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Abstract—An important task in big data integration is to
derive accurate data records from noisy and conflicting values
collected from multiple sources. Most existing truth finding
methods assume that the reliability is consistent on the whole
data set, ignoring the fact that different attributes, objects and
object groups may have different reliabilities even wrt the same
source. These reliability differences are caused by the hardness
differences in obtaining attribute values, non-uniform updates
to objects and the differences in group privileges. This paper
addresses the problem how to compute truths by effectively
estimating the reliabilities of attributes, objects and object groups
in a multi-source heterogeneous data environment. We first
propose an optimization framework TFAR, its implementation
and Lagrangian duality solution for Truth Finding by Attribute
Reliability estimation. We then present a Bayesian probabilis .
graphical model TFOR and an inference algorithm applying Col-
lapsed Gibbs Sampling for Truth Finding by Object Reli~hility
estimation. Finally we give an optimization framework 1. <K
and its implementation for Truth Finding by Group Reliabilit,
estimation. All these models lead to a more accurate estimation
of the respective attribute, object and object group _elian. ties,
which in turn can achieve a better accuracy in aferring ‘he
truths. Experimental results on both real data and sy.. “etic - ata
show that our methods have better performanc than th. tate-
of-art truth discovery methods.

Index Terms—Truth finding, attribute re .abin. - o} ject reli-
ability, group reliability, entity hardness, ‘robability graphical
model.

I. INTRODUC TON

With the rapid developments of big . ta and smart city,
the need to integrate the true valur s on heterogeneous data
observed from multiple sources w._ ther s becoming an urgent
task because of the increasi .z anreliac ity in object data and
observation sources. Relial ility inc. nsistency exists widely in
different levels and dimensi. ns. Fir .t, apparently observations
from different sources “ur an object may differ from each other
due to the difference in data capture ability of the sources,
resulting in a many-to-.. “ny r¢ ationship among Source-Value-
Object as illustrat ' *» Figure 1. Moreover, reliabilities of dif-
ferent attributes of . 1 ¢ vject set wrt the same source may also
be different because ¢. the observation hardness differences of
the attributes wrt the source (e.g. an RFID reader may have
0.99 reliability for bar-code but only 0.1 for TID). Similarly in
an orthogonal dimension, different objects (records) may also
carry different reliabilities wrt the same source because of their
differences in data entry and maintenance (e.g. the records
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F i 1. the many-to-many relationship among sources,

objec.. and values

upe “ted frequently may have a higher reliability than those
u, ‘ated infrequently). Finally, we also observe that object
-=liability is consistent within a group if we divide objects
into groups such that all objects in the same group have
the same reliability. Examples of group reliability includes
privilege groups for online services and user groups in social
networks. These reliability inconsistencies will result in source
data conflicts and increase the hardness for obtaining the truths
for objects.

For truth finding from conflicting data, most existing meth-
ods [13], [14], [25] based on majority voting and mean
computation for categorical and continuous data respectively
took no consideration of source reliabilities and unrealistically
treated all observations from all sources equally. Voting selects
the majority claims among all the observations as the truth,
while mean computation takes the mean of all observations as
the truth.

When taking into account of source reliabilities, different
truth discovery methods have been proposed [7], [32], [21],
[8], [19], [20], all aimed to utilize some sort of specifications
about the sources and applied the same basic heuristic idea: a
claim is likely to be true if it is provided by trustworthy sources
(especially if by many of them) and a source is trustworthy
if most its claims are true. Based on this idea, most methods
attempted to assign larger weight to reliable sources as they
are more important when inferring the truths. These methods
however applied the same source reliability to all attributes for
each source and are hence unable to distinguish the quality of
observations to different attributes from the same source.

We use an example in Table 1 Quiz answers to explain these
concepts. In the data sources shown in Table 1, if we only
deal with concrete and continuous data types, the Material



Object Digital Analysis | Logical A | Material A
Question 1 8 B picturell
Question 2 12 B picturel12
Question 3 14 A picture13

(a) Susan database

Object Digital Analysis | Logical A | Material A
Question 1 9 A picture21
Question 2 12 B picture22
Question 3 13 C picture23

(b) Mike database

Object Digital Analysis | Logical A | Material A
Question 1 8 A picture31
Question 2 12 C picture32
Question 3 11 C picture33

(c) Leo database

Table I: Quiz answers of Susan, Mike and Leo

Object Digital Analysis | Logical A | Material A
Question 1 8 C picturel
Question 2 14 B picture2
Question 3 11 A picture3

Table II: Ground Truth of Quiz

attribute cannot be processed. If we use the source reliability,
the reliability degrees of Source 1 (Susan database) and o. “'rce
3 (Leo database) are approximate. Nevertheless, Source 1 1,
more accurate in Logical Analysis attribute and Sovvce 3 is
more accurate in Digital Analysis attribute. The answe. - to
Question 3 in Digital Analysis are different fron. ~ach ot er,
which increases the hardness to get the truth. £ the a.. * utes
that get answers for harder questions shou’ ! ho e a higher
reliability and for easier questions a lower re.” Jilit
Existing methods ignored the fact th7 . the san.. source’s
reliability may vary significantly amo .g u.erent attributes
or objects (records). This motivates ~r work uf this paper
to investigate more effective meth .ds *Hr truth finding by
reliability estimation on heterogene. < .ata. We first propose
an optimization model TFAR, (ruth 1. ding by Attribute
Reliability estimation, to infer the qutb~ by estimating the
reliabilities of heterogeneous aw. utes and the hardness of
attribute observation. We o’ «ain a so.ution for computing an
optimal attribute weight (re iability) 'ssignment that minimizes
the total deviation between e trut’ s and the observed values.
Then we propose a Trv .1 1inding by Object Reliability estima-
tion model (TFOR) 1sing a k yesian probabilistic graphical
model to infer the obje. « relia’ dities and truths. We formulate
the derivation of ' —~ndel’s parameters as a Maximum Likeli-
hood Estimation pr« ble a and apply Collapsed Gibbs Sampling
to jointly infer the o. ‘ect reliabilities and truths. Finally we
propose another optimization model TFGR for Truth Finding
by Group Reliability Estimation to detect trustworthy claims
from conflicting observations by estimating the (object) group
reliability for the given group properties. We obtain its solution
by minimizing the overall weighted deviation between inferred

truths in the ¢-th time (iteration of the deductive procedure) and
the source observations to find the final truths. The above three
models achieve a more accurate fir e-grained source reliability
estimation on attributes, objects 2 .o . Wiect groups respectively.

In our experimental evaluation, we ..ow that our meth-
ods outperform the state-of-tt c-a1 truth-finding baselines that
considered neither attribute -=lir sility differences among all
attributes nor object reli. “ility “fferences among different
objects for a source.

The main contributi- ns  f *his paper are the proposed three
mathematical models vitb ¢heir detailed implementation algo-
rithms and solutions fo su. e the reliability conflict resolution
problem for truth rdnding at attribute, object and object group
three levels respe “tively, ¢ ; summarized below:

e« We prop~ > a g....cal optimization framework for truth
finding on ° .o nsistent attribute reliabilities by taking
attribute . cight’ and fact hardness into consideration.

o We p1. nse « probabilistic graphical model for truth find-
ing on inc. nsistent object reliabilities by incorporating
qua. v me’ surement into object reliability.

e W. nropose a general optimization framework for truth
findi=- 5n inconsistent object group reliabilities by iter-
~tively updating group weights.

o« We empirically show that our models outperform the
existing methods for conflict resolution with three real-
world datasets, which demonstrates the importance of
taking into consideration reliability differences among
attributes, objects and object groups for truth finding on
heterogeneous data.

The reminder of this paper is organized as follows: In section
2 we review the related work. Our proposed models and algo-
rithms are introduced in Section 3, Section 4 and Section 5.
Section 6 presents the evaluation results. Section 7 concludes
the paper.

II. RELATED WORK

The truth finding (conflict resolution) problem was first
studied by Yin et al. [31] who proposed a TRUTHFINDER
method to iteratively infer the truth values and source quality,
and it has now been extensively studied. Existing work can be
classified according to the specifications used to measure the
source reliability.

Data source specification. The source selection problem
identifies the subset of sources that maximizes the profit from
integration. Rekatsinas et at defined a set of time-dependent
metrics to characterize the quality of integrated data [22].
Dong et al. proposed an approaches of applying Bayesian
analysis to decide dependence between sources [3] and select
a subset of sources before integration to balance the quality
of integrated data and integrated cost [4]. Li et al. studied the
long-tail phenomenon in a task (i.e. only a few sources make
many claims) and proposed a confidence-aware truth discovery
method to estimate the source reliability by considering the
confidence interval of the estimation [11].

Observation specification. Wang et al. proposed an approx-
imate truth discovery approach which divides sources and
values into groups according to a user specified approximation



criterion, and uses the groups for efficient inter-value influ-
ence computation to improve the accuracy [28]. Shi et al.
proposed a probabilistic graphical model incorporating silent
rate, false spoken rate and true spoken rate three measures to
simultaneously infer the truth as well as source quality without
any priori training involving ground truth answers [36]. Qi et
al. proposed an optimization framework to resolve conflicts
among multiple sources of heterogeneous data, where truths
and source reliability are defined as two sets of unknown
variables [12]. Zhao et al. proposed a probabilistic graphical
model that can automatically infer the true records and source
quality without supervision, which leverages a generative
process for modelling two types of errors from two different
aspects of source quality [34]. Zhao and Han proposed a truth-
finding method specially designed for handling numerical data
based on Bayesian probabilistic modeling on the dependencies
among source quality, truth, and claimed values [33].

Crowdsourcing specification. Ma et al. proposed a fine
grained truth discovery model for the task of aggregating
conflicting data collected from multiple users/sources [18].
Wang et al. addressed the challenge of truth discovery from
noisy social sensing data on binary measurements and gave the
first optimal solution [27]. Wang et at presented a streaming
approach to solve the truth estimation problem in crowdsourc-
ing applications [26]. Whitehill et al. presented a probabilistic
model to simultaneously infer the label, expertise and difficulty
of an image [30].

With the development of big data analytics, study on the
truth finding problem recently has also been extended tv ~ope
with data dynamicity and heterogeneity.

Dynamic data fusion. Jia et al. proposed an incremental
strategy adaptive to different update situations by -onsiac ‘ing
the concept drift in learning process [10]. Zhao €. ~t propc .ed
a probabilistic model that transforms the pr.blem " .ruth
discovery over data streams into a proba’ ilist'> inference
problem [35]. Hara et al. proposed an incremc. * . da‘ 1 fusion
model based on storing provenance inforr ation in v ¢ form of
a sequence of operations by keeping br .h w.> original source
values and the new fused data in the operatious repository
[9]. Wang et al. proposed a strear.ing ‘act-finding method
that recursively updates the previou. =s .mates based on new
data [26]. Li et al. investigated f.e temp. I relations among
both object truths and source reli .oilit’, and proposed an
incremental truth discovery fram. ork “» dynamically update
object truths and source we gucs [15].

Big data integration. D mng et a explored the challenges
faced by big data integrati. ~ on t'.e topics of schema map-
ping, record linkage 2 .u data tusion [5]. Sleeman and Finin
described a way to . ibdue V BD that uses popular natural
language processing te “niqu s [24]. More recently, Lin and
Chen proposed 7 -~heme that integrates domain expertise
knowledge to ach. ve a more precise estimation of source
reliability [16], and . ‘ng proposed a graph-based model to
conduct truth discovery from conflicting multi-valued objects
[6].

All the above methods applied the same basic heuristic idea:
a claim is likely to be true if it is provided by trustworthy
sources and a source is trustworthy if most its claims are true.

Our work is based on our observation that the attribute and
object reliabilities may be inconsistent wrt the same source
for which no prior work is known ft differs from the existing
work in three aspects. First, we v ¢ .~ optimization framework
to obtain the fine-grained source reli. ility estimation on
attributes and objects to achie e n rre accurate truth inference.
Second, we use a probabi. ‘v ¢.aphical model to compute
the object reliability estiz “ation ~ore effectively. Third, we
introduce the group reliability ~ effectively compute the ob-
servation deviations of all : rrces and achieve more effective
truth inference. The ¢ *ner’ srity of our methods in comparison
with the state-of-the-art b.. ~lines without considering attribute
and object relial .lity ir ~onsistency is demonstrated in the
experiment resul. .

III. TF JTH " .. DING BY ATTRIBUTE RELIABILITY
ESTIMATION

In this sc.“on, we present our TFAR model. The model
iteratively updat s attribute weights and truths for multi-source
data. We "> ate the truth finding problem as an optimiza-
tion prv’ 'em and obtain its solution of the set of estimated
tm . .dribute reliabilities by minimizing the weighted
devic ‘on summation between the truths and observations.
“Wa nresent several hardness calculation methods and loss
“1p _tions to complete the attribute weight assignment and truth
cG Tputation procedure.

.\, Basic Definitions

In this part, we will introduce the related concepts and
notations, the problem to be solved and solution approach.

Tables 3 and 4 respectively list the related concepts and
notations to be used throughout the paper.

Given all the data sources, we aim to find the most trustwor-
thy value for every entity, and infer the reliability degree of
each attribute simultaneously. Note that a higher wy,, in Table
4 indicates that attribute n is more reliable in source k and
observations from this attribute are more likely to be accurate.
This is under the observation that if a fact is provided by many
trustworthy sources, it is more likely to be true. Furthermore,
a source that provides more true facts will be likely to provide
more true facts. The source reliability and fact confidence are
determined by each other and the true facts are more consistent
than false facts, and hence are more likely to be found at the
end.

The general approach we use to solve this problem is to
calculate first the attribute reliabilities and then the entry
truths by iteratively minimizing the deviation (from the truths)
summation of all entries weighted by fact-hardness regulated
attribute reliabilities. In this approach, we take the collection
of observations made by all the sources as the INPUT. The
OUTPUT contains an attribute weight list and a truth table.
The initial truths are generated by voting and mean methods.



Concept Explanation
object a person or thing of interest. e.g., “Question 1”.
attribute an attribute to describe the object. e.g., “Text Analysis”.
source describes the place where information about objects’ properties can be collected. e.g., Susan database.
observation | the data describing an attribute of an object from a source. e.g., Text Analysis’s Question 1 from Susan database . =zssayll”
entry an attribute value of an object. e.g., “Text Analysis’s value of Question 1”
truth accurate information of an entry, which is unique. e.g., the real answer of Text Analysis’s Ques. =~ 1.
Table III: Summary of terminologies
Notation | Description o
K Number of sources Nl
N Number of attributes
M Number of objects
w The trustworthiness list of all attributes in all sourceswiy ... wiN, W21 . WaN. ..... S, WKT - - WKN
USJCTBL The observation of the n-th attribute for the m -th object made b* e in k-th source
vg*% The truth for the n-th attribute of the m-th object
dn, The deviation function for the n-th attribute
Wkn The trustworthiness of the n-th attribute in the k-th source
S(k) The collection of observations made on all the objects by = k-th sou e v1f1 .. .vlfM, ...... 7“?\]1 VM
S* Set of truth for all objects on all propertiesvy ... v 3, -0y U,
§ The threshold of successive truth table entry difference

Table IV: Summary o. ~otations

The hardness and deviation calculation methods will be stat~d
later. The iteration procedure will stop if the successive trui.
table entry difference is below a given threshold § that will be
discussed later.

B. The TFAR Framework

We propose the following optimization fram work TF \R
that utilizes attribute weight to describe the reha ‘lit of
sources.

Given M objects, each with IV attributes \ o ertie ), a set
of observations (values) on all the attrit utes o “+ . objects
made from K sources, and an attribu’. eight (reliability)
budget of 1, with the attribute reliability updatc.” periodically,
the more reliable an attribute is, the ¢ 0osc the observations on
it to the truth is. Thus we should . nim'ze the summation of
weighted deviations from the trut’:s to u > multi-source obser-
vations, where the weights refle ¢ the celiability degrees of the
attributes. Summing up, we ha ~ “ae fr.lowing optimization
framework:

K N

M
: (%) _ Y\ () (k)
i FEW) =5 3y s D dlwrins i)

Loty =1 (1)

Through minimu. ‘ng te above function, we will obtain two
sets of variables, S(*  vepresenting truths and W representing
weights assigned to atuibutes under the given budget. Loss
function d measures the deviation from the observation vﬁﬁ,{
to the truth 117([';21 It outputs a high value if the deviation
is high and low value otherwise. Weight wy,, reflects the
trustworthiness of the n-th attribute in the k-th source. The

h._ter of wy,, the more trustable of the attribute. Naturally,
“he .ruths will rely on the attribute with higher weights to
mmimize the overall deviations. £(W) is the aggregation of
..1e attribute weight assignments under a distribution function.
It constrains the weights into a certain range to rationalize the
optimization problem.

We iteratively conduct the following three steps to get the
attribute weights and the truths through a joint procedure.

First, entity hardness calculation. Calculate the hardness of
every observation in the truth table by computing the
dispersion degree of the corresponding observations
in the INPUT sources. We will discuss the dispersion
calculation method in Section 3.3.

Hardness(vym) = f(Dispersion(vk ) @)

nm

Secondgttribute weight update. Compute the attribute
weights based on the differences between the given
(ground) truths and the observations made on the
attributes from the sources, and then update the
weights according to the hardness of the correspond-
ing observations:

W < arg min f(W, Hardness(vnm)) 3)

Third, truth update. Compute the truths of each entry to
minimize the weighted difference summation be-
tween the truths and the entries (observations on an
attribute). By computing the truth for every entry, we
can obtain the collection of truths S).

S™) « argmin f(W, {d(v$:), v} )



Algorithm 1 Truth estimation Algorithm

Input: Observations made by K sources: {S™), ... S}
Output: The true value for each object
S(* { 'S:m}n 1,m=1>
and attribute weights
W:(wll...w1N7w21...w2N, ...... 7wK1...wKN).

1: Initialize the truths S*) ;//using voting and mean methods
2: Calculate hardness of every entry

Hz(hll...th,hgl...th, ...... ’th-nhNM)
using (2);

3: repeat

4: Update attributes weights
W = (w11 o WIN, W21 - WINy e e

according to (3) to reflect attributes’
reliability based on the estimated truths and the
hardness of observations;
5: for £k < 1 to K do
for m < 1 to M do
for n <+ 1to N do
Compute the truth of the m-th object
on the n-th attribute v,(f;zl according
to (4) based on the current
estimation of attribute weights {wgn };
9: end for
10: end for
11: until Convergence criterion is satisfied; //the successie
truth table entry difference is below the threshold §
12: return S™ and W.

A

Implementation of this framework is given in Ale~rithm 1.
We will elaborate the three steps using example anctio.. " in
the following.

C. Hardness Calculation

Proposition 1. The entity hardness is pre' ented by e disper-
sion level of the observations. The highr . .. dispersion level,
the harder the entity.

Example 2. Assume that the answ s’ s lection probabilities
are same for one question. If the disy vsion level is high, it
indicates that the correct rate i* low If must of the students’
answers are consistent, it is . ~ve .kely to indicate that this
question is quite easy, though there ¢y be some exceptional
cases that popular answer are w: “ng which is quite rare.

There are K sources in t. > INPU" altogether, so there are at
most K observations ‘.1 one enuty. Now we present several
hardness calculation 1 1ethods _ or different data types.

As for categorical da ~ we - dd up the occurrence frequency
of each term. If ¥ ~aximum frequency is less than [K/2],
then the dispersio. Irvel is high, and this entity will be
labeled as hard. Ot. rwise, the entity will be labeled as
easy. As for continuous data, first we divide the values into
several numerical intervals, and then we add up the occurrence
frequency of each interval. As for text data, we first draw all
keywords of each text by deploying a text mining algorithm on
the measure of term frequency, and then add up the occurrence

frequency of each keyword. As for image data, first we extract
features, then build index, at last we search for the features
and add up the occurrence freque «cy of each feature. If the
maximum frequency is less thar |.”/2], then the dispersion
level is high, and the entity will be labeic." as hard. Otherwise,
the entity will be labeled as - asy.

Example 3. There are three ources in Table 1, so K=3,
[K/2]=2. For Digital Ana, < ati:.bute, the first entity max-
imum frequency is 2 (v . 8), gi ater than [K /2], not hard.
The second entity ma (mur fre, 4ency is 3 (value 12), greater
than [K /2], not hard. " > third entity maximum frequency is

smaller than [7.; 2], hai.. So there are 1 hard label and

WKEN E easy labels in Jigital « tribute. Similarly, there are 3 easy

labels in Logical « “ribut-, 3 hard labels in Text attribute, and
3 hard label- n Materwal attribute.

D. Attribute \ight Assignment

First, .= cal alate attribute weight assignment. Since at-
tribute eight assignment is similar to source weight assign-
ment =~ ~ ume that weight assignment follows exponential
disu ution and has the following function in the constraint of

Fauation (1):

K N
EW)= > exp(—wyn) )

k=1n=1

_heorem 4. Suppose the truths are static , the optimization
problem (1) with function (5) is convex, and the global optimal
solution is given by

Wkn =

K N M * k
SN M ) )
SN d(vi, ol

Proof: Since the truths are static, (1) has only one set of
variables W = wy,,. We rewrite (1) by replacing wg,, with its
distribution ¢y, = exp(—wy,) to prove the convexity of the
optimization problem (1): ]

(6)

K N
min f tkn ZZ ( log tk:n) Z d n'rn? ’SLI:Y)L ) (7)
k=1n=1
K N
s.t. Z Z ten =1 ()

k=1n=1

The objective function of (7) is a linear combination of
negative logarithm functions, and the constraint is linear in
tin, SO (7) is convex. Thus, the optimization problem (1) with
constraint (8) is convex, and any local optimum is also global
optimum [23].

Then we use the Lagrange multipliers to solve (7). The
Lagrangian of (7) is as follows:



K N
:ZZ —IOg tkn) *

k=1n=1

M
Z d( 7(”217 7(L]j7)L ) ( Z Ztkn - 1) (9)

m=1 =1n=1

({tlm}k 1,n=1°

where A is a Lagrange multiplier. We let the partial deriva-
tive of Lagrangian with respect to ¢y, be O in order to obtain
the optimal value of A that maximizes the dual objective (9).
The solution of the dual presents a feasible solution to the
primal problem (7) and (1) according to Lagrangian duality.
Hence we have

K N
AP Dt =
k=1n=1

From the constraint (8), Zle 25:1
becomes

K N M

D> > el

k=1n=1m=1

(10)

txn = 1, Equation (10)

A=D000 D Al il

k=1n=1m=1

On the other hand, for a fixed k& and n, from (10) we have

(1D

Z d(vis Vi) (12)
Combining (11) and (12) we have
M (x) (k)
d Unm s Unm
bin = ——am= Lo, Vi) (13)

Zk IZ'n IZ d(U’SIj;)l? 7(11%\

Because and wy,, = — log(t,) = log -+ 7> we ~btain (€ .

After we have calculated the deviations of ill thc ~n’.ies,
we can compute the attribute weights directl” usi- g (8).

This weight calculation formula indicates “». an .ctribute
with observations closer to the truths will F ave grea.~ weights.
Therefore, (5) is a reasonable constrainf (u. “tion that leads to
a meaningful attribute weight assignment formu. 1.

Second, we apply weight regulat’ sn. s we stated above,
we should update the attribute rc ‘abi’ ¢y according to the
fact hardness label obtained by ¢ ection ” 3 to obtain a more
accurate truth table. If we get ¢ harc labels and (3 easy labels
for an n—attribute, the attribute ~! abili’y can be adjusted as:

. M-«
Jkn (]\ - T ﬁ
Equation (14) shows *»t u.. - _cibutes that get answers for
harder questions sho Id hav. a higher reliability relatively.
In contrast, the sourc. < that g t answers for easier questions
should have a lower reu.” "..y.

(14)

Wkn =

E. Truth Computatic.

When the attribute weights are fixed, the truth computation
is dependent on the data type and loss function. The truth
computation methods for categorical data, continuous data,
text data, image data and video data are given respectively
as follows.

The most commonly used loss function for categorical data
is 0-1 loss in which an error occurs if the observation is different
from the truth. Formally, if the n-t! attribute is categorical, the
deviation from the truth 1),(:;7), is .en ~d as:

(*) (k)
(% 1 vnm Unm,
A o) = | #

nm ’ nm

15)

¢ otherwise.

~

Plugging (15) into the ou, ~tive function in (1), we can
obtain the following fc mu a:

K N
() +— s mi
vy 4~ smin

7
k=1n=1

Wi, « d(v, v ) (16)

This formula i. ‘icate .nat based on 0-1 loss function, to
minimize the objective function, the truth should be the value
that receive th- hig est weighted votes among all possible
values.

Similarly, u. 2-normalized loss function for continuous data
is (17, indicati g that we can use weighted mean method to
calci'~te u. ‘.ath. The truth could be the weighted mean
summati.. of all the observations.

d(vt)

ol oy =[[ vl — o) |l (17)

For text data, the loss function is (18), indicating that we
ca use weighted cosine similarity method [1] to calculate the
Joviation.

(), o (F)

Unm * Unm
® (18)

(o8 |+ | vl )

k
d(vim, v) =

For image data, the loss function is (19), indicating that
we can use weighted SITF (Scale Invariant Feature Transform) [17]
method to calculate the deviation.

d(v (+) (k))

nm ? nm

SITF (v vk))

nm ) nm

(19)

For video data, the loss function is (20), indicating that we
can use weighted PSNR (Peak signal-to-noise ratio) [2] method to
calculate the deviation.

d®) o®)y = PSNR(v() k)

TLTTL rvnm nm ’ nm

(20)

The above computation follows the principle that an ob-
servation stated by reliable sources will be more likely to be
regarded as the truth. If the difference between the successive
truth table entries is below the threshold ¢ twice, then the
iteration procedure ends. We assume d is set to be one tenth
of the difference.

Example 5. We calculated the deviations by (15)~(20), the
attribute weights by (6). The attribute weights are {(0.45,
0.83, 0.84, 0.52); (0.65, 0.73, 0.84, 0.68); (0.75, 0.69, 0.87,
0.74)} respectively. Given the hardness labels in Example 3
{(3,0); (2,1); (0,3); (3,0) / (c,B)}, by (14) we can get the
regulated weights {(0.9, 1.04, 0.42, 1.04); (1.3, 0.91, 0.42,
1.36); (1.5, 0.86, 0.43, 1.48)}. Material analysis is the most
reliable attribute in the Leo database as it provides few errors
and answers harder questions.



IV. TRUTH FINDING BY OBJECT RELIABILITY
ESTIMATION

In this section, we first introduce the measurement of our
object reliability. Then we formally describe the proposed truth
finding by object reliability estimation model TFOR which is a
Bayesian network that incorporates quality measurements into
object reliability estimation. We formulate it as a Maximum
Likelihood Estimation problem and apply Collapsed Gibbs
Sampling to jointly estimate the object reliability and truth.
The model iteratively updates the object quality and truth.
More details about the model are discussed below.

A. Measurement of Object Reliability

Given the observations and the ground truths of all entities
in one object, we can produce the confusion matrix describing
their consistency as in a classification method. The definitions
of precision, accuracy, recall and specificity are the same.
Since 1-sensitivity can capture the false negative rate of
conservative objects and specificity can seize the false positive
rate of venturous objects, we will use sensitivity and specificity
as the measurement of our object reliability. They can cover
the quality spectrum in the confusion matrix of an object. In
contrast, precision considers only positive claims and accuracy
takes only negative claims into consideration, making them
unable to recognize both positively and negatively erroneous
data because both measurements overlook the fundamen. ..
differences of these two types of errors.

Our proposed TFOR model will incorporate specifici
sensitivity into the object estimation procedure. The probav.
ity graphical model will create two separate random variables
for each object. Other prior knowledge about the ot cct y ality
can also be easily incorporated into the Bayesia’ network by
specifying the variables. However, without knoving ." = g oup
truths, we have to let the object quality and tr chs - 5 the 1atent
variables infer each other iteratively. We . ‘1l nitia".ze the
truths first, and then calculate the objec’ quali,, = .d truths
back and forth until meeting the stoppir 2z -iteria.

~ad

B. Model Description

The TFOR model takes object m.ity, truths of entity
and observations as prior knov edge, a. 1 models them as
random variables. We take sp' cific’.y ard sensitivity as the
quality measurement for objecis. We “.odel the truth label
as a Boolean random varia’ .c (o help generate the confusion
matrix of the objects. As fi r the obs ‘rvation node, we take the
truth label of the entity it re ">rs to .nd the quality of object it
comes from as its fath . nodes 1n the graphical model. In this
way, we can simulatc the fou possible real-world outcomes
naturally. Then, given ."= obs rvations, we can infer the truth
label and object r "' ~Rility mversely by Bayes rule. In general,
the specificity is h,"h .s most objects provide less erroneous
data. Similarly, we ca > take any prior knowledge about these
random variables into tne model to take advantage of them.
Otherwise, we can just use a uniform prior in order to avoid
causing bias.

Figure 2 shows the graphical structure of conditional depen-
dence of our proposed TFOR model. In contrast to the existing

® @
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Figure 2: Th probab. istic graphical model of TFOR

methods in nul*" sou ce aggregation, we jointly model object
reliability ana truthe o simultaneously help each other rather
than using s "rce reliability. The generative process of the
propos ~d model s below.

Fc~ oby. ~t - cliability:

Draw , % ~ Beta(agi,a00), where ¢2 is the false
[ uve rate of object m, o g is the prior false positive count
and «, - is the prior true negative count of each object.

2 vl ~ Beta(ai1,01,0), where ¢l is the sensitivity
«“ object m, a1 is the prior true positive count and g is
the orior false negative count of each object.

Tor entity truth:

Draw 6 ~ Beta(f3y,31), where 0 is the prior truth prob-
ability of entity f, 5o is the prior false count and (37 is the
prior true count.

Draw t; ~ Bernoulli(6 ), where ¢ is the truth label of entity
f.

Draw b,,~ Set(S), where b,,is the object set in source k,
and S is the set of all sources.

Draw o.~ Bernoulli(gaiﬁ), where o, is the observation ¢ of
entity f provided by object m.

From the above we can see that oy and «; control our prior
belief of source sensitivity, 5 expresses the prior belief of how
likely each claim is to be true. We will use a uniform prior
as it is reasonable to assume the claims are equally likely to
be true. We can also see that ¢y is a Boolean variable and the
prior probability that ¢¢ is true is exactly 6;.

Remark. Beta distribution is the conjugate of Bernoulli and
Binomial distribution, it will make the inference more efficient.

C. Inference Algorithm

In this section, we will introduce a generative process for
truth and object reliability estimation of the proposed model
and discuss how to infer parameters using Gibbs-EM .

1) Likelihood Functions: Based on the dependencies of the
random variables in the TFOR graphical model, the probability
of each observation c of entity f given object quality ‘P%u @}9('
and truth label 6 is: ' '

p(oclbf, 05, ¢B,) = PlocleB. ) (1—05)+p(oclep, )0y (21)



Then the likelihood of all parameters in the TFOR model
given the hyper parameters «v, a1, 3 is:

p(oa bvtvea @O,Wl‘aOa O‘laﬂ) = H p(SOOB|O[0)p(901B|a1)*
beB

[T @es18) > 6@ -0 ] ploclei,)) 22)

fer tr€0,1 ceCy

2) Estimating Truth: Given the likelihood of all parameters
in our model and the observations, the maximum posterior
estimation for ¢ is:

tpap = argm?x///p(o, b,t,0,0°, p1)dodp dp?
(23)
If we search the space of all possible truth assignments
for trpr4p), it would be prohibitively inefficient. So we use
Collapsed Gibbs Sampling method to speed up the inference
algorithm. Gibbs sampling is used to generate the sequence
of samples, whose stationary distribution is what we want to
estimate.
Let t_; = {f e F,f # f} . We iteratively sample the
truth for each entity given the current truth labels of other
entities:

—f
nchochai,oc

p(tf:”t—f?O’b)O(Bz H Iy s B
ceC; "B,i0 T p i1 T o + Qi

(24)
where néf” ={c € C_¢lb, = be,ty, =70, =i},
i.e., the number of b.’s claims whose observat. = is j, nd
referred entity is not f and its truth is ¢. Thes coun. *r .dect
the quality of b, based on claims of entities o’ aer t'.an f , e.g.,
n,}f 0,0 is the number of true negative clain.. *( b, n;f 0.1
is the false positive count, ngf 1.0 is the alse nega..ve count,
and ngf 1,1 s the true positive count.

This procedure implies that the s ... >ling of the truth of
each entity is based on the prior fo the uths and the object
qualities estimated on other entities. ™ : present the pseudo-
code of the implementation of t' ¢ Cellapscd Gibbs Sampling
in Algorithm 2.

3) Estimating Object Qualitv: G. ~r (he truths estimated in
the previous step, we can ¢ otain t! = predictions of the object
quality information from t. ¢ TFOR model.

Since the posterior of ~hjec. | .ality is also a Beta distribu-
tion, a maximum pos erior es ‘mate of the object quality has
a closed-form solutioi as follc ws:

Enpi1]l+ o1

Enp10] + Enei1] +a10+ a1
(25)

sensitivity(b) = ' =

E[np0,0] + 0,0

speci ficity(b) Pb E[nb,o,o] + E[nb,o,l] + o0 + (2160,1
(26)

Algorithm 2 Collapsed Gibbs Sampling for Truth Finding

//nitialization step
I:for all f € F do

2: sample ¢y from random()
3: if (random<p) then ty =1;
4. else ¢ty =0;
5 for all c € Cy do
6: NB. ts0.tt

/lend for
/lend for

//Sampling step
7:for i+-1 to K do

8: i++;
9: for all f ¢ F do
10: P <—,QV ﬁl*tf<_/81*tf
11: cor 8" ~€ Cy do
12 ) Dt g *(7LBC,tf,oC71+atf,oc)

. bt = nBD,tf,lJl‘nBC,tf,()_1+U¢r,f,1+atf,[)
13: o pl—f,f*(nBc,l—tf,oc_1+0(1—t,f,oc)

. b1ty = NBe1—tp1HNBe1—tp 0~ 1F01 1, 1+011;0

//Samr .e t; from conditional distribution

. Pl—tf

14: . random<——-—->_— then
Pthr;letf
15- ty < 1-— ty;
16. nB,,1-t;,0.~ //update the counts
17: NB,,t;,0.++; /fupdate the counts
/lcalculate the expectation of ¢
1. if 2 > burnin and 1%thin = 0 then
10: p(tf=1)<—p(tf=1)+tf;
/lend for
/lend for
/lend for

where Elng 11| = > _cp.—po,—;P(tr. = j) is the ex-
pected quality counts of object b which depends on the truth
probability of each fact b’s claims output by Algorithm 2.

We initialize the truths using the voting and mean method
for each entity and calculate the initial counts for each object.
Then we update the object reliabilities in each source, truths,
object trustworthiness and quality counts accordingly. The
iterative procedure will stop after the Gibbs sampling reaches
a steady state.

V. TRUTH FINDING BY GROUP RELIABILITY ESTIMATION

In this Section, we will present our truth finding model
by group reliability estimation model TFGR. We formulate
this model as an optimization problem that updates object
groups, group weights and truths iteratively by minimizing
the weighted deviation summation between the truths and
observations. We also present the methods to obtain the object
group weights and truths.

A. Basic Definitions

We first introduce the related concepts and notations used
in the TFGR model as well as the problem statement. We use
data source 1 (Table 5 (a)) as an example to explain these
concepts.



Object Education Profession Phone Address City
Userl High school Builder 9078%*###35 Addl Akiachak
User2 Doctor Student 9078*##425 Adds Akiachak
User3 Master Engineer 9070****]11 Add3 Anchorage
User4 Doctor Professor 9073*#+%]16 Add4 Anchorage
(a) Data source 1
Object Education Profession Phone Address City
Userl High school Sales 9078****35 Addl Akiachak
User2 Bachelor Manager 9075%*+*01 Add2 Atmautluak
User3 Master Manager 9070%***11 Add3 Anchorage
User4 Doctor CEO 9073##+%]16 Addo6 Anchorage
(b) Data source 2
Object Education Profession Phone Address City
Userl High school Builder 9078##+%]12 Addl Akiachak
User2 Doctor Student 9075%***(1 Add5 Akiachak
User3 Master Engineer 9070**##] ] Add3 Anchorage
User4 Doctor CEO 9073##+%]16 Addo6 Anchorage
(c) Data source 3
Table V: Data source set
Object Education Profession Phone Address City
Userl High school Builder 9078%*##%]12 Addl Akiachak
User2 Doctor Student 9078*##+25 Adds Akiachak
User3 Master Manager 9070****]11 Add3 Anchorage ‘
User4 Doctor CEO 9073***%]16 Add6 AnchorageJ
Table VI: Ground truths
Definition 6. An object is an item of interest, e.g., 'Userl”. An

object group is a subset of objects in one source An a. =ibv e is
an attribute to describe the object, e.g., “Educ «tior 7. A source
is the place where information about objec. ' ¢ tribi .es can
be collected, e.g., Data source 1. An obs rvatio. ¢ the data
describing an attribute of an object from ... “rce, e.g., Userl’s
education from data source 1 is High school. .. - entity is an
attribute of an object, e.g., “Userl’s cawn ation”. Truth is the
accurate information of an entry, vhic’ is unique, e.g., the
real Userl’s education degree.

Remark. We follow the ass amp’ on t".at every entity has
only one correct value rather tha., ~ult -truths.

Definition 7. S i the -ollection of observa-
tions of all objects  all attributes by the k-
th source L N VL V1. 5 Let
S ={81,52,...8k .. SK; be the set of observations that

can be taken as Inpui. Fach ‘.aim ¢ has the format of vk, ,
where n denotes *he attrivure number m denotes the object
number, k the sow e .umoer, and vF, . the observation on
attribute n of object , - provided by source k. The Output S*)
is a collection of truths for all objects on all attributes in the
t-th iteration {vt,,.. vty vhy,. . vy} where v, is
the truth on the n-th attribute of the m-th object in the t-th
iteration, w}(;zl the trustworthiness of the m-th object in the

k-th source in t-th iteration and wk the trustworthiness of

the g-th object group in the k-th source in t-th iteration.

Note that a higher wy, in Table 2 indicates that the object m
is more reliable than other objects - source k and observations
from this object are more likely to bc ~curate. This is under
the basic heuristic idea that a <. v is more likely to be true if
it is provided by trustworthy sourr s (especially if by many of
them) and a source is trustwo, * v if most its claims are true.

Definition 8. Problem o “wition. Given a source
set {81, S%,...SF .. 3KV with observation  set
{vh, .ok, vk Kut for M objects and

Nattributes, we wont 1. learn the object group list and
object reliabilitic, W = {wym } 19 for each object in

each source and he ﬁnal ruth for each entity v}

nm-*

For true ¢’ .ams that are more consistent than false ones, it
is reasonabl to’ ¢lie e that we will find the true claims at the
end. Apart from the vasic heuristic idea, we also believe that
different oby. ¢ groups may have different trustworthinesses
becaur ~ of their mique characteristics. Using group reliability
will =~nab.. me (0 describe the source trustworthiness more
effective.

Ex. mple 9. As shown in Table 5, data sources 1 and 3
have su..'lar source reliabilities while data source 1 is more
acc’ rwe in Userl object and data source 3 is more accurate
ir. Userd object. That is to say, in data source 1, object 1
‘s n.ore reliable than other objects. Using the refined group
rewability will enable us to infer truths more accurately.

Based on this reasoning, the proposed TFGR model cal-
culates the group reliabilities and entry truths by iteratively
minimizing the deviation summation between the claims and
truths weighted by the object group reliabilities. The initial
truths are generated by the voting and mean methods. The
iteration procedure terminates when the successive truth table
entry difference is below the threshold 6.

B. The TFGR Framework

We propose the following optimization framework to utilize
the object group weight that describes the reliability degree of
the source. The more reliable an object group is, the closer
its observations to the truths are. Thus we should minimize
the summation of weighted deviations from the truths to the
multi-source observations, where the weights reflect the object
group reliabilities. This results in our following optimization
framework:

K Gg Mkg

PEWCERURD 9 BTH) 3p TN
k=1g=1 m=1n=1
stE(W) =1 7

Through minimizing the target function, we will get two sets
of variables S(*) and W alternately, where S(*) corresponds
to the set of truths in the ¢-th iteration and W represents
the object group weight set. Loss function d,, measures the
deviation from the observation vy(ﬁ,)L to the truth Ur(fr)n in the



t-th iteration. Usually, it outputs a high value if the deviation
is high and low value otherwise. Weight wtkg reflects the
trustworthiness of the g-th object group in the k-th source in
the ¢-th iteration. The higher value of w}; - the more trustable
the object group. £(W) reveals the distributions of object
group weights.

We iteratively conduct two steps to get the final object group

weight set and the truth set through the following procedure.

Step I: Object Group Division. With the initial truths set
S*, we divide the objects into groups according to
the deviation correlation between different objects in
one source.

{g11,---... L kG, | partition(d(vﬁf}n, Ufim)) (28)

II: Object Group Weights Update. For static values of
the truths, we compute object group weights based
on the variations between the truths in the current
iteration and the claims made by the corresponding
object:

Wt < argmin f(S®) (29)

Step III: Truths Update. For fixed weight w}’cg of each
object group, we update the truth set by minimizing
the weighted variations between the current truth set
and the corresponding observations. By computi, -,
the truth for every entry, we can obtain the collection

of truths of (¢ + 1)-th iteration S(+1),

oD argmin f(WE {d(E),, vE, )}

m nm?’ nm

(30)

The pseudo code of the TFGR method is given a Algorii im
3. The three steps will be elaborated in the follnwing ~ect’ sns.

C. Object Group Division

Dividing objects into groups is motivar . ! by the observation
that object reliability is not consistent accoss .. =ntire dataset.
Some objects are more trustable thar ..“ers because of their
characteristics. We propose the follr wing chree steps to divide
the objects into groups where object’s  edibility is consistent
within each group and differenf acro~s dn.erent groups. This
will help us infer the truth mc = ef’ zctiv iy. Furthermore, the
following object division comnutau.. = r ocedure indicates that
the closer of object reliabi! aes are the higher probability the
objects are in one group, a 'd there re M groups at most and
one at least.

Step [I: Calculate ne relia ility of each object.

In this step, we are gi. ~u the “aferred truths and observations
of each object on -1l attrivutes. First, we compute the (truth,
observation)-devia. on I cach entry on each attribute of each
object using loss func on d. Then we sum up the deviations of
each object to obtain the object derivation. As all objects have
the same attributes, we can compare their deviations directly.

Step II: Sort the object deviations in descending order.
Step III: Place all the objects in the same group if their
reliability differences are below the threshold A. At
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Algorithm 3 Truth Finding by Group Reliability Estima-

tion

Input: Observations made by K < urces: {S(), ... S}

Output: The true value for eact c. ity

S = {v,({izl fyzjy _— and o zct weights
W:(wll...wlM,wgl, W Ny ,le...wKM).

1: Initialize the truths S() | “si' g voting and mean methods

2: t=1;//the first iteration

3: repeat

4: Divide every s arct into object groups
{91179127' AUC p5eenen gK17"'7gKGK}
with groun nun.” =t
{m11,7J127... "'7,1(;1, ...... mKl,...,mKGK}
using ¢ 'gorithm 2;

5: Update abje © = up weights

_(at t t t

Wo=(1 .. wg, - Wiy - Wi, )

ac. ™ .ng t (3) to reflect groups’
. Yiabil'*; oased on the estimated truths;

6: for k<« 1to K do

7: for ¢ < 1to Gk do

8: orn<+ 1to N do

9: Compute the truth of the objects in the g-th
goup on the n-th attribute vﬁtg according
to (4) based on the current estimation
of object group weights {w}, e

1 end for

11: end for

12. t++;

3: until Convergence criterion is satisfied; //the successive
/ftruth table entry difference is below the threshold ¢ twice
14: return S™) and W.

the end of this step, we will get the object groups
and group number of each source.

EXAMPLE 1. Let us consider the records in Table 1(a).
Suppose the inferred truths are the values, and we use
0-1 function as the deviation function for categorical
attributes, and square function for continuous attributes.
We first compute the overall deviation of each object in
this data source. The observations of Userl are “High
school”, “Builder”,”9078****35” " Add1”,” Akiachak”,

and the inferred truths are “High
school”, “Builder”,”9078****]2” ”Add1”,” Akiachak”, s0
the deviation of Userl is 0+0+1+0=1. Similarly, the
deviations of User2, User3 and User4d are 1, 1 and 2
respectively. Second, the descending order of the object
deviations are 2, 1, 1 and 1, corresponding to User4, Userl,
User2 and User3. Third, suppose the threshold is 0.5, then
Userl, User2 and User3 will be in one group because their
deviation differences are below the threshold. Finally we
obtain two object groups {Userd}, {Userl, User2 and User3).

D. Object Group Weight Assignment

We use the following regularization function to compute
the object group weight assignment in the ¢-th iteration by
constraining the summation of formula exp(—w, g):



K Gy

W)= "> " exp(—w},)

k=1g=1
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Theorem 10. Given the truth set, the optimization problem
(27) with convex function (31) in the constraint has the global
optimal solution given by

(t (k )
'lUt —lo Zk’ 1 Zm =1 Zn *1 ) ' n/m )
ko =8 SN A, vm

Proof: As the truths are static ,

(32)

(27) has only one set

of variables W. We assume a variable 0y, = exp(—wj,) to
prove the convexity of the optimization problem (27). Then
(27) can be expressed as follows: [ |
K Gk Mg
min f(Org) = ZZ ( log(0rg) Z Zd(vr(ytr)m 1(71:7)1 )
k=1g=1 m=1n=1
(33)
K Gx
SEY Y Org=1 (34)
k=1g=1

The objective function of (33) is a linear combination of
negative logarithm functions, and the constraint is linear n
Org, so (33) is convex. Thus, the optimization problem (2,
with constraint (34) is convex, and any local optimum is also
global optimum [23].

Then we apply the Lagrange multipliers to solve (33) as
follows:

K Gk

L{0kg biSE_ 1 0 => >

k=1g=1

— log Okg)>

(35)

MEg N K Gy
S d(w), o) ) S, )

m=1n=1 k=1g=1

where A is a Lagrange multiplier et 1e partial derivative
of Lagrangian with respect to 6, v. O and we can get:

N
>, o P =Ny (36)
n=1
From the constraint th t Zf 12?’(1 Org = 1, we can
derive that
M
A= L Z _d@i, o) (37)

k=1mn. .n=1

Plugging 37) av 1 1 gy =
(32).

Since we have calculated the deviations of all the entries in
front, then we can compute the object weights directly using
(32).

This object calculation formula indicates that an object with
observations closer to the truths will have a greater weight.

—log(fy4) into (36), we obtain
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Therefore, (31) is a reasonable constraint function because it
leads to a meaningful object weight assignment formula.

Example 11. Back to the last ¢ 'mple. Given the attribute
groups {User2}, {Userl, User2 und v. ~v3} in Example 5, we
use Equation 7 to calculate th _ ~oup weights. The deviations
have been calculated in the obje .t division step, so we can
get group weights 1, 2, indicu.~ ¢ {Userl, User2 and User3}
is the most reliable group u. Jata source 1 as it has the least
error rate.

E. Truth Computation

Given the obj ct gro-» weight set, we can use (30) to
compute the truti set. The loss function in (30) is determined
by the attributes, a. ¥ ' ferent attributes’ truth computation
may be quif . diff- -t from each other due to their different
characteristi. ~ _1 et 7 .. [12] discussed the loss functions about
categorica. *nd ¢ - ..nuous data in detail. The most commonly
used loss func. n for categorical data is 0-1 loss (Equation
(38)) 1. vhich - a error occurs if the observation is different
from . = truu.. One common loss function for continuous data
is normah. A squared loss (Equation (39)).

. ~rmally, if the m-th object is categorical, the deviation

betweei. “he observation vfﬁ,{ and the truth UT(Z?,L is defined as:
(t) (k)
1o £
d(v® , (k) Unm 38
(Vs Vnim) = 0 otherwise. (38)

If the m-th object is continuous, the deviation function is
defined as:
( (t) (k))

Unm — Unm

(39)

d(®) oy =

o fm std(vy(}%, e ,vﬁffn))

This computation procedure is consistent with the basic
heuristic that an observation stated by reliable sources will be
more likely to be regarded as the truth. As stated in Algorithm
3, the iteration procedure will stop if the difference between
the successive truth set entries is below the threshold ¢ twice.
Then we will get the final weight set and truth set.

VI. EXPERIMENTS

In Section 5.1, we first introduce the performance measures
and baseline methods with their parameter settings, and then
describe the three real-world datasets. In Section 5.2.1 we
compare the performance of the proposed methods with the
baselines. We will also show the convergence rate and run
time in Section 5.2.2. The experimental results show that
the proposed methods can significantly reduce the error rate
compared with the state-of-the-art conflict resolution baseline
methods.

A. Experiment Setup

1) Performance Measures: Given the observations of all
entities in each object, we need to find out the object
reliabilities and entity truths using our proposed methods
automatically and compare them with the given ground truths
to evaluate the performance of these methods. The TFOR



model runs in a semi-supervised form, the TFAR and TFGR
models are implemented in an unsupervised form. We use
Error Rate, Distance and Cos as the deviation functions
for heterogeneous data types. We use confusion matrix to
obtain the specificity and sensitivity of objects. Error Rate
is the inconsistent proportion between the output and the
ground truths of categorical data. Distance is the mean of
the 2-normalized absolute distance between the output and
the ground truths of continuous data. Cos is the reverse
cosine similarity between the output to the ground truths.
Confusion matrix is the consistent and inconsistent counts
between the output and ground truths. Specificity of object b is
the probability of false facts being claimed as false. Sensitivity
of object b is the probability of true facts being claimed as true.
For all measures, the lower the value, the better performance
of the method.

2) Baselines and parameter settings: We mainly compare
our methods with the following methods as they are either
classical or state-of-the-art.

o Voting: It is a straightforward way to obtain the truths
from a set of observations by taking the value with the
maximum count without considering source reliability.
This method can only be applied to categorical data.

o CRH [12]: Iteratively calculate the source weights and
truths by minimizing the weighted deviation between the
truths and observations. It can be applied to heteroge-
neous data types.

o CATD [11]: Detect the truths from conflicting data with
the long-tail phenomenon by considering the souic > te-
liability and confidence interval of the estimation. It ca.
be applied to numerical data type.

o« TEM [36]: Model the truth existence by ir corpoi. ‘ing
three measures in a graphical model, sile.. rate, f Ise
spoken rate and true spoken rate. This met’.od use. < arce
reliability.

e MTF [29]: It is an integrated Bayesi. apprvach to
solve the multi-truth discovery prob! .m by tan..g source
features into account and reformv ati,. the multi-truth-
finding problem based on the marnings between sources
and values.

o FaitCrowd [18]: Capture vario. e pertise levels on dif-
ferent topics using a probabi”istic mo . It estimates both
topical expertise and true .nsw.rs simultaneously.

3) Environment: All the expc.” ment, are conducted on a
windows PC with 4 GB R2 .v1, Intel Core i7 CPU, algorithms
are implemented in MATI AB R2( '3a. All the baselines are
under the advised parame. - sett’ 1gs to achieve their best
performance.

4) Data Descriptic ': The L "abetes Dataset. This dataset is
obtained from Weka-3-7 (dat> mining software) datasets. This
dataset has 8 cor "~mns attributes, one categorical attribute
and one text type a. “ib'.ce, /68 objects, and 6912 observations.
We generate a datas.” consisting of 10 multiple conflicting
sources by injecting different kinds of noise into different
attributes of ground truth. We take the variation dataset as the
input to our approach and baseline methods. We change the
data randomly to generate the input data source. A parameter
« is used to control the reliability degree of each attribute (a

12

lower « indicates the attribute is altered in a lower chance,
we use a = (0.1 to 0.5). In this way, we simulated a dataset
with attribute reliability in various Jegrees in all data sources.
The Labor Dataset. The full r m.. of this dataset is Final
settlements in labor negotiations in Cai. .dian industry. This
dataset was provided by Stan vlai 7in from Computer Science
Dept of University of Otte 2 i. Canada. It consists of 57
objects with 16 attributes ~nd w. -~ monthly publication. This
dataset is also the ground truu. ~f our Labor Data Source. We
generate this source by 1nje **ng different noises into different
objects of the grounc trut’ . A parameter 4 is used to control
the variation degree of c¢. ~h object by varying its value. In
this way, we sip alated ~ data source with various attribute
reliabilities in dii =rent da 1iset. The German Credit Dataset.
This dataset was . “”_d by Professor Dr. Hans Hofmann
from Okonc netri- ~Tniversity in Germany. It contains 1000
instances an.' ~ s attr jutes (8 categorical attributes, 7 numer-
ical attrib.'»s, 5 “ at type attributes) from 10 sources. The
ground truths a. > also provided.

B. Expe. ment Results

2\ Estimating Truth and Object Reliability: We evaluate
the pe.~rmances of both our methods and baselines on
caw .. -al, continuous and text data types using Error Rate,
L .tance and Cos respectively in the TFAR framework. We use
Equ :tions (25) and (26) to calculate the sensitivity and speci-
fic.cy of the TFGR framework. Similarly, we use Equation (32)

ad different deviation functions to obtain the object group
reliabilities and truth estimations in the TFOR framework. We
summarize the performance of all the methods on Diabetes
Dataset in Table 7. We can observe that the proposed TFAR
approach achieves better performance than all the baselines.
This is because the baseline methods either fail to take entity
hardness into consideration or cannot deal with heterogeneous
data types with the fine-grained attribute reliability. From
the comparison we can see that TFAR can model source
reliability more accurately by inferring attribute reliability and
adjusting the reliability by entity hardness. This also justifies
our assumption that attribute reliability is more accurate than
sources reliability. The TGOR and TFGR models are not good
at modeling the attribute reliabilities.

The quality estimation with truth threshold 0.5 of all
methods on Labor Data Set is summarized in Table 8. It
is obvious that TFOR performs better than other methods.
Because other methods all use source reliability to measure the
trustworthiness of a source and ignore the fact that different
labor record reliabilities may be different from each other. On
the contrary, the proposed TFOR method takes every object
in each source as an independent “source” , and computes
an object’s reliability through inferring the graphical model.
The TFGR does not perform as well as TFOR due to its
hardness in setting an appropriate difference threshold to bring
objects into groups with random object reliabilities. The TFAR
model does not perform well in dealing with different object
trustworthinesses.

We can observe that the TFGR method performs best in
quality estimation on the German Credit Dataset in Table 9.



Method | Specificity | Sensitivity
TFAR 0.97 0.95
TFOR 0.86 0.84
TFGR 0.85 0.82

CRH 0.9 0.89
MTF 0.81 0.78
CATD 0.78 0.75
Voting 0.65 0.72

Table VII: Performance Comparison on Diabetes Dataset

Method | Specificity | Sensitivity
TFAR 0.81 0.85
TFOR 1.0 0.96
TFGR 0.98 0.91

TEM 0.91 0.85
MTF 0.75 0.88
FaitCrowd 0.90 0.90
Voting 0.64 0.74

Table VIII: Performance Comparison on Labor Data set

The TFGR method divides several object groups according to
their reliabilities. It coincidences with the common sense that
there exist several credit levels in a Credit System as different
levels enjoying quite different rights.

Through the above experiments we can draw the conclusion
that the TFAR model performs well when the attribute ~us.
worthiness are different from each other, and the TFOR moac:
performs well when the object reliabilities are inconsistent
with each other while the TFGR model performs “setter . hen
there are several object reliability levels among "' object:

2) Efficiency: Convergence rate. Since our nferenc. .go-
rithm is an iterative procedure, we now shov the onvevgence
rate using Credit Dataset. We make 4 secuen.” | pr dictions
using the samples in the first 10 iteratio- s with sa.aple gaps
0, 1, 2, 3 respectively. We repeat 5 run’ to ¢. "t for random-
ization due to sampling and compute ““e average specificity
and sensitivity which are shown in "1gur 3. We can see that
they can reach stable after only 5 itc. ~t'ons, showing that the
proposed method converges quic’.ly in pra. ‘ice. Runtime. All
three methods have a linear ti ae ¢ mpl xity on the number
of claims in the data. To achieve he ‘ame accuracy, TFGR
takes less time than TFOR s 1t compuces the deviations more
efficiently in groups rathei than inc¢ vidual objects.

Method | Spec. icity | Sensitivity
TFAR 0,4 0.88
TFr™ | 0.99 0.97
TFG.™ | 10 0.98
TEM | 0.94 0.81
MTF 0.67 0.83

FaitCrowd 0.85 0.90
Voting 0.62 0.78

Table IX: Performance Comparison on German Credit Dataset

Convergence rate of the two methods
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VII. CONCLUSION

We proposea three effective models, TFAR, TFOR and
TFGR, ..~ tru’: finding by estimating the reliabilities on
heterog. ~eous attributes, objects and object groups in a multi-
snment respectively. In our TFAR model, we gave
an v, “imization framework and its implementation algorithm
far compating attribute reliabilities to achieve more accurate
les ripuon of source trustworthiness. In our TFOR model, we
pr sented a generative process to obtain the object reliability
“v yegarding truth as a latent variable and applying the
Bayesian approach that can incorporate prior knowledge about
ule truths of objects, and developed an efficient inference
algorithm based on Gibbs sampling to infer the truths. In our
TFGR model, we presented an optimization framework and
its implementation algorithm for iteratively computing object
group reliabilities. Experiments on three real world datasets
show that the proposed methods have better performance than
the classical and state-of-the-art baseline methods.

There are still interesting challenges on this problem. Our
method is based on the intuition that attributes are independent
with each other and their values are static. However, these
assumptions may not always hold (e.g., a person’s title may
have relationship with his age, an attribute’s value may change
over time). As our future work, we will extend our study to
take into consideration of the relationship among attributes
and dynamic changes of attribute values in order to gain
deep insight into formulated problem and the behavior of its
solution. We will also incorporate prior knowledge of object
characteristics such as truth counts etc. into the TFOR mode
to obtain a more accurate description of the object reliability.
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