
New Approach for Solving The Clustered Shortest-Path Tree Problem
Based on Reducing The Search Space of Evolutionary Algorithm

Huynh Thi Thanh Binha, Pham Dinh Thanh b,∗, Ta Bao Thanga

aSchool of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam
bFaculty of Mathematics - Physics - Informatics, Taybac University, Vietnam

Abstract

Along with the development of manufacture and services, the problem of distribution network optimiza-
tion has been growing in importance, thus receiving much attention from the research community. One of
the most recently introduced network optimization problems is the Clustered Shortest-Path Tree Problem
(CluSTP). Since the problem is NP-Hard, recent approaches often prefer to use approximation algorithms to
solve it, several of which used Evolutionary Algorithms (EAs) and have been proven to be effective. How-
ever, most of the prior studies directly applied EAs to the whole CluSTP problem, which leads to a great
amount of resource consumption, especially when the problem size is large. To overcome these limitations,
this paper suggests a method for reducing the search space of the EAs applied to CluSTP by decomposing
the original problem into two sub-problems, the solution to only one of which is found by an EA and that
of the other is found by another method. The goal of the first sub-problem is to determine a spanning tree
which connects among the clusters, while the goal of the second sub-problem is to determine the best span-
ning tree for each cluster. In addition, this paper proposes a new EA, which can be applied to solve the first
sub-problem and suggests using the Dijkstra’s algorithm to solve the second sub-problem. The proposed ap-
proach is comprehensively experimented and compared with existing methods. Experimental results prove
that our method is more efficient and more importantly, it can obtain results which are close to the optimal
results.

Keywords: Genetic Algorithm, Clustered Shortest-Path Tree Problem, Evolutionary Algorithms

1. Introduction

Clustered problems has a wide variety of real-life applications such as optimization of irrigation systems
in agriculture, especially irrigation networks in the desert, which has been an urgent problem of mankind.
Nowadays, with the development of manufacture and services, economy, optimizations of distribution net-
works have become increasingly important problems. Therefore, clustered tree problems receive a lot of
interest from the research. One of most well-known clustered tree problems is Clustered Steiner Tree Prob-
lem (CluSteinerTP), a variant of the Steiner tree problem. CluSteinerTP is applied to applications in various
areas [1–3] such designing transportation or computer networks and design inter-cluster topologies, etc. Re-
cently, the Clustered Shortest-Path Tree Problem (CluSTP) has been introduced as theoretical problem in

∗Corresponding author.
Email address: thanhpd05@gmail.com (Pham Dinh Thanh)

Preprint submitted to Journal of LATEX Templates August 21, 2019

ar
X

iv
:1

90
8.

07
06

0v
1

 [
cs

.N
E

]
 1

0
Ju

n
20

19

https://orcid.org/0000-0002-2550-9546
https://orcid.org/0000-0002-2550-9546

many network optimization problems. As CluSTP is NP-Hard, approximation approaches are often used to
solve large instances of CluSTP.

Evolutionary Algorithms (EAs) are a family of global optimization algorithms that have been proven to
be effective in solving many types of problems, both theoretical and practical ones. The mechanism of EAs
is based on natural selection and Darwinian theory Survival of the fittest, which suggest that the quality of
individuals in a population should improve after each generation. Recently, the Multifactorial Evolutionary
Algorithm (MFEA) has emerged as one of the most effective EAs that can be applied to different types of
problems. The main concept of the MFEA is the combination of rules of evolution and cultural transmis-
sions. As a result, the MFEA has some distinguished features in comparison with classical EAs, for example,
the MFEA can solve multiple tasks simultaneously and exploit potential traits of implicit genetic transfer in
a multitasking environment.

Accordingly, some research dealing with the CluSTP proposed several evolutionary operators and mech-
anisms for using the MFEA to solve the CluSTP. However, because such research often looks for solutions
in original search space of the CluSTP, much computational resource and time is consumed. To overcome
these drawbacks, this paper proposes a new approach which remodels the CluSTP to a new problem of two
parts, one of which is solved by an exact algorithm and the other is solved by an approximation problem,
namely a genetic algorithm. Thereby, the part that the genetic algorithm has to deal with has decreased in
dimensionality in comparison with the original problem, thus reducing the consumed resource and time.
Also, the quality of the ultimate solutions hopefully improves, as a result of the part constructed by the exact
algorithm.

The rest of this paper is organized as follows. Section 2 presents the notations and definitions used for
formulating problem. Section 3 introduced related works. The proposed EA for the CluSTP is elaborated
in section 4. Section 5 explains the setup of our experiments and analyses the computed results. The paper
concludes in section 6 with discussions on the future extension of this research.

2. Notation and definitions

In this paper, a graph is a simple, connected and undirected graph. For a graph G = (V, E,w), V and
E are the vertex and the edge sets, respectively, and w is the nonnegative edge length function. An edge
between vertices u and v is denoted by (u, v), and its weight is denoted by w(u, v).

For a graph G, V(G) and E(G) denote the vertex and the edge sets, respectively. For a vertex subset U,
the sub-graph of G induced by U is denoted by G[U]. For a vertex set V , a collection R = {Ri|1 ≤ i ≤ k} of
subsets of V is a partition of V if the subsets are mutually disjoint and their union is exactly V . A path of G
is simple if no vertex appears more than once on the path. In this paper we consider only simple paths.

For a sub-graph H of G = (V, E,w) and u, v ∈ V , let dH(u, v) denote the shortest path length between u
and v on H. Let dH(v,U) =

∑
u∈U dH(v, u) for a vertex v and a vertex subset U. For vertex subsets U1 and

U2, let dH(U1,U2) =
∑

u∈U1
dH(u,U2).

An st-path is a path with endpoints s and t. Let P = (v0, v1, . . . , vp) be a v0vp path passing through
v1, v2, . . . , vp−1 in this order. For 0 ≤ i ≤ j ≤ p, the sub-path between vi and v j of P is denoted by P[vi, v j].
An edge (x, y) is also thought of as a path.

Definition 1. For a tree T spanning S , i.e., S ⊆ V(T), the local tree of S on T is the sub-tree of T induced
by T [S].

The local tree of Ri in a clustered spanning tree T will be denoted by Li(T).

Definition 2. Let R = {Ri|1 ≤ i ≤ k} be a partition of V. A spanning tree T is a clustered spanning tree for
R if the local trees of all Ri ∈ R are mutually disjoint, i.e., there exists a cut set C ⊆ E(T) with |C| = k − 1

2

such that each component of T − C is a spanning tree Ti for Ri for all 1 ≤ i ≤ k. The edges in the cut set C
are called inter-cluster edges.

We call a local tree terminal local tree if it is connected to only one inter-cluster edge.
The port of a terminal local tree is the vertex adjacent to a vertex not in the cluster.
The CluSTP can be stated as follows:
Given a weighted undirected graph G = (V, E,w) where the vertex set V is partitioned into k clusters

V1,V2, ...,Vk and the edge set E has a weight function w : E → R+. One of the vertices s of G is chosen to
be the source vertex.

The CluSTP looks for a spanning tree T of G such that:

1. For each cluster Vi(i = 1, . . . , k), a sub-graph including all vertices in Vi is a connected graph.

2. Minimize CT =
∑
v∈V

dT (s, v).

3. Related works

Many real life network systems such as irrigation network in agriculture, goods and services distribution
systems, cable TV systems and fiber optic systems, can be associated with clustered problems. For their
wide range of practical applications, clustered problems have been researched for a long time.

One of the most notable clustered problems is the Clustered Traveling Salesman Problem (CluTSP) [4–
6], an important variant of the well-known Traveling Salesman Problem (TSP). CluTSP is applied to ap-
plications in various areas [7] such as vehicle routing, manufacturing [8], computer operations [9–11], ex-
amination timetabling [12], cytological testing [13], and integrated circuit testing [14], etc. CluTSP was
first introduced by Chisman [9], who described the problem and presented an optimization model for a
warehousing problem. Potvin, J. -Y. et al. [6] proposed a Genetic Algorithm (GA) to solve the CluTSP in
1996. The new GA used permutation representation, edge recombination crossover [15], 2-opt local search
heuristic mutation and individual evaluation by transforming the raw fitness of chromosomes using linear
ranking. Ding, C. et al. [16] applied a new approach based on a Two-Level Evolutionary Algorithm (TLEA)
for solving the CluTSP. In novel approach, the Shortest Hamiltonian cycles in each cluster was determine
in the lower level by applying the evolutionary algorithm to the TSP problem while in the higher level, a
modified evolutionary algorithm with one crossover and two mutation operators is designed to determine the
shortest possible solution based on the Hamiltonian cycles generated in the lower level.

One of the newest study about variant of classical TSP was done by Pop, P. et al. [17]. The authors pro-
posed new approach to solve the Family Traveling Salesman Problem (FTSP) by decomposing the problem
into two smaller sub-problems: global subproblem and local subproblem. In the global subproblem, the au-
thors use classical GA and diploid GA for constructing the Hamiltonian tour (called global Hamiltonian tour)
connecting among the families. In the local subproblem, the authors look up the visiting order of the required
vertices in the families by transforming the global Hamiltonian tour into a TSP tour then apply the Concorde
algorithm for determining that visiting order. Applying similar concept in the paper [17], Pop, P. et al. [18]
are addressing the Generalized Traveling Salesman Problem (GTSP) but after finding the Hamiltonian tour
in global subproblem, a node in a cluster is determined by solving the shortest path problems. Another
notable research in solving the CluTSP was done by Mestria, M et al. [5]. the authors proposed six heuristic
algorithms based on GRASP heuristic for solving the CluTSP. In the proposed algorithm, the authors also
examined several strategies for combining GRASP with path relinking heuristic.

3

Nowadays, because of the needs for network optimization, clustered tree problems have received a lot
of attention. A new variant of the well-known Steiner Tree Problem (STP), the Clustered Steiner Tree Prob-
lem (CluSteinerTP) has also attracted much attention. In the CluSteinerTP, the vertices are divided into
groups or clusters. An STP is a CluSteinerTP if the local tree of each clusters are mutually disjoint [1].
Wu, B.Y. et al. [1] showed that the lower and upper bound of Steiner ratios of CluSteinerTP are 3 and 4
respectively. The authors also proposed (2+ ρ)-approximation for CluSteinerTP where ρ was the approxi-
mation ratio. Lin, C.-W. et al. [19] studied a new variant of clustered tree problem, Minimum Routing Cost
Clustered Tree Problem (CluMRCT). The authors showed that the CluMRCT is NP-Hard if the CluMRCT
has at least 2 clusters. A 2-approximation algorithm was proposed to solve the CluMRCT. The new algo-
rithm created a two-level graph based on a R-star spanning tree with two characteristics: An R-star spanning
tree with minimum routing cost can be generated in O(n2) time and there exists an R-star whose routing cost
is at most twice as much as the optimal cost. The authors also demonstrated that 2-approximation algorithm
can solve the Metric CluMRCT in O(n2) time.

DEmidio et al. [20] studied the CluSTP, another version of clustered problems. The CluSTP can be found
in many real life network optimization problems such as network design, cable TV system and fiber-optic
communication. The authors proved that the CluSTP is NP-Hard and proposed an approximation algorithm
(hereinafter AAL) for solving the CluSTP. The main idea of AAL is find the minimum spanning tree of each
cluster and create a new graph by considering each cluster as a vertex.

As mention above, the approximation approach is more suitable for solving the NP-Hard problems with
large dimensionality. Regarding the approximation approach, the EA is one of the most effective algorithms
for finding the global solution of some problems in different fields [15, 21, 22].

EA are adaptive search techniques which simulate an evolutionary process like it is seen in nature based
on the ideas of the selection of the fittest, crossing and mutation. Thus, EA can be used to get approximate
solutions for NP-Hard problems. The high adaptability and the generalizing feature of EA help to execute
these problems by a simple structure.

Recently two new variant of EA, MFEA are applied to solve the CluSTP and improve the resulting
solutions.

In [23], the authors proposed MFEA (E-MFEA) with new evolutionary operator for finding the solution
of CluSTP. The main ideas of the new evolutionary operators is that first constructing spanning tree for
smallest sub-graph then the spanning tree for larger sub-graph are construed based on the spanning tree
for smaller sub-graph. In [24], the authors take the advantage of Cayley code to encode the solution of
CluSTP and proposed evolutionary operators based on Cayley code [25–29]. The evolutionary operators are
constructed based on ideas of evolutionary operators for binary and permutation representation.

Although experimental results are shown the effective of these algorithms, these algorithm has some
shortcomings such as: evolution operators performing on complete graph; finding the solution on large
search space, etc.

Therefore, this paper proposes new approach based on the evolutionary algorithm to solve the CluSTP.
The new approach improves both running time and qualities of solution.

4. Proposed Algorithm

In this section, we present the novel algorithms for CluSTP problem. The novel algorithm include:
new encoding individual for CluSTP, new method for computing the cost of CluSTP and new evolutionary
operators such as new initial population, new crossover operator and new mutation operator.

4

4.1. Remodeling of the CluSTP

Recently, cluster tree problems including the CluSTP have emerged as one of the most interesting re-
search topics. Those problems have received much interest from the academic community and various
strategies have been also proposed to produce better solutions. However, most approaches try to search from
all valid solutions to find one that has the lowest possible cost. However, when the problem size is great and
the problem itself is NP-Hard, like in the case of the CluSTP, it is hard to consider all feasible solutions in a
reasonable amount of time.

To overcome this, we propose a new approach which decomposes the CluSTP into two subproblems.
The first subproblem, denoted by H-Problem, finds an edge set which connects among the clusters, while
the goal of the second subproblem, denoted by L-Problem, is to find a spanning tree for the sub-graph over
each cluster. In this approach, spanning trees of sub-graphs over the clusters is constructed after the spanning
tree connecting among clusters is found.

(a) (b) (c)

Figure 1: An example of new approach to solve CluSTP

Figure 1 illustrates an example of the new approach. The input graph is illustrated in Figure 1(a) and
Figure 1(b) illustrates a graph which is the solution to the first sub-problem, and Figure 1(c) illustrates
spanning trees for sub-graph in clusters.

After the CluSTP is decomposed into two sub-problems, a few existing algorithms such as two-level
genetic algorithm [16, 17, 30, 31] and evolutionary bi-level optimization [32, 33] may be applied to solve
the subproblems. Although these algorithms use various strategies for improving solution quality as well
as reducing resource consumption, in essence, these strategies still deal with all combinations of possible
edges connecting all vertices, so the number of cases to consider is still great. In addition, most existing
algorithms [23, 24] encode solutions to the CluSTP into chromosomes whose numbers of genes are equal to
the original dimensionality of input instances, thus also consuming a lot of resource.

To overcome these drawbacks, we propose a new approach which has two important features:

• For each solution to the H-Problem, the novel approach can determine the best corresponding solution
to the L-Problem.

• To construct a solution to the CluSTP, the novel approach only need to base on a solution of the
H-Problem.

To achieve the first feature, for each cluster, a solution to the H-Problem stores a vertex that serves as the
root of the shortest path tree of the corresponding cluster. From this vertex, we can use one of the existing
exact algorithms such as Dijkstra’s algorithm [34–36] for building shortest path tree for the L-Problem.
From the above observation, we only need to focus on edges connecting among the vertices of the clusters.
Therefore, we only encode the vertices which are nodes of edges connecting among clusters.

5

For example, with the solution to the H-Problem in Figure 1(b), our approach stores the edges between
vertices 1 and 10; 10 and 17; 17 and 7. Vertices 1, 10, 17 and 7 are used to build the shortest path tree of
sub-graphs in the clusters which contain them.

4.2. New individual representation

A chromosome is an array of vertex whose i-th element of the array is a vertex which belongs to the i-th
cluster. For simplicity, we call the i-th element of chromosome the root of i-th cluster and denote it by ri.
The root of the i-th cluster is used for constructing edges which connect the i-th cluster and other clusters.

Note that the root of cluster may be different from the source vertex s.
To construct the edge set of the solution from the set of roots of clusters, we propose a new method

(CESA) based on the Dijkstra’s Algorithm [37] and a feature of graph is created from shortest path tree
which is constructed after performing the Dijkstras Algorithm. The CESA is described in Algorithm 1.

Algorithm 1: Construct Edge Set of Solution
Input: Graph G = (V, E,C) where C = C1 ∪C2 ∪ . . . ∪Ck; Cp ∩Cq = ∅, ∀p , q; Source vertex s; An

individual I = (r1, r2, . . . , rk)
Output: A Tree T ′ = (V ′, E′)

1 begin
2 V ′ ← V;
3 S ← {r1, r2, . . . , rk};
4 Cm ← Determine cluster contains s;
5 T ← Determine shortest path tree for G[S] by using Dijstra Algorithm with start vertex rm;
6 foreach cluster C j do
7 if C j , Cm then
8 T j ← Determine shortest path tree for G[C j] by using Dijstra Algorithm with start vertex

r j;
9 end

10 else
11 Tm ← Determine shortest path tree for G[Cm] by using Dijstra Algorithm with start vertex

s;
12 end
13 end
14 E′ ← (∪k

i=1E(Ti)) ∪ E(T);
15 return T ′

16 end

Figure 2 illustrates an example of proposed encoding method. Figure 2(a) depicts the input graph G with
6 clusters so number of genes on chromosome is 6. Figure 2(b) illustrates an invalid individual for graph
G in which the vertex 3 on clusters 1 is selected randomly as root vertex, vertex 5 on cluster 2 is selected
randomly as root vertex, etc. Figure 2(c) presents a CluSTP solution which is constructed from individual
in Figure 2(b) by performance the Algorithm 1.

4.3. Individual Initialization method

The New Individual Initialization Method (IIM) will create randomly an individual
Ind=(ind1, ind2, . . . , indk) where indi is root of cluster i-th (i = 1, . . . , k). The detail of IIM is presented in
Algorithm 2.

6

(a) (b) (c)

Figure 2: The representation of individual in unified search space for MFEA with two tasks

Algorithm 2: Individual initialization
Input: Graph G = (V, E,C) where C = C1 ∪C2 ∪ . . . ∪Ck; Cp ∩Cq = ∅, ∀p , q
Output: An individual Ind = (ind1, ind2, . . . , indk)

1 begin
2 V ′ ← ∅;
3 repeat
4 for i← 1 to k do
5 indi ← Select a random vertex in Ci;
6 V ′ ← V ′ ∪ {indi};
7 end
8 until G[V’] is connected graph;
9 return Ind = (ind1, ind2, . . . , indk)

10 end

(a) (b) (c)

Figure 3: An example of Individual Initialization method for a graph with 4 clusters

7

Algorithm 3: Proposed Crossover Operator
Input: Graph G = (V, E,C) where C = C1 ∪C2 ∪ . . . ∪Ck; Cp ∩Cq = ∅, ∀p , q;

Two parents: Pi = (pi1, . . . , pik), i = 1, 2;
Output: Offspring P∗i = (p∗i1, . . . , p∗ik), i = 1, 2;

1 begin
2 P∗i ← Pi, i = 1, 2;
3 x1,2 ← Select randomly from {1, . . . , k};
4 if p1 > p2 then swap(p1, p2) ;
5 for i← x1 to x2 do
6 swap(p∗1i, p∗2i);
7 end
8 foreach Offspring P∗i do
9 if P∗i is an invalid individual then

10 P∗i ← Null
11 end
12 end
13 return P∗i
14 end

Figure 3 illustrates the Individual Initialization method for a graph with 4 clusters. The Figure 3(a)
depicts the input graph. The Figure 3(b) depicts an invalid temporary solution because root vertex of cluster
3-th is not connect to other root vertices. This solution will be discard. The Figure 3(c) presents a valid
solution.

4.4. Crossover Operator

The New Crossover Operator (NCX) is proposed based on the two-point crossover operator [15]. How-
ever in NCX, root of clusters may be not connected so the offspring may be invalid individual. Therefor in
NCX, if a child is an invalid individual then the child is discarded. The NCX is descripted in Algorithm 3.

(a) (b)

Figure 4: An example for the crossover operator

Figure 4 illustrates the new crossover operator. Figure 4(a) depicts the input graph G with 6 clusters
so the number of genes in chromosome is 6. Figure 4(b) presents the steps of NCX with two vertical red
lines illustrate two crossover point. The NCX products two offspring. However, the offspring 1 is invalid

8

Algorithm 4: Proposed mutation operator
Input: Graph G = (V, E,C) where C = C1 ∪C2 ∪ . . . ∪Ck; Cp ∩Cq = ∅, ∀p , q; An individual:

P = (p1, . . . , pk);
Output: An individual P∗ = (p∗1, . . . , p∗k);

1 begin
2 P∗ ← P;
3 Select a random cluster C j;
4 repeat
5 if All vertices in cluster C j are considerd then
6 return P;
7 end
8 x← Select randomly vertex from cluster C j;
9 swap(x, p∗j);

10 until P∗ is an invalid individual;
11 return P∗;
12 end

individual because the sub-graph of G induce by set of vertices on offspring 1 {3, 4, 11, 9, 15, 14} is not
connected graph so this offspring is discarded.

4.5. New Mutation Operator

The New mutation Operator (NMO) for the CluSTP will change the root of a cluster. The detail of NMO
is presented in Algorithm 4.

(a) (b)

Figure 5: An example for the crossover operator

Figure 5 depicts an example of NMO. Figure 5(a) presents the input graph with 6 clusters and 18 vertices.
In Figure 5(a), the randomly selected cluster is 6-th cluster (cell in blue); temporary offspring 1 obtained by
replacing vertex 14 with vertex 13 on genes 6-th on individual but the temporary offspring 1 is an invalid
individual so it is discarded; meanwhile, temporary offspring 2 obtained by replacing vertex 14 with vertex
12, this offspring is a valid individual so it is output of NMO.

9

4.6. New Evaluation Function

In subsection, a new approach for computation the cost of CluSTP individual is proposed. The new
approach decreases the consume resource in compared with classical approach.

As mention above, the cost of the solution T is computed as following:

f (T) =
∑
u∈V

dT (s, u) (1)

=

k∑
i=1

∑
u∈Vi

dT (s, u)

=

k∑
i=1

∑
u∈Vi

(dT (s, ri) + dT (ri, u))

=

k∑
i=1

|Vi| ∗ (dT (s, ri) +
∑
u∈Vi

dT (ri, u)

 (2)

The equation (2) point out that the cost of solution T can compute through cost of path from source vertex
to root vertices and from root vertices to other vertex in the same cluster with the corresponding root ver-
tex. Because dimensionality of sub-graph is smaller than dimensionality of graph G, resource computation
according to equation (2) is reduced in compared with computing according to equation (1).

5. Computational results

5.1. Problem instances

Due to the fact that no available instances for the CluSTP were available, we generated a set of test
instances based on the MOM [38] [5] (further on in this paper MOM-lib) of the Clustered Traveling Sales-
man Problem. The MOM-lib included six distinct types of instances which were created through various
algorithms [20] and categorized into two kinds according to dimensionality: small instances, each of which
had between 30 and 120 vertices and large instances, each of which had over 262 vertices. The instances
were suitable for evaluating cluster problems [5].

However, in order to test the proposed algorithms’ effectiveness in solving the CluSTP, it was necessary
to add information about a source vertex to each of the instances. Therefore, we selected a random vertex as
the source vertex for each instance.

For evaluation of the proposed algorithms, instances with dimensionality from 30 to 500 were selected.
All problem instances are available via [39]

5.2. Experimental setup

To evaluate the performance of new EA for the CluSTP, we implemented two sets of experiments.

• On the first set, the approximation algorithm C-MFEA [24] and E-MFEA [23] were implemented.
Then the results of these algorithms for each instance were compared with those by New Evolutionary
Algorithm (NEA) in terms of solution quality and run times.

10

• On the second set, since the performance of the proposed EA were contributed by parameter: number
of clusters in the CluSTP instance and the average number of vertices in a cluster, the convergence
trends of each task in generations, we conducted experiments for evaluating the effect of these param-
eters.

Each scenario was simulated for 30 times on the computer (Intel Core i7 - 4790 - 3.60GHz, 16GB RAM),
with a population size of 100 individuals evolving through 500 generations which means the total numbers
of task evaluations are 50000, the random mating probability is 0.5 and the mutation rate is 0.05. The source
codes were installed by Visual C# language.

5.3. Experimental criteria
We focuses on the following criteria to assess the quality of the output of the algorithms.

Criteria
Average (Avg) The average function value over all runs
Coefficient of variation (CV) Ratio of standard deviation to the averaged function value
Best-found (BF) Best function value achieved over all runs
To compare the performances of two algorithms, we compute the Relative Percentage Differences (RPD)

between the average results obtained by the algorithms. The RPD is computed by the following formula:

RPD(A) =
CA −CNew

CNew
∗ 100%

where CNew is average cost of the solutions obtained by the proposed algorithm and CA is average cost of the
solutions obtained by one of the compared existing algorithms, which are C-MFEA, E-MFEA and AAL.

We also compute the gap between the costs of the results obtained by algorithm A and B with the
following formula:

PI(A, B) =
CB −CA

CB
∗ 100%

where CA, CB is the cost of the best solution generated by algorithm A, B respectively.

5.4. Experimental Results on Euclidean Instances
5.4.1. Comparison of the Performances of AAL, C-MFEA, E-MFEA and The Novel Evolutionary Algorithm

A criterion in comparing the results obtained by the proposed algorithm and two existing algorithms is
running time. The execution time of the NEA is shorter than that of C-MFEA (at least 2 times) and that of
E-MFEA (at least 5 times). The reason behind this is that NEA reduces the dimensionalities of the input
problem so the genetic operators only perform in chromosome having dimensionality equal to the number
of clusters. Due to the number of clusters is much smaller than number of vertices, the running time of NEA
is greatly decreased.

In terms of cost, the NEA outperform than two existing algorithms on all instances. The average of
PI(NEA, E-MFEA) and of PI(NEA, C-MFEA) are 35.1% and 65.8% respectively. However, the PI(NEA,
E-MFEA) and PI(NEA, C-MFEA) on instances in each type are distinct. The PI() on small instances are
two-thirds of PI() on large instances, which mean that the NEA is more effective than two existing algorithms
when dimensionality of instances is larger. The reason for these results is that the dimensionality of input
problem when using E-MFEA and C-MFEA algorithm (equal to number vertices) increases more than that
of input problem using NEA algorithm (equal to the number of clusters). Therefore, in comparison with the
optimal solution, the accuracy of the solutions obtained by C-MFEA and E-MFEA decreases faster than that
obtained by NEA. The details of PI() of each type are presented in the Table 1.

11

Table 1: Summary of Results Obtained By E-MFEA, C-MFEA and NEA on Instances

PI(NEA, E-MFEA) PI(NEA, C-MFEA)
Type 1 Small 20.70% 50.30%
Type 1 Large 33.50% 75.80%
Type 3 37.70% 65.50%
Type 4 64.80% 85.90%
Type 5 Small 25.80% 48.10%
Type 5 Large 36.70% 70.40%
Type 6 Small 22.70% 54.70%
Type 6 Large 38.90% 76.00%

More details of the results obtained by these algorithms are provided in Table 3, Table 4, Table 5 and
Table 6. Using the Cayley code [25–29], which can be used in encoding spanning trees of graphs with more
than two nodes, the C-MFEA is not be applied to CluSTP problem instances with less than three clusters.
Hence, in Table 3, Table 4, Table 5 and Table 6, symbol ”-” indicates that the corresponding problem
instances could not be solved by the C-MFEA.

5.4.2. Analysis of influential factors
It is clear that the cost of the solution to an instance depends on the total cost of the edges. However,

as the CluSTP problem is NP-Hard, it is too much work to check all possible combinations of edges in
a problem instance. Moreover, problem instances are created by various algorithms, so it takes a lot of
time and effort to find the trend of the performance of the new algorithm based on the weight of the edges.
Therefore, we want to determine other factors which influence the performance of the new algorithm and
deduce the trend of the results obtained by the algorithm.

The chromosome in the new algorithm is influenced by the number of clusters in the CluSTP instance,
so the number of clusters affects the efficiency of the evolutionary operators as well as the performance of
the novel algorithm. Another possible factor is the average number of vertices in a cluster which does not
directly appear in the evolutionary algorithm but affects the solution through the spanning tree obtained by
the Dijsktra’s algorithm from the local root of each cluster.

Therefore, we will analyze the number of clusters and the average number of vertices in a cluster for
finding the tendency of the results obtained by the algorithm.

As the number of instances that can be solved by the C-MFEA in each types is small, we only examine
the impact of influential factors on the newly proposed evolutionary algorithm and the E-MFEA.

To see the impact of the number of clusters and the average number of vertices in a cluster on the RPD,
first we graph scatter plots of the relationship between number of cluster, average number of vertices in a
cluster and the RPD for each type, and then we try to find the correlation coefficient in that relationship.

We construct the scatter plots of the number of clusters and the RPD(E-MFEA) as shown in Figure 6.
As can be seen from Figure 6, it is hard to determine the relationship between the number of clusters and
the RPD(E-MFEA) for each type. However, some characteristics of the relationship can still be seen. On
instances of Type 3 (Figure 6(b)) and small instances of Type 6 (Figure 6(d)), the RPD tend to decrease
when the number of clusters increases. In other words, the new algorithm is more effective on instances with
smaller number of clusters. On the contrary, on small instances in Type 5 (Figure 6(c)), the performance of
the new algorithm tends to increase when the number of clusters increases.

The scatter plots of the RPD(E-MFEA) and the average number of vertices in a cluster are presented in
Figure 7. The figures show that in Type 1, Type 4, Type 5 and Type 6, the RPD(E-MFEA) tends to increase

12

(a) Type 1 (b) Type 3 and Type 4

(c) Type 5 (d) Type 6

Figure 6: The scatter of RPD and number cluster in types

13

(a) Type 1 (b) Type 3 and Type 4

(c) Type 5 (d) Type 6

Figure 7: The scatter of RPD and averaged number of vertex in cluster

14

when the average number of vertices in a cluster increases. However, the trend of the relationship between
RPD(E-MFEA) and the average number of vertices in a cluster varies among types. The tendency of the
relationship in Type 1 is not as obvious as those in Type 5 and Type 6. The results in Figure 7(b) indicate
that in type 3, the average number of vertices has hardly any impact on the RPD(E-MFEA).

From the above analysis, it can be concluded that on problem instances in Type 3, the average number
of vertex does not have a significant impact on the performance of the new algorithm. In contrast, for the
remaining types, the performance of the new algorithm tends to improve as the average number of vertices
in a cluster increases.

Table 2: Pearson correlation between the number of clusters, the average number of vertices and RPD on the datasets

Type Criteria Pearson pmc p-values

Type 1
Averaged number of vertex 0.6819712 6.59E-07
Number of cluster -0.3147793 0.04232

Type 5
Averaged number of vertex 0.5610308 0.0003716
Number of cluster 0.2280425 0.181

Type 6
Averaged number of vertex 0.8478091 8.03E-15
Number of cluster -0.3514797 0.01232

So far we have examined the relationship among the average number of vertices, the number of clusters
and RPD() as well as the impact of the average number of vertices and the number of clusters on the perfor-
mance of the proposed algorithm. We will take a closer look at the influence of average number of vertex
and number of cluster on the performance of the new algorithm.

To analyze more closely the relationship between the number of cluster, average number of vertex in
cluster and RPD(E-MFEA), we compute Pearson correlation coefficient (Pearson pmc) of these factors.
Because the numbers of instances in Type 3 and Type 4 are very small, we only consider the instances of
Type 1, Type 5 and Type 6.

Table 2 presents details of the Pearson pmc of the number of clusters, the average number of vertices in a
cluster and the RPD(E-MFEA). In Table 2, the Pearson pmc values between the average number of vertices
and the RPD is larger than the Pearson pmc value between the number of clusters and the RPD. Additionally,
in Type 5, correlation coefficient between the number of clusters and the RPD is not statistically significant
(p-value = 0.181), which means that the relationship between the average number of vertices and the RPD
is stronger than the relationship between the number of clusters and the RPD.

Another noteworthy point in the results in Table 2 is that the values of the Pearson pmc between the
number of clusters and the RPD in Type 1 and Type 6 are negative, which means that when the number
of clusters increases, the RPD tends to decrease. This statement is reinforced by the results illustrated in
Figure 6.

Figure 8 illustrates the relationship between the population diversity and the number of generations on
instances in types. A highlight in these figures is that with same number of vertices, the larger the population
diversity at a generation, the smaller the number of clusters. For example, in Figure 8(d), the number of
clusters in instance 5i45-18 is the smallest (5 clusters), while the corresponding population diversity is the
largest. While the number of clusters in instance 10i45-18 is the largest (10 clusters), the corresponding
population diversity is the smallest.

6. Conclusion

This paper presented a new approach that decompose the CluSTP into two sub-problems. This paper
also pointed out two features of these sub-problems which help to find a solution of the CluSTP by using

15

(a) Type 1 (b) Type 3

(c) Type 4 (d) Type 5

(e) Type 6

Figure 8: Relationship between polulation diversity and generation in types

16

the properties of solutions to the sub-problems, i.e. set of edges connecting among clusters and set of roots
of clusters. From these observations, we proposed an evolutionary algorithm based on a new individual
encoding. Various types of problem instances are selected to conduct the evolutionary algorithm. The
experimental results demonstrated superior performance of the new algorithm in comparison with existing
algorithms. An in-depth analysis of the received results also explained the impact of the average number of
vertices in a cluster and the number of clusters to the efficiency of the new algorithm. More specifically, the
average number of vertices in a cluster is has more impact than the number of clusters.

To enhance the performance of the novel algorithm, in the future, we will find a local search algorithm
to combine with this evolutionary algorithm.

References

[1] B. Y. Wu, C.-W. Lin, On the clustered Steiner tree problem, Journal of Combinatorial Optimization
30 (2) (2015) 370–386.

[2] M. Dror, M. Haouari, J. Chaouachi, Generalized spanning trees, European Journal of Operational
Research 120 (3) (2000) 583–592. doi:10.1016/S0377-2217(99)00006-5.
URL http://www.sciencedirect.com/science/article/pii/S0377221799000065

[3] B. Y. Wu, C.-W. Lin, L.-H. Chen, The steiner ratio of the clustered steiner tree problem is three,
Unpublished manuscript.

[4] M. Mestria, New hybrid heuristic algorithm for the clustered traveling salesman problem, Computers
& Industrial Engineering 116 (2018) 1–12.

[5] M. Mestria, L. S. Ochi, S. de Lima Martins, GRASP with path relinking for the symmetric euclidean
clustered traveling salesman problem, Computers & Operations Research 40 (12) (2013) 3218–3229.

[6] J.-Y. Potvin, F. Guertin, The clustered traveling salesman problem: A genetic approach, in: Meta-
Heuristics, Springer, 1996, pp. 619–631.

[7] G. Laporte, U. Palekar, Some applications of the clustered travelling salesman problem, Journal of the
Operational Research Society 53 (9) (2002) 972–976.

[8] Z. Degraeve, L. Schrage, Optimal integer solutions to industrial cutting stock problems, INFORMS
Journal on Computing 11 (4) (1999) 406–419.

[9] J. A. Chisman, The clustered traveling salesman problem, Computers & Operations Research 2 (2)
(1975) 115–119.

[10] C.-M. Liu, Clustering techniques for stock location and order-picking in a distribution center, Comput-
ers & Operations Research 26 (10) (1999) 989–1002.

[11] A. Weintraub, J. Aboud, C. Fernandez, G. Laporte, E. Ramirez, An emergency vehicle dispatching
system for an electric utility in chile, Journal of the Operational Research Society 50 (7) (1999) 690–
696.

[12] N. Balakrishnan, A. Lucena, R. T. Wong, Scheduling examinations to reduce second-order conflicts,
Computers & Operations Research 19 (5) (1992) 353–361.

17

http://www.sciencedirect.com/science/article/pii/S0377221799000065
http://dx.doi.org/10.1016/S0377-2217(99)00006-5
http://www.sciencedirect.com/science/article/pii/S0377221799000065

[13] G. Laporte, F. Semet, V. Dadeshidze, L. Olsson, A tiling and routing heuristic for the screening of
cytological samples, Journal of the Operational Research Society 49 (12) (1998) 1233–1238.

[14] G. Laporte, U. Palekar, Some applications of the clustered travelling salesman problem, Journal of the
Operational Research Society 53 (9) (2002) 972–976.

[15] T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary program-
ming, genetic algorithms, Oxford university press, 1996.

[16] C. Ding, Y. Cheng, M. He, Two-level genetic algorithm for clustered traveling salesman problem with
application in large-scale tsps, Tsinghua Science and technology 12 (4) (2007) 459–465.

[17] P. Pop, O. Matei, C. Pintea, A two-level diploid genetic based algorithm for solving the family traveling
salesman problem, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM,
2018, pp. 340–346.

[18] P. Pop, M. Oliviu, C. Sabo, A hybrid diploid genetic based algorithm for solving the generalized
traveling salesman problem, in: International Conference on Hybrid Artificial Intelligence Systems,
Springer, 2017, pp. 149–160.

[19] C.-W. Lin, B. Y. Wu, On the minimum routing cost clustered tree problem, Journal of Combinatorial
Optimization (2016) 1–16.

[20] M. D’Emidio, L. Forlizzi, D. Frigioni, S. Leucci, G. Proietti, On the Clustered Shortest-Path Tree
Problem., in: ICTCS, 2016, pp. 263–268.

[21] E. E. Agoston, Introduction to Evolutionary Computing, Berlin, Springer-Verlag, 2003.

[22] D. E. Goldberg, Genetic algorithms, Pearson Education India, 2006.

[23] H. T. T. Binh, P. D. Thanh, T. B. Trung, L. P. Thao, Effective multifactorial evolutionary algorithm
for solving the cluster shortest path tree problem, in: Evolutionary Computation (CEC), 2018 IEEE
Congress on, IEEE, 2018, pp. 819–826.

[24] P. D. Thanh, D. A. Dung, T. N. Tien, H. T. T. Binh, An effective representation scheme in multifactorial
evolutionary algorithm for solving cluster shortest-path tree problem, in: Evolutionary Computation
(CEC), 2018 IEEE Congress on, IEEE, 2018, pp. 811–818.

[25] E. Thompson, T. Paulden, D. K. Smith, The dandelion code: A new coding of spanning trees for genetic
algorithms, IEEE Transactions on Evolutionary Computation 11 (1) (2007) 91–100.

[26] C. Perfecto, M. N. Bilbao, J. Del Ser, A. Ferro, S. Salcedo-Sanz, Dandelion-encoded harmony search
heuristics for opportunistic traffic offloading in synthetically modeled mobile networks, in: Harmony
Search Algorithm, Springer, 2016, pp. 133–145.

[27] B. A. Julstrom, The blob code is competitive with edge-sets in genetic algorithms for the minimum
routing cost spanning tree problem, in: Proceedings of the 7th annual conference on Genetic and
evolutionary computation, ACM, 2005, pp. 585–590.

[28] C. Palmer, A. Kershenbaum, Representing trees in genetic algorithms, IEEE, Orlando, FL, USA, 1994,
pp. 379–384. doi:10.1109/ICEC.1994.349921.
URL http://ieeexplore.ieee.org/document/349921/

18

http://ieeexplore.ieee.org/document/349921/
http://dx.doi.org/10.1109/ICEC.1994.349921
http://ieeexplore.ieee.org/document/349921/

[29] T. Paulden, D. Smith, Recent Advances in the Study of the Dandelion Code, Happy Code, and Blob
Code Spanning Tree Representations, IEEE, Vancouver, BC, Canada, 2006, pp. 2111–2118. doi:

10.1109/CEC.2006.1688567.
URL http://ieeexplore.ieee.org/document/1688567/

[30] P. C. Pop, L. Fuksz, A. H. Marc, C. Sabo, A novel two-level optimization approach for clustered vehicle
routing problem, Computers & Industrial Engineering 115 (2018) 304–318.

[31] P. C. Pop, O. Matei, C. Sabo, A. Petrovan, A two-level solution approach for solving the generalized
minimum spanning tree problem, European Journal of Operational Research 265 (2) (2018) 478–487.

[32] K. Deb, A. Sinha, Evolutionary bilevel optimization (ebo), in: Proceedings of the Companion Pub-
lication of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, 2014, pp.
857–876.

[33] A. Sinha, P. Malo, K. Deb, Evolutionary bilevel optimization: An introduction and recent advances, in:
Recent Advances in Evolutionary Multi-objective Optimization, Springer, 2017, pp. 71–103.

[34] W. Shu-Xi, The improved dijkstra’s shortest path algorithm and its application, Procedia Engineering
29 (2012) 1186–1190.

[35] M. Xu, Y. Liu, Q. Huang, Y. Zhang, G. Luan, An improved dijkstras shortest path algorithm for sparse
network, Applied Mathematics and Computation 185 (1) (2007) 247–254.

[36] D. B. Johnson, A note on dijkstra’s shortest path algorithm, Journal of the ACM (JACM) 20 (3) (1973)
385–388.

[37] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische mathematik 1 (1) (1959)
269–271.

[38] K. Helsgaun, Solving the Clustered Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun
Algorithm, Computer Science Research Report (142) (2011) 1–16.

[39] P. D. Thanh, CluSPT instances, Mendeley Data v2, 2018. doi:http://dx.doi.org/10.17632/

b4gcgybvt6.2.

References

[1] B. Y. Wu, C.-W. Lin, On the clustered Steiner tree problem, Journal of Combinatorial Optimization
30 (2) (2015) 370–386.

[2] M. Dror, M. Haouari, J. Chaouachi, Generalized spanning trees, European Journal of Operational
Research 120 (3) (2000) 583–592. doi:10.1016/S0377-2217(99)00006-5.
URL http://www.sciencedirect.com/science/article/pii/S0377221799000065

[3] B. Y. Wu, C.-W. Lin, L.-H. Chen, The steiner ratio of the clustered steiner tree problem is three,
Unpublished manuscript.

[4] M. Mestria, New hybrid heuristic algorithm for the clustered traveling salesman problem, Computers
& Industrial Engineering 116 (2018) 1–12.

19

http://ieeexplore.ieee.org/document/1688567/
http://ieeexplore.ieee.org/document/1688567/
http://dx.doi.org/10.1109/CEC.2006.1688567
http://dx.doi.org/10.1109/CEC.2006.1688567
http://ieeexplore.ieee.org/document/1688567/
http://dx.doi.org/http://dx.doi.org/10.17632/b4gcgybvt6.2
http://dx.doi.org/http://dx.doi.org/10.17632/b4gcgybvt6.2
http://www.sciencedirect.com/science/article/pii/S0377221799000065
http://dx.doi.org/10.1016/S0377-2217(99)00006-5
http://www.sciencedirect.com/science/article/pii/S0377221799000065

[5] M. Mestria, L. S. Ochi, S. de Lima Martins, GRASP with path relinking for the symmetric euclidean
clustered traveling salesman problem, Computers & Operations Research 40 (12) (2013) 3218–3229.

[6] J.-Y. Potvin, F. Guertin, The clustered traveling salesman problem: A genetic approach, in: Meta-
Heuristics, Springer, 1996, pp. 619–631.

[7] G. Laporte, U. Palekar, Some applications of the clustered travelling salesman problem, Journal of the
Operational Research Society 53 (9) (2002) 972–976.

[8] Z. Degraeve, L. Schrage, Optimal integer solutions to industrial cutting stock problems, INFORMS
Journal on Computing 11 (4) (1999) 406–419.

[9] J. A. Chisman, The clustered traveling salesman problem, Computers & Operations Research 2 (2)
(1975) 115–119.

[10] C.-M. Liu, Clustering techniques for stock location and order-picking in a distribution center, Comput-
ers & Operations Research 26 (10) (1999) 989–1002.

[11] A. Weintraub, J. Aboud, C. Fernandez, G. Laporte, E. Ramirez, An emergency vehicle dispatching
system for an electric utility in chile, Journal of the Operational Research Society 50 (7) (1999) 690–
696.

[12] N. Balakrishnan, A. Lucena, R. T. Wong, Scheduling examinations to reduce second-order conflicts,
Computers & Operations Research 19 (5) (1992) 353–361.

[13] G. Laporte, F. Semet, V. Dadeshidze, L. Olsson, A tiling and routing heuristic for the screening of
cytological samples, Journal of the Operational Research Society 49 (12) (1998) 1233–1238.

[14] G. Laporte, U. Palekar, Some applications of the clustered travelling salesman problem, Journal of the
Operational Research Society 53 (9) (2002) 972–976.

[15] T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary program-
ming, genetic algorithms, Oxford university press, 1996.

[16] C. Ding, Y. Cheng, M. He, Two-level genetic algorithm for clustered traveling salesman problem with
application in large-scale tsps, Tsinghua Science and technology 12 (4) (2007) 459–465.

[17] P. Pop, O. Matei, C. Pintea, A two-level diploid genetic based algorithm for solving the family traveling
salesman problem, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM,
2018, pp. 340–346.

[18] P. Pop, M. Oliviu, C. Sabo, A hybrid diploid genetic based algorithm for solving the generalized
traveling salesman problem, in: International Conference on Hybrid Artificial Intelligence Systems,
Springer, 2017, pp. 149–160.

[19] C.-W. Lin, B. Y. Wu, On the minimum routing cost clustered tree problem, Journal of Combinatorial
Optimization (2016) 1–16.

[20] M. D’Emidio, L. Forlizzi, D. Frigioni, S. Leucci, G. Proietti, On the Clustered Shortest-Path Tree
Problem., in: ICTCS, 2016, pp. 263–268.

[21] E. E. Agoston, Introduction to Evolutionary Computing, Berlin, Springer-Verlag, 2003.

20

[22] D. E. Goldberg, Genetic algorithms, Pearson Education India, 2006.

[23] H. T. T. Binh, P. D. Thanh, T. B. Trung, L. P. Thao, Effective multifactorial evolutionary algorithm
for solving the cluster shortest path tree problem, in: Evolutionary Computation (CEC), 2018 IEEE
Congress on, IEEE, 2018, pp. 819–826.

[24] P. D. Thanh, D. A. Dung, T. N. Tien, H. T. T. Binh, An effective representation scheme in multifactorial
evolutionary algorithm for solving cluster shortest-path tree problem, in: Evolutionary Computation
(CEC), 2018 IEEE Congress on, IEEE, 2018, pp. 811–818.

[25] E. Thompson, T. Paulden, D. K. Smith, The dandelion code: A new coding of spanning trees for genetic
algorithms, IEEE Transactions on Evolutionary Computation 11 (1) (2007) 91–100.

[26] C. Perfecto, M. N. Bilbao, J. Del Ser, A. Ferro, S. Salcedo-Sanz, Dandelion-encoded harmony search
heuristics for opportunistic traffic offloading in synthetically modeled mobile networks, in: Harmony
Search Algorithm, Springer, 2016, pp. 133–145.

[27] B. A. Julstrom, The blob code is competitive with edge-sets in genetic algorithms for the minimum
routing cost spanning tree problem, in: Proceedings of the 7th annual conference on Genetic and
evolutionary computation, ACM, 2005, pp. 585–590.

[28] C. Palmer, A. Kershenbaum, Representing trees in genetic algorithms, IEEE, Orlando, FL, USA, 1994,
pp. 379–384. doi:10.1109/ICEC.1994.349921.
URL http://ieeexplore.ieee.org/document/349921/

[29] T. Paulden, D. Smith, Recent Advances in the Study of the Dandelion Code, Happy Code, and Blob
Code Spanning Tree Representations, IEEE, Vancouver, BC, Canada, 2006, pp. 2111–2118. doi:

10.1109/CEC.2006.1688567.
URL http://ieeexplore.ieee.org/document/1688567/

[30] P. C. Pop, L. Fuksz, A. H. Marc, C. Sabo, A novel two-level optimization approach for clustered vehicle
routing problem, Computers & Industrial Engineering 115 (2018) 304–318.

[31] P. C. Pop, O. Matei, C. Sabo, A. Petrovan, A two-level solution approach for solving the generalized
minimum spanning tree problem, European Journal of Operational Research 265 (2) (2018) 478–487.

[32] K. Deb, A. Sinha, Evolutionary bilevel optimization (ebo), in: Proceedings of the Companion Pub-
lication of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, 2014, pp.
857–876.

[33] A. Sinha, P. Malo, K. Deb, Evolutionary bilevel optimization: An introduction and recent advances, in:
Recent Advances in Evolutionary Multi-objective Optimization, Springer, 2017, pp. 71–103.

[34] W. Shu-Xi, The improved dijkstra’s shortest path algorithm and its application, Procedia Engineering
29 (2012) 1186–1190.

[35] M. Xu, Y. Liu, Q. Huang, Y. Zhang, G. Luan, An improved dijkstras shortest path algorithm for sparse
network, Applied Mathematics and Computation 185 (1) (2007) 247–254.

[36] D. B. Johnson, A note on dijkstra’s shortest path algorithm, Journal of the ACM (JACM) 20 (3) (1973)
385–388.

21

http://ieeexplore.ieee.org/document/349921/
http://dx.doi.org/10.1109/ICEC.1994.349921
http://ieeexplore.ieee.org/document/349921/
http://ieeexplore.ieee.org/document/1688567/
http://ieeexplore.ieee.org/document/1688567/
http://dx.doi.org/10.1109/CEC.2006.1688567
http://dx.doi.org/10.1109/CEC.2006.1688567
http://ieeexplore.ieee.org/document/1688567/

[37] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische mathematik 1 (1) (1959)
269–271.

[38] K. Helsgaun, Solving the Clustered Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun
Algorithm, Computer Science Research Report (142) (2011) 1–16.

[39] P. D. Thanh, CluSPT instances, Mendeley Data v2, 2018. doi:http://dx.doi.org/10.17632/

b4gcgybvt6.2.

22

http://dx.doi.org/http://dx.doi.org/10.17632/b4gcgybvt6.2
http://dx.doi.org/http://dx.doi.org/10.17632/b4gcgybvt6.2

Table 3: Results Obtained By E-MFEA, C-MFEA And NEA on Instances In Type 1

Ins
E-MFEA C-MFEA NEA

BF Avg Rm BF Avg Rm BF Avg Rm

Sm
al

lI
ns

ta
nc

es

10berlin52 45684.5 47075.7 0.10 - - - 43954.0 44237.6 0.02
10eil51 1923.9 2020.3 0.10 3027.7 3513.3 0.05 1741.5 1770.6 0.02
10eil76 3089.3 3418.7 0.22 4263.1 5175.2 0.05 2264.5 2315.6 0.02
10kroB100 203481.4 221058.2 0.22 301982.8 363749.0 0.08 143108.6 147539.7 0.02
10pr76 656800.9 685310.3 0.22 914315.2 1159871.7 0.08 531536.7 544954.5 0.02
10rat99 10381.7 11015.9 0.22 13954.6 17406.1 0.07 7697.8 7899.4 0.02
10st70 5723.3 5833.4 0.17 - - - 3098.7 3191.1 0.02
15berlin52 29246.2 30279.9 0.17 - - - 26463.1 26867.8 0.03
15eil51 1753.5 1954.1 0.15 - - - 1313.4 1336.5 0.03
15eil76 3374.9 3452.4 0.15 - - - 2955.3 3047.8 0.03
15pr76 772012.8 796271.2 0.15 - - - 714652.2 728128.0 0.03
15st70 4921.2 5308.3 0.15 - - - 4145.8 4230.1 0.03
25eil101 5241.4 5384.7 0.27 - - - 4826.6 4885.5 0.03
25kroA100 165880.9 169702.2 0.27 - - - 150157.7 153155.6 0.03
25lin105 107677.9 110598.5 0.30 - - - 98991.8 100615.8 0.03
25rat99 9464.2 9690.5 0.30 - - - 7056.0 7162.3 0.03
50eil101 4239.2 4459.4 0.37 - - - 3890.7 3919.7 0.07
50kroA100 180990.7 199637.3 0.37 - - - 160547.4 161889.6 0.07
50kroB100 156209.3 170468.1 0.37 - - - 134077.5 135332.2 0.07
50lin105 153465.7 158775.5 0.37 - - - 146367.1 147175.4 0.07
50rat99 9747.3 11328.3 0.82 - - - 8104.5 8132.4 0.08
5berlin52 35387.5 37595.9 0.82 42296.7 48591.5 0.07 22746.4 22938.2 0.00
5eil51 2101.3 2367.0 0.18 2380.1 2691.7 0.05 1769.4 1775.3 0.00
5eil76 3450.1 3688.0 0.18 4962.0 5583.6 0.05 2630.8 2693.1 0.00
5pr76 709511.2 799642.4 0.23 1056191.9 1261431.3 0.05 585008.0 591547.0 0.00
5st70 5430.2 5693.8 0.23 6598.6 7550.2 0.05 4520.1 4544.9 0.00

L
ar

ge
In

st
an

ce
s

10a280 60569.9 65704.5 0.13 101817.0 118642.0 0.03 28690.9 29664.8 0.02
10gil262 49367.9 52619.9 0.13 - - - 29075.0 29568.4 0.02
10lin318 1271784.7 1360198.6 0.28 2053763.5 2289808.8 0.03 832299.5 841893.2 0.02
10pcb442 1478189.3 1627962.0 0.28 3037722.6 3339950.7 0.07 765561.0 796960.4 0.02
10pr439 2715809.1 2927551.1 0.32 7422453.2 8398138.5 0.07 1971633.0 2022257.4 0.02
25a280 46362.3 50294.1 0.32 134286.1 166395.9 0.03 31481.2 32020.2 0.03

23

25gil262 40597.5 42488.2 0.08 116170.2 136005.8 0.03 31579.5 31949.7 0.03
25lin318 848201.5 927441.2 0.08 2449806.0 2883914.2 0.05 607029.0 617399.9 0.03
25pcb442 1171370.9 1253188.9 0.42 3346967.2 4070674.9 0.05 794217.4 805896.7 0.03
25pr439 2206210.6 2399266.5 0.42 - - - 1585283.0 1612334.7 0.03
50a280 48703.5 52488.9 0.12 - - - 37458.4 37828.6 0.10
50gil262 34324.7 35734.5 0.12 - - - 27647.5 27836.2 0.10
50lin318 825219.7 881360.3 0.23 - - - 706854.9 713744.5 0.10
50pcb442 1194878.5 1313254.1 0.23 - - - 949830.8 954169.0 0.10

Rm: Running time of algorithms in minutes; Ins: Problem Instances;

Table 4: Results Obtained By E-MFEA, C-MFEA And NEA on Instances In Type 3 and Type 4

Ins
E-MFEA C-MFEA NEA

BF Avg Rm BF Avg Rm BF Avg Rm

Ty
pe

3

6i300 28672.7 30356.7 7.38 31283.6 39444.1 1.22 19358.8 19467.0 0.02
6i350 32978.7 34541.8 7.38 78019.0 87416.8 1.22 21472.8 21702.2 0.02
6i400 43086.1 46328.2 10.47 52463.2 62720.6 2.05 29506.9 29677.7 0.02
6i450 51738.6 55060.5 10.47 124525.9 137183.6 2.05 35866.3 36124.5 0.02
6i500 61227.4 69324.1 5.88 143220.7 153699.3 2.93 37711.6 38045.9 0.02

Ty
pe

4

4i200a 329844.5 393407.0 0.07 1058533.6 1150968.4 0.02 97959.6 102256.3 0.00
4i200h 215812.7 248321.3 0.07 604259.8 652916.9 0.02 87675.3 89628.9 0.00
4i200x1 239439.4 258423.4 0.07 621807.6 680006.8 0.02 123669.7 125782.7 0.00
4i200x2 226820.7 254560.0 0.07 631471.0 671268.7 0.02 114012.3 116256.5 0.00
4i200z 259796.7 284456.1 0.40 265010.4 284466.7 0.05 131683.5 133873.8 0.00
4i400a 834356.4 948781.5 0.40 4681600.4 5013170.5 0.05 217171.4 227530.6 0.02
4i400h 655591.7 713631.1 5.15 2602030.7 2808230.9 3.05 257954.4 260916.0 0.02
4i400x1 569429.8 667408.9 5.15 2481894.5 2668551.2 3.05 188786.2 191694.7 0.02
4i400x2 570171.7 639480.4 5.50 2478070.1 2659442.4 3.13 159254.8 163222.8 0.02
4i400z 588799.3 674446.0 5.50 2512497.8 2723834.3 3.13 221460.6 225096.3 0.02

Rm: Running time of algorithms in minutes; Ins: Problem Instances;

Table 5: Results Obtained By E-MFEA, C-MFEA And NEA on Instances In Type 5

Ins
E-MFEA C-MFEA NEA

24

BF Avg Rm BF Avg Rm BF Avg Rm

Sm
al

lI
ns

ta
nc

es

10i120-46 122349.2 125510.1 0.32 156097.1 184275.7 0.10 96168.2 97752.1 0.02
10i30-17 14718.5 15740.9 0.32 - - - 13276.6 13290.0 0.02
10i45-18 27068.0 29306.5 0.12 37121.1 42932.6 0.10 23227.3 23985.5 0.02
10i60-21 42386.6 44667.3 0.12 53877.1 68825.7 0.05 34147.0 35233.3 0.02
10i65-21 47165.1 50815.3 0.15 66268.0 79374.5 0.05 38318.8 39578.8 0.02
10i70-21 48058.1 51889.0 0.15 61048.5 76907.1 0.08 38816.6 39687.3 0.02
10i75-22 74952.5 77605.4 0.25 - - - 65923.2 66485.1 0.02
10i90-33 66438.4 67881.2 0.25 81379.3 97534.6 0.08 53076.0 54636.2 0.02
5i120-46 92826.2 103713.6 0.47 - - - 61695.7 62620.1 0.02
5i30-17 15801.5 17664.7 0.47 - - - 14399.9 14399.9 0.00
5i45-18 19813.0 23639.3 0.12 24131.3 27649.3 0.05 14884.3 14925.6 0.00
5i60-21 36445.8 39060.5 0.12 48867.1 57579.8 0.05 28422.7 28769.6 0.00
5i65-21 38682.7 41488.6 0.15 51818.2 62189.7 0.07 30907.8 31254.4 0.00
5i70-21 50025.1 54839.7 0.15 69390.4 82771.9 0.07 35052.8 35298.8 0.00
5i75-22 41260.0 49758.6 0.27 66131.0 78693.8 0.08 34692.5 35098.7 0.00
5i90-33 69640.4 74725.8 0.27 91746.3 99266.9 0.08 51977.0 52533.8 0.00
7i30-17 24546.7 26344.9 0.10 - - - 20438.9 20454.2 0.02
7i45-18 32673.8 34086.1 0.10 - - - 20512.0 20700.8 0.02
7i60-21 45073.1 48395.9 0.15 55312.7 67556.5 0.05 36295.4 37780.7 0.02
7i65-21 47276.4 49872.8 0.15 58179.2 71715.7 0.05 35201.2 36136.4 0.02
7i70-21 54019.4 60450.6 13.47 57464.9 67043.4 1.10 39613.4 40819.5 0.02

L
ar

ge
In

st
an

ce
s

10i300-109 202810.9 217296.6 0.22 255346.6 312345.5 0.07 117421.2 119952.9 0.02
10i400-206 309133.7 335121.6 0.22 591868.0 695950.3 0.07 214604.4 217399.0 0.02
10i500-305 455477.7 476345.7 0.32 835260.4 921942.4 0.10 355952.4 359614.5 0.02
15i300-110 198774.7 216560.0 0.32 341726.8 403762.5 0.10 119922.2 122146.2 0.02
15i400-207 277578.7 301202.3 0.22 523177.2 635130.8 0.08 171349.6 175081.7 0.02
15i500-306 461867.3 490046.0 0.22 930442.1 1142750.5 0.00 310122.7 313184.9 0.02
20i300-111 227654.2 243449.4 0.13 498896.3 648713.3 0.05 163927.8 167104.4 0.03
20i400-208 315302.4 328243.0 3.78 798929.3 996341.1 1.60 231753.3 236373.9 0.03
20i500-307 325116.8 361197.5 6.38 546303.4 631936.3 2.20 212306.3 215644.7 0.03
25i300-112 198094.7 212148.3 6.38 538605.8 636235.0 2.20 125392.7 127466.5 0.05
25i400-209 358815.6 385364.4 5.87 874763.8 1109608.0 2.27 241529.0 243994.1 0.05
25i500-308 413415.1 430338.8 5.87 1154806.9 1368867.4 2.27 312805.6 316116.8 0.05
5i300-108 276565.1 288332.1 6.72 267454.9 298521.2 1.53 178628.1 180397.2 0.02

25

5i400-205 321381.9 346678.0 6.72 841789.9 890827.0 1.53 211603.0 213125.6 0.02
5i500-304 321328.5 345679.7 13.67 959132.5 1050820.4 2.93 183656.4 185924.4 0.02

Rm: Running time of algorithms in minutes; Ins: Problem Instances;

Table 6: Results Obtained By E-MFEA, C-MFEA And NEA on Instances In Type 1

Ins
E-MFEA C-MFEA NEA

BF Avg Rm BF Avg Rm BF Avg Rm

Sm
al

lI
ns

ta
nc

es

10berlin52-2x5 34749.2 36828.8 1.60 - - - 27471.4 27805.3 0.02
12eil51-3x4 1922.4 2000.3 0.18 3115.8 3648.4 0.07 1720.1 1762.7 0.02
12eil76-3x4 3197.7 3330.0 0.18 5219.5 6381.5 0.07 2738.6 2802.0 0.02
12pr76-3x4 699229.9 723373.3 0.22 - - - 604837.0 621228.6 0.02
12st70-3x4 5113.1 5431.3 0.22 6976.2 8579.5 0.12 4148.4 4219.2 0.02
15pr76-3x5 560767.5 576792.5 0.23 - - - 534613.0 544174.0 0.03
16eil51-4x4 1459.1 1490.5 0.23 - - - 1323.8 1351.1 0.03
16eil76-4x4 3321.5 3453.1 0.38 - - - 2088.1 2163.0 0.03
16lin105-4x4 158387.1 162660.9 0.38 - - - 128713.1 130815.3 0.03
16st70-4x4 3410.2 3519.6 0.25 - - - 2963.8 3050.4 0.03
18pr76-3x6 735572.7 771984.5 0.25 - - - 641209.6 657524.3 0.03
20eil51-4x5 2583.1 2621.0 0.22 - - - 2286.4 2331.3 0.03
20eil76-4x5 2886.0 3038.8 0.22 - - - 2478.2 2520.3 0.02
20st70-4x5 4387.9 4582.7 0.38 - - - 2976.9 3032.7 0.03
25eil101-5x5 4314.2 4546.4 0.38 - - - 3711.7 3780.9 0.03
25eil51-5x5 1550.4 1640.2 0.22 - - - 1483.7 1512.0 0.03
25eil76-5x5 3523.0 3722.1 0.22 - - - 2264.3 2312.1 0.03
25rat99-5x5 12283.6 12635.4 0.45 - - - 11754.1 11869.1 0.03
28kroA100-4x7 161087.0 173691.0 0.45 - - - 138682.6 141334.2 0.03
2lin105-2x1 300290.7 319749.4 1.60 920629.6 1035690.4 0.12 152729.7 152729.7 0.00
30kroB100-5x6 216499.5 227926.8 0.62 - - - 201813.7 204967.3 0.03
35kroB100-5x5 166362.5 179525.2 0.92 - - - 133662.2 137003.4 0.03
36eil101-6x6 4752.6 5226.1 0.62 - - - 3977.6 4028.6 0.05
42rat99-6x7 9706.4 10068.5 0.92 - - - 9093.5 9182.7 0.07
4berlin52-2x2 37576.7 43289.4 0.25 58055.8 65276.7 0.05 23287.9 23287.9 0.00
4eil51-2x2 2691.4 2870.8 0.25 2866.8 3200.3 0.05 1898.5 1901.3 0.00

26

4eil76-2x2 4312.7 4800.2 0.53 5736.3 6451.4 0.08 2948.7 2955.8 0.00
4pr76-2x2 747062.3 821661.9 0.53 1227486.9 1437245.4 0.08 442693.0 446682.1 0.00
6berlin52-2x3 40772.6 43360.3 0.38 - - - 32128.6 32354.7 0.00
6pr76-2x3 747967.5 822531.1 0.38 1049553.9 1226278.5 0.07 648713.1 659658.8 0.00
6st70-2x3 4287.0 4631.6 0.32 5354.6 6458.5 0.07 3478.2 3525.3 0.00
8berlin52-2x4 35300.7 40698.9 0.32 - - - 26783.2 27060.4 0.02
9eil101-3x3 4397.4 4893.6 0.38 6491.1 8198.1 0.08 3184.4 3274.5 0.02
9eil51-3x3 2197.0 2293.3 0.38 2841.6 3382.1 0.08 1916.0 1963.8 0.02
9eil76-3x3 3761.3 3880.8 0.32 4945.0 5768.9 0.08 2999.4 3057.2 0.02
9pr76-3x3 738481.6 778897.8 0.32 1012732.3 1227532.7 0.08 558349.3 567987.4 0.02

L
ar

ge
In

st
an

ce
s

18pr439-3x6 2965170.6 3424145.3 23.60 - - - 1525370.2 1553940.8 0.03
20pr439-4x5 3280842.4 3597063.5 23.60 - - - 2035939.4 2075349.7 0.05
25a280-5x5 54738.3 59798.3 2.03 142031.1 166462.8 0.93 43408.0 44268.6 0.05
25gil262-5x5 41947.3 44751.4 2.03 104594.3 128710.8 0.93 32172.6 32674.3 0.05
25pcb442-5x5 1150909.8 1217723.5 5.02 3419567.0 4246700.4 1.80 786167.2 802854.1 0.05
36pcb442-6x6 1204250.6 1279680.5 4.07 - - - 899354.2 913260.7 0.08
42a280-6x7 53430.4 57165.5 4.07 - - - 45163.4 45660.2 0.12
49gil262-7x7 41405.4 44448.3 2.12 - - - 33206.0 33514.1 0.15
49lin318-7x7 771393.5 864248.8 2.12 - - - 591374.9 595249.9 0.15
9a280-3x3 58683.4 63126.1 2.57 99783.6 120079.7 0.77 30443.2 31011.6 0.02
9gil262-3x3 45369.2 49783.6 2.57 76482.4 90032.5 0.77 22158.9 23059.2 0.02
9lin318-3x3 1211011.7 1299129.6 8.02 1672982.0 1832321.4 1.48 730038.2 740588.6 0.02
9pcb442-3x3 1475825.7 1620386.4 8.02 3829863.1 4305958.6 1.48 803179.2 821884.9 0.02
9pr439-3x3 4380949.7 4683327.0 13.47 17129401.8 18669027.9 1.13 1820176.1 1881943.0 0.03

Rm: Running time of algorithms in minutes; Ins: Problem Instances;

27

	1 Introduction
	2 Notation and definitions
	3 Related works
	4 Proposed Algorithm
	4.1 Remodeling of the clustp
	4.2 New individual representation
	4.3 Individual Initialization method
	4.4 Crossover Operator
	4.5 New Mutation Operator
	4.6 New Evaluation Function

	5 Computational results
	5.1 Problem instances
	5.2 Experimental setup
	5.3 Experimental criteria
	5.4 Experimental Results on Euclidean Instances
	5.4.1 Comparison of the Performances of AAL, C-MFEA, E-MFEA and The Novel Evolutionary Algorithm
	5.4.2 Analysis of influential factors

	6 Conclusion

