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Abstract
Both static and dynamic typing provide different benefits to the programmer. Stati-

cally typed languages support earlier type error detection and more opportunities for
compiler optimizations. Dynamically typed languages facilitate the development of
runtime adaptable applications and rapid prototyping. Since both approaches provide
benefits, gradually typed languages support both typing approaches in the very same
programming language. Gradual typing has been an active research field in the last
years, turning out to be a strong influence on commercial languages. However, one
important drawback of gradual typing is the runtime performance cost of the additional
type checks performed at runtime.

In this article, we propose a rule-based program specialization mechanism to provide
significant performance optimizations of gradually typed code. Our system gathers
dynamic type information of the application by simulating its execution. That type
information is used to optimize the generated code, reducing the number of type checks
performed at runtime. Moreover, program specialization allows the early detection of
compile-time type errors, providing static type safety. To ensure the correctness of the
proposed approach, we prove its soundness and efficiency properties. The specialization
system has been implemented as part of a full-fledged programming language, measuring
the runtime performance gain. The generated code performs significantly better than
the state-of-the-art techniques to optimize dynamically typed code. Unlike the existing
approaches, our system does not consume additional memory resources at runtime,
because program specialization is performed statically. Program specialization involves
an average compilation time increase from 2% to 11.75%.
Keywords: Gradual typing, program specialization, rule-based systems, type safety,
runtime performance



1. Introduction

In the last years, gradual typing has been an active research topic in the area of pro-
gramming language design, theoretical computer science, and software development [1].
Gradual typing is based on allowing programmers to combine the benefits of static and
dynamic typing in the very same programming language [2]. Static typing commonly
provides earlier type error detection and more opportunities for compiler optimizations,
whereas dynamic typing facilitates the creation of runtime adaptable programs and
rapid prototyping [3].

Research in gradual typing has influenced the design and implementation of com-
mercial programming languages. There exist gradually typed languages, such as Visual
Basic, Objective-C, Dylan, Boo, Fantom and Cobra, aimed at providing the benefits of
both approaches. Some dynamically typed languages, such as Groovy and PHP, have
become gradually typed, performing static type checking when the programmer writes
explicit type annotations [4, 5]. Additionally, the statically typed C# language has
included the dynamic type in its version 4.0 [6], indicating the compiler to postpone
type checks until runtime.

Gradual typing was first described for Siek and Taha in 2006 [7]. They formally
described a functional language combining (static) type annotations and dynamically
typed variables. Using different rule-based deductive systems, they specify the syntax,
type system and semantics of the proposed gradually typed language, proving that the
language is sound1 (but not statically type safe) [7]. Namely, if evaluation terminates,
the result is either a value of the expected type or a cast error, but never a type error.
This is achieved by adding additional casts to dynamically typed code [2].

Gradually typed languages are not statically type safe [2]. This means that dynami-
cally typed variables are type checked at runtime to provide soundness (i.e., to avoid
type errors at runtime), because the compiler has not enough information to perform
those type checks statically [9]. Unfortunately, these additional runtime type checks
cause significant runtime performance penalties [10, 11].

Due to the runtime performance cost of gradual typing, there have been different
works aimed at optimizing this kind of languages. Among others, these works include
different strategies for compilation [12], tracing Just-In-Time compilation [13], and
different techniques to optimize the language runtime [14]. However, the optimization
of these languages is still an open issue, since the runtime performance obtained is still
below the expected one [10, 12].
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In this article, we present a formal rule-based system and its implementation in
a full-fledged object-oriented language to optimize gradual typing. The main idea is
to statically gather type information from dynamically typed code and use it for two
purposes: detecting more type errors of dynamically typed code at compile time; and
providing better runtime performance by reducing type-checking operations at runtime.

For that purpose, we define a system that simulates the execution of the application
as a kind of abstract interpretation aimed at inferring type information of dynamically
typed code. The type information inferred is used to specialize the source program
into another one where type annotations are added to the dynamically typed variables.
The specialized program allows detecting more type errors at compile time, and it is
statically type safe when compiler warnings are considered as errors. Moreover, its
execution is significantly faster because the specialized program requires fewer type
checking operations at runtime.

The main contribution of this work is a rule-based system to specialize gradually
typed programs into semantically equivalent code that provides early type error detection
and better runtime performance. After proving the soundness of the proposed system,
we implement it as part of a full-fledged programming language, measuring the runtime
performance gained and comparing it with the state-of-the-art optimization techniques.

The rest of this paper is structured as follows. The next section presents a motivating
example to show how the program specializer works. Section 3 formalizes the source
gradually typed object-oriented language and the target language used as the output of
the specializer. Program specialization is described in Section 4 together with the proofs
of its properties. Section 5 describes how the language has been compiled into the .Net
platform. An evaluation of runtime performance, memory consumption and compilation
time is presented in Section 6. Section 7 depicts the related work and the conclusions
and future work are presented in Section 8. We also provide some additional appendices
with supporting specifications and proofs.

2. A motivating example

Figure 1 shows an example C# program that combines dynamically and statically
typed code. In C#, the dynamic type tells the compiler to postpone all the type checking
operations for that variable until runtime [6].

The DistanceToOrigin method in Figure 1 receives a dynamic parameter, so any
expression can be passed as an argument. Both Circumference and Rectangle objects
can be safely passed to DistanceToOrigin because both types provide appropriate
GetX and GetY methods. This property is called duck typing in the dynamic language
community: the suitability to perform an operation with an object is determined by
the object itself, rather than by its static type [15]. In our example, circumferences and
rectangles do not need to share a common type (e.g., Figure) to be safely passed to
DistanceToOrigin. At runtime, it is checked that the figure parameter provides the
GetX and GetY methods.
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Therefore, the two first invocations to DistanceToOrigin in Figure 1 perform the
expected computation (computing the distance to the origin), regardless of the dynamic
value of condition. C# and Visual Basic use reflection2 to retrieve and invoke the GetX
and GetY methods at runtime, entailing a significant runtime performance cost [16]. In
contrast, our proposed system specializes the DistanceToOrigin method at compilation
time. For the first invocation, a new method version receiving one Circumference
is created. This new method performs no runtime type checking at all. For the
second invocation, another version is produced. In this case, the code only checks
if the parameter is Circumference or Rectangle (there is no other possible option),
performing the subsequent cast. We have evaluated this code to be much faster than
the use of reflection [17].

The third invocation to DistanceToOrigin may produce a runtime type error.
Depending on the dynamic value of condition, the argument could be a Triangle,
which does not implement the GetX and GetY methods. For this reason, the specialized
method checks the dynamic type of the argument. One benefit of our system compared
to gradual typing languages (e.g., C#) is that it shows a warning message at compilation
time (Section 4), stating that Triangle does not provide GetX and GetY methods.
Moreover, it generates more efficient code because a single cast is used instead of
reflection (Section 5.2).

The fourth invocation to DistanceToOrigin passes a Triangle as an argument.
C# (and any gradually typed language) shows no error at compile time, throwing a
RuntimeBinder exception at runtime. Since we perform an abstract interpretation of
the program, we know statically that the argument type is not valid, so we show an
error at compilation time (Section 4), increasing the static type safety of the language.

3. Language design

We describe the input gradually typed formal language FC#G, the intermediate
statically typed language used as the output of our program specializer FC#S, the
program specialization system (Section 4), and the code generated for the .Net platform
(Section 5). Throughout the article, we use the G superscript to refer to the particular
elements of the gradually typed language (FC#G), the S superscript for the statically
typed one (FC#S), and no superscript for the elements common to both languages (e.g.,
expressions, which follow the same syntax in both languages).

3.1. FC#G

We formalize the FC#G syntax, type system and semantics. Then, we prove some
basic properties and discuss why, unlike in [2] and [18], FC#G is not type safe.

2Although C# uses reflection, once the dynamic type is known at runtime, it is stored in a type
cache provided by the Dynamic Language Runtime (DLR).
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public class Circumference { 
  dynamic x, y, radius; 
  public dynamic GetX() { return this.x; } 
  public dynamic GetY() { return this.y; } 
  public Circumference(dynamic x, dynamic y,  
                       dynamic radius) {  
    this.x = x; this.y = y; this.radius = radius; 
} } 
public class Rectangle { 

  dynamic x, y, width, height; 
  public dynamic GetX() { return this.x; } 
  public dynamic GetY() { return this.y; } 
  public Rectangle(dynamic x, dynamic y,  
                  dynamic width, dynamic height) { 
    this.x = x; this.y = y; 
    this.width = width; this.height = height; 
  } 
} 
class Triangle { 
  dynamic x1, y1, x2, y2, x3, y3; 
  public Triangle(dynamic x1, dynamic y1,  
                  dynamic x2, dynamic y2,  
                  dynamic x3, dynamic y3) {  
    this.x1 = x1; this.y1 = y1; … 
} } 
class Node { 

  public dynamic info; 
  public Node next; 
  public Node(dynamic info, Node next) {  
    this.info = info; this.next = next; 
} } 

 

class Distance { 
  static double DistanceToOrigin(dynamic figure) { 
    return Math.Sqrt(Math.Pow(figure.GetX(), 2) + 
           Math.Pow(figure.GetY(), 2)); 
  }  
  static dynamic ClosestToOrigin(Node list) { 
    if (list == null) return null; 
    dynamic element = list.info; 
    double min = DistanceToOrigin(element); 

    while (list.next != null) { 
      list = list.next; 
      double distance = DistanceToOrigin(list.info); 
      if (distance < min) { 
        element = list.info; 
        min = distance; 
      } 
    } 
    return element; 
  } 
  static void Main() { 
    Circumference cir = new Circumference(0,0,10); 
    Rectangle rec = new Rectangle(1.2,3.7,1.0,2.0); 
    Triangle tri = new Triangle(1, 2, -1, 3, 7, 2); 
    DistanceToOrigin(cir); 
    bool condition = new Random().NextDouble() >= 0.5; 
    DistanceToOrigin(condition ? cir : rec); 

    DistanceToOrigin(condition ? rec : tri);  
    DistanceToOrigin(tri); 
    Node list = new Node(rec, new Node(cir, null)); 
    dynamic fig = ClosestToOrigin(list); 
} } 

Figure 1: A motivating example in C# with statically and dynamically typed code.

3.1.1. FC#G abstract syntax
This language is based on the well-known Featherweight Java (FJ) language, the

minimal Java core [19]. FJ omits many features of the Java programming language
(interfaces, overloading, assignment, abstract methods and exceptions) to provide a small
calculus that models the syntax, semantics and type system of the minimal Java core.
Its simplicity allows the rigorous demonstration of key properties such as type safety.
FJ embodies many of the central features of the Java programming language, such as
class definition, object creation, field access, method invocation, method overriding,
method recursion through this, subtyping and casting [19]. FJ has been used to
formally specify how to include different features to object-oriented languages, including
confined types [20], feature-oriented-programming [21], union types [22], approximate
data types [23], session types [24] and generics [19].

In this work, we add to FJ the dynamic type and modify its syntax to be closer
to C# (the language we selected to implement the proposed system). We named the
language FC#G , Featherweight C# with gradual typing. FC#G omits many C#
features that do not interact with gradual typing in significant ways [2].

The abstract syntax of FC#G is shown with the production rules depicted in Figure 2.
A program (P G) is a sequence of class definitions (CDG) followed by one expression (e)
corresponding to the body of the Main method in C#. The meta-variables C range over
class names; m ranges over method names and f over field names; and x ranges over
variables. As in FJ, e is shorthand for a possibly empty sequence e1 . . . en (and similarly
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P G ∈ Program ::= CDG e

CDG ∈ Class definition ::= class C : C { T G f; KG MG }
KG ∈ Constructor ::= C(T G f):base(f) { this.f=f; }
MG ∈ Method ::= T G m(T G x) { return e; }
e ∈ Expression ::= x | this | e.f | e.m(e) | new C(e)
T G ∈ Type ::= dynamic | C

Figure 2: Syntax of FC#G.

for CDG, f , MG, etc.). We abbreviate operations on pairs of sequences in the obvious
way, writing Cf for C1f1, . . . , Cnfn, where n is the length of Cf . We write the empty
sequence as ∅ and denote concatenation of sequences using a comma. The length of a
sequence x is written #(x).

The class declaration class C : Csuper { T Gf; KG MG } defines a new C class,
derived from Csuper, with T Gf fields, the KG constructor, and the sequence of MG

method definitions. For the sake of simplicity, the base class is always specified, even
when it is Object. Object is a distinguished class name whose definition does not
appear in the programs.

Each class must define one constructor just aimed at initializing its fields, after
calling the base constructor. Methods are defined by specifying the return type, its
unique identifier, its parameters, and a single expression representing its method body.
Expressions may be variables (x), the this keyword, field access, method invocation,
and object construction. A type in FC#G may be a class or the dynamic type.

3.1.2. FC#G type system
For the formal description of the type system and the language semantics, we use

inference rules (e.g., Figure 3), commonly used in natural deduction logical systems.
Each inference rule means: if the statements in the premises listed above the line are
established, then the conclusion below the line may be derived. Rules with no premises
are axioms (e.g., S-RefG in Figure 3).

Figure 3 depicts the subtyping rules that are later used to describe the type system.
The subtyping judgment CDG ⊢ C1 ≤ C2 means that, in a program with CDG class
definitions, C1 is a subtype of C2 (any term of type C1 can safely be used in a context
where a term of type C2 is expected). As in FJ, subtyping is defined by the inheritance
relation (S-SuperG): a derived class (Csub) is a subtype of its superclass (Csuper). The
subtyping relation is reflexive (S-RefG) and transitive (S-TransG).

As described by Siek and Taha, gradual typing is based on the consistency relation
described in [7]. Later, they combined consistency with subtyping, defining the consistent
subtyping relation (≲) [2], which is the actual subtyping relation used in the existing
implementations of object-oriented gradually typed languages. It is based on the idea
that dynamic promotes to (is subtype of) any other type (CS-LeftG), and the other
way round (CS-RightG). The ≲ relation includes subtyping (CS-SubG). However,
unlike subtyping, the consistent subtyping relation is not transitive. So, if CDG ⊢
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(S-RefG)

CDG ⊢ C ≤ C

(S-TransG)
CDG ⊢ C1 ≤ C2 CDG ⊢ C2 ≤ C3

CDG ⊢ C1 ≤ C3

(S-SuperG)
CDG = CDG

1 . . . class Csub:Csuper {T G
f f; KG MG} . . . CDG

n

CDG ⊢ Csub ≤ Csuper

(CS-LeftG)

CDG ⊢ dynamic ≲ T G

(CS-RightG)

CDG ⊢ T G ≲ dynamic

(CS-SubG)
CDG ⊢ C1 ≤ C2

CDG ⊢ C1 ≲ C2

Figure 3: Subtyping (≤) and consistent subtyping (≲).

C1 ≲ dynamic and CDG ⊢ dynamic ≲ C2, it is not true that CDG ⊢ C1 ≲ C2 unless
CDG ⊢ C1 ≤ C2.

Figure 4 depicts the inference rules for the FC#G type system. The environment
or typing context Γ represents a map associating to each local variable its type in the
current scope. The judgment CDG, Γ ⊢ e :G T G means that the expression e has the
type T G in a program with CDG class definitions and the environment Γ. As in FJ,
the types of variables (T-VarG) and this (T-ThisG) are taken from the environment.
In a method body, Γ maps this to the class where the method is defined, and the
rest of variables in Γ are the method parameters (see the formalization in W-ClassG,
Appendix B).

For field access, FC#G considers two different scenarios. If the type of the object
is a class (T-FieldCG), the field type is taken from its class definition, considering
inheritance —the auxiliary fields, type and method functions used in Figure 4 are detailed
in Appendix A. However, if the object is dynamic (T-FieldDG), type checking will be
performed at runtime (next section), so the type system just sets dynamic to the field
type.

For method invocation, if the implicit object (the object used to invoke the method)
is not dynamic (T-InvCG), the types of the arguments must be consistent subtypes
(not just subtypes, as in FJ, to consider dynamic) of the types of the parameters, and
the type of the invocation is the return type of the method. Similar to field access, if
the implicit object is dynamic (T-InvDG), no static type checking is done, and the
invocation type will also be dynamic.

T-NewG checks that the arguments passed to the constructor are consistent subtypes
of the parameters (i.e., dynamic is considered). This condition is checked recursively in
the mandatory invocation of inherited constructors (base(f1)).

The additional well-formedness rules required to type check FC#G are detailed
in Appendix B. A well-formed program P G = CDG e will be accepted by the type
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(T-VarG)

CDG, Γ ⊢ x :G Γ(x)

(T-ThisG)

CDG, Γ ⊢ this :G Γ(this)

(T-FieldCG)
CDG, Γ ⊢ e :G C

fields(CDG, C) = T G
1 f1 . . . T Gf . . . T G

n fn

CDG, Γ ⊢ e.f :G T G

(T-FieldDG)
CDG, Γ ⊢ e :G dynamic

CDG, Γ ⊢ e.f :G dynamic

(T-InvCG)
CDG, Γ ⊢ eobj :G Cobj

type(method(CDG, Cobj , m)) = T G
p → T G

r

CDG, Γ ⊢ earg :G T G
arg

CDG ⊢ T G
arg ≲ T G

p

CDG, Γ ⊢ eobj .m(earg) :G T G
r

(T-InvDG)
CDG, Γ ⊢ eobj :G dynamic

CDG, Γ ⊢ earg :G T G
arg

CDG, Γ ⊢ eobj .m(earg) :G dynamic

(T-NewG)
CDG = CDG

1 . . . class C:Csuper {T G
f2 f2; KG MG} . . . CDG

n

KG = C(T G
p1 f1, T G

p2 f2) : base(f1) {this.f2 = f2;} CDG, Γ ⊢ earg1 :G T G
arg1

CDG ⊢ T G
arg1 ≲ T G

p1 CDG, Γ ⊢ earg2 :G T G
arg2 CDG ⊢ T G

arg2 ≲ T G
p2

CDG, Γ ⊢ new C(earg1, earg2) :G C

Figure 4: Type system of FC#G.

system when CDG,∅ ⊢ e :G ⋄ is derived from the existing rules.

3.1.3. FC#G semantics
Figure 5 shows the reduction rules describing the dynamic semantics of FC#G. The

judgment CDG ⊢ e1 −→G e2 means that the expression e1 is evaluated (reduced to) e2
in one step. We write −→∗ for the reflexive and transitive closure of −→.

An expression cannot be reduced any further when it is an object (also called value).
The way we represent an object is with an invocation to its class constructor, where
parameters are also objects. Therefore, objects (values) are recursively defined as:

σ ∈ Values ::= new C(σ)
Unlike FJ, the reduction relation for FC#G is deterministic. The obvious congruence

rules are defined in Appendix C.
R-FieldG evaluates the field access expression, by returning the corresponding

expression associated to the requested field (σi). Unlike FJ, we must check at runtime
whether the f field is actually provided by the object (first premise in the rule), since the
addition of the dynamic type allows this scenario (i.e., the language is not statically type
safe). In case the field is not provided (f /∈ f), R-FieldEG evaluates the expression to
a runtime error holding a descriptive message.
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(R-FieldG)
fields(CDG, C) = T G

1 f1 . . . T G
i f . . . T G

n fn σ = σ1 . . . σi . . . σn

CDG ⊢ new C(σ).f −→G σi

(R-FieldEG)
fields(CDG, C) = T Gf f /∈ f

CDG ⊢ new C(σ).f −→G error(“Field f not found”)

(R-InvG)
method(CDG, Cobj , m) = T G

r m(T G
p x) { return ebody;} CDG ⊢ Carg ≲ Tp

CDG ⊢ new Cobj(σobj).m(new Carg1(σarg1), . . . , new Cargn(σargn)) −→G

[new Carg1(σarg1)/x1, . . . , new Cargn(σargn)/xn, new Cobj(σobj)/this]ebody

(R-InvEG)
method(CDG, C, m) = ∅

CDG ⊢ new C(σobj).m(σarg) −→G error(“Method m not found”)

(R-ParEG)
method(CDG, C, m) = T G

r m(T G
p x) { return e;} #(σarg) ̸= #(x)

CDG ⊢ new C(σobj).m(σarg) −→G error(“Wrong number of arguments”)

(R-ArgEG)
method(CDG, C, m) = T G

r m(T G
p x) { return e;}

#(x) = n ∃ i ∈ [1, n] . CDG ⊢ not(Cargi ≲ Tpi)
CDG ⊢ new Cobj(σobj).m(new Carg1(σarg1), . . . , new Cargn(σargn)) −→G

error(“Wrong type of the ithargument”)

Figure 5: Semantics of FC#G.

The same occurs with method invocation. R-InvG evaluates a method invocation
to the method body (σbody), substituting the argument values for the parameters and
the implicit object for this ([σ/x]e represents the substitution of the x variable by the
σ value in the expression e). If the implicit object does not provide the method (the
only premise in R-InvEG), or the number of parameters is different to the number
of arguments (#(σarg) ̸= #(x) in R-ParEG), or the type of the arguments are not
consistent subtypes of the types of the parameters (not(Cargi

≲ Tpi
) in R-ArgEG), a

runtime error is produced.

3.1.4. Properties of FC#G

Property 1. Static type safety of fully annotated FC#G programs.

If P G = CDG e1 is fully annotated with types and CDG,∅ ⊢ e1 :G T G
1 and
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CDG ⊢ e1 −→G∗ e2, then CDG,∅ ⊢ e2 :G T G
2 for some CDG ⊢ T G

2 ≤ T G
1 and

– e2 ∈ Values, or
– ∃ e3 . CDG ⊢ e2 −→G e3

This property states that, well-typed expressions of fully annotated programs neither
produce a runtime error nor reach a stuck state (they are either evaluated to a value of
the same type or another reduction could be applied).

Proof. If all the variables are annotated, then P G is an FJ program, which is proved to
be statically type safe in [25].

Property 2. Progress of FC#G.

If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 , then

– e1 ∈ Values, or
– CDG ⊢ e1 −→G error, or
– ∃ e2 . CDG ⊢ e1 −→G e2

Proof. See Appendix D.

The progress property indicates that a well-typed term is always evaluated to an
object (value) or the runtime detects a type error (or another evaluation could be
performed, for non-terminating programs). In other words, a well-typed term does not
get stuck at some stage of its evaluation.

However, FC#G does not provide preservation (or subject reduction), the second
property required to make FC#G type safe. The following type safety property is not
fulfilled:
If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G

1 , then
– either CDG ⊢ e1 −→G∗ e2 and CDG,∅ ⊢ e2 :G T G

2 for some CDG ⊢ T G
2 ≤ T G

1 and
◦ e2 ∈ Values, or
◦ ∃ e3 . CDG ⊢ e2 −→G e3

– or CDG ⊢ e1 −→G error

Given the expression “new C1().m().f”, if m returns dynamic, the type of the
whole expression will also be dynamic (T-InvDG). If the body of m is “new C2()”, the
expression will be evaluated to “new C2().f”. This new term may have a different type,
or could even be ill-typed (if C2 does not provide an f field) eventually producing an
error at runtime. Thus, FC#G is not type safe.

To make FC#G type safe, the language semantics can be defined via translations,
adding specific casts when dynamic expressions are used [2] or using reflection [18]. This
makes the language type safe, but implies significant runtime performance penalties [10].
For this reason, we propose a program specialization mechanism that provides static
type safety with better runtime performance.
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(S-UnionRS)
∃ i ∈ [1, n] . CDS ⊢ C ≤ Ci

CDS ⊢ C ≤ C1 ∨ . . . ∨ Cn

(S-UnionLS)
Csub = {Ci ∈ C1, . . . , Cn . CDS ⊢ Ci ≤ C} #(Csub) ≥ 1

∀ Cwrong ∈ {C1, . . . , Cn} − Csub . warning(“The type Cwrong is not promotable to C”)
CDS ⊢ C1 ∨ . . . ∨ Cn ≤ C

Figure 6: Additional subtyping rules for FC#S.

3.2. FC#S

We define FC#S as the output of the proposed specialization, receiving a FC#G

program and translating it into FC#S. The only syntactic difference with FC#G is
related to types (the whole syntax can be consulted in Appendix E). In FC#S, a type
is defined as:

T S ∈ Type ::= T S ∨ T S | C
A type in FC#S can be a class or a union type containing more types [26], so dynamic

is not a valid type in FC#S. A union type T1 ∨ T2 denotes the ordinary union of the set
of values belonging to T1 and the set of values belonging to T2 [27], representing the
least upper bound of T1 and T2 [28]. Union types hold the following properties:

T S ∨ T S = T S

T S
1 ∨ T S

2 = T S
2 ∨ T S

1

T S
1 ∨ (T S

2 ∨ T S
3 ) = (T S

1 ∨ T S
2 ) ∨ T S

3 = T S
1 ∨ T S

2 ∨ T S
3

3.2.1. FC#S type system
Figure 6 shows the additional rules added to the existing subtyping relation. There

is no ≲ relation in FC#S, since dynamic is not a valid type. S-UnionRS denotes that,
since a union type is the least upper bound of the types it collects, a class C is a subtype
of any union type holding C.

The classical definition of union types states that a union type is a subtype of C
when all the classes in the union type are subtypes of C [26]. S-UnionLS in Figure 6
shows a more lenient definition, since at least one (#(Csub) ≥ 1) class in the union type
must be a subtype of C. A warning message is shown if there are one or more classes
in the union type not fulfilling this predicate. Therefore, if warnings are considered as
type errors, S-UnionLS will denote the classical definition: all the classes in the union
type must be subtype of C (Lemma 3 in Appendix I).

Figure 7 shows the new typing rules added to FC#S in order to consider union types
(the whole type system for FC#S can be consulted in Appendix F). The T-FieldUS

rule types field access when the object is a union type (C1 ∨ . . . ∨ Cn). As discussed,
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(T-FieldUS)
CDS , Γ ⊢ e :G C1 ∨ . . . ∨ Cn

Cwithf = {Ci ∈ C1, . . . , Cn . T S
i f ∈ fields(CDS , Ci)} nf = #(Cwithf ) ≥ 1

∀ Cwrong ∈ {C1, . . . , Cn} − Cwithf . warning(“Field f not found in Cwrong”)
CDS , Γ ⊢ e.f :S T S

1 ∨ . . . ∨ T S
nf

(T-InvUS)
CDS , Γ ⊢ e :G C1 ∨ . . . ∨ Cn CDS , Γ ⊢ earg :S T S

arg

Cwithm = {Ci ∈ C1, . . . , Cn . type(method(CDS , Ci, m)) = T S
pi

→ T S
ri

and T S
arg ≤ T S

pi
}

nm = #(Cwithm) ≥ 1
∀ Cwrong ∈ {C1, . . . , Cn} − Cwithm . warning(“Cwrong does not provide a suitable m method”)

CDS , Γ ⊢ e.m(earg) :S T S
r1 ∨ . . . ∨ T S

rnm

Figure 7: New typing rules for FC#S.

at least one type in the union type must provide the f field. A warning message is
shown for all the types in the union type not providing f . The type of the field access
expression is inferred as a union type holding the types of the f fields (T S

1 ∨ . . . ∨ T S
nf

).
T-InvUS does the same for method invocation. When the implicit object in the

invocation is a union type, at least one class in the union type must provide an appropriate
m method (#(Cwithm) ≥ 1), where each argument is subtype of the corresponding
parameter (T S

arg ≤ T S
pi

). Warning messages are shown for those classes in the union type
not fulfilling such condition. The type of the invocation is a union type with the return
types of those appropriate m methods (T S

r1 ∨ . . . ∨ T S
rnm

).
As indicated in [29], this interpretation of union types gives FC#S the flavor of

dynamic languages, allowing the utilization of flow-sensitive types [30]. In our motivating
example, after specializing the program in Figure 1, T-InvUS will show a warning
message in the third invocation to DistanceToOrigin, because Triangle does not
provide GetX and GetY methods. For the fourth invocation, a compiler error is shown
because no class in the union type provides the an appropriate GetX method.

3.2.2. FC#S semantics
The semantics of FC#S is detailed in Appendix G. It is basically the same as FC#G,

but subtyping (≤) is used instead of consistent subtyping (≲). Additionally, we define
the semantics with two reduction relations: −→S represents evaluation without runtime
type error checking, and −→SE includes it. We distinguish these two relations to have
the notion of potentially faster execution (−→S), where type errors do not need to be
checked at runtime.

3.2.3. Properties of FC#S

Property 3. Progress of FC#S.
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If ⊢ P S = CDS e1 :S ⋄ and CDS,∅ ⊢ e1 :S T S
1 , then

– e1 ∈ Values, or
– CDS ⊢ e1 −→SE error, or
– ∃ e2 . CDS ⊢ e1 −→SE e2

Proof. See Appendix H.

As in FC#G, FC#S is not type safe since the reduction derivations can change
types of expressions at runtime (see a discussion about that in Lemma 8 in Appendix
I). However, the progress property guarantees that a well-typed term can always be
evaluated.

Property 4. Static type safety of FC#S when warnings are considered as errors.

If ⊢ P S = CDS e1 :S ⋄ and CDS,∅ ⊢ e1 :S T S
1 without any warning, then

– either e1 ∈ Values,
– or ∃ e2 . CDG ⊢ e1 −→S e2 and CDS,∅ ⊢ e2 :S T S

2 for some CDS ⊢ T S
2 ≤ T S

1
without any warning

Proof. See Appendix I.

With these two properties, we can see how FC#S is statically type safe when warnings
are considered as errors. If so, no runtime error is produced. Therefore, warnings tell
the programmer which expressions in the source code could produce runtime errors.
Moreover, FC#S guarantees evaluation without getting stuck even with warnings (the
progress property).

In the static type safety property (Property 4), we use the −→S reduction instead of
−→SE, meaning that many runtime checks are not required when a program has been
compiled without warnings. This benefit, in addition to the optimized code generated
(Section 5), provides better runtime performance of FC#S programs.

4. Program specialization

As mentioned, the proposed program specializer takes a program written in FC#G and
generates a semantically equivalent one in FC#S. The process replaces dynamic types
with type annotations, including union types (Figure 9 shows an example specialization
of the code in Figure 1). The specialized program has the same semantics as the original
one, it is statically type safe (when warnings are considered as errors), and performs
fewer dynamic type checking operations to provide better runtime performance.

Our program specializer is a rule-based system, where rules have the following form:
P G, CDS

in, Γ ⊢ e ⇒ ⟨e′, CDS
out⟩. P G is the FC#G source program to be specialized,

CDS
in are the class definitions specialized so far, Γ is a typing context, e is an expression
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that is specialized to e′, and CDS
out are the class definitions specialized after specializing

e.
The specialization process is the following one. First, P G must be a well-typed

FC#G program, i.e. ⊢ P G = CDG e :G ⋄ and CDG,∅ ⊢ e :G T G. Then, the input
program P G is then specialized to P S = CDS e′, so P G,∅,∅ ⊢ e ⇒ ⟨e′, CDS⟩. The
specialized program is semantically equivalent to the original one (Section 4.1), it can
be checked if it is statically type safe (Section 3.2.3), and its execution performs fewer
type checks at runtime (Section 3.2.3).

Figure 8 shows the specialization rules. For variables (SP-Var) and the this
keyword (SP-This), the specializer maintains the original program with no changes in
the specialized classes (CDS

in). For the field access expression (SP-Field), the object (e)
is replaced with its specialization (e′), and the same f field is accessed in the specialized
object. The specialized classes are those generated in the object specialization (CDS

out).
SP-InvC specializes a method invocation when the type of the specialized object is a

class Cobj (not a union type). First, the implicit object eobj is specialized to e′
obj . Second,

the system specializes the arguments (eargi
⇒ ⟨e′

argi
, CDS

i ⟩). In the specialization
process, the output classes of one specialization are the input classes for the next
specialization, and so forth. Therefore, the specialization of each argument considers
the classes specialized in the specialization of both the implicit object and the previous
arguments. The last step is the specialization of the m method, performed by the
specializem function detailed in Appendix J. m is specialized to a new m_n method
added to the specialized class of the implicit object (Cobj). That new m_n method
replaces the dynamic parameters and return type of the original method m with the
argument types inferred by the specializer (in FC#G, dynamic is not a valid type). If
the m method is overridden, specializem also specializes the m methods in the derived
classes.

The specialized code in Figure 9 shows different examples of specializations performed
by SP-InvC. The SP-InvC rule is applied in the first invocation to DistanceToOrigin
in the Main method. For that particular invocation, a new version of the method is
created (DistanceToOrigin_1), replacing the dynamic parameter type with the type
of the argument (Circumference). The new DistanceToOrigin_1 method is added to
the specialized Distance class (Figure 9). The same specialization occurs for all the
GetX and GetY methods in Figure 1 that return dynamic.

The specializer simulates the execution of the application, inferring type information
of the evaluated expressions. Before specializing an invocation, the implicit object and
the arguments are specialized (and hence their types are inferred). When a dynamic
type is used in the input program (e.g., an argument or return value), its dynamic type
annotation is replaced with the type inferred in the specialized code. The specialization
of a method invocation requires the specialization of the method body (see specializem in
Appendix J), so termination of the evaluation specialization process must be guaranteed
(Property 5). If a method has already been specialized for some argument types, the
specializem function returns the existing specialization (Appendix J).
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(SP-Var)

P G, CDS
in, Γ ⊢ x ⇒ ⟨x, CDS

in⟩

(SP-This)

P G, CDS
in, Γ ⊢ this ⇒ ⟨this, CDS

in⟩

(SP-Field)
P G, CDS

in, Γ ⊢ e ⇒ ⟨e′, CDS
out⟩

P G, CDS
in, Γ ⊢ e.f ⇒ ⟨e′.f, CDS

out⟩

(SP-InvC)
P G, CDS

in, Γ ⊢ eobj ⇒ ⟨e′
obj , CDS

0 ⟩
CDS

0 , Γ ⊢ e′
obj :S Cobj narg = #(earg) P G, CDS

i−1, Γ ⊢ eargi ⇒ ⟨e′
argi

, CDS
i ⟩i∈[1,narg ]

CDS
i , Γ ⊢ e′

argi
:S T S

argi

i∈[1,narg ] CDS
out, n = specializem(P G, CDS

narg
, Γ, Cobj , m, T S

arg)

P G, CDS
in, Γ ⊢ eobj .m(earg) ⇒ ⟨e′

obj .m_n(e′
arg), CDS

out⟩

(SP-InvU)
P G, CDS

in, Γ ⊢ eobj ⇒ ⟨e′
obj , CDS

0 ⟩ CDS
0 , Γ ⊢ e′

obj :S C1 ∨ . . . ∨ Cnu narg = #(earg)
P G, CDS

i−1, Γ ⊢ eargi ⇒ ⟨e′
argi

, CDS
i ⟩i∈[1,narg ] CDS

i , Γ ⊢ e′
argi

:S T S
argi

i∈[1,narg ]

Cnu = {C1, . . . , Cnu} nnew = newmethod(CDS
narg

, Cnu , m) CDS′
0 = CDS

narg

CDS′
i = specializemn(P G, CDS′

i−1, Γ, Cobj , m, T S
arg, nnew)i∈[1,nu] CDS

out = CDS′
nu

P G, CDS
in, Γ ⊢ eobj .m(earg) ⇒ ⟨e′

obj .m_nnew(e′
arg), CDS

out⟩

(SP-InvE)
P G, CDS

in, Γ ⊢ eobj ⇒ ⟨e′
obj , CDS

0 ⟩
narg = #(earg) P G, CDS

i−1, Γ ⊢ eargi ⇒ ⟨e′
argi

, CDS
i ⟩ i∈[1,narg ]

∄Tobj . CDS
0 , Γ ⊢ e′

obj :S Tobj or ∄Targi
i∈[1,narg ] . CDS

i , Γ ⊢ e′
argi

:S T S
argi

P G, CDS
in, Γ ⊢ eobj .m(earg) ⇒ ⟨e′

obj .m(earg), CDS
in⟩

(SP-New)
CDS

0 = CDS
in narg = #(eS

arg) P G, CDS
i−1, Γ ⊢ eargi ⇒ ⟨e′

argi
, CDS

i ⟩i∈[1,narg ]

CDS
out = specializec(P G, CDS

narg
, Γ, C, e′

arg)

P G, CDS
in, Γ ⊢ new C(earg) ⇒ ⟨new C(e′

arg), CDS
out⟩

Figure 8: Program specialization rules.

SP-InvU specializes a method invocation when the type of the specialized implicit
object (e′

obj) is a union type (C1 ∨ . . . ∨ Cnu). We have an example in the figure.GetX
invocation in DistanceToOrigin_2 of Figure 9 (the type of figure is the union type
Circumference ∨ Rectangle). In that case, we must specialize the GetX method in
Circumference and Rectangle, but the new method version must have the same exact
name (duck typing). Since Circumference already has a specialized version (GetX_1),
the new method will be named GetX_2 in both types. This is the main difference
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between SP-InvC and SP-InvU. The newmethod function in SP-InvU computes the
number of a fresh m method for all the types in the union type (Cnu). Afterwards,
specializemn specializes the m method in all the classes in the union type, receiving
the new version number nnew.

Since FC#S is type safe and FC#G is not, specialized programs may be ill-typed.
Therefore, SP-InvE rule specializes those method invocations that may have a type
error in the generated program; i.e., the specialized implicit object or arguments are
not well typed (the last premise in SP-InvE). In this way, FC#G guarantees that any
well-typed program can be specialized (Property 5). An example application of SP-InvE
is the DistanceToOrigin_4 method in Figure 9. Since the Triangle figure parameter
has no GetX method, SP-InvE does not specialize the figure.GetX() expression (the
m method is not replaced in SP-InvE). A compiler error will be produced, when the
specialized FC#S program is compiled.

SP-New specializes object construction. After specializing the arguments (eargi
⇒

⟨e′
argi

, CDS
i ⟩), the specializec function specializes the class, its constructor and its fields

(Appendix J). As mentioned at the beginning of this section, the specialization process
starts with an empty collection of output classes. Then, specializec adds a new version
of the class when an object is created —thus, if a program never creates an instance
of a class, that class will not be included in the specialized program. As with method
invocation, if a constructor parameter is dynamic, specializec replaces dynamic with the
inferred type of the argument (otherwise, the original type is kept). The same process
is followed for fields. In the example code in Figure 9, the first line in Main creates a
Circumference, passing three int arguments. SP-New specializes the Circumference
class by declaring its constructor parameters and all its fields as int.

Constructors may be invoked at different times with different parameter types. One
example is the Node class in Figure 9. Its constructor is invoked passing a Circumference
parameter first, and then a Rectangle, both as first arguments. In that case, the
specialization system assigns a union type (Circumference ∨ Rectangle) to the type
of the first parameter and the corresponding info field, because it knows that it could
hold either type at runtime (see the specializekf function in Appendix J).

4.1. Properties of the specializer
Property 5. Well-typed FC#G programs can always be specialized (and termination of
the specialization is ensured).

∀ ⊢ P G = CDGe1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 . ∃ e2, CDS such that P G,∅,∅ ⊢ e1 ⇒

⟨e2, CDS⟩.

Proof. See Appendix L.

Property 6. Program specialization preservers semantics (i.e., the original program
and its specialization are semantically equivalent).

If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 and P G,∅,∅ ⊢ e1 ⇒ ⟨e2, CDS⟩, then
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public class Circumference { 
  int x, y, radius; 
  public int GetX_1() { return this.x; } 
  public int GetY_1() { return this.y; } 
  public int GetX_2() { return this.x; } 
  public int GetY_2() { return this.y; } 
  public Circumference(int x, int y, int radius) {  
    this.x = x; this.y = y; this.radius = radius; 
} } 

public class Rectangle { 
  double x, y, width, height; 
  public double GetX_2() { return this.x; } 
  public double GetY_2() { return this.y; } 
  public double GetX_3() { return this.x; } 
  public double GetY_3() { return this.y; } 
  public Rectangle(double x, double y,  
                   double width, double height) { 
    this.x = x; this.y = y; 
    this.width = width; this.height = height; 
  } 
} 
class Triangle { 
  int x1, y1, x2, y2, x3, y3; 
  public Triangle(int x1, int y1, int x2, int y2, 
                  int x3, int y3) {  
    this.x1 = x1; this.y1 = y1; … 

} } 
class Node { 

  public Circumference⋁Rectangle info; 
  public Node next; 

  public Node(Circumference⋁Rectangle info,  
              Node next) {  
    this.info = info; this.next = next; 
} } 
 
class Distance { 
  static double DistanceToOrigin_1( 
                    Circumference figure) { 
    return Math.Sqrt(Math.Pow(figure.GetX_1(), 2) + 
                     Math.Pow(figure.GetY_1(), 2)); 
  }  

  static double DistanceToOrigin_2( 

                    Circumference⋁Rectangle figure) { 
    return Math.Sqrt(Math.Pow(figure.GetX_2(), 2) + 
                     Math.Pow(figure.GetY_2(), 2)); 
  }  
  static double DistanceToOrigin_3( 

                    Rectangle⋁Triangle figure) { 
    return Math.Sqrt(Math.Pow(figure.GetX_3(), 2) + 

                     Math.Pow(figure.GetY_3(), 2)); 
  }  
  static double DistanceToOrigin_4(Triangle figure) { 
                              // compiler error 
    return Math.Sqrt(Math.Pow(figure.GetX(), 2) + 
                     Math.Pow(figure.GetY(), 2)); 
  }  

  static Circumference⋁Rectangle ClosestToOrigin_1( 
                    Node list) { 
    if (list == null) return null; 

    Circumference⋁Rectangle element = list.info; 
    double min = DistanceToOrigin_2(element); 
    while (list.next != null) { 
      list = list.next; 
      double distance = DistanceToOrigin_2(list.info); 
      if (distance < min) { 

        element = list.info; 
        min = distance; 
    } } 
    return element; 
  } 
  static void Main() { 
    Circumference cir = new Circumference(0,0,10); 
    Rectangle rec = new Rectangle(1.2,3.7,1.0,2.0); 
    Triangle tri = new Triangle(1, 2, -1, 3, 7, 2); 
    DistanceToOrigin_1(cir); 
    bool condition = new Random().NextDouble() >= 0.5; 
    DistanceToOrigin_2(condition ? cir : rec); 
    DistanceToOrigin_3(condition ? rec : tri);  
    DistanceToOrigin_4(tri); 
    Node list = new Node(rec, new Node(cir, null)); 

    Circumference⋁Rectangle fig =  
                 ClosestToOrigin_1(list); 

} } 
 

Figure 9: The specialized program for the one in Figure 1.

– ∃ σ . CDG ⊢ e1 −→G∗ σ and CDS ⊢ e2 −→S∗ σ, or
– CDG ⊢ e1 −→G∗ error and CDS ⊢ e2 −→SE∗ error, or
– ∃ e3 e4 . CDG ⊢ e1 −→G e3 and CDS ⊢ e2 −→S e4

Proof. See Appendix M.

The first property ensures that the rule-based specialization system does not get stuck
with well-typed FC#G programs. It also proves termination of the specialization process.
Therefore, we demonstrate that any well-typed FC#G program can be specialized to
another one written in FC#S. Moreover, the second property shows that the result of
evaluating a convergent FC#G program (i.e., a program that terminates) is the same
as the evaluation of its specialization. Therefore, our program specialization system
provides the following benefits:
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1. The programmer is able to know whether a gradually typed program is statically
type safe. This process is done in three steps. First, the FC#G program is type-
checked. Second, if the program is well-typed, it is then specialized. This second
step is always possible, because Property 5 demonstrates that any well-typed
FC#G program can be specialized. The third step checks the static type safety
of the specialized FC#S code. Property 4 demonstrates that FC#S is statically
type safe when warnings are considered as errors. Therefore, a well-typed FC#G

program specialized into another one that compiles without warnings or errors is
statically type safe.

2. If a FC#G program is well-typed, the possible threats to type safety are shown as
warnings, and they are caused by the use of dynamic. Since Property 1 proves
that any well-typed program can be specialized, and Property 4 demonstrates
static type safety when warnings are considered as errors, then warnings indicate
potential threats to type safety. Property 1 states that fully annotated FC#G

programs are type safe, so the use of dynamic is the only threat to type safety.

3. If a well-typed FC#G program is not statically type safe (warnings are shown),
its execution does not get stuck. It can also be specialized and, if the specialized
program is well-typed, it does not get stuck either. Property 2 demonstrates
that any well-typed FC#G program is an object or can be evaluated to another
program or error (i.e., it does not get stuck). Property 5 proves that well-typed
FC#G programs can be specialized, and Property 3 that any well-typed FC#S

program does not get stuck.

4. Statically typed duck typing is provided. The use of dynamic allows flow-sensitive
typing in FC#G, specializing dynamic to union types. Each dynamic type is spe-
cialized to another type. When an expression may have different types depending
on the control flow, the specializer replaces dynamic with a union type collecting
such different types. Property 6 demonstrates that the semantics of the original
program (with dynamic) is the same as the specialized one (with union types).
Therefore, FC#G provides statically typed duck typing similar to languages with
union types (e.g., Whiley or Pike), but without including that type constructor in
the language (types are inferred and transparently added by the specializer).

5. When a program is compiled without warnings, many runtime type-checking
operations are not required, providing better runtime performance. Property 4
demonstrates static type safety of FC#G when warnings are considered as errors.
Moreover, application execution does not need to perform many type-checking
operations, already checked statically (−→SE in Property 4). Section 6.2 shows
an empirical assessment of the runtime performance benefits.

6. The type information added by the specialization process can be used to produce
more efficient code. The specializer performs a kind of abstract interpretation to
infer type information of dynamically typed code. The specializer uses union types
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to represent all the different types a variable may hold. Section 5.2 shows how
this information can be used to avoid the use of reflection, and hence generate
more efficient code.

5. Language implementation

We have implemented the proposed system as part of a full-fledged programming
language. We selected StaDyn, a gradually typed object-oriented language for the .Net
Framework, created as an extension of C# [31]. It supports implicitly (and explicitly)
typed references. Its syntax is the same as C#, but the StaDyn compiler gathers type
information of dynamic references, improving compile-time type error detection and
runtime performance [32]. Its source code is available for download at [33].

In the previous version of StaDyn, type inference was performed with a constraint-
based type system [34]. This allowed the compiler to detect type errors over dynamic
references, but reflection was used by the generated code. In this work, we have included
in StaDyn the specialization mechanism proposed in this paper (Section 4). To compare
both approaches, the following subsections describe the code generated for the old and
new versions of the language. Although the compiler generates assembly code for the
.Net platform, we show the generated code in C# for the sake of legibility.

5.1. Code generation for FC#G

The StaDyn compiler generates code following the typical implementation of object-
oriented gradually typed languages [18] for the .Net platform such as Visual Basic,
C#, Boo and Cobra (see Section 6.1.1). We describe this approach by specifying it as a
translation of FC#G into C#. We focus on the most representative code generation
templates (the rest of templates are detailed in Appendix N).

Given an e expression, JeK(CDG, Γ) represents the .Net code generated for that
expression in a program with CDG classes and the Γ type environment. For field
access expressions, when the type of the object is statically known, the C# code is
similar to FC#G (Appendix N). However, when the object is dynamic, the compiler
has no information about its type. In this case, reflection is used to get the type of the
object and access its f field; if f is not provided, a runtime error is produced. That
runtime behavior is provided by Reflection.GetField (its implementation is detailed
in Appendix N).

CDG, Γ ⊢ e :G dynamic

Je.fK(CDG, Γ) = Reflection.GetField(JeK(CDG, Γ), "f")

Since the .Net assembly code does not provide a dynamic type, we translate dynamic
references into object (as the C# compiler). To this aim, we define |T | as the erasure of the
type T [19]. In the generated code, we will use type erasures, since the original types (dynamic
in FC#G and union types in FC#S) are not supported.

|dynamic| = object
|C| = C
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Gradually typed languages provide the implicit conversion of dynamic into any other type
(the subtyping consistency relation defined in Section 3.1.2). Therefore, the generated code
must add an explicit cast where this conversion takes place. For this purpose, we define the
following cast function:

cast(T G
1 , T G

2 ) =
{

(C) if |T G
1 | = object and |T G

2 | = C
/* nothing */ otherwise

With this function, we can generate code for method invocations, when the type of the
implicit object is statically known. We simply add to each argument a cast to the parameter
type, when the argument is dynamic and the parameter is not:

CDG, Γ ⊢ e :G C type(method(CDG, C, m)) = T G
p → T G

r CDG, Γ ⊢ earg :G T G
arg

Je.m(earg)K(CDG, Γ) = JeK(CDG, Γ).m(cast(T G
arg, T G

p )JeargK(CDG, Γ))

Similar to field access, when the implicit object in a method invocation is dynamic, reflection
is used to invoke a method:

CDG, Γ ⊢ e :G dynamic CDG, Γ ⊢ earg :G T G
arg

Je.m(earg)K(CDG, Γ) =
Reflection.Invoke(JeK(CDG, Γ), "m", new object[]{JeargK(CDG, Γ)})

5.2. Code generation for FC#S

The previous code generation scheme is followed by most gradually typed languages. In
this subsection, we describe how the type information gathered by the specializer can be used
to generate more efficient code. In FC#S , no dynamic reference exists, but we have union
types. Therefore, we define type erasure of union types as |C1 ∨ . . . ∨ Cn| = object.

We only describe the code generation rules for field access and method invocation, when
the implicit object is a union type (the rest of rules are detailed in Appendix O). This is the
rule for field access:

CDS , Γ ⊢ e :S T S
e T S

e = C1 ∨ . . . ∨ Cn

Cunion = {Ci ∈ C1, . . . , Cn . f ∈ fields(CDS , Ci)} nu = #(Cunion)

Je.fK(CDS , Γ) =
if nu == 1 then

(cast(T S
e , Cunion1)JeK(CDS , Γ)).f

else
for i = 1 to nu − 1 do

if i == 1 then _temp=JeK(CDS , Γ)
else _temp
is Cunioni ? (cast(T S

e , Cunioni)_temp).f :
(cast(T S

e , Cunionnu
)_temp).f
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We first check how many types in the union type provide the f field. There must be at least
one type, since we only generate code for well-typed programs. If only one type provides the f
field, a simple cast is done. Otherwise, a sequence of nested type inspections are produced
using the ?: ternary operator. We evaluate whether the dynamic type of the expression is
one type in the union type, using the is operator. If the expression has the expected type,
the field is accessed after casting the object; otherwise, we return the value of another nested
ternary expression. Notice that we use a temporary _temp variable (Appendix O) to evaluate
the implicit object only once.

As mentioned, when the implicit object is a union type, there may be types in the union
type that do not provide the f field. In that case, the generated code only checks the types
that provide the f field, ignoring the remaining types in the union type. This optimization
provides a runtime performance benefit (in addition to avoid the use of reflection).

Method invocation is very similar to field access. The only additional consideration is that
union-typed arguments require a cast to non-union-type parameters because the type erasure
for union types is object:

CDS , Γ ⊢ e :S T S
e T S

e = C1 ∨ . . . ∨ Cn

Cunion = {Ci ∈ C1, . . . , Cn . type(method(CDS , Ci, m)) = T S
pi

→ T S
ri

and T S
arg ≤ T S

pi
}

nu = #(Cunion) CDS , Γ ⊢ earg :S T S
arg

Je.m(earg)K(CDS , Γ) =
if nu == 1 then

(cast(T S
e , Cunion1)JeK(CDS , Γ)).m(cast(T S

arg, T S
p1)JeargK(CDS , Γ))

else
for i = 1 to nu − 1 do

if i == 1 then _temp=JeK(CDS , Γ)
else _temp

is Cunioni ? (cast(T S
e , Cunioni)_temp).m(cast(T S

arg, T S
pi

)JeargK(CDS , Γ)) :

(cast(T S
e , Cunionn)_temp).m(cast(T S

arg, T S
pnu

)JeargK(CDS , Γ))

6. Evaluation

In this section, we measure runtime performance, memory consumption and compilation
time of the proposed specialization method added to the StaDyn language [31]. We first
describe the evaluation methodology. Then, we present the results and discussions.

6.1. Methodology
The methodology comprises a description of the selected languages to be compared with

StaDyn, the benchmark suites used in the evaluation, and a description of how data are
measured and analyzed [32].
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6.1.1. Programming languages
We compare StaDyn with the most widely used gradually typed languages for the .Net

Framework, all of them compiled with their maximum optimization options. We use the same
target platform, since our objective is to measure the influence of program specialization on the
efficiency of the generated code. Afterwards, we compare our language with the state-of-the-art
techniques for optimizing dynamically typed code.

These are the .Net gradual typing languages evaluated:

– C# 7.2. This version of C# combines static and dynamic typing. Its back-end is the
DLR (Dynamic Language Runtime), released as part of the .Net Framework 4+. The
DLR is a new layer over the CLR (Common Language Runtime) that provides a set of
services to facilitate the implementation of dynamic languages [35].

– Visual Basic (VB) 2017. The VB programming language also supports gradual typing [36].
A dynamic reference is declared with the Dim reserved word, without setting a type.
With this syntax, the compiler does not gather any type information statically, and type
checking is performed at runtime.

– Boo 0.9.7. An object-oriented programming language for the CLI (Common Language
Infrastructure) with Python inspired syntax. It is statically typed, but it also provides
dynamic typing by using its special duck type [37].

– Fantom 1.0.70. Fantom is an object-oriented programming language that generates
code for the Java VM, the .Net platform, and JavaScript. It is statically typed, but
it provides the dynamic invocation of methods with the specific -> message-passing
operator [38].

– Cobra 0.9.6. Cobra is an object-oriented gradually typed programming language that
provides compile-time type inference [39]. As C#, dynamic typing is provided with a
distinctive dynamic type.

– IronPython 2.7.7. An open-source implementation of the Python programming language
which is tightly integrated with the .Net Framework, targeting the DLR. It compiles
Python programs into IL (Intermediate Language) bytecodes [40]. IronPython is a fully
dynamically typed language. We have included it in the evaluation of code with no
type annotations (Section 6.2.1) because it is an efficient implementation of a dynamic
language for the .Net framework [41].

– StaDyn 2.1 and 2.0. [42]. Version 2.1 of StaDyn incudes the program specialization
mechanism described in this article. We compare it with the previous version, 2.0, which
does not perform program specialization. However, StaDyn 2.0 includes other important
optimizations such as SSA transformations [43], type inference of dynamically typed
code [34], and the utilization of the DLR runtime cache for long-running applications [16].

Some existing dynamic languages implement modern optimization techniques to signifi-
cantly improve the runtime performance of dynamically typed code. Although these languages
are not compiled to the .Net platform, we compare their state-of-the art optimizations with
the program specialization approach proposed in this article:
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– PyPy 2.7. PyPy is an alternative implementation of Python that provides JIT compi-
lation, memory usage optimizations, and full compatibility with CPython [44]. PyPy
implements a tracing JIT compiler to optimize program execution at runtime, generating
dynamically optimized machine code for the hot code paths of commonly executed
loops [44]. PyPy has been evaluated as the fastest Python 2 implementation [45].
To compare the benefits of PyPy with its reference implementation, we also measure
CPython 2.7.14 in some tests.

– V8 6.5.73, the Google’s open source JavaScript engine used in Chrome and Node.js [46].
V8 implements a runtime adaptive JIT compiler that dynamically optimizes the generated
code based on heuristics of the code execution profile [46].

– SpiderMonkey 24.4. SpiderMonkey is the JavaScript engine of Mozilla, currently added
to the Firefox Web browser and the GNOME 3 desktop [47]. IonMonkey is the name of
the JIT compiler included in SpiderMonkey. IonMonkey implements many optimizations
such as function inlining, linear-scan register allocation, type specialization, and loop-
invariant code motion [47]. We measure the standalone distribution of SpiderMonkey 24
with and without IonMonkey in order to compare the impact of IonMonkey optimizations
in the base JavaScript engine.

6.1.2. Benchmarks
We selected a collection of different applications to measure execution and compilation

time, and memory consumption for each language implementation:

– Two well-known dynamically typed benchmarks:

◦ Pybench. A Python benchmark designed to measure the performance of stan-
dard Python implementations [48]. Pybench is composed of a collection of tests
measuring different aspects of the Python dynamic language.

◦ Pystone, the Python version of the Dhrystone benchmark [49]. Pystone is commonly
used to compare different implementations of the Python programming language.

– A subset of the statically typed Java Grande benchmark implemented in C# [50],
including kernel programs and large scale applications:

◦ Section 2 (Kernels). FFT, one-dimensional forward transformation of n complex
numbers; Heapsort, the heap sort algorithm over arrays of integers; and Sparse,
management of an unstructured sparse matrix stored in compressed-row format
with a prescribed sparsity structure.

◦ Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer of scenes that
contain 64 spheres, and are rendered at a resolution of 25x25 pixels.

– Points, a C# hybrid static and dynamic typing program designed to measure the
performance of hybrid typing languages [34]. It computes different properties of two
and three dimensional points.
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We took Python (Pybench and Pystone) and C# (Java Grande and Points) programs,
and manually translated them into the rest of languages. Although this translation might
introduce a bias on the runtime performance of the translated programs, we have thoroughly
checked that the same operations were executed in all the implementations. We have also
verified that the benchmarks compute the same results in all the programs.

6.1.3. Data analysis
We have followed the methodology proposed in [51] to measure the runtime performance

of programming languages. A two-step methodology is followed:

1. We measure the elapsed execution time of running the same program multiple times.
This results in p (we have taken p = 30) measurements xi with 1 ≤ i ≤ p.

2. The confidence interval for a given confidence level (95%) is computed to eliminate
measurement errors that may introduce a bias in the evaluation. The confidence interval
is calculated using the Student’s t-distribution because we took p = 30 [52].

In the subsequent figures, we show the mean of the confidence interval and indicate with
bar whiskers the width of the confidence interval relative to the mean. If two confidence
intervals do not overlap, we can conclude that there is a statistically significant difference with
a 95% probability [51].

All the tests were carried out on a 2.13 GHz Intel Core 2 Duo P7450 system with 4 GB of
RAM, running an updated 64-bit version of Windows 10 and the .Net Framework 4.7.1. The
benchmarks were executed after system reboot, removing the extraneous load, and waiting for
the operating system to be loaded. To compute average percentages, factors and orders of
magnitude, we use the geometric mean.

6.2. Execution time
We first measure execution times of programs with no type annotations to see how the

different languages optimize dynamically typed code. Then, we compare execution times when
all the variables are explicitly typed (annotated), measuring runtime performance of statically
typed code.

6.2.1. Code with no type annotation
All the programs measured in this subsection have no type annotation, declaring all the

variables, fields, method parameters and return values as dynamic. We first compare execution
time of those languages compiled for the .Net platform. Figure 10 presents the average
execution time relative to StaDyn without program specialization (StaDyn-SP refers to StaDyn
2.1, which includes the specializer). Figure 10 shows how program specialization achieves an
average runtime performance gain of 419% compared to the previous version of StaDyn. For
Pybench and the two sections of Java Grande, the specialized code requires 33%, 5% and 2%
the execution time used by StaDyn, respectively. The specializer obtains lower benefits for the
two remaining benchmarks. Pystone performs most of its computation using local variables
instead of method parameters. Since the previous version of StaDyn manages to infer the types
of local variables [43], program specialization has a lower impact on the performance gain
(35.14%). The Points program uses flow sensitive types, so the specialized program utilizes
several union types (Section 3.2), requiring runtime type checking as described in Section 5.2.
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Figure 10: Execution times of .Net languages, relative to StaDyn.

In Figure 10, we can see that the specialized programs outperform all the gradually typed
languages compiled for the .Net platform. On average, StaDyn-SP is 13.1, 16.6, 17.1, 76.8 and
155.3 factors faster than C#, Boo, IronPython, Fantom and Cobra, respectively. Our static
program specializer provides important performance benefits compared to the runtime cache
optimizations supported by the DLR (used by C# and IronPython) and the type inference
techniques implemented by StaDyn, Boo and Cobra.

After comparing the runtime performance of gradually typed languages for the .Net
platform, we now measure highly optimized implementations of dynamically typed languages
to compare the existing state-of-the-art optimizations with our approach. Figure 11 shows
how the specialized StaDyn programs perform faster than the rest of approaches. Our system
provides 273%, 141% and 93% higher runtime performance than PyPy, SpiderMonkey with
the IonMonkey optimizations and V8, respectively.

The proposed program specialization also achieves the highest performance gain relative
to its base implementation (4.19 factors relative to StaDyn and 13.12 factors relative to
C#). The tracing JIT compiler implemented by PyPy provides a 116% performance gain
relative to CPython. For JavaScript, IonMonkey and V8 showed 57.7% and 96.6% performance
improvement compared to SpiderMonkey without the IonMonkey optimizations.

6.2.2. Fully type-annotated code
We also evaluate source code that uses no dynamically typed reference, that is, programs

with all the type annotations. In this case, no program specialization takes place, and the
languages perform no optimizations of dynamically typed code. The Points application has not
been evaluated, because it requires dynamic typing [34]. Python (IronPython, CPython and
PyPy) and JavaScript (SpiderMonkey, IonMonkey and V8) implementations are not included
because they do not provide a standard type-annotation mechanism.

Figure 12 shows the average execution time for this kind of code. As expected, both versions
of StaDyn showed the same runtime performance, because no code is specialized. C# provides
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Figure 11: Execution times of highly optimized dynamic languages relative to StaDyn-SP.
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Figure 12: Execution times of fully type-annotated programs, relative to StaDyn.

the best runtime performance, only 2.5% higher than StaDyn. The C# commercial compiler
provides more optimizations for statically typed code, causing slightly lower execution times.
StaDyn provides better runtime performance than the other languages for fully type-annotated
code: it is 16%, 89%, 120% and 363% faster than Visual Basic, Boo, Cobra and Fantom. These
results show that, besides the important optimizations for dynamically typed code, StaDyn
also generates efficient code for statically typed programs.

6.3. Memory consumption
We have measured the memory consumed at runtime by the generated code. Figure 13

shows the average memory consumptions for all the languages measured (Section 6.1.1), when
all the programs have no type annotation (fully dynamically typed code). An important
observation is that the StaDyn specializer adds no additional memory consumption to StaDyn:
the average difference (0.82%) is lower than the confidence interval (1.17%), so this difference
is not statistically significant [51]. Therefore, the supplementary methods generated by the
specializer consume negligible additional memory at runtime.
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Figure 13: Memory consumption of the generated code, relative to StaDyn (no type annotation).
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Figure 14: Memory consumption of the generated code, relative to StaDyn (fully type-annotated).

Figure 13 also shows that StaDyn is the programming language that requires fewer
memory resources at runtime, because program specialization is performed statically. On the
contrary, highly optimized implementations, such as PyPy, IonMonkey and V8, perform all
the optimizations dynamically, consuming additional memory resources. C# and IronPython
use the runtime cache of the DLR, and Fantom implements its own cache, causing significantly
higher memory consumption.

Figure 14 shows the same comparison as Figure 13, when all the programs are fully
type-annotated. C#, StaDyn and StaDyn-SP consume the same memory (no statistically
significant difference) because they generate almost the same code when all the variables are
explicitly typed. Visual Basic, Boo, Cobra and Fantom consume 7.4%, 27%, 51% and 75%
more memory resources because of their runtime, not present in C# and StaDyn.

6.4. Compilation time
We have seen how program specialization provides significant runtime performance benefits

(Section 6.2), and consumes no additional memory resources (Section 6.3). These benefits are
provided because, unlike the other existing approaches, specialization is performed at compile
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Figure 15: Compilation time relative to StaDyn fully typed-annotated.

time. Therefore, static program specialization implies a cost in compilation time. In order
to evaluate that cost, we measure compilation time of the compiled languages identified in
Section 6.1.1.

The StaDyn, Boo, Cobra and Fantom compilers are implemented in .Net (StaDyn and
Boo are coded in C#, whereas Cobra and Fantom are implemented in their own languages).
On the other hand, the C# and VB compiler implementations are native. Although these two
production compilers have been included in our evaluation, we have also measured the two
.Net versions released by Microsoft, called Roslyn [53]. The Roslyn compilers implement the
C# and VB languages on .Net, exposing the compilers as services.

Figure 15 shows average compilation times for each language and compiler implementation.
When programs are fully type-annotated, the specializer only requires 2% more average
compilation time. This value is increased to 11.75% when programs have no type annotation,
since many methods and fields are specialized at compile time. As shown in Table 1, the
compiler generates 81 additional methods (out of 97) specialized by the compiler. The 11.75%
extra compilation time is used to generate these 81 methods, producing an average performance
optimization of 149% (Section 6.2.1).

If we compare compilation time of all the languages, the native compiler implementations
of C# and VB are the fastest ones (Figure 15), requiring 15.4% and 24% the compilation
time employed by StaDyn. However, if we compare the compilers implemented on the same
platform as StaDyn (.Net), the StaDyn specializing compiler is 130% and 140% faster than
Roslyn C# and Visual Basic, respectively. In fact, Fantom is the only .Net compiler that is
faster than StaDyn-SP, just for fully dynamic programs (29.71%). The rest of .Net compilers
(Boo, Cobra, Roslyn C# and Roslyn Visual Basic) require more compilation time.

Table 1 summarizes the number of specialized methods per program. The methods with
no parameters are not specialized, and those with one parameter or more are specialized at
least once. If a method is specialized, the original version is maintained in case it is invoked
from another program. Table 1 shows how the generated programs have at least 41% of their
methods specialized and produce significant performance benefits, which are always greater
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than the compilation time increase.

Benchmark Comp. time Performance Original Methods Specialized Total methods
increase gain No params Params (≥ 1) methods generated

Pybench 3.2% 201% 2 11 11 24
HeapSort 15.9% 4,710% 0 3 6 9
FFT 60.7% 558% 0 9 10 19
SparseMatmult 4.4% 2,079% 0 3 3 6
RayTracer 10.6% 3,790% 17 27 31 75
Pystone 31.0% 35% 5 12 12 29
Points 7.0% 25% 0 8 8 16

Table 1: Summary of specialized methods per benchmark, and the corresponding compilation time and
runtime performance increases.

6.5. Discussion
Our evaluation shows how the proposed program specialization provides a significant

runtime performance optimization with no additional memory consumption. The specializer
simulates the execution of the application as a kind of abstract interpretation, inferring type
information of dynamically typed code. The inferred types of the implicit object and arguments
are used to specialize method invocations, field accesses and class definitions. However, if
dynamic is used to interoperate with dynamically typed languages, the proposed program
specialization would not be able to optimize the code (i.e., no abstract interpretation is
performed).

The actual use of dynamic types in gradually typed languages depends on the programmer,
the language, and the kind of application to be developed. Thus, we have studied the use of
dynamic in C# by analyzing the existing C# projects in GitHub, using Google’s BigQuery [54].
Out of 17 million C# source files, the dynamic type was used in 149.124 archives. To know
how dynamic is used by C# programmers, we analyzed a sample of 200 random files. Each
file in the sample belongs to a different programmer and project in order to avoid dependency
on specific programming styles.

In 79.5% of the cases, dynamic was used to obtain duck typing; that is, to postpone
compile-time type-checking until runtime. This kind of code could have been written with
compile-time type annotations, but the programmer decided to disable static type-checking. In
18% of the files, dynamic was used to build ExpandoObjects, which are objects whose members
can be dynamically added and removed at runtime. Although FC#G does not provide such
feature, our specialization technique could be applied to optimize ExpandoObjects. The 2.5%
remaining files used dynamic to interact with other dynamically typed languages (IronPython
and IronRuby).

Therefore, for the particular case scenario of C#, the use of dynamic only represents 0.88%
(149.124 files out of 17 million) of the code written in that language. However, for those
programs using dynamic, our proposed system could optimize 97.5% of such programs.
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7. Related work

7.1. Gradual typing
Since both dynamic and static typing offer important benefits, there have been many works

aimed at obtaining the advantages of both approaches in the very same programming language.
One of the first works was soft typing [55], which applied static typing to a dynamically
typed language such as Scheme. Soft typing does not control which parts in a program are
statically checked, and static type information is not used to optimize the generated code. The
approach proposed by Abadi et al. [56] adds a Dynamic type to lambda calculus, including two
conversion operations (dynamic and typecase), generating a verbose code deeply dependent
on its dynamism.

The works of quasi-static typing [57], hybrid typing [58] and gradual typing [7] perform
implicit conversions between dynamic and static code, employing subtyping relations in the
case of quasi-static and hybrid typing, and the consistency relation in the case of gradual typing.
Gradual typing was first defined with the λ?

→ functional calculus [7] but it has also been defined
for object-based languages, showing that gradual typing and subtyping are orthogonal and can
be combined [2]. Gradual typing has also been integrated with ownership types [59], refinement
types [60], session types [61], type inference [62], and union and intersection types [63].

Sound gradually typed languages insert runtime checks to achieve type soundness for the
overall program. Therefore, the programmer can rely on the language implementation to
provide meaningful error messages at runtime. However, these runtime type checks imply a
significant performance overhead [10]. Rastogi et al. evaluated the runtime performance of
sound gradual typing using Safe TypeScript [64]. The average performance cost for dynamic
code with no type annotations was 22 factors [64]. For this reason, there have recently been
works focused on optimizing the implementation of sound gradually typed languages.

Siek et al. propose monotonic references to avoid the runtime overhead of dynamic typing in
statically typed regions [65]. Herman et al. propose the reduction of type checking operations
by combining adjacent type coercions, providing potential optimizations in space and time [66].
However, these works are theoretical and no implementation and performance evaluation exists
yet.

Pycket implements a tracing JIT compiler for the gradually typed Racket language, which
supports features such as contracts, continuations classes, structures and dynamic binding [13].
Pycket is implemented in the RPython meta-tracing framework, originally created for PyPy.
RPython automatically generates tracing JIT compilers from interpreters [67]. Among other
optimizations, Pycket performs runtime type specialization of different data structures. The
tracing JIT compiler provided by RPython has allowed Pycket to eliminate more than 90% of
the gradual typing overhead introduced by Typed Racket [68]. However, it seems that there is
still room for further optimization [69, 68].

7.2. Automatic type annotation
There exist some works focused on the automatic annotation of types in gradually typed

programs. Migrational typing automatically migrates a program to be as static as possible,
introducing the least number of dynamic types necessary to remove a type error [70]. Migra-
tional typing conceptually types the whole migration space, marking where type errors occur so
that it can safely present the possible migrations for the program. To know the possible types
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a variable may have, migrational typing uses constraint generation and unification algorithms
for a functional language [70]. The algorithm scales linearly with program size.

Pytype is a Google’s open source project aimed at providing static type checking of Python
programs [71]. Pytype is capable of analyzing existing Python code with no type annotations,
and detects some type errors at compile time. It also supports type annotations following
the PEP 484 specification included in Python 3.5+ [72], and provides a mechanism to specify
types of existing modules in .pyi files [73]. All the types of the standard Python library
are included in a repository called typeshed. Additionally, Pytype is able to analyze Python
programs without types, generate .pyi files with type specifications, and annotate the source
code with the inferred types [74].

stypy is another tool to perform static type checking of Python programs with no type
annotation [75]. stypy translates one program into Python code that type-checks the original
code. The generated type checker detects type errors in different tricky Python idioms, and
ensures termination [76]. Types are inferred with a kind of abstract execution, where stypy
evaluates expression types instead of their values. Although the inferred type information
is only used to detect type errors before program execution, it is also planned to use it for
automatic type annotation [76].

Another different approach is the utilization of machine learning to annotate types in
gradually typed code, learning type annotations from large sets of programs [77]. JSNice is
a tool that uses Condition Random Fields (CRF) to annotate types in JavaScript code and
deobfuscate variable names. JSNice uses the type annotations included in different versions
of the language to train the CRF model. Experimentally, JSNice is able to predict type
annotations correctly in 81% of the cases [77]. They only predict built-in types, not considering
user-defined ones.

7.3. Program specialization
Partial evaluation, also called program specialization, is a program optimization technique

that produces new programs that run faster than the original ones, guaranteeing to behave
in the same way [78]. The optimization is based on precomputing all the static input at
compile time, and generating another program where that precomputation is not performed at
runtime, causing a runtime performance gain. Yoshihiko Futamura identified a mechanism,
known as the Futamura projections, to obtain compilers from interpreters by applying partial
evaluation [79]. Partial evaluation has been used to optimize different applications such as ray
tracers, pattern recognizers, training of neural networks and scientific computation [78].

Ulrik Schultz presents a formal description of partial evaluation for an extension of
Featherweight Java with integer and Boolean expressions and type casts [80]. Programs are
specialized to other ones, providing better runtime performance. The code is specialized by
propagating the static values known at compile time, and using them to reduce field lookups,
method invocations, and non-object computations. The author does not prove the soundness
of the proposed system, and termination is not ensured [80]. The formal description was used
to implement JSpec, a complete partial evaluator for Java programs [81].

Runtime program specialization is currently used to optimize dynamic languages. Psyco is
a just-in-time Python specializer that uses actual runtime values and types to improve runtime
performance [82]. The key idea of Psyco is that program specialization and execution are
intermixed, providing actual runtime information to the specializer. A performance evaluation
concluded that the expected common speed-up is at least of 2 factors, up to 4 factors [83].
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PyPy is an alternative implementation of the Python language that provides different
optimizations to speed-up program execution [44]. PyPy is written in a subset of Python called
RPython. RPython implements a tracing JIT compiler that uses runtime profile information
to generate binary code of specialized versions of loops that take similar code paths [84]. PyPy
has been evaluated to perform at least 351% faster than the rest of Python 2 implementations
for common operations [45].

V8 is an open-source JavaScript engine included in the Chrome web browser and Node.js [46].
V8 implements a runtime adaptive JIT compiler that dynamically optimizes the generated code
based on heuristics of the code execution profile. Since 2017, V8 includes the TurboFan JIT
optimizing compiler that implements a multi-layered translation and an optimization pipeline
to generate highly optimized machine code [85]. TurboFan specializes function contexts to
optimize the execution of closures [86].

SpiderMonkey is the Mozilla’s JavaScript engine, containing an interpreter and the Ion-
Monkey JIT compiler [47]. IonMonkey includes many different optimizations such as function
inlining, linear-scan register allocation, dead code elimination and loop-invariant code motion.
IonMonkey also provides type specialization: during execution, the interpreter collects the
actual types of variables; later, at JIT compilation, that type information is used to generate
specialized code [87].

8. Conclusions

We have shown how compile-time program specialization is an appropriate mechanism
to optimize gradually typed code. Moreover, the abstract interpretation performed by the
program specializer can be used to provide static type safety. Every well-typed program can
be specialized preserving its semantics, and the specialization process ensures termination.
Possible threats to type safety are shown at compile time as warnings, and the execution of
the specialized programs has been proved safe.

Our system performs many type checks statically that most gradually typed languages
do at runtime. The outcome is that the specialized programs perform significantly better
because fewer type checks are done dynamically. We have included our rule-based system
in the StaDyn programming language, obtaining at least 93% average runtime performance
benefit compared with the state-of-the-art optimizations for gradually typed code. When
compared with the existing gradually typed languages for the same target platform (.Net),
the specialized code is at least 13 times faster. This optimization requires no extra memory
consumption at runtime, because program specialization takes place statically. We have
measured the average compilation-time cost of program specialization to be 11.75%, when
there are no type annotations.

We have not included dynamic code evaluation (e.g., the eval function available in Python,
JavaScript and Lisp) in the core FC#G language. In that case, program specialization could
not be done statically, because the code to be evaluated is unknown at compile time. For this
particular scenario, we plan to include the specializer in the runtime [6] in order to specialize
the code just before its execution. A warning message will be shown to indicate potential type
errors at runtime, but soundness will be guaranteed for the whole system. Aside from the cost
of the dynamic program translation, the specialized code will benefit from the optimizations
of code specialization.
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The dynamic type is also used to interoperate with other dynamically typed programs
written in other languages. In that case, no static type information can be inferred. As
future work, we intend to work in combining our system with the classical gradual typing
approach to provide the interoperation with other dynamically typed languages. For this
kind of interaction, casts could be inserted to ensure type safety and increase interoperability,
involving a decrease in runtime performance [69].

The source code and implementation of our program specializer and the StaDyn language,
all the benchmarks and examples used in this article, and the evaluation data are freely
available at http://www.reflection.uniovi.es/stadyn/download/2018/kbs
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Appendix A. Auxiliary functions used in FC#

class C : Csuper { Tf f; K M } ∈ CD
fields(CD, Csuper) = Tsuperfsuper

fields(CD, C) = Tf f, Tsuperfsuper fields(CD, object) = ∅

CD = CD1 . . . class C : Csuper { Tf f; K M } . . . CDn

M = M1 . . . Tr m(Tp x) { return e;} . . . Mm

method(CD, C, m) = Tr m(Tp x) { return e;}

CD = CD1 . . . class C : Csuper { Tf f; K M } . . . CDn m /∈ M

method(CD, C, m) = method(CD, Csuper, m)

method(CD, object, m) = ∅
M = M1 . . . Tr m(Tp x) { return e;} . . . Mm

type(M) = Tp → Tr

Figure A.1: fields, method and type auxiliary functions used in FC#.
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Appendix B. Well-formedness of FC#G

Figure B.1 shows the well-formedness rules for FC#G. W-ProgG checks well formedness
of a whole program by checking each class definition and the main expression. Therefore, a
program P G = CDG e will be accepted by the type system when CDG,∅ ⊢ e :G ⋄ is derived
from the existing rules.

For each class definition (W-ClassG), class identifiers must be unique, base classes must
also be defined, there could not be cycles in the subtyping relation and, like in FJ, inherited
fields cannot be redefined in subclasses.

Unlike FJ, FC#G allows defining different types for fields and the corresponding constructor
parameters. Therefore, W-ConstG checks that the constructor parameters are consistent
subtypes (≲) of the field types. The base constructor invocation is also type checked.

W-MethodG requires method bodies to return a consistent subtype of the declared return
type. In addition, derived methods must have the same exact signature as the method with
the same name in the base class (if any), transitively (i.e., method overriding).

(W-ProgG)
∀ CDG

i ∈ CDG . CDG − {CDG
i }, Γ ⊢ CDG

i :G ⋄ CDG, Γ ⊢ e :G T G

∅, Γ ⊢ CDG e :G ⋄

(W-ClassG)
C /∈ CDG Csuper ∈ CDG

CDG ⊢ Csuper ≰ C CDG, Γ ⊢ K :G ⋄ fields(CDG, Csuper) = T G
superf

fsuper

f ∩ fsuper = ∅ ∀ MG
i ∈ MG . CDG, Γ ⊢ MG

i :GC ⋄
CDG, Γ ⊢ class C: Csuper { T G

f f; KG MG } :G ⋄

(W-ConstG)
CDG = CDG

1 . . . class C : Csuper { T G
f2 f2; KG MG } . . . CDG

n

CDG ⊢ T G
p2 ≲ T G

f2 Γ′ = xarg1 : T G
p1, Γ CDG, Γ′ ⊢ new Csuper(xarg1) :G Csuper

CDG, Γ ⊢ C(T G
p1 f1, T G

p2 f2): base(f1) { this.f2 = f2;} :G ⋄

(W-MethodG)
Γ′ = x : T G

p , this : C, Γ
CDG, Γ′ ⊢ e :G T G

body class C : Csuper { T G
f f; KG MG } ∈ CDG

T G
r m(T G

p x) { return e;} ∈ MG T G
body ≲ T G

r

if type(method(CDG, Csuper, m)) = T G
superp

→ T G
superr

then T G
superp

= T G
p and T G

superr
= T G

r

CDG, Γ ⊢ T G
r m(T G

p x) { return e ;} :GC ⋄

Figure B.1: Well-formedness rules for FC#G.
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Appendix C. Congruence rules for the semantics of FC#G

(R-FieldCG)
CDG ⊢ e −→G e′

CDG ⊢ e.f −→G e′.f

(R-InvCG)
CDG ⊢ e −→G e′

CDG ⊢ e.m(earg) −→G e′.m(earg)

(R-InvACG)
CDG ⊢ e −→G e′

CDG ⊢ σ.m(σ, e, . . .) −→G σ.m(σ, e′, . . .)

(R-NewACG)
CDG ⊢ e −→G e′

CDG ⊢ new C(σ, e, . . .) −→G new C(σ, e′, . . .)

Figure C.1: Congruence semantic rules of FC#G.

Appendix D. Progress of FC#G

Lemma 1. Type of values are not dynamic in FC#G.

If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G dynamic, then e1 /∈ V alues.

Proof. By induction on the typing derivation.

The only rule typing an expression that follows the syntax of values is T-NewG, and its
conclusion types the expression as a class.

Property 2. Progress of FC#G.

If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 , then

– e1 ∈ Values, or
– CDG ⊢ e1 −→G error, or
– ∃ e2 . CDG ⊢ e1 −→G e2

Proof. By induction on the typing derivation.

– Cases T-VarG and T-ThisG. These cases cannot occur because Γ in the hypothesis is
empty (i.e., the expression e is closed). Thus, the premises in T-VarG and T-ThisG are
not fulfilled.

– Case T-FieldCG. e1 = e.f T G
1 = T G CDG,∅ ⊢ e :G C

fields(CDG, C) = T G
1 f1 . . . T G f . . . T G

n fn

e1 may be a value of another expression. For the first case, C, the type of e, has the
requested f field, so a reduction could be done by R-VarG. Otherwise, R-FieldCG is
reduced.

– Case T-FieldDG. e1 = e.f T G
1 = dynamic CDG,∅ ⊢ e :G dynamic

By Lemma 1, e1 is not a value. Then, R-FieldCG is reduced by the induction hypothesis.
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– Case T-InvCG. e1 = eobj .m(earg) T G
1 = T G

r CDG, Γ ⊢ eobj :G Cobj

type(method(CDG, Cobj , m)) = T G
p → T G

r CDG, Γ ⊢ earg :G T G
arg

CDG ⊢ T G
arg ≲ T G

p

Since Cobj has the m method and the arguments must be consistent subtypes of the parameter
types, R-InvG can be reduced.

– Case T-InvDG. e1 = eobj .m(earg) T G
1 = dynamic CDG, Γ ⊢ eobj :G dynamic

CDG, Γ ⊢ earg :G T G
arg

As the type of eobj is dynamic, it is not a value (Lemma 1), so either R-InvCG or R-InvACG

is reduced.

Appendix E. Abstract syntax of FC#S

P S ∈ Program ::= CDS e

CDS ∈ Class definition ::= class C : C { T S f; KS MS }
KS ∈ Constructor ::= C(T S f):base(f) { this.f=f; }
MS ∈ Method ::= T S m(T S x) { return e; }
e ∈ Expression ::= x | this | e.f | e.m(e) | new C(e)
T S ∈ Type ::= T S ∨ T S | C

Figure E.1: Syntax of FC#S.
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Appendix F. Type system of FC#S

(W-ProgS)
∀ CDS

i ∈ CDS . CDS − {CDS
i }, Γ ⊢ CDS

i :S ⋄ CDS , Γ ⊢ e :S T S

∅, Γ ⊢ CDS e :S ⋄

(W-ClassS)
C /∈ CDS Csuper ∈ CDS CDS ⊢ Csuper ≰ C CDS , Γ ⊢ K :S ⋄

fields(CDS , Csuper) = T S
superf fsuper f ∩ fsuper = ∅ ∀ MS

i ∈ MS . CDS , Γ ⊢ MS
i :SC ⋄

CDS , Γ ⊢ class C: Csuper { T S
f f; KS MS } :S ⋄

(W-ConstS)
CDS = CDS

1 . . . class C : Csuper { T S
f2f2; KS MS } . . . CDS

n

CDS ⊢ T S
p2 < T S

f2 Γ′ = xarg1 : T S
p1, Γ CDS , Γ′ ⊢ new Csuper(xarg1) :S Csuper

CDS , Γ ⊢ C(T S
p1 f1, T S

p2 f2): base(f1) { this.f2 = f2;} :S ⋄

(W-MethodS)
Γ′ = x : T S

p , this : C, Γ
CDS , Γ′ ⊢ e :S T S

body class C : Csuper { T S
f f; KS MS } ∈ CDS

T S
r m(T S

p x) { return e ;} ∈ MS T S
body ≤ T S

r

if type(method(CDS , Csuper, m)) = T S
superp → T S

superr then T S
superp = T S

p and T S
superr = T S

r

CDS , Γ ⊢ T S
r m(T S

p x) { return e ;} :SC ⋄

Figure F.1: Well-formedness rules for FC#S.
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(T-VarS)

CDS , Γ ⊢ x :S Γ(x)

(T-ThisS)

CDS , Γ ⊢ this :S Γ(this)

(T-FieldCS)
CDS , Γ ⊢ e :S C fields(CDS , C) = T S

1 f1 . . . T Sf . . . T S
n fn

CDS , Γ ⊢ e.f :S T S

(T-FieldUS)
CDS , Γ ⊢ e :S C1 ∨ . . . ∨ Cn Cwithf = {Ci ∈ C1, . . . , Cn} . Tfi

f ∈ fields(CDS , Ci)}
nf = #(Cwithf ) ≥ 1 Cwrong = {C1, . . . , Cn} − Cwithf

if #(Cwrong) ≥ 1 then warning(“Field f not found in types Cwrong”)
CDS , Γ ⊢ e.f :S Tf1 ∨ . . . ∨ Tfnf

(T-InvCS)
CDS , Γ ⊢ eobj :S Cobj

type(method(CDS , Cobj , m)) = T S
p → T S

r CDS , Γ ⊢ earg :S T S
arg CDS ⊢ T S

arg ≤ T S
p

CDS , Γ ⊢ eobj .m(earg) :S T S
r

(T-InvUS)
CDS , Γ ⊢ e :S C1 ∨ . . . ∨ Cn CDS , Γ ⊢ earg :S T S

arg

Cwithm = {Ci ∈ C1, . . . , Cn} . type(method(CDS , Ci, m)) = T S
pi

→ T S
ri

and T S
arg ≤ T S

pi

nm = #(Cwithm) ≥ 1 Cwrong = {C1, . . . , Cn} − Cwithm

if #(Cwrong) ≥ 1 then warning(“The classes Cwrong do not provide a suitable m method”)
CDS , Γ ⊢ e.m(earg) :S Tr1 ∨ . . . ∨ Trnm

(T-NewS)
CDS = CDS

1 . . . class C : Csuper { T S
f2f2; K M } . . . CDS

n

KS = C(T S
p1 f1, T S

p2 f2): base(f1) { this.f2 = f2;} CDS , Γ ⊢ earg1 :S T S
arg1

CDS ⊢ T S
arg1 ≤ T S

p1 CDS , Γ ⊢ earg2 :S T S
arg2 CDS ⊢ T S

arg2 ≤ T S
p2

CDS , Γ ⊢ new C(earg1, earg2) :S C

Figure F.2: Type system of FC#S.
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Appendix G. Semantics of FC#S

(R-FieldS)
fields(CDS , C) = T S

1 f1 . . . T S
i f . . . T S

n fn σ = σ1 . . . σi . . . σn

CDS ⊢ new C(σ).f −→S σi

(R-FieldCS)
CDS ⊢ e −→S e′

CDS ⊢ e.f −→S e′.f

(R-InvS)
method(CDS , Cobj , m) = T S

r m(T S
p x) { return ebody;} CDS ⊢ Carg ≤ Tp

CDS ⊢ new Cobj(σobj).m(new Carg1(σarg1), . . . , new Cargn(σargn)) −→S

[new Carg1(σarg1)/x1, . . . , new Cargn(σargn)/xn, new Cobj(σobj)/this]ebody

(R-InvCS)
CDS ⊢ e −→S e′

CDS ⊢ e.m(earg) −→S e′.m(earg)

(R-InvACS)
CDS ⊢ e −→S e′

CDS ⊢ σ.m(σ, e, . . .) −→S σ.m(σ, e′, . . .)

(R-NewACS)
CDS ⊢ e −→S e′

CDS ⊢ new C(σ, e, . . .) −→S new C(σ, e′, . . .)

(R-ErrS)
CDS ⊢ e −→S e′

CDS ⊢ e −→SE e′

(R-FieldES)
fields(CDS , C) = T Sf f /∈ f

CDS ⊢ new C(σ).f −→SE error(“Field f not found”)

(R-InvES)
method(CDS , C, m) = ∅

CDS ⊢ new C(σobj).m(σarg) −→SE error(“Method m not found”)

(R-ParES)
method(CDS , C, m) = T S

r m(T S
p x) { return e;} #(σarg) ̸= #(x)

CDS ⊢ new C(σobj).m(σarg) −→SE error(“Wrong number of arguments”)

(R-ArgES)
method(CDS , C, m) = T S

r m(T S
p x) { return e;}

#(x) = n ∃ i ∈ [1, n] . CDS ⊢ Cargi ≰ Tpi

CDS ⊢ new Cobj(σobj).m(new Carg1(σarg1), . . . , new Cargn(σargn)) −→SE

error(“Wrong type of the ithargument”)

Figure G.1: Semantics of FC#S.

45



Appendix H. Progress of FC#S

Lemma 2. Values are not union types in FC#S.

If ⊢ P S = CDS e1 :S ⋄ and CDS ,∅ ⊢ e1 :S T1 ∨ . . . ∨ Tn, then e1 /∈ V alues.

Proof. By induction on the typing derivation.

The only rule that types an expression following the syntax of a value is T-NewG, and its
conclusion types the expression as a class.

Property 3. Progress of FC#S.

If ⊢ P S = CDS e1 :S ⋄ and CDS ,∅ ⊢ e1 :S T S
1 , then

– e1 ∈ Values, or
– CDS ⊢ e1 −→SE error, or
– ∃ e2 . CDS ⊢ e1 −→SE e2

Proof. By induction on the typing derivation.

– Cases T-VarS, T-ThisS, T-FieldCS and T-InvCS are proved the same as in Appendix D.

– Case T-FieldUS. e1 = e.f T S
1 = T S

f1
∨ . . . ∨ T S

fnf
CDS ,∅ ⊢ e :S C1 ∨ . . . ∨ Cn

Lemma 2 ensures that e is not a value, because its type is a union type. Therefore,
R-FieldCS is reduced by the induction hypothesis.

– Case T-InvUS. e1 = e.m(earg) T S
1 = T S

r1 ∨ . . . ∨ T S
rnm

CDS ,∅ ⊢ e :S C1 ∨ . . . ∨ Cn

Similar to the previous case. By Lemma 2, e is not a value. Thus, the induction hypothesis
tells us that R-InvCS is reduced.

Appendix I. Static type safety of FC#S without warnings

Lemma 3. Subtyping of union types without warnings.

The S-UnionLS rule, when warnings are considered as type errors, is equivalent to:

∀ Ci ∈ C1, . . . , Cn . CDS ⊢ Ci ≤ C

CDS ⊢ C1 ∨ . . . ∨ Cn ≤ C

Proof. Since there cannot be any warnings in the premises, {C1, . . . , Cn} − Csub = ∅ (see the
S-UnionLS original rule). Then, Csub = {C1, . . . , Cn}, so the Csub set is made up of all the
types in the union type.

Lemma 4. Field access of union types without warnings.
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T-FieldUS, when warnings are considered as type errors, is equivalent to:

CDS , Γ ⊢ e :S C1 ∨ . . . ∨ Cn ∀ Ci ∈ C1, . . . , Cn . T S
fi

f ∈ fields(CDS , Ci)
CDS , Γ ⊢ e.f :S T S

f1 ∨ . . . ∨ Tfn

Proof. There cannot be any warnings in the premises, so {C1, . . . , Cn} − Cwithf = ∅ (see the
T-FieldUS original rule). Then, Cwithf = {C1, . . . , Cn}, so Cwithf is made up of all the types
in the union type.

Lemma 5. Invocation of union types without warnings.

T-InvUS, when warnings are considered as type errors, is equivalent to:

CDS , Γ ⊢ e :S C1 ∨ . . . ∨ Cn CDS , Γ ⊢ earg :S T S
arg

∀ Ci ∈ C1, . . . , Cn . type(method(CDS , Ci, m)) = T S
pi

→ T S
ri

and T S
arg ≤ T S

pi

CDS , Γ ⊢ e.m(earg) :S T S
r1 ∨ . . . ∨ T S

rn

Proof. Similar to Lemma 4.

Lemma 6. Argument substitution preserves typing in FC#S.

If ⊢ P S = CDS e1 :S ⋄ and CDS , Γ, x:T S
x ⊢ e1 :S T S

1 and CDS , Γ ⊢ e2 :S T S
2 and

CDS ⊢ T S
2 ≤ T S

x , then CDS , Γ ⊢ [e2/x]e1 :S T S
3 for some CDS ⊢ T S

3 ≤ T S
1 .

Proof. By induction on the typing derivation.

– Case T-VarS. e1 = x T S
1 = Γ(x)

If x /∈ x, then [e2/x]e1 = e1 and hence T S
3 = T S

1 .
Otherwise, x = xi, so [e2/x]e1 = [e2/x]xi = e2i and CDS , Γ ⊢ e2i :S T S

2i
= T S

3 . By the
hypothesis T S

2 ≤ T S
x we have T S

2 = T S
3 ≤ T S

x = T S
1 .

– Case T-ThisS. this /∈ x, so [e2/x]e1 = e1 = this and T S
3 = T S

1 .

– Case T-FieldCS. e1 = e.f T S
1 = T S CDS , Γ ⊢ e :S C

By the induction hypothesis, CDS , Γ ⊢ [e2/x]e :S T S
0 for some CDS ⊢ T S

0 ≤ C. Then, since
T S

0 is subtype of C, by T-FieldCS we have CDS , Γ ⊢ [e2/x]e.f :S T S = T S
1 = T S

3 .

– Case T-FieldUS. e1 = e.f T S
1 = T S

f1
∨ . . . ∨ T S

fnf
CDS , Γ ⊢ e :S C1 ∨ . . . ∨ Cn

By the induction hypothesis, CDS , Γ ⊢ [e2/x]e :S T S
0 for some CDS ⊢ T S

0 ≤ C1 ∨ . . . ∨ Cn.
Then, by T-FieldUS, T S

0 must provide at least one f field such that CDS , Γ ⊢ [e2/x]e.f :S
T S

3 ≤ T S
f1

∨ . . . ∨ T S
fnf

= T S
1 .

– Case T-InvCS. e1 = eobj .m(earg) T S
1 = T S

r CDS , Γ ⊢ eobj :S Cobj

By the induction hypothesis, we have CDS , Γ ⊢ [e2/x]eobj :S T S
0 for some CDS ⊢ T S

0 ≤ Cobj .
Likewise, we apply the induction hypothesis to the arguments, obtaining a subtype of the
argument type. Then, W-MethodS and ≤ ensure that the derived type (T S

0 ) provides
one appropriate m method with the same exact return and parameter types (W-MethodS

states that method overriding is invariant), so CDS , Γ ⊢ [e2/x](eobj .m(earg)) :S T S
r = T S

1 .
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– Case T-InvUS. e1 = eobj .m(earg) T S
1 = T S

r1 ∨ . . . ∨ T S
rnm

CDS , Γ ⊢ eobj :S C1 ∨ . . . ∨ Cn

By the induction hypothesis, we have CDS , Γ ⊢ [e2/x]eobj :S T S
0 for some CDS ⊢ T S

0 ≤
C1 ∨ . . . ∨ Cn. The same applies to the arguments. Then, by W-MethodS we know that
T S

0 provides at least one appropriate m method so that CDS , Γ ⊢ [e2/x](eobj .m(earg)) :S
T S

3 ≤ T S
r1 ∨ . . . ∨ T S

rnm
= T S

1 .

– Case T-NewS. e1 = new C(earg) T S
1 = C

By the induction hypothesis, we have CDS , Γ ⊢ [e2/x]eobj :S T S
0 for some CDS ⊢ T S

0 ≤ T S
arg.

Then, since T-ConstS allows the arguments to be subtypes of the parameters, we have
CDS , Γ ⊢ [e2/x](new C(earg)) :S C = T S

1 .

Lemma 7. this substitution preserves typing in FC#S.

If ⊢ P S = CDS e1 :S ⋄ and CDS , Γ, this:T S
this ⊢ e1 :S T S

1 and CDS , Γ ⊢ e2 :S T S
2 and

CDS ⊢ T S
2 ≤ T S

this, then CDS , Γ ⊢ [e2/this]e1 :S T S
3 for some CDS ⊢ T S

3 ≤ T S
1 .

Proof. By induction on the typing derivation. Similar to Lemma 6.

Lemma 8. Preservation of FC#S without warnings.

If ⊢ P S = CDSe1 :S ⋄ and CDS ,∅ ⊢ e1 :S T S
1 without warnings then, CDS ⊢ e1 −→S e2 and

CDS ,∅ ⊢ e2 :S T S
2 without warnings for some CDS ⊢ T S

2 ≤ T S
1 .

Proof. By induction on the typing derivation and then selecting the different evaluation rules
that can be applied.

– Cases T-VarS and T-ThisS. These cases cannot occur because Γ is empty.

– Case T-FieldCS. e1 = e.f T S
1 = T S CDS , Γ ⊢ e :S C

◦ R-FieldES. e1 cannot be reduced to an error, because e1 would be a value and we know
it provides an f field (hypothesis), so R-FieldES would not be evaluated.

◦ R-FieldCS. For R-FieldCS, the induction hypothesis makes CDS ⊢ e −→SE e3 and
CDS ,∅ ⊢ e3 :S T S

3 ≤ C. Since T S
3 ≤ C, T S

3 must provide the same f field as C, by
definition of the fields function. Then CDS ,∅ ⊢ e2.f :S T S

2 ≤ T S
1 = T S .

◦ R-FieldS. If the evaluation rule applied is R-FieldS, then e1 = new C(σarg).f . By the
definition of T-NewS, arguments must ≤ the corresponding constructor parameters; by
W-ConstS, constructor parameters must ≤ the corresponding fields. Since T S

1 is the
type of the f field, then CDS ⊢ T S

2 ≤ T S
1 .

– Case T-FieldUS. e1 = e.f T S
1 = T S

f1
∨ . . . ∨ T S

fnf
CDS , Γ ⊢ e :S C1 ∨ . . . ∨ Cn

◦ R-FieldCS and R-FieldES. By Lemma 3, we know that e is not a value, so neither
R-FieldCS nor R-FieldES are reduced.
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◦ R-FieldCS. By the induction hypothesis, CDS ⊢ e −→S e3 and CDS ,∅ ⊢ e3 :S T S
3 ≤

C1 ∨ . . .∨Cn. However, this subtyping relation does not ensure that T S
3 provides a suitable

f field with the original type system, since T S
3 may be a Ci not providing f . In that

case, e3.f will not be well typed. Nevertheless, the premise of this lemma is that FC#S

produces no warnings. So Lemmas 3 and 4 ensure that all the Ci classes provide an f
field, and hence T S

2 ≤ T S
1 = T S

f1
∨ . . . ∨ T S

fnf
.

– Case T-InvCS. e1 = eobj .m(earg) T S
1 = T S

r CDS ,∅ ⊢ eobj :S Cobj

◦ R-InvES, R-ParES and R-ArgES. e1 is not reduced to an error. In that case, eobj

and earg would be values. If so, R-InvES, R-ParES and R-ArgES would require that,
respectively, m is not provided, a wrong number of parameters is passed, or the argument
types are not valid. Since all these predicates are checked as premises of Case T-InvCS,
e1 is not reduced to an error.

◦ R-InvS. In this case, eobj and earg are values, so e1 = new Cobj(σobj) and earg =
new Carg1(σarg1), . . . , new Cargn(σargn). We know that the type of e1 (Cobj) provides an ap-
propriate m method with ebody body, such that CDS , Γ, x:T S

arg, this:Cobj ⊢ ebody :S

T S
body. By Lemmas 6 and 7, we know that CDS ,∅ ⊢ [new Carg1(σarg1)/x1 , . . . ,

new Cargn(σargn)/xn , new Cobj(σobj)/this]ebody :S T S
2 for some CDS ⊢ T S

2 ≤ T S
body. Then,

by W-MethodS, we know that T S
body ≤ T S

r = T S
1 .

◦ R-InvCS. R-InvCS. If e is not a value, then R-InvCS will be reduced. By the induction
hypothesis, we know that CDS ⊢ eobj −→S e3 and CDS ,∅ ⊢ e3 :S T S

3 ≤ Cobj . By
W-MethodS, we know T S

3 provides an m method with the same signature as m in Cobj .
Then, since the arguments are subtypes of the parameters, T S

2 = T S
r = T S

1 .
◦ R-InvACS. If eobj is a value, but one the expressions in earg is not, R-InvACS will

be reduced. Applying the induction hypothesis, as in the previous subcase, we have
T S

2 = T S
r = T S

1 .

– Case T-InvUS. e1 = eobj .m(earg) T S
1 = T S

r1 ∨ . . . ∨ T S
rnm

CDS ,∅ ⊢ eobj :S C1 ∨ . . . ∨ Cn

◦ R-InvS, R-InvES, R-ParES and R-ArgES. By Lemma 3, we know that eobj is not a
value, so these rules cannot be applied.

◦ R-InvCS. If e is not a value, then R-InvCS will be reduced. By the induction hypothesis,
we know that CDS ⊢ eobj −→S e3 and CDS ,∅ ⊢ e3 :S T S

3 ≤ C1 ∨ . . . ∨ Cn. By W-
MethodS, we know that T S

3 provides an m method with the same signature as at least
one m in Ci. As for field access, this condition does not ensure that T S

3 provides the
expected m method if warnings are not considered as type errors. That is the reason why
the hypothesis of the lemma requires warnings as errors. Then, by Lemmas 3 and 5, we
can prove that T S

2 = T S
r = T S

1 .
◦ R-InvACS. Proved the same as in the previous subcase.
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– Case T-NewS. e1 = new C(earg1 , earg2) T S
1 = C

If earg1 and earg2 are values, so is e1. Otherwise, R-NewACS is evaluated. Let eargi be the
reduced term. By the induction hypothesis, CDS ⊢ eargi −→S e3 and CDS ,∅ ⊢ e3 :S T S

3 ≤
T S

argi
. By the definition of W-ConstS, we have that T S

2 = C = T S
1 .

Property 4. Static type safety of FC#S when warnings are considered as errors.

If ⊢ P S = CDS e1 :S ⋄ and CDS ,∅ ⊢ e1 :S T S
1 without any warning, then

– either e1 ∈ Values,
– or ∃ e2 . CDG ⊢ e1 −→S e2 and CDS ,∅ ⊢ e2 :S T S

2 for some CDS ⊢ T S
2 ≤ T S

1 without
any warning

Proof. By induction on the evaluation steps.

For the base case, where e1 = e2, Progress (Property 3) tells us that e1 is either a value,
it can be evaluated, or is reduced to an error. The last option is not applicable since it
is well typed and Preservation (Lemma 8) prevents this from occurring. For the case that
CDS ⊢ e1 −→S∗ e2 and CDG ⊢ e2 −→S e3, e2 is well-typed by the induction hypothesis, and
e3 will be well-typed by Progress.

Appendix J. Specialize functions

P G = CDG
p ep T G

pr m(T G
pp x){ return epbody;} ∈ methods(CDG

p , Cobj , m)
∀ T S

ppi
∈ T S

pp . T S
parami

= T G
ppi

is dynamic ? T S
argi

: T G
ppi

T S
param → T S

r /∈ types(methods(CDS
in, Cobj , m)) Csub = Cobj , subclasses(CDS

in, Cobj)
n = newmethod(CDS

in, Csub, m) CDS′
0 = CDS

in nsub = #(CS
sub)

∀ i ∈ [1, nsub] . CDS′
spei

= specializemn(P G, CDS′
i−1, Γ, Csubi

, m, T S
arg, n) CDS

out = CDS′
nsub

specializem(P G, CDS
in, Γ, Cobj , m, T S

arg) = CDS
out, n

P G = CDG
p ep T G

pr m(T G
pp x){ return epbody;} /∈ methods(CDG

p , Cobj , m)
specializem(P G, CDS

in, Γ, Cobj , m, T S
arg) = CDS

in, 0

P G = CDG
p ep T G

pr m(T G
pp x){ return epbody;} ∈ methods(CDG

p , Cobj , m)
∀ T S

ppi
∈ T S

pp . T S
parami

= T G
ppi

is dynamic ? T S
argi

: T G
ppi

T S
r m_n(T S

param x){ return ebody;} ∈ methods(CDS
in, Cobj , m)

specializem(P G, CDS
in, Γ, Cobj , m, T S

arg) = CDS
in, n
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P G = CDG
p ep T G

pr m(T G
pp x){ return epbody;} ∈ methods(CDG

p , Cobj , m)
∀ T S

ppi
∈ T S

pp . T S
parami

= T G
ppi

is dynamic ? T S
argi

: T G
ppi

T S
param → T S

r /∈ types(methods(CDS
in, Cobj , m))

Γm = x:T S
param, this:Cobj , Γ P G, CDS

in, Γm ⊢ epbody ⇒ ⟨e′
body, CDS

spe⟩
CDS

spe, Γm ⊢ e′
body :S T S

body T S
r = T G

pr is dynamic ? T S
body : T G

pr

MS = T S
r m_n(T S

param x){ return e′
body;} CDS

out = addmethod(CDS
spe, Cobj , MS)

specializemn(P G, CDS
in, Γ, Cobj , m, T S

arg, n) = CDS
out

P G = CDG
p ep T G

pr m(T G
pp x){ return epbody;} ∈ methods(CDG

p , Cobj , m)
∀ T S

ppi
∈ T S

pp . T S
parami

= T G
ppi

is dynamic ? T S
argi

: T G
ppi

T S
param → T S

r /∈ types(methods(CDS
in, Cobj , m))

Γm = x:T S
param, this:Cobj , Γ P G, CDS

in, Γm ⊢ epbody ⇒ ⟨e′
body, CDS

spe⟩
not(CDS

spe, Γm ⊢ e′
body :S T S

body) T S
r = T G

pr is dynamic ? Object : T G
pr

MS = T S
r m_n(T S

param x){ return e′
body;} CDS

out = addmethod(CDS
spe, Cobj , MS)

specializemn(P G, CDS
in, Γ, Cobj , m, T S

arg, n) = CDS
out

P G = CDG
p ep T G

pr m(T G
pp x){ return epbody;} ∈ methods(CDG

p , Cobj , m)
∀ T S

ppi
∈ T S

pp . T S
parami

= T G
ppi

is dynamic ? T S
argi

: T G
ppi

T S
r m_k(T S

param x){ return ebody;} ∈ methods(CDS
in, Cobj , m)

MS = T S
r m_n(T S

param x){ return ebody;} CDS
out = addmethod(CDS

in, Cobj , MS)
specializemn(P G, CDS

in, Γ, Cobj , m, T S
arg, n) = CDS

out

P G = CDG
1 . . . class C : Csuper { T G

f f; KG
p MG

p } . . . CDG
n ep

KG
p = C(T G

psuper fsuper, T G
psub fsub): base(fsuper) { this.fsub = fsub;}

CDS
super = specializec(P G, CDS

in, Γ, Csuper, eargsuper )
CDS

kf , KS , T S
field = specializekf(P S , CDS

super, Γ, C, eargsuper , eargsub
)

CDS
out = CDS

kf , class C : Csuper { T S
fieldf; KS MS }

specializec(P G, CDS
in, Γ, C, eargsuper , eargsub

) = CDS
out

specializec(P G, CDS
in,∅, Object,∅,∅) = CDS

in
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C /∈ CDS
in P G = CDG

1 . . . class C : Csuper { T G
f f; KG

p MG
p } . . . CDG

m ep

KG
p = C(T G

psuper fsuper, T G
psub fsub): base(fsuper) { this.fsub = fsub;}

∀ eargsuperi
∈ eargsuper . CDS

in, Γ ⊢ eargsuperi
:S T S

argsuperi

∀ eargsubi
∈ eargsub

. CDS
in, Γ ⊢ eargsubi

:S T S
argsubi

∀ T G
psuperi

∈ T G
psuper . T G

parsuperi
= T G

psuperi
is dynamic ? T S

argsuperi
: T G

psuperi

∀ T G
psubi

∈ T G
psub . T G

parsubi
= T G

psubi
is dynamic ? T S

argsubi
: T G

psubi

KS = C(T S
parsuper fsuper, T S

parsub fsub): base(fsuper) { this.fsub = fsub;}
∀ T G

psubi
∈ T G

psub . T S
fieldi

= T G
fi

is dynamic ? T S
argsubi

: T G
fi

specializekf(P G, CDS
in, Γ, C, eargsuper , eargsub

) = CDS
in, KS , T S

field

CDS
in = CDS

1 . . . class C : Csuper { T S
f f; KS

p MS
p } . . . CDS

m

KS
p = C(T S

psuper fsuper, T S
psub fsub): base(fsuper) { this.fsub = fsub;}

P G = CDG
1 . . . class C : Csuper { T G

f f; KG
p MG

p } . . . CDG
m ep

KG
p = C(T G

psuper fsuper, T G
psub fsub): base(fsuper) { this.fsub = fsub;}

∀ eargsuperi
∈ eargsuper . CDS

in, Γ ⊢ eargsuperi
:S T S

argsuperi

∀ eargsubi
∈ eargsub

. CDS
in, Γ ⊢ eargsubi

:S T S
argsubi

∀ T G
psuperi

∈ T G
psuper . T G

parsuperi
= T G

psuperi
is dynamic ? T S

psuperi
∨ T S

argsuperi
: T G

psuperi

∀ T G
psubi

∈ T G
psub . T G

parsubi
= T G

psubi
is dynamic ? T S

psubi
∨ T S

argsubi
: T G

psubi

KS = C(T S
parsuper fsuper, T S

parsub fsub): base(fsuper) { this.fsub = fsub;}
∀ T G

psubi
∈ T G

psub . T S
fieldi

= T G
fi

is dynamic ? T S
fi

∨ T S
argsubi

: T G
fi

specializekf(P G, CDS
in, Γ, C, eargsuper , eargsub

) = CDS
in, KS , T S

field

earg = eargsuper , eargsub
∃ eargi ∈ earg . not(CDS

in, Γ ⊢ eargi :S T S
argi

)
C /∈ CDS

in P G = CDG
1 . . . class C : Csuper { T G

f f; KG
p MG

p } . . . CDG
m ep

KG
p = C(T G

psuper fsuper, T G
psub fsub): base(fsuper) { this.fsub = fsub;}

∀ T G
psuperi

∈ T G
psuper . T G

parsuperi
= T G

psuperi
is dynamic ? Object : T G

psuperi

∀ T G
psubi

∈ T G
psub . T G

parsubi
= T G

psubi
is dynamic ? Object : T G

psubi

KS = C(T S
parsuper fsuper, T S

parsub fsub): base(fsuper) { this.fsub = fsub;}
∀ T G

psubi
∈ T G

psub . T S
fieldi

= T G
fi

is dynamic ? Object : T G
fi

specializekf(P G, CDS
in, Γ, C, eargsuper , eargsub

) = CDS
in, KS , T S

field

∃ eargi ∈ earg . not(CDS
in, Γ ⊢ eargi :S T S

argi
)

CDS
in = CDS

1 . . . class C : Csuper { T S
f f; KS

p MS
p } . . . CDS

m

specializekf(P G, CDS
in, Γ, C, earg) = CDS

in, KS
p , T S

f
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Appendix K. Additional functions used in the specialization

CDin = CD1 . . . class C : Csuper { Tf f; K Mc } . . . CDm

Msub = {M . M = Tr m_n(T G
p x){ return e;} ∈ Mc}

Msuper = {Msuper . Msuper /∈ Msub and Msuper ∈ methods(CDin, Csuper, m)}
methods(CDin, C, m) = Msub ∪ Msuper

methods(CDin, Object, m) = ∅ types(M) = {Tp → Tr . Tr m(Tp x){ return e;} ∈ M

CDS
in = CDS

1 . . . class C : Csuper { T S
f f; KS

p MS
c } . . . CDS

n

MS /∈ MS
c CDS

out = CDS
1 . . . class C : Csuper { T S

f f; KS
p MS

c , MS } . . . CDS
n

addmethod(CDS
in, C, MS) = CDS

out

CDS
in = CDS

1 . . . class C : Csuper { T S
f f; KS

p MS
c } . . . CDS

n MS ∈ MS
c

addmethod(CDS
in, C, MS) = CDS

in

CDS
in = CDS

1 . . . class C : Csuper { T S
f f; KS MS

c } . . . CDS
n

MS = MS
1 . . . T S

r1 m_1(T S
p1 x){ return e1;} . . . T S

rn
m_n(T S

pn
x){ return en;} . . . MS

q

newmethod(CDS
in, C, m) = n + 1

∀ Ci ∈ C . ni = newmethod(CDS
in, Ci, m) n = max(ni)

newmethod(CDS
in, C, m) = n

subclasses(CDS
in, C) = {Csub . class Csub : C { Tf f; KS MS } ∈ CDS

in}

Appendix L. Well-typed FC#S programs can always be specialized

Property 5. Well-typed FC#G programs can always be specialized (and termination of the
specialization is ensured).

∀ ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 . ∃ e2, CDS such that P G,∅,∅ ⊢ e1 ⇒

⟨e2, CDS⟩.

Proof. By induction on the typing derivation of FC#G. We check that the expression can be
specialized and that specialization terminates.
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– Cases T-VarG and T-ThisG. The corresponding SP-Var and SP-This rules have no
premises, so they can always be applied. There are no subexpressions, so termination is
ensured.

– Cases T-FieldCG and T-FieldDG. e1 = e.f

The only specialization rule to be applied in these cases is SP-Field. In that rule, the
only premise is that e could be specialized, which is indeed the induction hypothesis.
Specialization terminates, since it is not possible to have recursive subexpressions.

– Case T-InvG. e1 = eobj .m(earg)
By the induction hypothesis, eobj can be specialized to e′

obj (the same applies to the
arguments). Then, it could happen that e′

obj in FC#S is well typed to 1) a class, 2) a union
type or 3) it is not well typed. For the first two cases, SP-InvC and SP-InvU require the
specialization of the arguments to be well typed in FC#S. Therefore, SP-InvU specializes
the program when the previous requirements are not fulfilled. The last premise is that
specializem and specializemn functions, for the two first cases, are evaluated.
The only premise of specializem is that the specialized method exists in the original program.
Since the program is well typed, that condition is ensured by T-InvC. For specializemn, the
body of the invoked method is specialized. However, the specialization could be 1) well- or
2) ill-typed. Note that there are two implementations of specializemn: for case 1), dynamic
is replaced with the inferred type; for case 2), it is replaced with Object.
Regarding termination, there could be recursive invocations. In that case, the specializem
function provides an implementation when the method has already been specialized. That
implementation does not specialize the method body any more, returning the existing
specialization. In this way, termination is ensured.

– Case T-InvDG. e1 = eobj .m(earg)
Similar to the previous case. The proof is different when demonstrating that specializem
can always be evaluated. Since the type of eobj is dynamic, the program may not have a
definition of the invoked method. For that reason, there is one implementation of specializem
considering that. That implementation does not specialize the method implementation,
returning a non-existent 0 version (a compilation error will be shown by the type system of
FC#S).
The proof of termination is similar to the previous case.

– Case T-NewG. e1 = new (earg1, earg2)
For this case, the only specialization rule that can be applied is SP-New. One premise is
that the arguments could be evaluated, which is the specialization hypothesis. The other
premises are those required by the specializec function. That function requires that the class
and constructor of C and its superclass must be defined in the program. Since e1 is well
typed, T-NewG and W-Const ensure that premise. Then, specializec calls specializekf.
The only additional premise required by this function is that the specialized arguments
are well typed in FC#S. Should this not occur, there are two more implementations of
specializekf considering this special case (whether or not the method has been previously
specialized).
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e1 = e2

e1 ≡ e2

e1 ≡ e2

e1.f ≡ e2.f

e1 ≡ e2 earg1 ≡ earg2

e1.m(earg1) ≡ e2.m(earg2)
e1 ≡ e2 earg1 ≡ earg2

e1.m(earg1) ≡ e2.m_n(earg2)

earg1 ≡ earg2

new C(earg1) ≡ new C(earg2)

Figure M.1: Definition of expression equivalence (≡).

Specialization terminates, since there are no recursive subexpressions.

Appendix M. Program specialization preserves semantics

In Figure M.1 we define the equivalence relation as ≡. It gives the idea of those expressions
that can be evaluated to equivalent terms. We will use that relation to prove the semantic
equivalence of specialized programs and the original ones.

Lemma 9. The specialization of one expression is equivalent to the original expression.

If ⊢ P G = CDG em :G ⋄ and CDG,∅ ⊢ em :G T G
m and P G,∅,∅ ⊢ e1 ⇒ ⟨e2, CDS⟩, then

e1 ≡ e2.

Proof. By induction on the specialization rules.

– Cases SP-Var and SP-This. e1 = e2 so e1 ≡ e2.

– Case SP-Field. e1 = e.f P G,∅,∅ ⊢ e ⇒ ⟨e′, CDS⟩
By definition of SP-Field, we know that e2 = e3.f . By the induction hypothesis, we have
that e ≡ e′, so, by definition of ≡, we have that e.f = e1 ≡ e2 = e′.f .

– Cases SP-InvC and SP-InvU. e1 = eobj .m(earg) P G,∅,∅ ⊢ eobj ⇒ ⟨e′
obj , CDS

obj⟩

P G, CDS
obj ,∅ ⊢ earg ⇒ ⟨e′

arg, CDS⟩

By definition of SP-InvC, we know that e2 = e′
obj .m_n(e′

arg). By the induction hypoth-
esis, we know that eobj ≡ e′

obj and earg ≡ e′
arg. Thus, by definition of ≡, we have that

eobj .m(earg) = e1 ≡ e2 = e′
obj .m_n(e′

arg).

– Case SP-InvE. e1 = eobj .m(earg) P G,∅,∅ ⊢ eobj ⇒ ⟨e′
obj , CDS

obj⟩

P G, CDS
obj ,∅ ⊢ earg ⇒ ⟨e′

arg, CDS⟩

In this case, e2 = e′
obj .m(e′

arg). By the induction hypothesis, we know that eobj ≡ e′
obj

and earg ≡ e′
arg. Therefore, by definition of ≡, we have that eobj .m(earg) = e1 ≡ e2 =

e′
obj .m(e′

arg).
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– Case SP-New. e1 = new C(earg) P G,∅,∅ ⊢ earg ⇒ ⟨e′
arg, CDS⟩

By definition of SP-New, we have that e2 = new C(e′
arg). By the induction hypothesis,

earg ≡ e′
arg. Then, by definition of ≡, we have that new C(earg) = e1 ≡ e2 = new C(e′

arg).

Lemma 10. Substitution preserves equivalence.

If e1 ≡ e2, then [σarg/x, σobj/this]e1 ≡ [σarg/x, σobj/this]e2.

Proof. By induction on the syntax of expressions.

– Cases e1 ::= x and e1 ::= this. By definition of ≡, e2 must be equal to e1, so the conclusion
holds.

– Case e1 ::= e3.f . By definition of ≡, e2 = e4.f . By the induction hypothesis, we have
[σarg/x, σobj/this]e3 ≡ [σarg/x, σobj/this]e4, so [σarg/x, σobj/this]e3.f ≡ [σarg/x, σobj/this]
e4.f .

– Case e1 ::= eobj1.m(earg1). By definition of ≡, e2 = eobj2.m(earg2) or e2 = eobj2.m_n(earg2).
By the induction hypothesis, we have [σarg/x, σobj/this]eobj1 ≡ [σarg/x, σobj/this]eobj2 and
[σarg/x, σobj/this]earg1 ≡ [σarg/x, σobj/this]earg2. So, by the definition of ≡, we have that
[σarg/x, σobj/this]eobj1.m(earg1) ≡ [σarg/x, σobj/this]eobj2.m(earg2) and [σarg/x, σobj/this]
eobj1.m(earg1) ≡ [σarg/x, σobj/this]eobj2.m_n(earg2).

– Case e1 ::= new C(earg1). By definition of ≡, e2 = new C(earg2). By the induction hypothesis,
we have [σarg/x, σobj/this]earg1 ≡ [σarg/x, σobj/this]earg2, so [σarg/x, σobj/this]new C(earg1)
≡ [σarg/x, σobj/this]new C(earg2).

Lemma 11. The evaluation of a method invocation and its specialization are equivalent.

If ⊢ P G = CDG em :G ⋄ and CDG,∅ ⊢ em :G T G
m and P G,∅,∅ ⊢ σobj .m_n(σarg) ⇒ ⟨e′, CDS⟩

and CDG ⊢ σobj .m(σarg) −→G e1 and CDS ⊢ e′ −→S e2, then e1 ≡ e2.

Proof. By induction on −→G and the implementations of specializem and specializemn.

The only −→G applicable in the hypothesis is R-InvG because the implicit object and the
arguments are all values, and the method invocation expression is not evaluated to an error.
By SP-InvC, we have that e′ = σobj .m_n(σarg). Then, assuming that the method bodies of
m and m_n are em and em_n, respectively, we have to prove that [σarg/x, σobj/this]em ≡
[σarg/x, σobj/this]em_n. Since Lemma 10 proves that substitution preserves equivalence, we
have to prove that em ≡ em_n. Then, we analyze the m_n specialized method created from
m by the specialize function defined in Appendix J, to see if the body of all the specialized
methods are equivalent to the original one (i.e., em ≡ em_n).

If the method has not been specialized yet, specializem calls specializemn, which creates a new
m_n method. The body of m_n is the specialization of the body of the original m method.
By Lemma 9, we have that both bodies are equivalent. If the m method has already been
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specialized, specializem returns the existing one (previous case). The last implementation of
specializem returns a non-existent method when m is not in P G. However, this cannot happen
since the method invocation is not evaluated to an error.

Besides the implementation discussed above, specializemn has another implementation for
specializing an already specialized method. In that case, it creates a new method with the
same body as the existing one (previous case). The last implementation of specializemn also
returns a method with the specialization of the body of the original method (as in the previous
case). The only difference is that its type is changed (Object replaces dynamic), but that fact
does not change that em ≡ em_n, by the definition of ≡.

Lemma 12. One-step equivalence of specialization.

If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 and P G,∅,∅ ⊢ e1 ⇒ ⟨e2, CDS⟩, then

– e1 ∈ Values and e1 = e2, or
– CDG ⊢ e1 −→G error and CDG ⊢ e2 −→SE error, or
– ∃ e3 e4 . CDG ⊢ e1 −→G e3 and CDS ⊢ e2 −→S e4 and e3 ≡ e4

Proof. By induction on the typing derivation of FC#G, analyzing the 3 possible conclusions
of the lemma.

– Cases T-VarG and T-ThisG. These cases will not occur, since Γ is empty in the hypothesis.

– Case T-FieldCG. e1 = e.f CDG, Γ ⊢ e.f :G T G CDG, Γ ⊢ e :G C

The specialization rule for this case is SP-Field. By definition of values, e1 is not a value;
and neither is e2, by definition of T-FieldCG and SP-Field.
If CDG ⊢ e1 −→G error, the R-FieldEG rule is the only one that reduces field access to
error. As proved in Appendix D, T-FieldCG and R-FieldEG cannot occur over the same
e1, so that case is not applicable either.
For the last alternative, applying the induction hypothesis to e, we have 3 options: 1) if
e and its specialization e′ are the same value, then e.f and e′.f will be reduced to the
same expression (e3 = e4 so e3 ≡ e4), because R-FieldG and R-FieldS perform the same
evaluation; 2) e cannot be evaluated to an error, since e1 is typed by T-FieldCG; and 3)
if e can be reduced to e5 and its specialization e′ is evaluated to e6, then e5 ≡ e6. In that
case, by definition of ≡, we have e5.f = e3 ≡ e6.f = e4.

– Case T-FieldDG. e1 = e.f CDG, Γ ⊢ e.f :G dynamic CDG, Γ ⊢ e :G dynamic

As in the previous case, e1 and e2 cannot be values.
If e1 is evaluated to an error, that is because e is a value σ and it does not provide the f
field (R-FieldEG). By the induction hypothesis, the specialization of e is also σ, so σ.f
will produce an error by R-FieldES.
For the last alternative, 1) and 3) are proved as in the previous case. For 2), we have that
CDG ⊢ e −→G error, so CDG ⊢ e1 −→G e3 cannot occur; i.e., 2) is not a valid alternative.

57



– Case T-InvCG. e1 = eobj .m(earg) CDG, Γ ⊢ e1 :G T G
r CDG, Γ ⊢ eobj :G Cobj

e1 is not a value (first case) by definition of values.
If e1 is reduced to an error, it must be by applying the rules T-InvEG, T-ParEG or
T-ArgEG. The three rules require premises that cannot be fulfilled because they are
contrary to the hypothesis (premises of T-InvCG). Therefore, e1 cannot be reduced to an
error.
Since the two previous cases are not applicable, we have to prove the third case; i.e.,
∃ e3 e4 . CDG ⊢ e1 −→G e3 and CDS ⊢ e2 −→S e4 and e3 ≡ e4. If we analyze the
specialization rules, we see that SP-InvE, SP-InvC and SP-InvU can be applied. If
SP-InvE is applied, e1 = e2 and hence e3 = e4. In the two other cases, we have that
e2 = e′

obj .m_n(e′
arg).

Now, we analyze the evaluation rules. If R-InvG is evaluated, then eobj and earg are all
values, so Lemma 11 tells us that e3 ≡ e4. If R-InvCG is evaluated, eobj is evaluated to eobj2
and its specialization e′

obj is evaluated to e′
obj2. By the induction hypothesis, we know that

they are equivalent (eobj2 ≡ e′
obj2). Then, since eobj2 ≡ e′

obj2 and earg ≡ e′
arg, we have that

eobj2.m(earg) = e3 ≡ e′
obj2.m_n(earg) by definition of ≡. The R-InvACG rule is proved the

same way.

– Case T-InvDG. e1 = eobj .m(earg) CDG, Γ ⊢ e1 :G dynamic

CDG, Γ ⊢ eobj :G dynamic

Due to its syntax, e1 is not a value.
If e1 is evaluated to an error, that is because eobj is a value and it does not provide the
m method (R-InvEG), or does not provide the correct number of arguments (R-ParEG),
or one of the types is not correct (R-ArgEG). For any of those cases, SP-InvE would
specialize the method to the original expression, producing the same runtime error by
R-InvES, R-ParES and R-ArgES, respectively.
For the third alternative (∃ e3 e4 . CDG ⊢ e1 −→G e3 and CDS ⊢ e2 −→S e4 and e3 ≡ e4),
the proof is the same as in the previous case.

– Case T-NewG. e1 = new C(earg)
If e1 is a value, so are earg. Then, by definition Lemma 9, the specialization of earg (e′

arg) is
equivalent to earg (earg ≡ e′

arg). Since earg are values and earg ≡ e′
arg, then earg = e′

arg by
definition of ≡. Therefore, e1 = new C(earg) = e2 = new C(e′

arg).

e1 cannot be evaluated to an error, since no such rule is defined in the semantics of FC#G.
For the third alternative, ∃ e3 e4 . CDG ⊢ e1 −→G e3 and CDS ⊢ e2 −→S e4 and e3 ≡ e4,
the only evaluation rule to be applied is R-NewACG. Thus, e1 = new C(earg) and e2 =
new C(e′

arg), being e′
arg the specialization of earg. By Lemma 9, e′

arg ≡ earg, so, by definition
of ≡, e1 = new C(earg) ≡ e2 = new C(e′

arg).

Property 6. Program specialization preservers semantics (i.e., the original program and its
specialization are semantically equivalent).
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If ⊢ P G = CDG e1 :G ⋄ and CDG,∅ ⊢ e1 :G T G
1 and P G,∅,∅ ⊢ e1 ⇒ ⟨e2, CDS⟩, then

– ∃ σ . CDG ⊢ e1 −→G∗ σ and CDS ⊢ e2 −→S∗ σ, or
– CDG ⊢ e1 −→G∗ error and CDS ⊢ e2 −→SE∗ error, or
– ∃ e3 e4 . CDG ⊢ e1 −→G e3 and CDS ⊢ e2 −→S e4

Proof. By the consecutive application of the progress property in both languages (Properties 2
and 3) and Lemma 12 (one-step equivalence of specialization).

By Property 2, e1 can be evaluated to a value. By Lemma 12, e2 must be evaluated to the
same value. Property 2 also allows e1 to be evaluated to an error. Then Lemma 12 can be
applied to deduce that e2 will also be evaluated to an error. Similarly, Property 2 allows e1 to
be evaluated to another expression, the same as e2, by Lemma 12 (we also know that both
evaluations are equivalent).

Appendix N. Additional code generation rules for FC#G

JP G = CDG eK(Γ) =
JCDGK(CDG, Γ)
JeK(CDG, Γ)
internal static class Reflection {

internal static dynamic GetField(dynamic obj, string field) {
return obj.GetType().GetField(field).GetValue(obj);

}
internal static dynamic Invoke(dynamic obj, string method,

object[] args) {
return obj.GetType().GetMethod(method).Invoke(obj, args);

}
}

JCDG = class C : Csuper { T G
f f; KG MG }K(CDG, Γ) =

public class C : Csuper {
JT G fK
JKGK(CDG)
JMGK(CDG, Γ, C)

}

JT GfK = public |T G| f;

fields(CDG, C) = T G
f1 f1, T G

f2 f2 CDG = CDG
1 . . . class C : Csuper { . . . } . . . CDG

n

CDG = CDG
1 . . . class Csuper : Css { T G

sf fs; KG MG } . . . CDG
n

KG = Csuper(T G
skp fs):base( . . . ) { . . . }

JKG = C(T G
p1 f1, T G

p2 f2):base(f1) {this.f2 = f2;}K(CDG) =
public C(|T G

p1| f1, |T G
p2| f2): base(cast(T G

p2, T G
skp)f1) {
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this.f2 = cast(T G
p2, T G

2 )(f2);
}

Γ′ = x:T G
p , this:C, Γ CDG, Γ′ ⊢ e :G T G

e

JMG = T G
r m(T G

p x) { return e;}K(CDG, Γ, C) =
public |T G

r | m(|T G
p | x) {

return cast(T G
e , T G

r )JeK(CDG, Γ);
}

CDG, Γ ⊢ e :G C

JxK = x JthisK = this Je.fK(CDG, Γ) = JeK(CDG, Γ).f

CDG, Γ ⊢ earg :G T G
arg CDG = CDG

1 . . . class C : Csuper { T G
f f; KG MG } . . . CDG

n

KG = C(T G
p fp):base( . . . ){ . . . }

Jnew C(earg)K(CDG, Γ) = new C(cast(T G
arg, T G

p )JeargK(CDG, Γ))

Appendix O. Additional code generation rules for FC#S

JP S = CDS eK(Γ) =
JCDSK(CDS , Γ)
JeK(CDS , Γ)

JCDS = class C : Csuper { T S
f f; KS MS }K(CDS , Γ) =

public class C : Csuper {
private static object _temp;
JT S fK
JKSK(CDS)
JMSK(CDS , Γ, C)

}

JT SfK = public |T S | f;

fields(CDS , C) = T S
f1 f1, T S

f2 f2 CDS = CDS
1 . . . class C : Csuper { . . . } . . . CDS

n

CDS = CDS
1 . . . class Csuper : Css { T S

sf fs; KS MS } . . . CDS
n

KS = Csuper(T S
skp fs):base( . . . ) { . . . }

JKS = C(T S
p1 f1, T S

p2 f2):base(f1) {this.f2 = f2;}K(CDS) =
public C(|T S

p1| f1, |T S
p2| f2): base(cast(T S

p2, T S
skp)f1) {

this.f2 = cast(T S
p2, T S

2 )(f2);
}
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Γ′ = x:T S
p , this:C, Γ CDS , Γ′ ⊢ e :S T S

e

JMS = T S
r m(T S

p x) { return e;}K(CDS , Γ, C) =
public |T S

r | m(|T S
p | x) {

return cast(T S
e , T S

r )JeK(CDS , Γ);
}

CDS , Γ ⊢ e :S C

JxK = x JthisK = this Je.fK(CDS , Γ) = JeK(CDS , Γ).f

CDS , Γ ⊢ e :S C type(method(CDS , C, m)) = T S
p → T S

r CDS , Γ ⊢ earg :S T S
arg

Je.m(earg)K(CDS , Γ) = JeK(CDS , Γ).m(cast(T S
arg, T S

p )JeargK(CDS , Γ))

CDS , Γ ⊢ earg :S T S
arg CDS = CDS

1 . . . class C : Csuper { T S
f f; KS MS } . . . CDS

n

KS = C(T S
p fp):base( . . . ){ . . . }

Jnew C(earg)K(CDS , Γ) = new C(cast(T S
arg, T S

p )JeargK(CDS , Γ))
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