
TAPON: a two-phase machine learning approach for semantic labelling

Daniel Ayalaa,∗, Inma Hernándeza, David Ruiza, Miguel Toroa

aUniversidad de Sevilla, ETSI Informática.
Avda. de la Reina Mercedes, s/n, Sevilla E-41012, Spain.

Abstract

Through semantic labelling we enrich structured information from sources such as HTML pages, tables,
or JSON �les, with labels to integrate it into a local ontology. This process involves measuring some features
of the information and then �nding the classes that best describe it. The problem with current techniques
is that they do not model relationships between classes. Their features fall short when some classes have
very similar structures or textual formats. In order to deal with this problem, we have devised TAPON:
a new semantic labelling technique that computes novel features that take into account the relationships.
TAPON computes these features by means of a two-phase approach. In the �rst phase, we compute simple
features and obtain a preliminary set of labels (hints). In the second phase, we inject our novel features and
obtain a re�ned set of labels. Our experimental results show that our technique, thanks to our rich feature
catalogue and novel modelling, achieves higher accuracy than other state-of-the-art techniques.

Keywords: Semantic labelling, Information Integration, Machine Learning

1. Introduction

Semantic labelling consists in endowing informa-
tion from structured data sources (such as pro-
cessed HTML pages [27], JSON, CSV or XML �les)
with labels that denote the semantic class of each
element. A semantic class represents a known infor-
mation type that can be used to integrate heteroge-
neous information into a local schema. Being able
to identify which class some information belongs
to has a variety of uses, such as ontology match-
ing in extensional techniques [6], information fu-
sion [30], information veri�cation [13], information
extraction [12], or wrapper repair [4]. Some possi-
ble sources of semantic classes are: datatype and
object properties from an OWL ontology (which is
the most prominent source in the related work),
database table and attribute names, and HTML ta-
ble headers.
In order to exemplify semantic labelling and in-

troduce the concepts related to information struc-
tures to which we refer in this paper, Figure 1 shows
very similar information in three possible source

∗Corresponding author
Email addresses: dayala1@us.es (Daniel Ayala),

inmahernandez@us.es (Inma Hernández), druiz@us.es
(David Ruiz), migueltoro@us.es (Miguel Toro)

formats: an HTML document, a table, and RDF
data, corresponding to information about a book
and a videogame respectively1. In Figures 2(a)
and 2(b) we have represented this information in
generic tree-like structures, in which there are struc-
tural elements we call records (e.g., videogames,
books, or authors) as well as textual elements that
we call attributes (e.g., names, titles, or prices).
Records correspond to the intermediary nodes of
the tree and have no textual value, while attributes
correspond to the leaf nodes of the tree and have a
literal attached to them (which may be numeric).
Additionally, Figure 2(c) depicts information whose
semantic class is unknown. The purpose of a seman-
tic labelling technique would be to label this infor-
mation with known semantic classes (which are, in
this toy example, restricted to those in the �gures).
For example, such technique could label attribute
$C2 as a date after observing that it has two slash
characters, a feature that is typical of dates. The
input can vary depending on the technique used to
label: it can be individual instances, datasets, or
groups of the former.
Semantic labelling techniques apply models that,

in one way or another, measure the value of some

1schema = pre�x for http://schema.org

Preprint submitted to Elsevier October 8, 2018

(a) HTML elements.

(b) Tables.

����������	
����������

�������������������“����	����	������”�

������������������������������

������������	
������������

��������������������“������������”

������������������������	��“����� ��”

������������!�����“"#�"”

��������������� ���“$%&#�'”

�(��������	
����)����(�����

�(�����������������“*	��� ���”�

�(����������������������
�����������

�
�������	
���������������

�
���������������“��� ����� �����”

�
���������+� �������“����,�����”

�(����������-�����“"."�."#�"”

�(��������������,�����“�*/”

(c) RDF triples.

Figure 1: Similar structured information in di�erent source
formats.

features of the information in order to �nd which
are the semantic classes that best describe it. Some
techniques de�ne a feature catalogue with some
aspects of the information that can be measured
to model that information, such as the number of
uppercase letters or the cosine similarity between
two pieces of text [13, 14, 15, 18, 20, 30]. Other
techniques do not de�ne this catalogue explicitly
[16, 32, 19, 24, 23], but ultimately rely on some
kind of measure. For example, Ramnandan et al.
[24] perform Lucene queries, which are based on
TF-IDF scores, and Ritze et al. [25] use queries to
knowledge bases to obtain candidate classes, the
queries being ultimately based on TF-IDF scores
or similar measures.
The main problem that we have observed in these

techniques is that the features they take into ac-
count are mostly, if not exclusively, based on the

(a) Book record.

(b) VideoGame record.

(c) Unlabelled record.

Figure 2: The information from several sources, as records
and attributes.

textual value of attributes (which may be numeric
or not). These features, such as the occurrence of
a string that matches a regular expression or the
value of a numeric value, can be enough to dis-
criminate certain cases, such as dates, which have
a quite distinct textual format, or month numbers,
which follow a clear numerical distribution. How-
ever, they may not be enough to distinguish highly
similar classes, or even to assign labels to records.
For example, in Figure 2(c), a semantic labelling
technique that was only based on text-based fea-
tures would not be able to label records $C0 and
$C4 because they are structural elements without

2

textual features, and it may have problems dis-
cerning whether $C1 is a name or a title. Even if
the technique computed some simple structural fea-
tures from the instances, such as their depth in the
dataset, it would be impossible to distinguish be-
tween videogames and books, or authors and pub-
lishers, since they are structurally identical.
To deal with this problem, we have devised

TAPON, a new two-phase, supervised, machine-
learning semantic labelling technique. Our main
contribution is the application of novel features in
two phases that go beyond simple text-based and
structural features. In the �rst phase (the hint-
free phase), we compute simple features that can
be computed on attributes or the structure of the
records, such as the letter density or the number of
attributes they have. These features are used to ob-
tain a set of temporary labels we call hints. In the
second phase (the hint-based phase), the presence
of hints allows us to compute, in addition to the
former features, novel features that model the re-
lationships between classes. After computing these
features, we re�ne the labels with the added infor-
mation. Note that even though our technique is
supervised, the increase in availability of open data
sources makes it trivial to obtain large amounts of
labelled information.
Figure 3 represents the work�ow of our tech-

nique. Observe how, in Figure 2(c), we can easily
label $C4 as a publisher by measuring its distance
to the nearest instance labelled as a gamePlatform,
which is small in the case of publishers and in�nite
in the case of authors (since there is no instance
labelled as such anywhere near authors). Feature
"minimum distance to class C" is a hint-based fea-
ture, which measures the distances to instances of
every known class, some of them useful to the clas-
si�er.
Thanks to our two-phase approach, TAPON

achieves better labelling precision in the cases in
which the aforementioned relationships between
classes help classify problematic classes. When that
is not the case, precision does not decrease.
In order to empirically prove the e�ectiveness of

our technique, we have carried out experiments in
which TAPON was used to label a number of real-
world datasets, comparing its performance with the
performance of labelling techniques based on the
techniques by Kushmerick [14], Ramnandan et al.
[24], Soru and Ngomo [30], Pham et al. [23], and
Neville and Jensen [21]. Our experiments focus
on an application scenario in which datasets are

labelled individually and have arbitrary, unknown
structures. These situations are common, chie�y in
web environments [5]. The results of our experi-
ments show that TAPON is able to achieve better
performance than other techniques in the scenario
that we have described, with the iterative applica-
tion of our novel features playing an important role.
We train our technique with data from linked open
data repositories, which provide a large amount of
labelled information. However, TAPON is source-
independent and takes the generic structures we
have described as input.
The rest of the article is organised as follows: Sec-

tion 2 contains a detailed description of TAPON;
Section 3 describes the relevant techniques we have
identi�ed in the literature, as well as their prob-
lems; Section 4 presents our experimental results
regarding both labelling accuracy and training time
of TAPON; �nally, Section 5 summarises our work
and contributions to the state-of-the-art.

2. Our proposal

TAPON builds on a two-phase, machine-learning
technique. A classi�er is learnt using our large fea-
ture catalogue and then applied to label unlabelled
instances. It �rst learns a classi�cation model in
which no features take the relationships between
classes into account; the labels obtained by this
model are then used as hints in a second phase,
in which a new model is enriched with additional
features that are based on the hints. Our hypothe-
sis is that the hints and the information related to
relationships between classes (included through the
additional features) help create an improved model
that can be used to provide more accurate labels.
Our experimental results prove this hypothesis to
be true, as we illustrate in Section 4.
Next, we �rst introduce some preliminaries, then

a speci�cation of the circumstances under which our
technique can be applied, then a detailed descrip-
tion of our technique, and �nally an application ex-
ample shown in Figure 4. This example is also used
to exemplify concepts in the preliminaries.

2.1. Preliminaries

Dataset: a structure with data arbitrarily organ-
ised as a set of records or attributes with ex-
plicit relationships. We denote the set of all
possible datasets by D. Records have other

3

Compute h int-free (HF) features Apply hint-free model
Compute h int-based (HB)

features
Apply hint-based model

Dataset

1
2

3

1
0.5
2

Attr 1
1

0.5
2

Attr 1
1

0.5
2

Rec 1

Features
(HF)

1 : author

2

3

: name

: location

Hints

1
0.5
2
0

0.4

Rec 1

Features
(HF+HB)

1
0.5
2
0

0.4

Rec 1
1

0.5
2
1
-1

Rec 1

1 : pub lisher

2

3

: name

: location

Final
labe ls

Hint-free
model

Hint-based
model

✓

✗

✓

✓

✓

✓

Figure 3: Work�ow of TAPON.

records or attributes. Attributes have a tex-
tual value. Both records and attributes are in-
stances of a class (in some contexts there may
be more than one) and can be endowed with
a label that denotes it but can be erroneous.
If a label is temporary in the labelling process
and is still subject to changes, it is considered
a hint.

EXAMPLE: The dataset in Figure 4 con-
tains a schema:VideoGame record. This
record has four attributes and another
record. These belong to classes schema:title,
schema:date, schema:gamePlatform, and
schema:Publisher, which has a schema:name
and a schema:location. Some labels are erro-
neous: the title attribute has been labelled as
a �schema:name�, the schema:publisher record
has been labelled as an �schema:author�,
and the schema:VideoGame record has been
labelled as a �schema:Book�. These labels
have been given in an intermediary step of the
process and are temporary. Therefore, they
are considered hints.

Features: functions that take as input an instance
and output a numeric value. They include
any measurement that can be taken from the
dataset and is considered to be relevant. Fea-
tures can be applicable to records, attributes,
or both. We denote the set of all possible fea-
tures by F . If a feature requires the presence
of hints in order to compute its values, we call
it a hint-based feature. Otherwise we call it
a hint-free feature. We denote the set of all
possible hint-free features by FHF , and that of
hint-based features by FHB .

EXAMPLE: Features can be as simple as com-
puting the number of characters from an at-

tribute, more elaborate, such as the number
of attributes of a record, or even include com-
plex statistical computations such as the aver-
age number of letters among attributes within
a 3 steps distance of a record with a digit den-
sity greater than 5%. The aforementioned fea-
tures (number of characters, etc.) do not re-
quire the presence of a hint to be computed,
and thus are hint-free features. An example of
a hint-based feature would be the number of
instances with the label schema:gamePlatform
contained by a record. We can not compute
this feature unless instances are already la-
belled with a hint that identi�es some of them
as a schema:gamePlatform.

Model: a feature-based characterisation of classes
learnt from the instances in a set of labelled
datasets, which can be applied to any instance
in order to infer its class. The representation
is based on a set of features that must be com-
puted when the model is trained or applied.
We denote the set of all possible models by
M and their training by means of function
learnModel : P(D) × P(F) → M. When a
model is applied to a dataset, it predicts the
class of each instance. We denote by means
of function applyModel :M× P(D)× P(F)→
P(D) the application of a model to a set of
datasets using a certain set of features, return-
ing the same set of datasets with the new la-
bels. Note that the set of features used to learn
and apply the model must be the same.

EXAMPLE: The models that are learnt in our
experiments are one-vs-all random-forest clas-
si�ers that use the feature catalogue in Tables 1
and 2.

4

2.2. Application

With regards to the application of TAPON, we
make the following assumptions: information to be
labelled is structured; the input during each appli-
cation is a single dataset; datasets to be labelled
may contain any number of arbitrarily structured
records and attributes; all records and attributes in
an input dataset must be labelled; datasets must
be labelled in an individual basis, without assum-
ing that there are several datasets with grouped
instances that are known to share the same class
and can be labelled at the same time; �nally, only
records and attributes are labelled, not relation-
ships. While TAPON supports hierarchical struc-
tures, this does not limit its application to deep or
complex structures, since it would be trivial to rep-
resent a tuple with a �at structure that only has
attributes at the same level.
A good example of this scenario is unsupervised

information extraction [3, 11? , 28], which consists
in extracting useful structured information from
Web pages through heuristics instead of learning
rules from labelled examples. This allows such ex-
tractors to obtain information in web-scale, with a
single pass, and without human interaction. In this
context, semantic labelling would be needed to give
semantics to the information, which could range
from generic nouns in triples to structured infor-
mation in a JSON �le. The datasets obtained from
these extractors must be labelled individually, since
they have variable structures. These structures are
very common in the Web, where there are �elds of
variable length, or optional �elds [5, 28]. For exam-
ple, one dataset could contain a record with three
attributes, while another one could contain a record
with two attributes and another record. There is no
known correspondence between the classes of the in-
stances, so they can't be grouped and each dataset
must be labelled individually.
In a similar vein, TAPON can also be used to

perform information veri�cation [13, 15, 18], which
consists in verifying that the extraction rules ap-
plied to HTML pages keep working properly (for ex-
ample, by making sure that the instances of a class
keep a certain textual format). This veri�cation is
performed in an individual basis, and both records
and attributes are subject to it. TAPON can be
trained from labelled examples that are known to
be correct and then applied to extracted informa-
tion to verify the labels. For example, let's suppose
that we have created a web wrapper that period-
ically extracts information from a page about an

author to monitor new publications. The wrapper
uses selectors and x-paths to extract information
about every publication, such as publication b (bold
elements inside publications) to obtain the year of
publications. However, after some time, the format
of the page changes, the title is now the element
in bold, and consequently the titles are extracted
as years. If we trained TAPON from a �rst set of
correctly extracted datasets, we could apply it to
new extractions and con�rm that data is labelled
correctly. In the former example, the elements as-
sumed to be years would be labelled as titles, de-
tecting the error.
TAPON can also be used to perform ontology

matching at an extensional level [6] by using the re-
sulting labels to measure similarity between classes.
Let's suppose we want to match classes in ontology
A, which include "author" and "publication title",
with classes in ontology B, which includes "name"
and "title". We train TAPON using datasets from
A, and then apply it to label datasets from B. Then
we observe that, most times, "name" attributes are
labelled as "author", and "title" attributes as "pub-
lication title". This means that, from the point of
view of the model, they are highly similar and they
are a potential match. We can customise the fea-
tures used by the classi�er in order to change how
similarity is measured. Semantic labelling some-
how overlaps with schema matching, since both ap-
proaches deal with information integration. Schema
matching consists in identifying the relationships
that exist between elements in two schemas [17].
Therefore, it inherently involves analysing features
from those schemas, such as attribute names and
types, explicit data constraints, or structural prop-
erties of the schemas. While in some cases schema
matching techniques may use statistics collected
from data instances as features to assess how sim-
ilar two classes in a schema are, the focus of these
proposals is not to select the best features to char-
acterise each class, but to identify the relationship
between classes . By contrast, in semantic labelling
scenarios, the schemas behind the data are not al-
ways available, which means that proposals in this
area focus on selecting the best features from data
instances to characterise each class, disregarding
the schema. Techniques to semantically label pieces
of data have a variety of applications, one of which
could be schema matching, i.e., a schema matching
proposal could rely on a semantic labelling tech-
nique to characterise each class in a pair of schemas
and infer that there is a relationship between two

5

of those classes.
Regarding the format of inputs, TAPON takes

generic JSON datasets as inputs. This way it can
be applied to data from any source after converting
it. The conversion is trivial: in tables or CSV �les
each row would be a record and each column an
attribute. In RDF data, URI resources would be
records and literals would be attributes.

2.3. Description

TAPON is based on the concatenation of two
classi�cation models that use di�erent features sets
in their corresponding phases. The idea behind the
concatenation of models is that the application of
the �rst model provides additional information that
is used by the second model, in a similar way to it-
erative techniques such as PageRank [22]. The �rst
model uses the hint-free features in Table 1, and it
is applied to unlabelled instances to infer their class.
Since hints are not needed in this phase, we refer
to it as the hint-free phase. The second model uses
additional hint-based features shown in Table 2 (in
addition to those used by the �rst model). These
take the output of the �rst model into account as
a set of hints, and can potentially help distinguish
classes with large similarity. We refer to this phase
as the hint-based phase. Note that hint-based fea-
tures always have a class as a parameter, which
is automatically instantiated for every class in the
training datasets.
Regarding models, our technique uses one-vs-all

classi�ers where the aggregation of the binary clas-
si�ers is done by means of an additional multi-
class classi�er that uses the outputs of the binary
classi�ers as features. Each binary classi�er re-
turns the probability of an instance belonging to
its class. The multiclass classi�er combines their
outputs to infer a �nal label. This way, we may
have a schema:name classi�er, a schema:date clas-
si�er, and a schema:price classi�er, among others.
These would return the probability of the instance
belonging to each class, which would be used by the
multiclass classi�er to infer which one is the most
accurate label for the instance. This approach is
more sophisticated than taking the class with the
highest probability, and allows using classi�ers with
binary outputs (1 or 0 for each class, instead of a
probability).
The results from binary classi�ers endow each

class with a probability, which is useful if we want
to enrich labels with a probability. This probabil-
ity can help assess the reliability of the assigned

Process 1 Learning models.

1: Input

2: D : P(D) �Set of labelled datasets
3: FHF : P(FHF) �Set of hint-free features
4: FHB : P(FHB) �Set of hint-based features
5: Output

6: mHF :M �Hint-free model
7: mHB :M �Hint-based model
8:

9: � Step 1: hint-free model creation
10: mHF ← learnModel(D ,FHF)
11: � Step 2: hints assignation
12: D ← applyModel(mHF ,D ,FHF)
13: � Step 3: hint-based model creation
14: mHB ← learnModel(D ,FHF ∪ FHB)

labels. In cases in which the instance to be labelled
belongs to a class that was not present in the train-
ing datasets, this probability might be low, showing
that the label might not be accurate enough. In this
scenario, the user could set a threshold to ignore la-
bels with a probability below it. We consider the
problem of labelling information that does not be-
long to a training class to be beyond the scope of
this article. Nevertheless, we ensure that our tech-
nique is still able to label that information, and that
a probability can be provided to help discern good
labels from poor labels.
There is a downside to our one-vs-all approach:

the creation of a binary classi�er per class may be
detrimental when there is a signi�cantly large num-
ber of di�erent classes (such as several hundreds of
classes). This is a limitation of TAPON, and in
these cases, we recommend using lighter classi�ca-
tion techniques or using other labelling techniques
conjointly with ours. However, this case is not typi-
cal in the scenario we focus on, since data is usually
integrated into a local model focused on a domain
with a few dozens of classes.
The learning process by which the two models are

obtained is also based on the addition of features.
It can be summarised in the following steps in Pro-
cess 1: create the hint-free model using hint-free
features (step 1); apply it to obtain hints (step 2);
create the hint-based model, adding hint-based fea-
tures (step 3). Note that hint-based feature values
are computed from the hints obtained by the �rst
model, and not from the training labels that are
known to be true. This way, we avoid situations in
which the hint-based model does not work properly

6

$C0 - ??

$C4 - ??

$C1 - “Angry birds” - ??

$C2 - “7/9/2013” - ??

$C3 - “PC” - ??

$C6 - “Finland” - ??

$C5 - “Rovio” - ??

Hint-free model
Model learning

Hint-based features

Hint-free features

Learning set without hints

����� ��

��� ����

��	 ����

��� ����

��� ����

“…”

“…”

“…”

“…”

����� �� �� �

��� 	��	 ��		 �

��
 	�		
��� �

���
��

��	 �

���
�		 �		 �

��� 	�		 ��		 �

$C0 - schema:Book

$C4 - schema:author

$C1 - “Angry birds” - schema:name

$C2 - “7/9/2013” - schema:date

$C3 - “PC” - schema:gamePlatform

$C6 - “Finland” - schema:location

$C5 - “Rovio” - schema:name

✓

✗

✗

✓

✗

✓

✓

Hint-based

model

Model learning

Hint-based features

Learning set with hints

����� ��

��� ����

��	 ����

��� ����

��� ����

“…”

“…”

“…”

“…”

$C0 - schema:VideoGame

$C4 - schema:publisher

$C1 - “Angry birds” - schema:title

$C2 - “7/9/2013” - schema:date

$C3 - “PC” - schema:gamePlatform

$C6 - “Finland” - schema:location

$C5 - “Rovio” - schema:name

✓

✓

✓

✓

✓

✓

✓

����� ��� ��� �

���	 	�

 	�

 �

���� ��

 ��

 �

���� 	�

 	�

 �

��	

������

	
�

�

 �

��	

�����

�

 �

 �

����

�����

�	�

 �	�

 �

����

��	�

��

 ��

 �

� � � �

AttributesRecords

Feat. $C1 $C2 …

AR

1

1.00 1.00 …

AR

2

2.00 2.00 …

AR

3

1.00 1.00 …

A

1

(letter) 10.00 0.00 …

A

1

(digit) 0.00 6.00 …

… … … …

Feat. $C0 $C4

AR

1

0.00 1.00

AR

2

0.00 3.00

AR

3

0.00 0.00

R

1

3.00 2.00

R

2

1.00 2.00

Feat. $C1 $C2 …

AR

1

1.00 1.00 …

AR

2

2.00 2.00 …

AR

3

1.00 1.00 …

AF

1

(letter) 10.00 0.00 …

AF

1

(digit) 0.00 6.00 …

AR

5

(title) -1.00 -1.00 …

AR

5

(plat.) 2.00 2.00 …

… … … …

Feat. $C0 $C4

AR

1

0.00 1.00

AR

2

0.00 3.00

AR

3

0.00 0.00

R

1

3.00 2.00

R

2

1.00 2.00

AR

5

(title) -1.00 -1.00

AR

5

(plat.) 1.00 2.00

… … …

Feat. $C1 $C2 …

AR

1

1.00 1.00 …

AR

2

2.00 2.00 …

AR

3

1.00 1.00 …

AF

1

(letter) 10.00 0.00 …

AF

1

(digit) 0.00 6.00 …

AR

5

(title) 0.00 2.00 …

AR

5

(plat.) 2.00 2.00 …

… … … …

Feat. $C0 $C4

AR

1

0.00 1.00

AR

2

0.00 3.00

AR

3

0.00 0.00

R

1

3.00 2.00

R

2

1.00 2.00

AR

5

(title) 1.00 2.00

AR

5

(plat.) 1.00 2.00

… … …

Figure 4: Hint-free and hint-based phases. Hint-based features have been highlighted.

7

ID Feature Description Scope

A1(S)
Number of occ. of
symbol type S

The number of occurrences in the attribute of symbols of type S (letters, numbers, punctuation,
symbols, separators, other). The considered types can be customised.

A

A2(T)
Number of occ. of
token type T

The number of occurrences in the attribute of token of type T (words starting with a lowercase
letter, words starting with an uppercase letter followed by a non-separator character, uppercase
words, numeric strings, HTML tags). The considered types can be customized.

A

A3(S)
Density of smbol type
C

The density in the attribute of symbols of type S. The density is computed as the number of
occurrences of a character type divided by the total number of symbols in the attribute.

A

A4(T)
Density of token type
T

The density in the attribute of token of type T. The density is computed as described in AF3 A

A5(C)
Average shared prefix
length for class C

Average length of the shared prefix between the text of the attribute and a set of stored
examples of class C. The shared prefix is the set of characters that two attributes have in
common in the beginning. If the attributes start with a different character, the length is 0.

A

A6(C)
Average shared suffix
length for class C

Average length of the shared prefix between the text of the attribute and a set of stored
examples of class C. The shared suffix is the set of characters that two attributes have in
common in the end. If the attributes end with a different character, the length is 0.

A

A7(C)
Average edit distance
to class C

Average Jaro edit distance between the attribute and a set of stored examples of class C. A

A8 Numeric Value The numeric value of the text of the attribute if it matches a number pattern. -1.0 otherwise A

A9(C) Index score of class C
The score obtained by the document that represents class C when querying an index by using
the attribute as query. This technique is described in [18].

A

R1 Number of attributes The number of attributes of the record. R

R2 Number of records The number of records of the record. R

AR1 Depth The depth in the dataset of the instance. A & R

AR2
Number of same level
attributes

The number of attributes at the same structural level as the instance. A & R

AR3
Number of same level
attributes

The number of records at the same structural level as the instance. A & R

Table 1: Hint-free features. A = Attributes. R = Records.

�� ������� ��	
������ �
��

�

�

���

����	
����������	��

���������������	�
	��
�

��	�����	
����������	�����	��	����������������������	�������	�
	��
�� �

�

�

���

�	���������������	����

�������������	�
	��
�

��	��	���������������	�����	��	����������������������	�������	�
	��
�����	��	���������������	�����

��	�����	
����������	�����	��	��������������������	�������	�����������	
����������	��

�

��

�

���

�	�����������	��	�	��

�������	�����������

��	��	���������������	�����	��	�����������������������	��������	�������	����	���
����
����	�	� �� ��

��

�

���

!��������������	����

�������

��	����������������	������	������	��
�����	��������	��������������	����	��	����������������

�������	�����	��
	�������	�������������	
���	��	�������������	��
��	
�	������	��������

�������	�

�� ��

Table 2: Hint-based features. A = Attributes. R = Records.

because the hints predicted by the hint-free model
di�er too much from the actual classes that were
used to train the hint-based model. Thus, the hint-
based model learns to infer labels that are based on
the apparent class of the instances rather than on
the actual ones, which are not available when it is
applied in a real world scenario.
Once both models have been created, they are

concatenated in the semantic labelling process as
shown in Process 2. During the hint-free phase, the
output of the hint-free model is used as a set of hints
(step 1); during the hint-based phase, the hints are
taken into account by the hint-based model, whose
output is the �nal label (step 2).

Each model can be implemented using any exist-
ing classi�cation technique, including well-known
classi�cation techniques such as ensemble classi-
�ers, random forests, logistic regression or neural
networks.
Since record and attribute classes are disjoint,

and a class can not be shared by both records and
attributes, we create separate models for records
and attributes, using di�erent feature sets (though
they may share features, like feature AR1 in Ta-
ble 1, which can be applied to both attributes
and records). Record models are learnt using only
feature vectors computed from record instances,
whereas attribute models are learnt only from fea-

8

Process 2 Semantic labelling.

1: Input

2: D : P(D) �Set of unlabelled datasets
3: mHF :M �Hint-free model
4: mHB :M �Hint-based model
5: FHF : P(FHF) �Set of hint-free features
6: FHB : P(FHB) �Set of hint-based features
7: Output

8: D : P(D) �Set of labelled datasets
9:

10: � Step 1: hint-free model application
11: D ← applyModel(mHF ,D ,FHF)
12: � Step 2: hint-based model application
13: D ← applyModel(mHB ,D ,FHF ∪ FHB)

ture vectors computed from attribute instances.
Note that this does not prevent record feature vec-
tors from containing features that are based on at-
tributes and vice versa. For example, feature RF3 in
Table 2 is only applied to records, but it measures
the number of instances in a record that belong to
each class, including attribute ones.
After the hint-based phase, we can use the re-

sulting labels as hints again, which may possibly
alter some of the hint-based features values. Conse-
quently, we might apply the hint-based model again
to re�ne the set of labels by repeating the hint-
based phase. This results in an iterative process
that continues until the set of labels is stable (or a
maximum number of iterations is reached). How-
ever, our experiments show that repeating the hint-
based phase does not improve the results in a sig-
ni�cant way; actually, with some classi�cation con-
�gurations, they get worse. This is probably caused
by the fact that, after the second phase, hints di�er
too much from those in the training examples of the
second model, which correspond to the labels after
one iteration, not two. Some alternatives, such as
training the second model with the actual classes as
hints, or training further models, could make fur-
ther iterations more useful, but the thorough study
of how each of these alternatives behave is beyond
the scope of this paper.
Lastly, while we have devised a complete, inde-

pendent semantic labelling technique, its hint-free
phase could as well be replaced by any other ex-
isting labelling technique, as long as it provides a
label that can be used to compute hint-based fea-
tures in the hint-based phase. Therefore, our tech-
nique is able to integrate state-of-the-art labelling

techniques, such as Ramnandan et al. [24]'s or Neu-
maier et al. [20]'s.

2.4. Application example

To illustrate our technique, we use as an applica-
tion example a scenario in which there are two data
sources, related to the domains of videogames and
books. For the sake of simplicity, the only exist-
ing classes are those in Figure 2. Videogames have
a title, a date, a platform and a publisher with a
name and a location. Books have a title, a year, a
price, and one or more authors with a name and a
nationality. Some of the classes, such as the classes
schema:schema:VideoGame and schema:Book, are
used in structurally identical records.
In order to create the models in Figure 4, �rst, we

create the hint-free model by learning from the fea-
ture vectors of the instances in a learning set. We
only compute the features in Table 1. Afterwards,
we apply these models to label the instances in the
learning set (the same instances that were used to
learn the hint-free model), endowing them with a
hint that allows us to compute the additional fea-
tures in Table 2 and create the hint-based models.
Then, we apply the hint-free model in the hint-

free phase to label the instances of a dataset that
contains one schema:VideoGame record. We ini-
tially assign label ?? to every instance to em-
phasise that their classes are unknown. Since we
have applied the hint-free models, we only com-
pute the hint-free features, which may have pareme-
ters that are instanced several times, as is the case
with A1. After this phase, the instances are given
a label. The labels schema:Book, schema:Name,
and schema:author are incorrect, since the actual
classes of $C0, $C1, and $C4 are schema:VideoGame,
schema:title, and schema:publisher. The incorrect
label of $C0 is due to the similarity between
classes schema:VideoGame and schema:Book, and
the same happens with $C1 (similarity between
classes schema:title and schema:name, since they
have a similar format) and $C4 (similarity between
classes schema:publisher and schema:author, since
they are structurally identical). Note that these
labels are not the �nal labels; they are mere hints
that are corrected in the next phase.
Thanks to the presence of hints, we can compute

additional hint-based features and apply the hint-
based models in the hint-based phase to correct
the former hints. The hint-based models are more
complex, and take into account features that help
tell the schema:VideoGame and schema:Book classes

9

apart, as well as the schema:name and schema:title
classes, and the schema:publisher and schema:author
classes. For example, the distance to an attribute
of class schema:gamePlatform can help correct all
incorrect labels, since in the case of books, such
distance is in�nite. This reduces similarity between
classes and increases the quality of the models, that
are now able to correctly label all instances. Note
that we create instances for each known class. Some
of them will be useful, such as the distance to a plat-
form, while some may not add useful information.

3. Related work

Related work includes semantic labelling tech-
niques, as well as other techniques that were not
devised with semantic labelling in mind, but that
share the same principles as semantic labelling ones,
i.e., creating models that provide a probabilistic
view of the information. In the particular case of
semantic labelling, this probabilistic view is used
for classi�cation. Proposals from other areas use
it for di�erent purposes, but the models they cre-
ate are useful and relevant to semantic labelling to
the point where some of the techniques can be used
for semantic labelling by merely feeding the fea-
tures they describe to a classi�er. For this reason,
we study them along with semantic labelling tech-
niques, and refer to them, overall, as information
modelling techniques.
After surveying the literature, our conclusion is

that the existing techniques for information mod-
elling can be broadly classi�ed into hard [26] and
soft [13, 14, 18, 16, 32, 19, 24, 23, 20] techniques.
The former learn a structural model for a dataset,
that is, a set of properties including their type (in-
teger, date, string, etc.) and multiplicities (1, 0..1,
0..*, etc.). Soft modelling techniques go a step fur-
ther since they aim to project the datasets onto a
feature space which allows to infer a probabilistic
representation of the information.
Using these features, it is possible to model dif-

ferences between classes that would go unnoticed
using hard techniques, since features can cover a
wide range of aspects that are not usually taken
into account by hard modelling, such as the pro-
portion of punctuation characters in a piece of text.
For example, the textual value of the price attribute
in Figure 2(a), �$9.70�, is a string, and thus could
be considered a title by a hard model, although it
is a price; and a book with 400 authors would not

break the cardinality restriction 1..*, so its struc-
ture would be considered correct, although it is al-
most certainly incorrect.
We focus our study on soft techniques, since they

are able to model the subtle di�erences between
a wide variety of classes, which is key to perform
web scale information modelling and labelling, in
which there are many similar information classes
that are di�cult to tell apart. We have identi�ed
three groups of related techniques: techniques used
for information veri�cation, i.e., learning a model
used to verify labelled datasets by identifying those
datasets that contain errors [13, 14, 15, 18], tech-
niques used for semantic labelling, that is, labelling
information with known classes so that it can be
integrated into a known schema [16, 32, 19, 24, 23,
20], and techniques developed in the linked data
context [30], focusing on ontology integration and
linking tasks.
Regarding information veri�cation,

Kushmerick [13, 14] devised a probabilistic
technique that models features as Gaussian ran-
dom variables. Lerman et al. [15] create a vector
with the average of several features computed from
the instances of a correct dataset. The vector is
later compared to the vector computed from new
datasets using the χ2 goodness-of-�t test. McCann
et al. [18] improved on Kushmerick's technique
by normalising probabilities, assigning weights
to features, and adding noise using hand-crafted
perturbations. The goal of the previous techniques
is to raise an alarm when a new, unveri�ed dataset
deviates signi�cantly from the information used to
learn the model. The veri�cation only relies on
text-based features and the number of tuples in
the dataset, and the relationships between classes
are not considered. Only Kushmerick [14] can
deal with any arbitrarily structured information,
whereas the others deal with tuples only. Their
models do not take records into account.
Regarding semantic labelling, Limaye et al. [16]

use objective function maximisation to �nd the la-
bel assignment that is more consistent with the
information in a dataset. Venetis et al. [32] use
Bayesian classi�cation to �nd the most likely label
for a group of attributes using a database of sam-
ples. Mulwad et al. [19] use an incremental message
propagation algorithm to label groups of di�erent
attributes with a record class and each individual
attribute with a named entity using Wikitology as
an external knowledge base. Ritze et al. [25] use
an iterative process to label record named entities

10

in HTML tables and their attributes by mapping
them to DBpedia types and properties. In a sim-
ilar vein, Zhang [33] iteratively labels records that
correspond to named entities and their attributes
from HTML tables while using information from
the HTML context of the tables to create a richer
representation of cells and columns. Ramnandan
et al. [24] use distribution equivalence tests when
numeric values are detected, as well as a Lucene
index when non-numeric ones are detected: they
store attributes as examples and label new groups
of attributes by using them to query the index (this
technique was later used in [31]). Pham et al. [23]
expand on this idea by enlarging the feature cat-
alogue, introducing similarity measures. Neumaier
et al. [20] focus exclusively on numerical values and
compute feature vectors from sets of numbers. The
majority of these techniques do not de�ne a set of
features, but rely on queries to knowledge bases.
The relationships between classes are not modelled.
Only Ramnandan et al. [24], Pham et al. [23] and
Neumaier et al. [20] deal with any arbitrarily struc-
tured information. They do not label records be-
yond the �rst one (the one that would represent the
entire row in a table), only attributes, since they
assume that records always correspond to named
entities, while they can be structural elements that
group other instances, such as dates or addresses.
Limaye et al. [16], Venetis et al. [32], Mulwad et al.
[19],Ritze et al. [25], and Zhang [33] are limited to
named entities, e.g., people or places. Finally, since
all semantic labelling techniques label groups of in-
stances, they assume that information is grouped
into bags of examples that are known to share the
same class.
Regarding linked data, Soru and Ngomo [30]

survey several classi�cation techniques which are
applied to feature vectors representing pairs of
records. Each feature vector contains several fea-
tures related to cosine distance and edit distance.
Though these techniques can be applied to informa-
tion with any structure, the models they create are
limited to text-based features, such as cosine dis-
tance, and therefore do not model the relationships
between classes.
Finally, Neville and Jensen [21] introduce the idea

of iteratively applying a classi�cation model that,
in each step, computes features based on the labels
assigned in the former step, thus re�ning the la-
bels in each iteration. This technique is similar to
ours, since it performs iterative labelling by com-
puting features that change after each iteration.

However, there are substantial di�erences: TAPON
has a two-phase application, as opposed to Neville
and Jensen, that only has one which would corre-
spond to the hint-based phase; TAPON is trained
with hint-based features that have been computed
from inferred labels instead of actual classes, since
during application actual classes are not available;
�nally, TAPON focuses on semantic labelling in a
multi-domain context. Overall, TAPON focuses on
the speci�c task of semantic labelling of records and
attributes, which led us to devise a more optimised
technique and feature catalogue.

4. Experimental analysis

Our experiments consist of performing semantic
labelling on both records and attributes in a multi-
source scenario with real-world information. They
aim to prove that, in the application scenario we
focus on, TAPON is able to model and label classes
with higher accuracy than other state-of-the-art
techniques, achieving improved F1 score thanks to
our large feature catalogue with more complex fea-
tures, that is signi�cantly enriched by the addition
of hint-based features that re�ect the relationship
between classes of instances. The di�erent tech-
niques are applied to a testing dataset in order to
compare the inferred labels to the actual ones.

4.1. Setup

We have used Spark [7]'s random forest classi�ers
implementation for the creation of binary classi�ers
and its multilayer perceptron classi�ers implemen-
tation for the creation of multiclass classi�ers, since
other con�gurations yield worse results in the in-
formal tests that we have performed, and Soru and
Ngomo [30] suggest that these classi�ers yield good
results in data linking tasks, which are similar in
nature to semantic labelling. Our con�guration of
the random forest classi�ers include the creation of
100 trees with a maximum depth of 40, Gini as the
impurity measure, and a minimum information gain
of 0.01. Our con�guration of the perceptron classi-
�ers include performing 500 iterations with no hid-
den layers. The other parameters were set to their
defaults.
We have used datasets from 10 di�erent linked

data sources obtained from RKB explorer [8], an
infrastructure for linked data providers whose col-
lection of datasets have already been used for test-
ing elsewhere [29, 1, 10]. Note that we have used

11

linked data datasets for convenience, since they are
a good source of labelled, structured information;
however, the datasets were transformed into the
generic structures we have described. Our datasets
contain a total of 3155 records belonging to 24 dif-
ferent classes, and a total of 7736 attributes belong-
ing to 53 di�erent classes with 3483 unique textual
values. Classes have, on average, 141.44 instances,
with a standard deviation of 162.20. Records have,
on average, 0.72 records and 2.45 attributes. 29% of
attributes have a numeric value; datasets have, on
average, 2.73 levels of depth (2 levels corresponding
to a �at record), and a maximum of 4 levels.
The speci�c datasets that were used are: DBLP

articles, NFS awards, EPSRC grants, Telegraphis
countries, Restaurants, European Patent O�ce
classi�cations, Edubase schools, DigitalEconomy
pro�les, Dev8d programmes, and Courseware
books. They have been selected because of their
varied nature so that they cover a wide range of
cases and labelling them is challenging. They have
classes with small and large numbers of instances
(though most classes have between 40 and 100 in-
stances), both numerical and non-numerical val-
ues among attributes, both �at records and deeper
structures, and groups of classes with high simi-
larity that make it harder to classify them. We
have joined these datasets into a single testing sce-
nario in order to increase the di�culty of labelling
each instance as much as possible. Separating them
would greatly lower the number of instances and
thus make classi�cation much easier.
Note that we can not give a good measure

of the magnitude of this similarity in an un-
supervised way, since it is precisely through
modelling techniques that we can compute how
di�cult it is to tell apart certain classes by mea-
suring how well said techniques perform. The
overall results obtained by di�erent techniques
in our experiments are not close to perfection
and thus prove that creating a model is not,
in this case, a trivial task. For example, class
http://xmlns.com/foaf/0.1/givenName is often con-
fused with other classes that have a similar format
such as http://xmlns.com/foaf/0.1/familyName.
Among the techniques we have implemented,
which are later described in detail, Soru
labels 10.00% of them correctly with class
http://xmlns.com/foaf/0.1/givenName, Kush 0.00%
of them, Ram 0.17% of them, Pham 0.09% of them,
Neville 35.11% of them, and even our technique
only labels 15.89% of them correctly.

We have divided the selected datasets into 10
folds, and applied leave-p-out validation [2] by us-
ing 8 folds for training and 2 folds for testing in each
experiment, resulting in a total of 45 experiments.
The datasets create an experimentation scenario
with the following remarkable properties: it con-
sists of both attributes and records, labelled with
a class; information is arbitrarily structured, with
tuples and other deeper structures; and datasets
are not aligned, which means they must be labelled
individually.
We measure the classi�cation accuracy (rate of

instances that were correctly labelled), as well as
the macro-averaged precision, recall and F1 score,
computed as the average of the precision, recall and
F1 of each class, respectively. We consider the ac-
curacy to be the most appropriate measure, since
it has a clear interpretation in multi-class classi-
�cation. Other measures have been included be-
cause they are the scienti�c standard, but are not
always a clear indicator of labelling quality. The
following situation exempli�es this: suppose there
are 20 possible labels. If a classi�er always outputs
the same label, its macro-precision (macro-averaged
precision) will be 0.95, since in 19 out of 20 classes,
there are no false positives. We do not include the
micro-averaged measurements (micro precision, re-
call, and F1) because they have the same value as
the accuracy.
Since Kush, Soru, Ram, and Pham are unable to

label records, we only use them to label attributes,
and measure their indicators by only taking at-
tributes into account (e.g. the accuracy of Pham
is measured as the rate of attributes that were cor-
rectly labelled). Ram, and Pham are fed individual
attributes, and any feature that requires a group of
attributes is computed from a group that contains
a single one.
We performed our experiments on a computer

with an Intel Xeon E7-4807 that ran at 1.87 GHz,
had 16 GB of RAM, Windows 7 Pro 64-bit, Java
1.7, and Spark 2.10 for Java. No changes were made
to their default con�gurations.
Our datasets, measures and source code have

been made available online2.

4.2. Improvement of the hint-based phase

We compare the results obtained by TAPON
without including hint-based features and perform-
ing only the �rst phase (TAPON-HF), and TAPON

2At http://www.tdg-seville.info/dayala/TAPON

12

T
A
P
O
N�

H
F

T
A
P
O
N�

H
B

0.7 0.8 0.9 1.0

P

R

F1

A

P

R

F1

A

Value

M
e
a
s
u
r
e
s

Precision Recall F1 Accuracy

Figure 5: Boxplot with results obtained by TAPON.

Technique Precision Recall F1 Accuracy

TAPON-HB [0.96, 0.96] [0.87, 0.87] [0.91, 0.92] [0.92, 0.93]

TAPON-HF [0.95, 0.95] [0.75, 0.76] [0.84, 0.84] [0.82, 0.83]

Table 3: Results summary displaying the 95% con�dence
interval (TAPON).

including hint-based features and performing two
phases (TAPON-HB). This experiment aims to
prove the signi�cant improvement of adding hint-
based features when using the same classi�cation
technique.
Figure 5 shows the results obtained by both tech-

niques. Table 3 shows a numerical summary. The
accuracy when adding hint-based feaures is signi�-
cantly better, with an improvement of around 10%.
Even without using hint-based features, the accu-
racy is high, thanks to the large feature catalogue.
In order to prove that hint-based features are ac-

tually used by the model, we have studied their
use by the binary classi�ers. We have taken the
top 5 features of every binary classi�er in the hint-
based model, sorted by their importance across all
trees as suggested by Hastie et al. [9], and computed
the fraction of hint-based features among the total.
40.75% of features were hint-based, which clearly
shows their usefulness.

4.3. Comparison of TAPON and other methods

We compare the results obtained by the following
techniques: TAPON including hints-based features
(TAPON-HB); Ramnandan et al. [24]'s technique
(Ram); Pham et al. [23]'s technique excluding its
histogram similarity feature, which can not be com-

N
e
v
ille

R
a
m

P
h
a
m

T
A
P
O
N
-H
B

0.00 0.25 0.50 0.75 1.00

P

R

F1

A

P

R

F1

A

P

R

F1

A

P

R

F1

A

Value

M
e
a
s
u
r
e
s

Precision Recall F1 Accuracy

Figure 6: Boxplot with results obtained by di�erent meth-
ods.

Technique Precision Recall F1 Accuracy

TAPON-HB [0.96, 0.96] [0.87, 0.87] [0.91, 0.92] [0.92, 0.93]

Ram [0.80, 0.81] [0.62, 0.63] [0.70, 0.71] [0.68, 0.70]

Neville [0.93, 0.94] [0.55, 0.68] [0.66, 0.77] [0.54, 0.68]

Pham [0.87, 0.91] [0.42, 0.49] [0.45, 0.52] [0.51, 0.58]

Table 4: Results summary displaying the 95% con�dence
interval (methods).

puted properly from a single instance (Pham); and
a version of our one-vs-all classi�cation that imple-
ments Neville and Jensen [21]'s technique by using a
single model and, during training, computing hint-
based features using the actual class of the instances
(Neville). This experiment aims to prove that our
technique achieves better results than other tech-
niques that represent a di�erent approach in the
application scenario we have described. Other tech-
niques in the related work have not been included
because they are not applicable in our scenario. For
example, table labelling techniques can only be ap-
plied to named entities and Neumaier et al. [20]'s
technique can only label numerical attributes.
Figure 6 shows the results obtained by the afore-

mentioned techniques. Table 4 shows a numerical
summary. Our technique achieves better accuracy
than the other techniques that we have applied in
our experiments.
Neville seems to have a large instability. We be-

13

K
ush

K
ush−H

B
S

oru
S

oru−H
B

TA
P

O
N

−H
B

0.4 0.6 0.8 1.0

P
R

F1
A

P
R

F1
A

P
R

F1
A

P
R

F1
A

P
R

F1
A

Value

V
ar

ia
bl

es

Precision Recall F1 Accuracy

Figure 7: Boxplot with results obtained by di�erent feature
catalogues.

Technique Precision Recall F1 Accuracy

TAPON-HB [0.96, 0.96] [0.87, 0.87] [0.91, 0.92] [0.92, 0.93]

Soru-HB [0.95, 0.96] [0.77, 0.80] [0.85, 0.87] [0.86, 0.89]

Soru [0.92, 0.93] [0.70, 0.70] [0.80, 0.80] [0.79, 0.80]

Kush-HB [0.98, 0.98] [0.62, 0.65] [0.76, 0.78] [0.68, 0.73]

Kush [0.94, 0.95] [0.47, 0.49] [0.63, 0.65] [0.50, 0.56]

Table 5: Results summary displaying the 95% con�dence
interval (features).

lieve this to be caused by the way it is trained using
actual classes (while we use labels inferred by the
�rst model). The quality of the predictions heavily
depends on the quality of the labels. When ap-
plied to the testing dataset, the model is applied
even when there are no labels that can be used
to properly compute hint-based features and con-
sequently, performance is poor. However, if itera-
tions are able to slightly improve the labels, there
is a slow approximation towards the actual classes
which requires many iterations. If the set of labels
is too distant from real classes and an iteration is
not able to improve the labels, then there is conver-

gence and the process stops. In some cases, there is
no early convergence and iterations slowly reach a
good set of predictions with accuracy around 0.85.
In other cases, there is early convergence and the
set of poor predictions remains unchanged, result-
ing in accuracy around 0.40.

4.4. Comparison of TAPON and other feature cat-

alogues

We compare the results obtained by the follow-
ing techniques: TAPON including hints-based fea-
tures (TAPON-HB); a version of our classi�cation
technique that only uses Kushmerick [13]'s fea-
ture catalogue(Kush); the former including hint-
based features(Kush-HB); a version of our classi�-
cation technique that only uses Soru and Ngomo
[30]'s feature catalogue (Soru); and the former in-
cluding hint-based features(Soru-HB). This exper-
iment aims to prove that TAPON's feature cata-
logue achieves better results than the other feature
catalogue in the related work, in the application
scenario we have described, and that adding hint-
based features to a features catalogue improves re-
sults, not only with our speci�c catalogue.
Table 6 summarizes the features that each tech-

nique uses to model information. The techniques
by Lerman et al. [15] and McCann et al. [18] use
feature catalogues that are very similar to Kushm-
erick's, and so they have not been included.
Figure 7 shows the macro-average of the preci-

sion, recall, and F1 score obtained by the afore-
mentioned techniques. Table 5 shows a numerical
summary. Our technique achieves better accuracy
than the other techniques that we have applied in
our experiments. Regarding the other techniques,
the version with hint-based features outperforms
the original catalogue in both cases.

4.5. TAPON applied to worst-case scenarios

Figure 8 contains a more �ne-grained represen-
tation of some of the results. It depicts a compar-
ison between TAPON and other techniques. For
each technique, we compare the 3 most problem-
atic classes for that technique (that is, those with
the worst F1 score). The number of classes (3) is
arbitrary, since this representation of the results is
not intended to be a strict report, but rather a
visualization of how our technique seems to solve
whatever problems cause really low accuracy when
using other techniques. Each point represents the
F1 score obtained by a class during one of the 45

14

��������� 	�
����

����� ���	
��������������	����������

�
�������� �����	�����		��������	���

�����	����
�����������	���

�����	���
��������������	���

�����	������������������	���

�����	����
�	
�	���������	���

�
������ �!"	�#�

�
�����������

!����������#	�

$��
����#��� !������	���	����	���	����%�������������		���
	������

!���	��#�����������	�	���	����%�������������		���
	������

!������������	����	���	����%�������������		���
	������

Table 6: Features used by each technique.

Kush Neville Pham Ram Soru

Kush TAPON-HB NevilleTAPON-HB PhamTAPON-HB Ram TAPON-HB Soru TAPON-HB

0.00

0.25

0.50

0.75

1.00

Technique

F
1

CLASS

http://edubase.rkbexplorer.com/id/SCHNAME

http://edubase.rkbexplorer.com/id/TELNUM

http://edubase.rkbexplorer.com/id/TOWN

http://purl.org/NET/c4dm/timeline.owl#start

http://tdg.org/vocabularies/dblp/src#publishedIn

http://tdg.org/vocabularies/dblp/src#title

http://www.aktors.org/ontology/portal#day-of

http://www.aktors.org/ontology/portal#has-grant-value

http://www.aktors.org/ontology/portal#month-of

http://www.aktors.org/ontology/portal#year-of

http://www.aktors.org/ontology/support#has-pretty-name

http://www.aktors.org/ontology/support#year-of

http://www.geonames.org/ontology#name

http://www.geonames.org/ontology#population

http://xmlns.com/foaf/0.1/name

Figure 8: F1 score obtained by the more problematic classes for each technique, compared to ours.

experiments (we use the F1 score instead of accu-
racy, since these are results per class). It can be ob-
served how, to a greater or lesser degree, the cases
that are more problematic for other techniques are
dealt with relatively well, obtaining high F1 when
using TAPON. The only exception is when com-
paring to Neville and Jensen [21]. Both techniques
behave similarly, probably because the similarities
between them make them fail in similar situations.
Still, these are only the worst cases, and our tech-

nique obtains better results overall, as explained
earlier.

4.6. Statistical analysis

In order to test the signi�cance of our accu-
racy results, we have applied statistical tests with
α = 0.05. Since the variable (accuracy) is not
normally distributed, we are performing a multiple
comparison and there are less than �ve variables,
we applied a Friedman Test with control estima-

15

Technique Ranking

TAPON-HB 1.07

Soru-HB 2.16

TAPON-HF 3.20

Soru 4.27

Kush-HB 5.93

Neville 5.98

RAM 5.98

Pham 7.71

Kush 8.71

Table 7: Average rank of each technique.

y = 2140 + 509 x Radj
2 = 0.9

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10
Number of folds used for training

Tr
ai

n
in

g
 t

im
e

(s
)

Figure 9: Training time of TAPON.

tion. The resulting p-value is 10e − 10, which im-
plies there are signi�cant di�erences between the
ranks (whose average is shown in Table 7). We
have applied Hommel's test to compare the results
obtained by TAPON-HB to each other technique
(including TAPON-HF). The resulting p-value is
always below 2.84e − 13. Therefore, there is statis-
tical evidence that the results obtained by our tech-
nique are signi�cantly di�erent from those obtained
by other techniques. Note that hint-based versions
of initially worse technique surpass TAPON-HB in
accuracy when adding hint-based features, proving
their usefulness.

4.7. E�ciency of TAPON

Regarding training time, Figure 9 shows how
much time it takes to create our two models from
di�erent amounts of training data. We have trained
our models using 1 to 10 folds (10% to 100% of
our available data). For each di�erent number of
folds we performed 10 experiments, where the spe-

Technique App. time

T APON-HB [0.032, 0.035]

T APON-HF [0.020, 0.023]

Soru-HB [0.056, 0.063]

Soru [0.031, 0.034]

Ram [0.002, 0.002]

Neville [0.028, 0.032]

Pham [0.030, 0.040]

Kush-HB [0.015, 0.020]

Kush [0.004, 0.004]

Table 8: 95% con�dence interval of the application times in
seconds.

ci�c folds to be used among the 10 available ones
were selected by using a moving window (wrapping
around 1 in a cyclical fashion). We computed the
average value and the 95% con�dence interval. Our
main observation here is that, since the model only
has to be trained once, spending a small number
of hours training is not at all unreasonable. The
increase in training time seems to follow a linear
trend. Table 8 shows the application time per in-
stance of each technique. TAPON's application
time is similar to most techniques, with the second
phase adding additional application time. Ram and
Kush have the lowest application time by a wide
margin, thanks to their simplicity. The other tech-
niques have less features, but they are more costly
to compute. Adding hint-based features has a seem-
ingly constant hit on the application time. Overall,
we consider TAPON's application time to be rea-
sonable.

5. Conclusions

In this article, we have presented a new two-
phase, machine-learning semantic labelling tech-
nique that takes into account features that model
the relationships between instances. It can model
arbitrarily structured information from several
sources, and is able to label datasets in an indi-
vidual basis.
We use the information from nearby instances

in a novel way. By creating two models, we can
compute additional hint-based features. The �rst
model is used to endow instances with a hint, allow-
ing us to inject features that are used by the second
model. We have performed semantic labelling of in-
formation from several linked data sources in order
to evaluate the e�ect of the features and compare

16

our technique with other existing ones. Our ex-
perimental analysis shows that, while our rich fea-
ture catalogue helps our technique achieve better
results in a stressful modelling scenario, it is the
collection of hint-based features that creates a re-
markable di�erence (from an average accuracy of
82.83% to 92.75%) by allowing us to measure fea-
tures that require having a �rst idea of what classes
the instances may belong to.
Consequently, we conclude that our technique

contributes to the state of the art by improving in-
formation modelling accuracy while modelling both
records and attributes in arbitrary structures. Ex-
isting techniques so far have focused on applica-
tion scenarios that rely on certain conditions such
as speci�c structures of data or the presence of in-
stances groups. When that is the case (for example,
we can group instances and label them as a group),
making use of that information is an advantage,
but in situations where it is not, it is convenient to
use a more generic approach that is not adversely
a�ected by the absence of the aforementioned con-
ditions. Our technique o�ers this approach, while
being able to integrate other techniques thanks to
our two-phase solution.
The limitations of TAPON are mainly related to

the assumptions we presented in Section 2.2; in dif-
ferent application scenarios, it will likely perform
worse than more optimised techniques. For exam-
ple, if a task involves labelling millions of attributes
that are known to share the same class, TAPON
may not scale well, since it labels them individually,
while the technique by Pham et al. [23] would not
have this problem. There may be workarounds for
some of these cases, like labelling a few attributes
and taking the most frequent label in the exam-
ple, but other techniques in the related work have
more optimal solutions. Consequently, future re-
search could focus on how to apply the same prin-
ciples of TAPON (performing a second iteration to
use additional information) in other techniques that
focus on di�erent application scenarios.
Furthermore, TAPON is not optimised for large

numbers of classes (several hundreds or thousands)
due to the use of a one-vs-all classi�er. Although
the scenarios we have observed have a few dozens,
it would be of interest to develop a di�erent version
that sacri�ces accuracy in favour of scalability and
speed, in the same vein as Ramnandan et al. [24]'s.

Acknowledgements

Our work was supported in the Spanish R&D&I
programme by grant TIN2016-75394-R.

References

[1] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich,
and Pierre-Yves Vandenbussche. Sparql web-querying
infrastructure: Ready for action? In International Se-
mantic Web Conference (2), pages 277�293, 2013. URL
http://dx.doi.org/10.1007/978-3-642-41338-4_18.

[2] Sylvain Arlot, Alain Celisse, et al. A survey of cross-
validation procedures for model selection. Statistics
surveys, 4:40�79, 2010.

[3] Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. Open
information extraction from the web. In IJCAI 2007,
Proceedings of the 20th International Joint Confer-
ence on Arti�cial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, pages 2670�2676, 2007. URL http:

//ijcai.org/Proceedings/07/Papers/429.pdf.
[4] Boris Chidlovskii. Automatic repairing of web wrap-

pers by combining redundant views. In ICTAI, pages
399�406, 2002. URL http://dx.doi.org/10.1109/TAI.

2002.1180831.
[5] Valter Crescenzi, Giansalvatore Mecca, and Paolo Meri-

aldo. Roadrunner: Towards automatic data extraction
from large web sites. In VLDB, pages 109�118, 2001.
URL http://www.vldb.org/conf/2001/P109.pdf.

[6] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching,
Second Edition. Springer, 2013. ISBN 978-3-642-38720-
3.

[7] The Apache Software Foundation. Apache spark.
https://spark.apache.org/. Accessed: 2018-06-08.

[8] Hugh Glaser, Ian Millard, and Afraz Ja�ri. Rk-
bexplorer.com: A knowledge driven infrastructure
for linked data providers. In ESWC, pages
797�801, 2008. URL http://dx.doi.org/10.1007/

978-3-540-68234-9_61.
[9] Trevor Hastie, Robert Tibshirani, and Jerome H. Fried-

man. The elements of statistical learning: data mining,
inference, and prediction, 2nd Edition. Springer series
in statistics. Springer, 2009. ISBN 9780387848570. URL
http://www.worldcat.org/oclc/300478243.

[10] Aidan Hogan, Antoine Zimmermann, Jürgen Umbrich,
Axel Polleres, and Stefan Decker. Scalable and dis-
tributed methods for entity matching, consolidation and
disambiguation over linked data corpora. J. Web Sem.,
10:76�110, 2012. URL http://dx.doi.org/10.1016/j.

websem.2011.11.002.
[11] Patricia Jiménez and Rafael Corchuelo. On learning

web information extraction rules with tango. Inf. Syst.,
62:74�103, 2016. URL http://dx.doi.org/10.1016/j.

is.2016.05.003.
[12] Patricia Jiménez and Rafael Corchuelo. Roller: a novel

approach to web information extraction. Knowl. Inf.
Syst., 49(1):197�241, 2016. URL http://dx.doi.org/

10.1007/s10115-016-0921-4.
[13] Nicholas Kushmerick. Regression testing for wrap-

per maintenance. In AAAI/IAAI, pages 74�79,
1999. URL http://www.aaai.org/Library/AAAI/1999/

aaai99-011.php.

17

[14] Nicholas Kushmerick. Wrapper veri�cation. WWW, 3
(2):79�94, 2000. doi: 10.1023/A:1019229612909.

[15] Kristina Lerman, Steven Minton, and Craig A.
Knoblock. Wrapper maintenance: A machine learning
approach. J. Artif. Intell. Res., 18:149�181, 2003. doi:
10.1613/jair.1145.

[16] Girija Limaye, Sunita Sarawagi, and Soumen
Chakrabarti. Annotating and searching web ta-
bles using entities, types and relationships. PVLDB, 3
(1):1338�1347, 2010. URL http://www.comp.nus.edu.

sg/~vldb2010/proceedings/files/papers/R118.pdf.
[17] Jayant Madhavan, Philip A. Bernstein, and Erhard

Rahm. Generic schema matching with cupid. In VLDB
2001, Proceedings of 27th International Conference on
Very Large Data Bases, September 11-14, 2001, Roma,
Italy, pages 49�58, 2001. URL http://www.vldb.org/

conf/2001/P049.pdf.
[18] Robert McCann, Bedoor K. AlShebli, Quoc Le, Hoa

Nguyen, Long Vu, and AnHai Doan. Mapping mainte-
nance for data integration systems. In VLDB, pages
1018�1030, 2005. URL http://www.vldb2005.org/

program/paper/fri/p1018-mccann.pdf.
[19] Varish Mulwad, Tim Finin, and Anupam Joshi. Se-

mantic message passing for generating linked data from
tables. In ISWC, pages 363�378, 2013. doi: 10.1007/
978-3-642-41335-3_23.

[20] Sebastian Neumaier, Jürgen Umbrich, Josiane Xavier
Parreira, and Axel Polleres. Multi-level semantic la-
belling of numerical values. In International Seman-
tic Web Conference (1), pages 428�445, 2016. URL
http://dx.doi.org/10.1007/978-3-319-46523-4_26.

[21] Jennifer Neville and David Jensen. Iterative classi�ca-
tion in relational data. In Proc. AAAI-2000 Workshop
on Learning Statistical Models from Relational Data,
pages 13�20, 2000.

[22] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking: bring-
ing order to the web. 1999.

[23] Minh Pham, Suresh Alse, Craig A. Knoblock, and
Pedro A. Szekely. Semantic labeling: A domain-
independent approach. In International Semantic Web
Conference (1), pages 446�462, 2016. URL http:

//dx.doi.org/10.1007/978-3-319-46523-4_27.
[24] S. K. Ramnandan, Amol Mittal, Craig A. Knoblock,

and Pedro A. Szekely. Assigning semantic labels to data
sources. In ESWC, pages 403�417, 2015. doi: 10.1007/
978-3-319-18818-8_25.

[25] Dominique Ritze, Oliver Lehmberg, and Christian
Bizer. Matching html tables to dbpedia. In Proceed-
ings of the 5th International Conference on Web Intel-
ligence, Mining and Semantics, page 10. ACM, 2015.

[26] Carlos R. Rivero, Inma Hernández, David Ruiz, and
Rafael Corchuelo. Discovering and analysing ontological
models from big RDF data. J. Database Manag., 26(2):
48�61, 2015. doi: 10.4018/JDM.2015040104.

[27] Hassan A. Sleiman and Rafael Corchuelo. A sur-
vey on region extractors from web documents. IEEE
Trans. Knowl. Data Eng., 25(9):1960�1981, 2013.
URL http://doi.ieeecomputersociety.org/10.1109/

TKDE.2012.135.
[28] Hassan A. Sleiman and Rafael Corchuelo. Trinity: On

using trinary trees for unsupervised web data extrac-
tion. IEEE Trans. Knowl. Data Eng., 26(6):1544�1556,
2014. URL http://doi.ieeecomputersociety.org/10.

1109/TKDE.2013.161.

[29] Dezhao Song and Je� He�in. Automatically gener-
ating data linkages using a domain-independent can-
didate selection approach. In International Seman-
tic Web Conference (1), pages 649�664, 2011. URL
http://dx.doi.org/10.1007/978-3-642-25073-6_41.

[30] Tommaso Soru and Axel-Cyrille Ngonga Ngomo. A
comparison of supervised learning classi�ers for link
discovery. In SEMANTICS, pages 41�44, 2014. URL
http://doi.acm.org/10.1145/2660517.2660532.

[31] Mohsen Taheriyan, Craig A. Knoblock, Pedro A.
Szekely, and José Luis Ambite. Learning the seman-
tics of structured data sources. J. Web Sem., 37-38:
152�169, 2016. URL http://dx.doi.org/10.1016/j.

websem.2015.12.003.
[32] Petros Venetis, Alon Y. Halevy, Jayant Madhavan,

Marius Pasca, Warren Shen, Fei Wu, Gengxin Miao,
and Chung Wu. Recovering semantics of tables on
the Web. PVLDB, 4(9):528�538, 2011. URL http:

//www.vldb.org/pvldb/vol4/p528-venetis.pdf.
[33] Ziqi Zhang. E�ective and e�cient semantic table

interpretation using tableminer+. Semantic Web,
(Preprint):1�37, 2016.

18

