacy Prefer-

ences. Mobi-SAGE models the public interests and privacy preferences to solve

the cold-start users problem.

Given a querying user u, the online recommendation part computes a ranking

score for each App a by automatically combining u’s preference and the public

preference over a, which are learned offline by Mobi-SAGE. To speed up the pro-

cess of online recommendation, we adopt a scalable query processing technique
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Figure 2: the Architecture of Mobi-SAGE-RS

for top-k recommendations: TA-based algorithm [26, 27]. Specifically, we pre-

computeK sorted lists of Apps, whereK = |K| is the number of topics, according

to the latent topics K learned by offline model Mobi-SAGE. In each list, Apps are

sorted based on their generative probabilities with respect to the corresponding

topic. At query time, we access Apps from the K sorted lists and compute top-k

Apps by running the TA algorithm.

3.3. Model Description

To model mobile users’ downloading behaviors on App stores, we propose a

mobile sparse additive generative model (Mobi-SAGE). Figure 3 is the graphi-

cal description of Mobi-SAGE. Before a detailed introduction to Mobi-SAGE, we

first list the notations used in this model in Table 2. The shaded circles in Figure 3

model the observed variables (i.e., the input data), which are users’ downloading

profiles in Mobi-SAGE. Mobi-SAGE is a generative model jointly over the textual
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Table 2: Notations used in this paper.

SYMBOL DESCRIPTION

u, a, p user u, App a and permission p

w, v textual word w and visual word v

U , A, P the sets of users, Apps and permissions

W , V the textual and visual vocabularies, respectively

Ta the textual document associated with App a

Va the visual document associated with App a

Du the profile of user u

K the set of topics

Pa the permission request set of App a

θuseru the interests of user u

θ0 the interests of the general public

ϑuseru the intrinsic privacy preferences of user u

ϑ0
z

the privacy preferences of the general public

for Apps with topic z

φtopicz the textual word vector specific to topic z

ψtopicz the visual word vector specific to topic z

ϕtopicz the App-ID vector specific to topic z

φ0, ψ0, ϕ0
the textual-word, visual-word, App-ID

vectors of the background, respectively

words, visual words, App-IDs and permission requests in the users’ downloading

profiles. It discovers multi-view topics and learns user interests and topic-aware

user privacy preferences in a unified way. Below, we will describe each compo-

nent in Mobi-SAGE.
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User Interest Modeling. Intuitively, a user chooses an App by matching

his/her personal interests with the content of that App. Inspired by the early

work on user interest modeling [28, 29, 26], Mobi-SAGE also uses latent top-

ics, defined as z, to characterize users’ personal interests. Specifically, we learn a

topic-based vector representation for each user according to his/her downloaded

Apps and their associated multi-modal content, denoted as θuseru . Besides, to alle-

viate the data sparsity and address the cold-start user problem, we also introduce a

topic-based background vector θ0 to capture the general public’s interests (i.e., the

common interests among all users). Moreover, adopting the background model θ0

also makes the learned users’ personal interests θuser more discriminative.

Multi-View Topic Modeling. The quality of the discovered topics are very

important for modeling users’ interests. To integrate the advantages of both col-

laborative filtering-based and content-based recommendation methods, a topic z

in Mobi-SAGE is designed to be responsible for clustering semantically and vi-

sually similar Apps together and capturing the App co-occurrence patterns at the

same time. Specifically, a topic z in Mobi-SAGE is associated with three vectors:

a textual-word vector φtopicz , a visual-word vector ψtopic
z and an App-ID vector

ϕtopicz . In other words, each topic z in our model is responsible for simultane-

ously generating textual words, visual words and App-IDs. This design enables

φtopicz , ψtopic
z and ϕtopicz to be mutually influenced and enhanced during the topic

discovery process by associating them. φtopicz and ψtopic
z are in charge of group-

ing semantically and visually similar Apps together like the idea of content-based

recommendation methods while ϕtopicz can capture the App co-occurrence pat-

terns to link relevant Apps together, similar to item-based collaborative filtering

recommendation methods. In this way, we are able to provide a multi-view in-
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Figure 3: The Graphical Representation of Mobi-SAGE.

terpretation for the topics. By integrating and exploiting multi-modal contents

associated with Apps, our Mobi-SAGE can effectively address the cold-start App

problem. We also introduce three background models for textual words, visual

words and App-IDs, respectively: φ0, ψ0 and ϕ0. We introduce the background

models in modeling topics with the aim making the learned topics more discrim-

inative as the background models φ0, ψ0 and ϕ0 would assign high probabilities

to non-discriminative and non-informative textual words, visual words and Apps.

For each App a in the user profile Du, Ta and Va are a bag of textual words

and a bag of visual words describing App a in the semantic and visual spaces,

respectively. We associate Ta and Va with a latent variable z to indicate the topic

of App a. Note that in the traditional topic models [30] such as LDA, a document

contains a mixture of topics, and each word has a hidden topic label. This is
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reasonable for long documents with multiple themes. However, each App in the

App stores (e.g., Google Play) belong to only one category. We therefore assign

a single topic z to the textual document Ta and visual document Va. By applying

this constraint to our Mobi-SAGE model, we aim to build the potential one-to-one

correspondence between the discovered latent topics and the categories defined by

the App stores. As categories in the App stores are defined according to the Apps’

functionalities, a discovered topic is expected to effectively capture and describe

the functionalities that the same type of Apps have.

Topic-Aware User Privacy Preference Modeling. Being different from the

traditional items or products, the user’s decision making for mobile Apps is also

influenced by his/her privacy preferences. Moreover, user privacy preferences are

not always stable and tend to vary with App categories. Therefore, we need to

model topic-aware user privacy preferences in Mobi-SAGE. One alternative is to

directly learn a user-category-specific vector ϑu,z to capture u’s privacy prefer-

ences under topic z. Considering that a user’s downloaded Apps under a specific

category are extremely sparse, and it is very difficult to learn ϑu,z without over-

fitting. Therefore, to combat the data sparsity issue, we take advantage of the

additivity in SAGE to decompose the user-category-specific privacy preferences

ϑu,z into two parts: user-specific privacy preferences ϑuseru and category-specific

privacy preferencesϑ0
z (i.e., ϑu,z = ϑuseru +ϑ0

z). The first componentϑuseru is used

to capture the intrinsic privacy preferences of user u, while the second component

ϑ0
z exploits the public’s collective privacy preferences for a specific category of

Apps (i.e., the wisdom of crowds) that captures the common patterns in permis-

sion requests for Apps with that specific category. Thus, an App with “unusual”

permission requests (e.g., malwares) will enjoy low priority to be recommended.
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3.4. Generative Process of Mobi-SAGE

Given the user profile Du for a user u, the generative process of the Mobi-

SAGE model for a downloaded App a in Du is as follows.

• Draw a topic z ∼ P (z|θ0,θuseru )

• For each textual word w in Ta, draw w ∼ P (w|φ0
z,φ

topic
z )

• For each visual word v in Va, draw v ∼ P (v|ψ0
z ,ψ

topic
z )

• Draw an App-ID a ∼ P (a|ϕ0
z,ϕ

topic
z )

• For each permission request p in Pa, draw p ∼ P (p|ϑ0
z,ϑ

user
u )

For each downloaded App in Du, Mobi-SAGE first chooses the topic this App is

about. To generate the topic index z, we utilize a multinomial model as follows:

P (z|θ0,θuseru ) = P (z|θ0 + θuseru ) (3)

Here θ0 and θuseru are topic-based vectors that represent u’s personal interests and

the general public’s interests. Once a topic index z is determined, the App a and

its associated textual and visual words will be generated with Equations (4,5,6),

respectively.

P (a|ϕ0
z,ϕ

topic
z ) = P (a|ϕ0

z +ϕ
topic
z ) (4)

P (w|φ0
z,φ

topic
z ) = P (w|φ0

z + φ
topic
z ) (5)

P (v|ψ0
z ,ψ

topic
z ) = P (v|ψ0

z +ψ
topic
z ) (6)

Similarly, based on the sampled topic z, the permissions of App a are generated

as follows:

P (p|ϑ0
z,ϑ

user
u ) = P (p|ϑ0

z + ϑ
user
u ) (7)
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The above generative process applies to all user profiles in the dataset. The graph-

ical representation of the generation process is shown in Figure 3. We introduce

the following shorthands to simplify our notation:

P (z|θ0 + θuseru ) = ζu,z, P (a|ϕ0
z +ϕ

topic
z ) = βz,a

P (w|φ0
z + φ

topic
z ) = γz,w, P (v|ψ0

z +ψ
topic
z ) = ξz,v

P (p|ϑ0
z + ϑ

user
u ) = ηu,z,p

where the above probability distributions are computed as in Equation 8, from

which we can see that each user and each topic in our model are endowed with a

model of the deviation in log-frequency from a background distribution.

ζu,z =
exp(θ0z + θuseru,z )

∑
z′ exp(θ

0
z′ + θuser

u,z′ )
, βz,a =

exp(ϕ0
a + ϕtopic

z,a )
∑

a′ exp(ϕ0
a′ + ϕtopic

z,a′ )
, γz,w =

exp(φ0w + φtopicz,w )
∑

w′ exp(φ0w′ + φtopic
z,w′ )

,

ξz,v =
exp(ψ0

v + ψtopic
z,v )

∑
v′ exp(ψ0

v′ + ψtopic
z,v′ )

, ηu,z,p =
exp(ϑ0z,p + ϑuseru,p )

∑
p′ exp(ϑ

0
z,p′ + ϑuser

u,p′ )

(8)

P (z, a, w, v, p|�, u) = P (z|u,θ0,θuser)P (w|z,φ0,φtopic)P (v|z,ψ0,ψtopic)

P (a|z,ϕ0,ϕtopic)P (p|u,z,ϑ0,ϑuser)

=
∏

u∈U

∏

a∈Du

{ζu,zu,aβzu,a,a

∏

w∈Ta

γzu,a,w

∏

v∈Va

ξzu,a,v

∏

p∈Pa

ηu,zu,a,p}

=
∏

u∈U

∏

z∈K
{ζn(u,z)

u,z

∏

p∈P
η
n(u,z,p)
u,z,p }

∏

z∈K
{
∏

a∈A
β
n(z,a)
z,a

∏

w∈W
γ
n(z,w)
z,w

∏

v∈V
ξ
n(z,v)
z,v }

(9)

3.5. Sparse Modeling

Sparsity of the representations is desirable in user interest modeling and topic

representation. For users, very often it makes intuitive sense to assume that each

user has a few salient topical interests rather than letting every topic make a non-

zero contribution; this is important in practice for large scale user modeling en-
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deavors such as those undertaken in Facebook or Amazon, where it needs to learn

hundreds or thousands of topics for hundreds of millions of users - without an

explicit sparcification procedure, it would be extremely challenging to nail down

the interests of a user. Likewise, a word has only a few salient topical senses,

and the discovered topics are expected to be discriminative, rather than obtaining

redundant words in different topics. For instance, the word “car” might be more

prevalent in the “transportation” and the “game” topics. However, we do not ex-

pect it to be prevalent in a large number of topics beyond what a background

language model would indicate. In order to achieve the above goals, we need to

impose sparsity-inducing prior distributions over certain parts of our model. More

specifically, for θuseru , φtopicz , ψtopic
z , ϕtopicz , ϑ0

z and ϑuseru , we impose zero-mean

Laplace distributions as their prior distributions. Actually, a zero-mean Laplace

prior has the same effect as placing an L1 regularizer on these model parameters,

resulting in a sparse solution to the model. Therefore, we employ L1 regulariza-

tion in the following model optimization.

3.6. Model Inference

The goal function of our model is given in Equation 9. The goal of model

inference is to learn parameters that maximize the marginal log-likelihood of the

observed variables a, w, v and p. Similar to the idea of many latent models,

we introduce the latent random variable z in performing the marginalization. As

Equation 9 is hard to be maximized directly, we adopt Gibbs EM (i.e., expectation

maximization) algorithm [31], which is a mixture between a Monte Carlo sampler

and EM, to learn the parameters maximizing Equation 9. In Equation 9, � is the

set of all the parameters, and zu,a represents the topic of App a inDu. In E-step, we

sample topic assignments by fixing all other parameters using Gibbs sampling. In
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M-step, we optimize model parameters � by fixing all topic assignments. These

two steps are iterated until convergence.

More specifically, in the E step, for each downloaded App (a, Ta, Va, Pa) in

Du, we sample latent topic z according to the following posterior probability:

P (zu,a = z|z¬, a, w, v, p,�)

∝ ζu,z × βz,a ×
∏

w∈Ta
γz,w ×

∏

v∈Va
ξz,v ×

∏

p∈Pa

ηu,z,p
(10)

where z¬ represents topic assignments for all downloading records except the cur-

rent one, we assume all other variables are fixed.

In the M-step, the parameters � are optimized to maximize the log likelihood

of the goal function by fixing all topic assignments. We enforce the inferred pa-

rameters (e.g., θuseru , φtopicz , ψtopic
z , ϕtopicz , ϑ0

z and ϑuseru ) to be L1-regularized,

inspired by the fact that L1-regularization has the nice property of enforcing the

inferred representations to be sparse. PSSG (Projected Scaled Sub-Gradient) [32],

a popular gradient descent learning algorithm designed to optimize the problems

with L1 regularization on parameters, is adopted in this step to update �. Another

advantage of PSSG is being scalable, because it adopts quasi-Newton strategy

with line search, which is robust to common functions. More specifically, the

limited-memory BFGS [33] updates for the quasi-Newton method are adopted in

our model. The gradients of θ0z and θuseru,z are provided as follows.

∂L

∂θ0z
=

∑

u∈U
n(u, z)−

∑

u∈U
(n(u)× ζu,z) (11)

∂L

∂θuseru,z

= n(u, z)− n(u)× ζu,z (12)

where n(u, z) represents the number of Apps assigned with topic z in Du, and

n(u) denotes the total number of Apps in Du, i.e., n(u) = |Du| = Du.
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Similarly, the gradients of model parameters φ0
w, φtopicz,w , ψ0

v , ψtopic
z,v ,ϕ0

a and

ϕtopicz,a are computed as follows:

∂L

∂φ0w
= n(w)−

∑

z∈K
nT (z)× γz,w (13)

∂L

∂φtopicz,w

= n(z, w)− nT (z)× γz,w (14)

∂L

∂ψ0
v

= n(v)−
∑

z∈K
nV (z)× ξz,v (15)

∂L

∂ψtopicz,v

= n(z, v)− nV (z)× ξz,v (16)

∂L

∂ϕ0
a

= n(a)−
∑

z∈K
nA(z)× βz,a (17)

∂L

∂ϕtopicz,a

= n(z, a)− nA(z)× βz,a (18)

where n(z, w) and n(z, v) are the numbers of times that textual word w and vi-

sual word v are assigned to topic z, respectively, and nT (z) and nV (z) are the

total numbers of textual and visual words assigned to topic z, respectively, i.e.,

nT (z) =
∑

w′∈W n(z, w
′) and nV (z) =

∑
v′∈V n(z, v

′). n(z, a) is the number of

times that App a is assigned to topic z, and nA(z) is the total number of Apps as-

signed to topic z, i.e., nA(z) =
∑

a′∈A n(z, a
′). These gradients have an intuitive

interpretation as the difference of the true counts and their expected counts.

The gradients of model parameters ϑ0
z,p and ϑuseru,p are computed as follows:

∂L

∂ϑ0z,p
=

∑

u∈U
n(u, z, p)−

∑

u∈U
nP (u, z)× ηu,z,p (19)

∂L

∂ϑuseru,p

=
∑

z∈K
n(u, z, p)−

∑

z∈K
nP (u, z)× ηu,z,p (20)

where n(u, z, p) is the number of times that permission request p is assigned to

topic z in theDu, and nP (u, z) is the total number of permission requests assigned
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to topic z in Du, i.e., nP (u, z) =
∑

p∈P n(u, z, p). Note that nP (u, z) and n(u, z)

are not equal, as an App may have multiple permission requests.

Time Complexity Analysis. There are two main components in it: Gibbs

sampling in the E-step and gradient descent learning in the M-step. We assume

that the inference algorithm needs I iterations to reach convergence. For each

iteration, its time complexity is analyzed as follows. In the E-step, it needs to

go through all user downloading records, and for each rated or downloaded App

it requires O(K) operations to compute the posterior probability distribution for

sampling topic z. K is the number of latent topics that is also equal to the number

of categories defined in the App markets. Thus, the time complexity in this step

is O(K ×D) where D=
∑

uDu is the total number of downloading records in the

dataset. In the M-step, we use the gradient descent learning algorithm PSSG to

update the model parameters � = {θ0,θuser,ϑ0,ϑuser,φ0,φtopic,ψ0,

ψtopic,ϕ0,ϕtopic} based on the topic assignments sampled in the E-step. We as-

sume that the gradient descent algorithm needs J iterations to converge, and in

each iteration the time complexity to compute the gradients for the model parame-

ters � isO(K×D). Thus, the time complexity in the M-step isO(J×K×D). The

total time complexity for each EM iteration isO((J+1)×K×D)=O(J×K×D),

which indicates that the computational time is linear with respect to the number of

downloading records in our dataset. Mobi-SAGE achieves fast convergence rates

in M-step and needs only a few iterations (i.e., J < 20) to converge in our dataset.

3.7. Efficient Recommendation

Once we have trained the model Mobi-SAGE, given a target user u, we com-

pute the probability for each unrated App a, as in Equation 21, and then select the
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top-k ones with highest probabilities as recommendations.

P (a, Ta,Va,Pa|u,�)

=
∑

z∈K
P (a, z, Ta,Va,Pa|u,�)

=
∑

z∈K
P (z|θ0,θuseru )P (a|ϕ0,ϕtopic

z )P (Ta|φ0,φtopic
z )

× P (Va|ψ0,ψtopic
z )P (Pa|ϑ0

z ,ϑ
user
u )

=
∑

z∈K
ζu,zβz,a

( ∏

w∈Ta

γz,w

) 1
Ta
( ∏

v∈Va

ξz,v

) 1
Va
( ∏

p∈Pa

ηu,z,p

) 1
Pa

(21)

where we adopt geometric mean for the probability of topic z generating Ta, Va
and Pa, considering that different Apps may have different numbers of textual

words, visual words and permission requests. The above equation can be rewritten

as follows:

S(u, a) =
∑

z∈K
W (u, z)F (a, z)

W (u, z) = ζu,z ×
( ∏

p∈Pa

ηu,z,p

) 1
Pa

(22)

F (a, z) = βz,a

( ∏

w∈Ta

γz,w

) 1
Ta
( ∏

v∈Va

ξz,v

) 1
Va

where S(u, a) represents the ranking score of App a for user u. Each latent topic

z can be seen as a functionality, and W (u, z) represents the preference weight

of user u on functionality z, and F (a, z) represents the score of App a with re-

spect to functionality z. This ranking framework separates the offline computation

from the online computation. Since F (a, z) is independent of the querying user

u, it is computed offline. Although the query weight W (u, z) is computed on-

line, its main time-consuming components (i.e., ζu,z and ηu,z,p) are also computed

offline, and the online computation is just a simple assembling process. This de-

sign enables maximum precomputation for the problem considered, and in turn

minimizes the online recommendation time.
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The straightforward method of generating top-k recommendations needs to

compute the ranking scores for all Apps according to Equation 22 and select the

k ones with highest ranking scores, which is, however, computationally ineffi-

cient, especially when the number of available Apps becomes large. To improve

the online recommendation efficiency based on the observation of user interest

sparsity that a user u only prefers a small number of topics (say 5-10 latent di-

mensions) and her/his weights on most dimensions are extremely small, we adopt

the TA-based query processing technique developed in [26, 27]. Since W (u, z)

is non-negative, the proposed ranking function in Equation 22 is monotonically

increasing given a user u, which meets the requirement of the TA-based query

processing technique. This technology has the nice property of finding top-k re-

sults correctly by examining the minimum number of items without scanning all

ones, which enables our recommender system scalable to large-scale App market

datasets.

Addressing Cold-start Problem. As for cold-start users, our Mobi-SAGE

model can still make App recommendations according to the “wisdom of crowds”,

i.e., general public’ interests θ0 that capture the global trends of App categories

and the public’s privacy preferences ϑ0
z that represent the common patterns in

permission requests by Apps with functionality z. In this scenario, ζu,z and ηu,z,p

in W (u, z) of Equation22 are degenerated to:

ζu,z =
exp(θ0z)∑
z′ exp(θ

0
z′ )

, ηu,z,p =
exp(ϑ0z,p)∑
p′ exp(ϑ

0
z,p′ )

Compared with the popularity-based recommendation method, the newly launched

Apps with popular functionalities can enjoy an opportunity to be recommended

by our approach.

As for cold-start Apps, our Mobi-SAGE model can still accurately recommend
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Table 3: Characteristics of Different Methods.

Methods

Features
Textual

Con-

tent

Visual

Con-

tent

User Security or

Privacy Prefer-

ences

Category-Aware

User Privacy

Preferences

Personal

Interests

Mobi-SAGE • • • • •
LIBFM • • • •
SPAR •
PBPR • •
BPR •

Mobi-SAGE-V1 • • • •
Mobi-SAGE-V2 • • • •
Mobi-SAGE-V3 • • • •
Mobi-SAGE-V4 • • •

them to the right users according to their textual and visual contents and permis-

sion requests. Specifically, F (a, z) in Equation 22 is reformulated as follows.

F (a, z) =

( ∏

w∈Ta

γz,w

) 1
Ta
( ∏

v∈Va

ξz,v

) 1
Va

4. Experiments

In this section, we first describe the setup of experiments and then demonstrate

the evaluation results.

4.1. Dataset

Our data comes from a leading Android app store in China, called 360 Mobile

Assistant4. The 360 platform has over 275 million active users, growing at a

rapid rate every month. We randomly sampled 100000 users and collected their

App download records in the recent one year. Totally, there are 50217 Apps and

10,203,755 download records in our dataset. For each App, we collected its name,

4http://zhushou.360.cn/
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description, screenshots and permissions. The user-App download matrix has a

sparsity as high as 99.80%. Different from the Google Play dataset collected by

[17], our dataset is an implicit feedback dataset.

4.2. Comparison Approaches

We compare our proposed Mobi-SAGE model with the following two state-

of-the-art App recommender models and two powerful conventional latent factor

models. The characteristics of all the recommendation methods are listed in Ta-

ble3.

SPAR. SPAR [16] is the first security-aware mobile App recommendation ap-

proach. It first computed a security score for each App by a regularization ap-

proach, and then used a modern portfolio theory based method to rank Apps by

striking a balance between the Apps’ popularity and their security scores. This

method does not consider users’ preferences, thus it is a non-personalized recom-

mendation approach.

LIBFM. LIBFM [34] is a state-of-the-art feature based factor model library.

Based on it, we build a factorization model by incorporating all side information

of Apps including textual, visual and permissions with the collaborative filtering.

BPR. BPR [5] is the state-of-the-art of personalized ranking model for implicit

feedback datasets. Compared with the point-wise matrix factorization methods

that focus on the prediction of user ratings, BPR is a pairwise matrix factorization

method that directly optimizes the ranking of the feedback and is more suitable

for top-k recommendation.

PBPR. Based on BPR, we implement a stronger baseline, the privacy-aware

BPR, to integrate user privacy preferences with user interests, following the method

developed in [17]. Note that we do not directly compare with the App recom-
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Figure 4: Recommendation Effectiveness on 360 Mobile App Dataset.
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Figure 5: Impact of Different Features on Recommendation Effectiveness.

mender model developed by Liu et al. [17], since they adopted a Poisson Factor

model that was designed for user rating dataset while our dataset only contains

implicit feedback.

To further validate the benefits brought by integrating textual content, visual

content, user privacy preferences and category-aware user privacy preferences,

respectively, we design four variants of Mobi-SAGE, as shown in Table 3. Com-

pared with Mobi-SAGE, Mobi-SAGE-V1 and Mobi-SAGE-V3 ignore the textual

content and visual content, respectively; Mobi-SAGE-V2 ignores that user pri-

vacy preferences depend on App categories; Mobi-SAGE-V4 does not consider

the factor of user privacy preferences at all.

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.3. Evaluation methods

Dataset Splitting. Given a user profile Du, namely a collection of download-

ing records, we first rank the records according to their downloading timestamps.

Then, we use the 70-th and 80-th percentiles as the cut-off points so that the first

70% records are used for training, and the last 20% are marked off as the test-

ing data. The remaining 10% are used as the validation data to tune the model

hyper-parameters such as the numbers of topics or the dimension of latent factors.

According to the above dividing strategies, we split the dataset D into the training

set Dtraining, the validation set Dvalidation and the test set Dtest.
Evaluation Metrics. In real mobile App recommendation scenarios, our task

is to recommend a top-ranked list of Apps to the target user. Thus, in this section,

we evaluate the effectiveness of proposed recommender models from the aspect of

personalized ranking. More specifically, each target user in the test set is presented

with k Apps having the highest ranking scores computed by Equation 21, but

have not been rated or downloaded by the target user in the training set. Then,

the performance of different recommendation methods are evaluated based on

whether the recommended Apps will be downloaded by the target user in the test

set. Given a target user u in the test set, if a recommended App is in the test set

Dtestu , we assume that uwill download it and we call this case as a “hit”, otherwise

it’s a “miss”. To make the experimental results comparable, we use multiple well-

known metrics in information retrieval to measure the ranked results. We first use

Precision@k and Recall@k to assess the quality of the top-k recommended Apps

as follows:

Precision@k =
#hits

k
, Recall@k =

#hits

Dtest
u

where #hits is the number of “hit” Apps in the top-k recommended ones and
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Dtest
u = |Dtestu |. The precision and recall for the entire dataset are computed by

averaging the precision and recall over all the users, respectively. Besides, F-

measure is employed to balance between precision and recall. We consider the Fβ

metric, and it is defined as:

Fβ = (1 + β2)
Precision×Recall

β2 · Precision+Recall
.

The Fβ metric with β < 1 indicates more emphasis on precision than recall. In

our experiment, we use Fβ metric with β = 0.5 since we are more concerned

about “Precision” in the recommendation scenario, following [17].

4.4. Recommendation Effectiveness

In this part, we present the effectiveness of the recommendation methods with

well-tuned parameters. Figure 4 reports the comparison results between our pro-

posed model Mobi-SAGE and other competitor methods in terms of Precision@k,

Recall@k and Fscore@k. All differences between our model Mobi-SAGE and the

other comparison methods are statistically significant (p < 0.01).

Clearly, our proposed Mobi-SAGE model significantly outperforms other com-

petitor models consistently in all the three metrics, and the relative improve-

ments, in terms of Fscore@10, are 20.9%, 38.8%, 71.5% and 180% compared with

LIBFM, PBPR, BPR and SPAR, respectively. Several observations are also made

from the results: (1) PBPR achieves higher recommendation accuracy than BPR,

showing the benefit brought by considering user privacy preferences. (2) Both

Mobi-SAGE and LIBFM outperform PBPR. It might be because Mobi-SAGE

and LIBFM leverage visual and textual contents of Apps to alleviate the issue

of data sparsity. (3) Our Mobi-SAGE beats LIBFM due to that LIBFM cannot

model and capture the subtle dependence between App functionalities and user
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Figure 6: Recommendation Effectiveness for Cold-Start Apps.

privacy preferences. Another possible reason is that LIBFM is a general-purpose

factor model that utilizes auxiliary information in a feature-engineering way and

treats each feature equally, while our Mobi-SAGE is able to treat each App fea-

ture in a more reasonable way and thus improve the recommendation quality. (4)

SPAR drops behind all other models, as it is a non-personalized recommendation

method and tends to recommend the most popular Apps for each user, ignoring

the uniqueness of user interests and tastes [35].

4.5. Impact of Different Factors

Impact of Features. In this subsection, we first carry out an ablation study

showing the benefits of each feature proposed in Mobi-SAGE, i.e., App textual

feature (V1), relation between use privacy preferences and App categories (V2),

App visual feature (V3) and user privacy preferences (V4). We compare Mobi-

SAGE with its four variant versions proposed in Section 4.2, and the comparison

results are shown in Figure 5. From the results, we first observe that Mobi-SAGE

consistently outperforms the four variant versions in mobile App recommenda-

tion, indicating the benefits brought by each factor, respectively. For instance, the

performance gap between Mobi-SAGE and Mobi-SAGE-V2 validates the benefit

of exploiting and integrating the dependence of user privacy preferences on App
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functionalities or categories. Second, we find that the contribution of each feature

to improving App recommendation is different. Specifically, according to the im-

portance of the four features in the App recommendation, they can be ranked as

follows: V 4 > V 1 > V 2 > V 3. Obviously, leveraging user privacy preferences

from App permission requests is most important to improve App recommenda-

tion. Another observation is that the textual features of Apps are more powerful

than the visual features. In this experiment, we only study one type of visual fea-

tures, i.e., the visual words extracted by SIFT, and we will explore more advanced

visual features - CNN-based visual words [36] in our future work.

Impact of Model Parameters. There is one important hyper-parameter in our

Mobi-SAGE model: the number of topics (i.e., K). According to our previous ex-

periences in topic models [26, 27], tuning the number of topics is critical to the

model performance. Thus, we also study the impact of the parameter K (i.e., the

number of topics), and present the results in Table 4. Due to space constraints,

we have only shown the experimental results for the top-10 recommendation, and

similar observations are also made for other k values. We tested the performance

of Mobi-SAGE by varying the number of topics from 40 to 140. From the re-

sults, we observe that the performance first improves quickly with the increase of

the number of topics and then the increment becomes small. The number of the

topics represents the model complexity. Thus, when K is too small, the model

has limited ability to describe the data. However, when K exceeds a threshold

(e.g., K = 100), the model is complex enough to handle the App market data. At

this point, it is less helpful to improve the model performance by increasing K,

but will increase both model training and online recommendation time cost. As

a result, we choose the number of topics K = 100 as the best trade-off between
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Figure 7: Recommendation Effectiveness for Cold-Start Users.

effectiveness and efficiency.

Table 4: The Effectiveness of Top-10 Recommendation.

K=40 K=60 K=80 K=100 K=120 K=140

P@10 0.239 0.250 0.263 0.271 0.271 0.272

R@10 0.126 0.132 0.139 0.144 0.144 0.144

F@10 0.203 0.212 0.224 0.231 0.231 0.232

4.6. Test for Cold-Start Recommendation

We further conduct experiments to study the effectiveness of different recom-

mendation algorithms handling the cold start problem. We first test the recom-

mendation effectiveness for cold-start Apps on the 360 mobile App dataset and

present the results in Figure 6. As BPR is a pure collaborative filtering method

and SPAR is a popularity-based method, they cannot apply to cold-start App rec-

ommendation, and we do not compare with them. To evaluate the performance

of our Mobi-SAEG model, we first choose those Apps that are downloaded by

less than 5 users as the cold-start Apps. Then, we select users who have down-

loaded at least one cold-start Apps as test users. For each test user, we mark off

her/his download records associated with cold-start Apps as the test data, and the
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remaining download records as the training data.

From the results, we have the following observations: 1) our proposed Mobi-

SAGE performs best consistently in recommending cold-start Apps; and 2) com-

pared with the results in Figure 4, the recommendation effectiveness of all meth-

ods decreases, to different degrees, for cold-start Apps, e.g., the recommendation

effectiveness of PBPR drops drastically while our Mobi-SAGE decreases slightly;

3) both Mobi-SAGE and LIBFM perform significantly better than PBPR, which

demonstrates that the recommendation methods that incorporate multiple types of

auxiliary information perform significant better than the one that only leverages a

single type of features. This is because cold-start Apps lack interaction informa-

tion which is the essential foundation of the BPR-based methods. The superior

performance of Mobi-SAGE models in recommending cold-start Apps shows that

exploiting and integrating user privacy preferences, textual and visual features can

effectively alleviate cold-start problem.

We also test the performance of our Mobi-SAGE in recommending Apps to

cold-start users. We first randomly select 10000 users as the test users. For each

test user, we remove their download records as the test data. As LIBFM, PBPR

and BPR cannot apply to cold-start users, we only compare Mobi-SAGE with

SPAR in this experiment. Figure 7 reports the performance of Mobi-SAGE and

SPAR for cold start users on the 360 mobile App dataset. By comparing Figure

7 and Figure 4, we observe that 1) the performance of SPAR does not change in

these two figures, as it is a non-personalized recommendation method; and 2) al-

though the recommendation effectiveness of our Mobi-SAGE decreases, to some

extent, for cold start users, it still outperforms SPAR significantly. Compared

with the popularity-based SPAR, our Mobi-SAGE captures the global trends of
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App categories by latent topics rather than the popularity of specific Apps, thus

the newly launched Apps with few downloads but popular functionalities can still

be recommended to the new users by our approach.

4.7. Recommendation Efficiency

This experiment is to evaluate the online recommendation efficiency. For the

online recommendation of Mobi-SAGE, we adopt two methods. The first one is

called Mobi-SAGE-TA which adopts the TA-based query processing technique

[26] to produce online recommendation. The second is called Mobi-SAGE-BF

which uses a naive brute-force algorithm to produce top-k recommendations by

computing a score for each App. As the latent vectors learnt in LIBFM, PBPR and

BPR can be negative, their ranking functions are not monotonic. The TA-based

query processing technique cannot be applied to them, and these three methods

use brute-force algorithm to produce top-k recommendations. All the online rec-

ommendation methods were implemented in Java (JDK 1.8) and run on a Win-

dows Server with 200G RAM.

Table 5 presents the average online efficiency of five different methods over

all users inDtest on the 360 App dataset. We show the performance where k is set

to 5, 10, 15 and 20. For example, on average Mobi-SAGE-TA finds the top-10 rec-

ommendations from about 50,000 Apps in 28.45 ms. From the results, we observe

that 1) Mobi-SAGE-TA outperforms Mobi-SAGE-BF significantly, justifying the

benefits brought by the TA-based query processing technique, and it only needs to

access around 12% of all the Apps on average for top-10 recommendations; 2) the

time cost of Mobi-SAGE-TA increases with the increasing number of recommen-

dations (i.e., k), but it is still much lower than all comparison methods; 3) BPR is

faster than other brute-force based recommendation methods, because it does not
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consider any auxiliary information of Apps in computing the ranking score; and

4) Mobi-SAGE-BF is more time-consuming than LIBFM, as Mobi-SAGE-BF in-

volves more multiplication operations than LIBFM when computing the ranking

score.

Table 5: Recommendation Efficiency on 360 App Dataset.

Methods
Online Recommendation Time Cost (ms)

k=5 k=10 k=15 k=20

Mobi-SAGE-TA 10.91 28.45 37.65 46.28

Mobi-SAGE-BF 195.34 195.75 195.89 195.94

LIBFM 180.31 180.33 180.42 180.48

PBPR 159.43 159.48 159.51 159.57

BPR 143.12 143.26 143.38 143.42

5. Related Work

In this section, we group related studies into two categories, and survey the

literature of each category in detail.

5.1. Application Markets Mining and Analysis

App markets contain a wealth of multi-modal data associated with Apps, which

is potentially useful for different App ecosystem stakeholder. Recently, there are

emerging studies on mining App markets data to facilitate various applications,

such as App review mining and analysis [37], automatic App tagging [38], de-

tecting similar Apps [39], App search [40], and so on. Although the nature of the

App data used in the above studies is similar to ours, the techniques and research

goals are very different. Our work aims to use the knowledge discovered from
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App market data to automatically and accurately recommend Apps to the right

mobile users.

5.2. Mobile Application Recommendation

5.2.1. Privacy-Insensitive Recommendation

More recently, mobile App recommendation has begun to attract attention

from both data mining and information retrieval communities, but most of ex-

isting works focused on recommending the most relevant Apps to a user without

considering the influence of user privacy preferences.

AppJoy proposed in [41] measured how the applications are actually used, and

the usage scores were then used by a collaborative filter algorithm to make per-

sonalized recommendation, inspired by the fact that whether a user has installed

an application is only a weak indicator of whether she actually likes that applica-

tion. AppAware [42] allowed its users to see what applications are being installed

right now or around their position by other people, thus introducing a new way of

promoting the mobile applications. Viljanac et al. [43] focused on context-based

recommendations of mobile apps. [43] demonstrated how the constantly changing

context and the constantly changing preferences influence the recommendations

for users. LSA captured not only the needs of the users, but also the expectations

of the developers and the online market [44]. Torres-Carazo et al. made an ini-

tial exploration in taking the people with special needs, like the disabled users,

into consideration during the mobile App recommendation in [45]. Souza et al.

presented a study of open source recommender systems and their usefulness for

SoliMobile Project, which aimed to design, build and implement a package of in-

novative services focused on the individual in unstable situation (unemployment,

homeless, etc.) in [46]. [47] aimed to identify and analyze mobile application

39



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

recommender systems developed for the health area.

Lin et al. [18] proposed to integrate side information from Twitter to address

cold-start App problem. Specifically, the followers of the App’s official Twitter

account are collected and treated as “virtual words”, then a latent Dirichlet allo-

cation model is employed to generate latent groups. At recommendation time, a

target user seeking recommendations is mapped to these latent groups. By using

the transitive relationship of latent groups to Apps, they estimated the probability

of the user liking the app. However, only a small portion of Apps in the real-life

App markets have an official Twitter account, and most of these Apps tend to be

popular ones rather than cold-start ones. Yin et al. [48] considered a trade-off be-

tween satisfaction and temptation for App recommendation with a special focus

on the case that a user like to replace an old App with a new one. An interesting

dataset is collected via an App from mobile users to study the trade-off between

satisfaction and temptation, and the analyzed results reveal the users’ decision

process of choosing a new App after comparing it with those already obtained

ones, which is then used to facilitate the recommendation algorithm. Lin et al.

[49] distinguished the same Apps with different versions and incorporated fea-

tures distilled from version descriptions into App recommendation. Specifically,

they first used a topic model to construct a representation of an App’s version as

a set of latent topics discovered from version metadata and textual descriptions.

They then discriminated the topics based on genre information and weighted them

on a per-user basis to generate a version-sensitive ranked list of Apps.

5.2.2. Privacy-Sensitive Recommendation

To the best of our knowledge, there are only three works [17, 20, 16] that

considered the privacy-sensitive permission requests or security.

40



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Specifically, Zhu et al. [16] proposed a mobile App recommender system by

considering both the App’s popularity and security risks. But, they provided an

identical global ranking of Apps to each user, and thus their work is not personal-

ized App recommendation. Liu et al. [17] extended the probabilistic matrix fac-

torization model for personalized App recommendation by considering both user

interests and user privacy preferences. Compared with our work, they ignored the

dependence between user privacy preferences and the App functionalities, i.e.,

they assumed that the user has the same privacy preferences toward all Apps even

with different functionalities. Moreover, they only used the users’ rating infor-

mation, and did not explore or exploit the potential of the rich multi-modal data

associated with Apps to improve App recommendation, especially for the cold-

start Apps and users. In their experiments, they removed unpopular users and

Apps (i.e., Apps with less than 5 users and users with less than 10 Apss) to avoid

data sparsity and cold start problem. Although they reported the good perfor-

mance of their approach on the carefully chosen testing data, their experimental

setup is quite different from the real-life App recommendation scenario. [20] is an

abstract paper which presents our preliminary study of mobile app recommenda-

tion. In this article, we make significant revision and add substantial new materials

compared with the work presented in [20]. For example, we impose sparse cod-

ing on user interest modeling and topic representation by introducing zero-mean

Laplace distributions as prior distributions.

6. Conclusions

In this paper, we proposed a mobile sparse additive generative model (Mobi-

SAGE) to recommend Apps by considering both user interests and functionality-
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aware user privacy preferences. To alleviate the data sparsity issue, we exploited

both textual and visual content associated with Apps to learn multi-view topics for

user interest modeling. Besides, we also leveraged the “wisdom of crowd” includ-

ing both the general public’s interests and functionality-aware privacy preferences

to produce recommendations for cold-start users. To evaluate the performance of

our proposed recommender model Mobi-SAGE, extensive experiments were con-

ducted on a large App dataset. The experimental results revealed that our Mobi-

SAGE consistently and significantly outperforms the state-of-the-art approaches,

which implies the importance of exploiting functionality-aware user privacy pref-

erences and the multi-modal App content data on personalized App recommenda-

tion.
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