
Accepted Manuscript

Truth finding by reliability estimation on inconsistent entities for
heterogeneous data sets

Hui Tian, Wenwen Sheng, Hong Shen, Can Wang

PII: S0950-7051(19)30303-X
DOI: https://doi.org/10.1016/j.knosys.2019.06.036
Reference: KNOSYS 4828

To appear in: Knowledge-Based Systems

Received date : 30 March 2017
Revised date : 27 June 2019
Accepted date : 29 June 2019

Please cite this article as: H. Tian, W. Sheng, H. Shen et al., Truth finding by reliability estimation
on inconsistent entities for heterogeneous data sets, Knowledge-Based Systems (2019),
https://doi.org/10.1016/j.knosys.2019.06.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.knosys.2019.06.036


1

Truth Finding by Reliability Estimation on
Inconsistent Entities for Heterogeneous Data Sets

Hui Tiana, Wenwen Shengb, Hong Shenb,c and Can Wanga
aSchool of Information and Communication Technology, Griffith University, Australia

bSchool of Information Science and Technology, Sun Yat-Sen University, China
cSchool of Computer Science, University of Adelaide, Australia

Email: hui.tian@griffith.edu.au, 771920866@qq.com, hongsh01@gmail.com, can.wang@griffith.edu.au

Abstract—An important task in big data integration is to
derive accurate data records from noisy and conflicting values
collected from multiple sources. Most existing truth finding
methods assume that the reliability is consistent on the whole
data set, ignoring the fact that different attributes, objects and
object groups may have different reliabilities even wrt the same
source. These reliability differences are caused by the hardness
differences in obtaining attribute values, non-uniform updates
to objects and the differences in group privileges. This paper
addresses the problem how to compute truths by effectively
estimating the reliabilities of attributes, objects and object groups
in a multi-source heterogeneous data environment. We first
propose an optimization framework TFAR, its implementation
and Lagrangian duality solution for Truth Finding by Attribute
Reliability estimation. We then present a Bayesian probabilistic
graphical model TFOR and an inference algorithm applying Col-
lapsed Gibbs Sampling for Truth Finding by Object Reliability
estimation. Finally we give an optimization framework TFGR
and its implementation for Truth Finding by Group Reliability
estimation. All these models lead to a more accurate estimation
of the respective attribute, object and object group reliabilities,
which in turn can achieve a better accuracy in inferring the
truths. Experimental results on both real data and synthetic data
show that our methods have better performance than the state-
of-art truth discovery methods.

Index Terms—Truth finding, attribute reliability, object reli-
ability, group reliability, entity hardness, probability graphical
model.

I. INTRODUCTION

With the rapid developments of big data and smart city,
the need to integrate the true values on heterogeneous data
observed from multiple sources together is becoming an urgent
task because of the increasing unreliability in object data and
observation sources. Reliability inconsistency exists widely in
different levels and dimensions. First, apparently observations
from different sources for an object may differ from each other
due to the differences in data capture ability of the sources,
resulting in a many-to-many relationship among Source-Value-
Object as illustrated in Figure 1. Moreover, reliabilities of dif-
ferent attributes of an object set wrt the same source may also
be different because of the observation hardness differences of
the attributes wrt the source (e.g. an RFID reader may have
0.99 reliability for bar-code but only 0.1 for TID). Similarly in
an orthogonal dimension, different objects (records) may also
carry different reliabilities wrt the same source because of their
differences in data entry and maintenance (e.g. the records

Figure 1: The many-to-many relationship among sources,
objects and values

updated frequently may have a higher reliability than those
updated infrequently). Finally, we also observe that object
reliability is consistent within a group if we divide objects
into groups such that all objects in the same group have
the same reliability. Examples of group reliability includes
privilege groups for online services and user groups in social
networks. These reliability inconsistencies will result in source
data conflicts and increase the hardness for obtaining the truths
for objects.

For truth finding from conflicting data, most existing meth-
ods [13], [14], [25] based on majority voting and mean
computation for categorical and continuous data respectively
took no consideration of source reliabilities and unrealistically
treated all observations from all sources equally. Voting selects
the majority claims among all the observations as the truth,
while mean computation takes the mean of all observations as
the truth.

When taking into account of source reliabilities, different
truth discovery methods have been proposed [7], [32], [21],
[8], [19], [20], all aimed to utilize some sort of specifications
about the sources and applied the same basic heuristic idea: a
claim is likely to be true if it is provided by trustworthy sources
(especially if by many of them) and a source is trustworthy
if most its claims are true. Based on this idea, most methods
attempted to assign larger weight to reliable sources as they
are more important when inferring the truths. These methods
however applied the same source reliability to all attributes for
each source and are hence unable to distinguish the quality of
observations to different attributes from the same source.

We use an example in Table 1 Quiz answers to explain these
concepts. In the data sources shown in Table 1, if we only
deal with concrete and continuous data types, the Material
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Object Digital Analysis Logical A Material A
Question 1 8 B picture11

Question 2 12 B picture12

Question 3 14 A picture13

(a) Susan database

Object Digital Analysis Logical A Material A
Question 1 9 A picture21

Question 2 12 B picture22

Question 3 13 C picture23

(b) Mike database

Object Digital Analysis Logical A Material A
Question 1 8 A picture31

Question 2 12 C picture32

Question 3 11 C picture33

(c) Leo database

Table I: Quiz answers of Susan, Mike and Leo

Object Digital Analysis Logical A Material A
Question 1 8 C picture1

Question 2 14 B picture2

Question 3 11 A picture3

Table II: Ground Truth of Quiz

attribute cannot be processed. If we use the source reliability,
the reliability degrees of Source 1 (Susan database) and Source
3 (Leo database) are approximate. Nevertheless, Source 1 is
more accurate in Logical Analysis attribute and Source 3 is
more accurate in Digital Analysis attribute. The answers to
Question 3 in Digital Analysis are different from each other,
which increases the hardness to get the truth. So the attributes
that get answers for harder questions should have a higher
reliability and for easier questions a lower reliability.

Existing methods ignored the fact that the same source’s
reliability may vary significantly among different attributes
or objects (records). This motivates our work of this paper
to investigate more effective methods for truth finding by
reliability estimation on heterogeneous data. We first propose
an optimization model TFAR, Truth Finding by Attribute
Reliability estimation, to infer the truths by estimating the
reliabilities of heterogeneous attributes, and the hardness of
attribute observation. We obtain a solution for computing an
optimal attribute weight (reliability) assignment that minimizes
the total deviation between the truths and the observed values.
Then we propose a Truth Finding by Object Reliability estima-
tion model (TFOR) using a Bayesian probabilistic graphical
model to infer the object reliabilities and truths. We formulate
the derivation of the model’s parameters as a Maximum Likeli-
hood Estimation problem and apply Collapsed Gibbs Sampling
to jointly infer the object reliabilities and truths. Finally we
propose another optimization model TFGR for Truth Finding
by Group Reliability Estimation to detect trustworthy claims
from conflicting observations by estimating the (object) group
reliability for the given group properties. We obtain its solution
by minimizing the overall weighted deviation between inferred

truths in the i-th time (iteration of the deductive procedure) and
the source observations to find the final truths. The above three
models achieve a more accurate fine-grained source reliability
estimation on attributes, objects and object groups respectively.

In our experimental evaluation, we show that our meth-
ods outperform the state-of-the-art truth-finding baselines that
considered neither attribute reliability differences among all
attributes nor object reliability differences among different
objects for a source.

The main contributions of this paper are the proposed three
mathematical models with their detailed implementation algo-
rithms and solutions to solve the reliability conflict resolution
problem for truth finding at attribute, object and object group
three levels respectively, as summarized below:
• We propose a general optimization framework for truth

finding on inconsistent attribute reliabilities by taking
attribute weights and fact hardness into consideration.

• We propose a probabilistic graphical model for truth find-
ing on inconsistent object reliabilities by incorporating
quality measurement into object reliability.

• We propose a general optimization framework for truth
finding on inconsistent object group reliabilities by iter-
atively updating group weights.

• We empirically show that our models outperform the
existing methods for conflict resolution with three real-
world datasets, which demonstrates the importance of
taking into consideration reliability differences among
attributes, objects and object groups for truth finding on
heterogeneous data.

The reminder of this paper is organized as follows: In section
2 we review the related work. Our proposed models and algo-
rithms are introduced in Section 3, Section 4 and Section 5.
Section 6 presents the evaluation results. Section 7 concludes
the paper.

II. RELATED WORK

The truth finding (conflict resolution) problem was first
studied by Yin et al. [31] who proposed a TRUTHFINDER
method to iteratively infer the truth values and source quality,
and it has now been extensively studied. Existing work can be
classified according to the specifications used to measure the
source reliability.

Data source specification. The source selection problem
identifies the subset of sources that maximizes the profit from
integration. Rekatsinas et at defined a set of time-dependent
metrics to characterize the quality of integrated data [22].
Dong et al. proposed an approaches of applying Bayesian
analysis to decide dependence between sources [3] and select
a subset of sources before integration to balance the quality
of integrated data and integrated cost [4]. Li et al. studied the
long-tail phenomenon in a task (i.e. only a few sources make
many claims) and proposed a confidence-aware truth discovery
method to estimate the source reliability by considering the
confidence interval of the estimation [11].

Observation specification. Wang et al. proposed an approx-
imate truth discovery approach which divides sources and
values into groups according to a user specified approximation
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criterion, and uses the groups for efficient inter-value influ-
ence computation to improve the accuracy [28]. Shi et al.
proposed a probabilistic graphical model incorporating silent
rate, false spoken rate and true spoken rate three measures to
simultaneously infer the truth as well as source quality without
any priori training involving ground truth answers [36]. Qi et
al. proposed an optimization framework to resolve conflicts
among multiple sources of heterogeneous data, where truths
and source reliability are defined as two sets of unknown
variables [12]. Zhao et al. proposed a probabilistic graphical
model that can automatically infer the true records and source
quality without supervision, which leverages a generative
process for modelling two types of errors from two different
aspects of source quality [34]. Zhao and Han proposed a truth-
finding method specially designed for handling numerical data
based on Bayesian probabilistic modeling on the dependencies
among source quality, truth, and claimed values [33].

Crowdsourcing specification. Ma et al. proposed a fine
grained truth discovery model for the task of aggregating
conflicting data collected from multiple users/sources [18].
Wang et al. addressed the challenge of truth discovery from
noisy social sensing data on binary measurements and gave the
first optimal solution [27]. Wang et at presented a streaming
approach to solve the truth estimation problem in crowdsourc-
ing applications [26]. Whitehill et al. presented a probabilistic
model to simultaneously infer the label, expertise and difficulty
of an image [30].

With the development of big data analytics, study on the
truth finding problem recently has also been extended to cope
with data dynamicity and heterogeneity.

Dynamic data fusion. Jia et al. proposed an incremental
strategy adaptive to different update situations by considering
the concept drift in learning process [10]. Zhao el at proposed
a probabilistic model that transforms the problem of truth
discovery over data streams into a probabilistic inference
problem [35]. Hara et al. proposed an incremental data fusion
model based on storing provenance information in the form of
a sequence of operations by keeping both the original source
values and the new fused data in the operations repository
[9]. Wang et al. proposed a streaming fact-finding method
that recursively updates the previous estimates based on new
data [26]. Li et al. investigated the temporal relations among
both object truths and source reliability, and proposed an
incremental truth discovery framework to dynamically update
object truths and source weights [15].

Big data integration. Dong et al. explored the challenges
faced by big data integration on the topics of schema map-
ping, record linkage and data fusion [5]. Sleeman and Finin
described a way to subdue WBD that uses popular natural
language processing techniques [24]. More recently, Lin and
Chen proposed a scheme that integrates domain expertise
knowledge to achieve a more precise estimation of source
reliability [16], and Fang proposed a graph-based model to
conduct truth discovery from conflicting multi-valued objects
[6].

All the above methods applied the same basic heuristic idea:
a claim is likely to be true if it is provided by trustworthy
sources and a source is trustworthy if most its claims are true.

Our work is based on our observation that the attribute and
object reliabilities may be inconsistent wrt the same source
for which no prior work is known. It differs from the existing
work in three aspects. First, we use an optimization framework
to obtain the fine-grained source reliability estimation on
attributes and objects to achieve more accurate truth inference.
Second, we use a probability graphical model to compute
the object reliability estimation more effectively. Third, we
introduce the group reliability to effectively compute the ob-
servation deviations of all sources and achieve more effective
truth inference. The superiority of our methods in comparison
with the state-of-the-art baselines without considering attribute
and object reliability inconsistency is demonstrated in the
experiment results.

III. TRUTH FINDING BY ATTRIBUTE RELIABILITY
ESTIMATION

In this section, we present our TFAR model. The model
iteratively updates attribute weights and truths for multi-source
data. We formulate the truth finding problem as an optimiza-
tion problem and obtain its solution of the set of estimated
truths and attribute reliabilities by minimizing the weighted
deviation summation between the truths and observations.
We present several hardness calculation methods and loss
functions to complete the attribute weight assignment and truth
computation procedure.

A. Basic Definitions

In this part, we will introduce the related concepts and
notations, the problem to be solved and solution approach.

Tables 3 and 4 respectively list the related concepts and
notations to be used throughout the paper.

Given all the data sources, we aim to find the most trustwor-
thy value for every entity, and infer the reliability degree of
each attribute simultaneously. Note that a higher wkn in Table
4 indicates that attribute n is more reliable in source k and
observations from this attribute are more likely to be accurate.
This is under the observation that if a fact is provided by many
trustworthy sources, it is more likely to be true. Furthermore,
a source that provides more true facts will be likely to provide
more true facts. The source reliability and fact confidence are
determined by each other and the true facts are more consistent
than false facts, and hence are more likely to be found at the
end.

The general approach we use to solve this problem is to
calculate first the attribute reliabilities and then the entry
truths by iteratively minimizing the deviation (from the truths)
summation of all entries weighted by fact-hardness regulated
attribute reliabilities. In this approach, we take the collection
of observations made by all the sources as the INPUT. The
OUTPUT contains an attribute weight list and a truth table.
The initial truths are generated by voting and mean methods.
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Concept Explanation

object a person or thing of interest. e.g., “Question 1”.

attribute an attribute to describe the object. e.g., “Text Analysis”.

source describes the place where information about objects’ properties can be collected. e.g., Susan database.

observation the data describing an attribute of an object from a source. e.g., Text Analysis’s Question 1 from Susan database is essay11”

entry an attribute value of an object. e.g., “Text Analysis’s value of Question 1”

truth accurate information of an entry, which is unique. e.g., the real answer of Text Analysis’s Question 1.

Table III: Summary of terminologies

Notation Description
K Number of sources

N Number of attributes

M Number of objects

W The trustworthiness list of all attributes in all sourcesw11 . . . w1N , w21 . . . w2N , . . . . . . , wK1 . . . wKN

v
(k)
nm The observation of the n-th attribute for the m -th object made by the in k-th source

v
(∗)
nm The truth for the n-th attribute of the m-th object

dn The deviation function for the n-th attribute

wkn The trustworthiness of the n-th attribute in the k-th source

S(k) The collection of observations made on all the objects by the k-th source vk11 . . . v
k
1M , . . . . . . , vkN1 . . . v

k
NM

S∗ Set of truth for all objects on all propertiesv∗11 . . . v
∗
1M , . . . . . . , v∗N1 . . . v

∗
NM

δ The threshold of successive truth table entry difference

Table IV: Summary of notations

The hardness and deviation calculation methods will be stated
later. The iteration procedure will stop if the successive truth
table entry difference is below a given threshold δ that will be
discussed later.

B. The TFAR Framework

We propose the following optimization framework TFAR
that utilizes attribute weight to describe the reliability of
sources.

Given M objects, each with N attributes (properties), a set
of observations (values) on all the attributes of the objects
made from K sources, and an attribute weight (reliability)
budget of 1, with the attribute reliability updated periodically,
the more reliable an attribute is, the closer the observations on
it to the truth is. Thus we should minimize the summation of
weighted deviations from the truths to the multi-source obser-
vations, where the weights reflect the reliability degrees of the
attributes. Summing up, we have the following optimization
framework:

min
S(∗),W

f(S(∗),W ) =
K∑

k=1

N∑

n=1

(
wkn ∗

M∑

m=1

d(v(∗)nm, v
(k)
nm)

)

s.t. ξ(W ) = 1 (1)

Through minimizing the above function, we will obtain two
sets of variables, S(∗) representing truths and W representing
weights assigned to attributes under the given budget. Loss
function d measures the deviation from the observation v

(k)
nm

to the truth v
(∗)
nm. It outputs a high value if the deviation

is high and low value otherwise. Weight wkn reflects the
trustworthiness of the n-th attribute in the k-th source. The

higher of wkn, the more trustable of the attribute. Naturally,
the truths will rely on the attribute with higher weights to
minimize the overall deviations. ξ(W ) is the aggregation of
the attribute weight assignments under a distribution function.
It constrains the weights into a certain range to rationalize the
optimization problem.

We iteratively conduct the following three steps to get the
attribute weights and the truths through a joint procedure.

First, entity hardness calculation. Calculate the hardness of
every observation in the truth table by computing the
dispersion degree of the corresponding observations
in the INPUT sources. We will discuss the dispersion
calculation method in Section 3.3.

Hardness(vnm) = f(Dispersion(vknm)) (2)

Second,attribute weight update. Compute the attribute
weights based on the differences between the given
(ground) truths and the observations made on the
attributes from the sources, and then update the
weights according to the hardness of the correspond-
ing observations:

W ← argmin f(W, Hardness(vnm)) (3)

Third, truth update. Compute the truths of each entry to
minimize the weighted difference summation be-
tween the truths and the entries (observations on an
attribute). By computing the truth for every entry, we
can obtain the collection of truths S(∗).

S(∗) ← argmin f(W, {d(v(∗)nm, v
(k)
nm)}) (4)
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Algorithm 1 Truth estimation Algorithm
Input: Observations made by K sources: {S(1), . . . , S(K)}.

Output: The true value for each object
S(∗) = {v(∗)nm}N,Mn=1,m=1,

and attribute weights
W = (w11 . . . w1N , w21 . . . w2N , . . . . . . , wK1 . . . wKN ) .

1: Initialize the truths S(∗) ;//using voting and mean methods
2: Calculate hardness of every entry

H = (h11 . . . h1M , h21 . . . h2M , . . . . . . , hN1 . . . hNM )
using (2);

3: repeat
4: Update attributes weights

W = (w11 . . . w1N , w21 . . . w2N , . . . . . . , wK1 . . . wKN )
according to (3) to reflect attributes’
reliability based on the estimated truths and the

hardness of observations;
5: for k ← 1 to K do
6: for m← 1 to M do
7: for n← 1 to N do
8: Compute the truth of the m-th object

on the n-th attribute v(∗)nm according
to (4) based on the current
estimation of attribute weights {wkn};

9: end for
10: end for
11: until Convergence criterion is satisfied; //the successive
truth table entry difference is below the threshold δ
12: return S(∗) and W .

Implementation of this framework is given in Algorithm 1.
We will elaborate the three steps using example functions in
the following.

C. Hardness Calculation

Proposition 1. The entity hardness is presented by the disper-
sion level of the observations. The higher the dispersion level,
the harder the entity.

Example 2. Assume that the answers’ selection probabilities
are same for one question. If the dispersion level is high, it
indicates that the correct rate is low. If most of the students’
answers are consistent, it is more likely to indicate that this
question is quite easy, though there may be some exceptional
cases that popular answers are wrong which is quite rare.

There are K sources in the INPUT altogether, so there are at
most K observations for one entity. Now we present several
hardness calculation methods for different data types.

As for categorical data, we add up the occurrence frequency
of each term. If the maximum frequency is less than dK/2e,
then the dispersion level is high, and this entity will be
labeled as hard. Otherwise, the entity will be labeled as
easy. As for continuous data, first we divide the values into
several numerical intervals, and then we add up the occurrence
frequency of each interval. As for text data, we first draw all
keywords of each text by deploying a text mining algorithm on
the measure of term frequency, and then add up the occurrence

frequency of each keyword. As for image data, first we extract
features, then build index, at last we search for the features
and add up the occurrence frequency of each feature. If the
maximum frequency is less than dK/2e, then the dispersion
level is high, and the entity will be labeled as hard. Otherwise,
the entity will be labeled as easy.

Example 3. There are three sources in Table 1, so K=3,
dK/2e=2. For Digital Analysis attribute, the first entity max-
imum frequency is 2 (value 8), greater than dK/2e, not hard.
The second entity maximum frequency is 3 (value 12), greater
than dK/2e, not hard. The third entity maximum frequency is
1, smaller than dK/2e, hard. So there are 1 hard label and
2 easy labels in Digital attribute. Similarly, there are 3 easy
labels in Logical attribute, 3 hard labels in Text attribute, and
3 hard labels in Material attribute.

D. Attribute Weight Assignment

First, we calculate attribute weight assignment. Since at-
tribute weight assignment is similar to source weight assign-
ment, we assume that weight assignment follows exponential
distribution and has the following function in the constraint of
Equation (1):

ξ(W)=
K∑

k=1

N∑

n=1

exp(−wkn) (5)

Theorem 4. Suppose the truths are static , the optimization
problem (1) with function (5) is convex, and the global optimal
solution is given by

wkn =

log



∑K
k′=1

∑N
n′=1

∑M
m′=1 d(v

(∗)
n′m′

, v
(k
′
)

n′m′
)

∑M
m=1 d(v

(∗)
nm, v

(k)
nm)


 (6)

Proof: Since the truths are static, (1) has only one set of
variables W = wkn. We rewrite (1) by replacing wkn with its
distribution tkn = exp(−wkn) to prove the convexity of the
optimization problem (1):

min f(tkn) =
K∑

k=1

N∑

n=1

(
− log(tkn) �

M∑

m=1

d(v(∗)nm, v
(k)
nm)

)
(7)

s.t.
K∑

k=1

N∑

n=1

tkn = 1 (8)

The objective function of (7) is a linear combination of
negative logarithm functions, and the constraint is linear in
tkn, so (7) is convex. Thus, the optimization problem (1) with
constraint (8) is convex, and any local optimum is also global
optimum [23].

Then we use the Lagrange multipliers to solve (7). The
Lagrangian of (7) is as follows:



6

L({tkn}K,Nk=1,n=1, λ) =
K∑

k=1

N∑

n=1

(− log(tkn) ∗

M∑

m=1

d(v(∗)nm, v
(k)
nm)

)
+ λ

(
−

K∑

k=1

N∑

n=1

tkn − 1

)
(9)

where λ is a Lagrange multiplier. We let the partial deriva-
tive of Lagrangian with respect to tkn be 0 in order to obtain
the optimal value of λ that maximizes the dual objective (9).
The solution of the dual presents a feasible solution to the
primal problem (7) and (1) according to Lagrangian duality.
Hence we have

λ
K∑

k=1

N∑

n=1

tkn =
K∑

k=1

N∑

n=1

M∑

m=1

d(v(∗)nm, v
(k)
nm) (10)

From the constraint (8),
∑K
k=1

∑N
n=1 tkn = 1, Equation (10)

becomes

λ =

K∑

k=1

N∑

n=1

M∑

m=1

d(v(∗)nm, v
(k)
nm) (11)

On the other hand, for a fixed k and n, from (10) we have

λtkn =

M∑

m=1

d(v(∗)nm, v
(k)
nm) (12)

Combining (11) and (12) we have

tkn =

∑M
m=1 d(v

(∗)
nm, v

(k)
nm)

∑K
k=1

∑N
n=1

∑M
m=1 d(v

(∗)
nm, v

(k)
nm)

(13)

Because and wkn = − log(tkn) = log 1
tkn

, we obtain (6).
After we have calculated the deviations of all the entries,

we can compute the attribute weights directly using (8).
This weight calculation formula indicates that an attribute

with observations closer to the truths will have greater weights.
Therefore, (5) is a reasonable constraint function that leads to
a meaningful attribute weight assignment formula.

Second, we apply weight regulation. As we stated above,
we should update the attribute reliability according to the
fact hardness label obtained by Section 3.3 to obtain a more
accurate truth table. If we get α hard labels and β easy labels
for an n−attribute, the attribute reliability can be adjusted as:

wkn = wkn ∗ (
M + α

M + β
) (14)

Equation (14) shows that the attributes that get answers for
harder questions should have a higher reliability relatively.
In contrast, the sources that get answers for easier questions
should have a lower reliability.

E. Truth Computation

When the attribute weights are fixed, the truth computation
is dependent on the data type and loss function. The truth
computation methods for categorical data, continuous data,
text data, image data and video data are given respectively
as follows.

The most commonly used loss function for categorical data
is 0-1 loss in which an error occurs if the observation is different
from the truth. Formally, if the n-th attribute is categorical, the
deviation from the truth v(∗)nm is defined as:

d(v(∗)nm, v
(k)
nm) =

{
1 v

(∗)
nm 6= v

(k)
nm,

0 otherwise.
(15)

Plugging (15) into the objective function in (1), we can
obtain the following formula:

v(∗)nm ← argmin
v

K∑

k=1

N∑

n=1

wkn � d(v, v(k)nm) (16)

This formula indicate that based on 0-1 loss function, to
minimize the objective function, the truth should be the value
that receives the highest weighted votes among all possible
values.

Similarly, the 2-normalized loss function for continuous data
is (17), indicating that we can use weighted mean method to
calculate the truth. The truth could be the weighted mean
summation of all the observations.

d(v(∗)nm, v
(k)
nm) =‖ v(∗)nm − v(k)nm ‖2 (17)

For text data, the loss function is (18), indicating that we
can use weighted cosine similarity method [1] to calculate the
deviation.

d(v(∗)nm, v
(k)
nm) =

v
(∗)
nm ∗ v(k)nm

(| v(∗)nm | ∗ | v(k)nm |)
(18)

For image data, the loss function is (19), indicating that
we can use weighted SITF (Scale Invariant Feature Transform) [17]
method to calculate the deviation.

d(v(∗)nm, v
(k)
nm) = SITF (v(∗)nm, v

(k)
nm) (19)

For video data, the loss function is (20), indicating that we
can use weighted PSNR (Peak signal-to-noise ratio) [2] method to
calculate the deviation.

d(v(∗)nm, v
(k)
nm) = PSNR(v(∗)nm, v

(k)
nm) (20)

The above computation follows the principle that an ob-
servation stated by reliable sources will be more likely to be
regarded as the truth. If the difference between the successive
truth table entries is below the threshold δ twice, then the
iteration procedure ends. We assume δ is set to be one tenth
of the difference.

Example 5. We calculated the deviations by (15)~(20), the
attribute weights by (6). The attribute weights are {(0.45,
0.83, 0.84, 0.52); (0.65, 0.73, 0.84, 0.68); (0.75, 0.69, 0.87,
0.74)} respectively. Given the hardness labels in Example 3
{(3,0); (2,1); (0,3); (3,0) / (α, β)}, by (14) we can get the
regulated weights {(0.9, 1.04, 0.42, 1.04); (1.3, 0.91, 0.42,
1.36); (1.5, 0.86, 0.43, 1.48)}. Material analysis is the most
reliable attribute in the Leo database as it provides few errors
and answers harder questions.
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IV. TRUTH FINDING BY OBJECT RELIABILITY
ESTIMATION

In this section, we first introduce the measurement of our
object reliability. Then we formally describe the proposed truth
finding by object reliability estimation model TFOR which is a
Bayesian network that incorporates quality measurements into
object reliability estimation. We formulate it as a Maximum
Likelihood Estimation problem and apply Collapsed Gibbs
Sampling to jointly estimate the object reliability and truth.
The model iteratively updates the object quality and truth.
More details about the model are discussed below.

A. Measurement of Object Reliability

Given the observations and the ground truths of all entities
in one object, we can produce the confusion matrix describing
their consistency as in a classification method. The definitions
of precision, accuracy, recall and specificity are the same.
Since 1-sensitivity can capture the false negative rate of
conservative objects and specificity can seize the false positive
rate of venturous objects, we will use sensitivity and specificity
as the measurement of our object reliability. They can cover
the quality spectrum in the confusion matrix of an object. In
contrast, precision considers only positive claims and accuracy
takes only negative claims into consideration, making them
unable to recognize both positively and negatively erroneous
data because both measurements overlook the fundamental
differences of these two types of errors.

Our proposed TFOR model will incorporate specificity and
sensitivity into the object estimation procedure. The probabil-
ity graphical model will create two separate random variables
for each object. Other prior knowledge about the object quality
can also be easily incorporated into the Bayesian network by
specifying the variables. However, without knowing the group
truths, we have to let the object quality and truths as the latent
variables infer each other iteratively. We will initialize the
truths first, and then calculate the object quality and truths
back and forth until meeting the stopping criteria.

B. Model Description

The TFOR model takes object quality, truths of entity
and observations as prior knowledge, and models them as
random variables. We take specificity and sensitivity as the
quality measurement for objects. We model the truth label
as a Boolean random variable to help generate the confusion
matrix of the objects. As for the observation node, we take the
truth label of the entity it refers to and the quality of object it
comes from as its father nodes in the graphical model. In this
way, we can simulate the four possible real-world outcomes
naturally. Then, given the observations, we can infer the truth
label and object reliability inversely by Bayes rule. In general,
the specificity is high as most objects provide less erroneous
data. Similarly, we can take any prior knowledge about these
random variables into the model to take advantage of them.
Otherwise, we can just use a uniform prior in order to avoid
causing bias.

Figure 2 shows the graphical structure of conditional depen-
dence of our proposed TFOR model. In contrast to the existing

Figure 2: The probabilistic graphical model of TFOR

methods in multi-source aggregation, we jointly model object
reliability and truths to simultaneously help each other rather
than using source reliability. The generative process of the
proposed model is below.

For object reliability:
Draw ϕ0

m ∼ Beta(α0,1, α0,0), where ϕ0
m is the false

positive rate of object m, α1,0 is the prior false positive count
and α0,0 is the prior true negative count of each object.

Draw ϕ1
m ∼ Beta(α1,1, α1,0), where ϕ1

m is the sensitivity
of object m, α1,1 is the prior true positive count and α1,0 is
the prior false negative count of each object.

For entity truth:
Draw θf ~ Beta(β0,β1), where θf is the prior truth prob-

ability of entity f , β0 is the prior false count and β1 is the
prior true count.

Draw tf ~ Bernoulli(θf ), where tf is the truth label of entity
f .

Draw bm~ Set(S), where bmis the object set in source k,
and S is the set of all sources.

Draw oc~ Bernoulli(ϕtfsc ), where oc is the observation c of
entity f provided by object m.

From the above we can see that α0 and α1 control our prior
belief of source sensitivity, β expresses the prior belief of how
likely each claim is to be true. We will use a uniform prior
as it is reasonable to assume the claims are equally likely to
be true. We can also see that tf is a Boolean variable and the
prior probability that tf is true is exactly θf .

Remark. Beta distribution is the conjugate of Bernoulli and
Binomial distribution, it will make the inference more efficient.

C. Inference Algorithm

In this section, we will introduce a generative process for
truth and object reliability estimation of the proposed model
and discuss how to infer parameters using Gibbs-EM .

1) Likelihood Functions: Based on the dependencies of the
random variables in the TFOR graphical model, the probability
of each observation c of entity f given object quality ϕ0

Bc
, ϕ1

Bc

and truth label θf is:

p(oc|θf , ϕ0
Bc
, ϕ1

Bc
) = p(oc|ϕ0

Bc
)(1−θf )+p(oc|ϕ1

Bc
)θf (21)
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Then the likelihood of all parameters in the TFOR model
given the hyper parameters α0, α1, β is:

p(o, b, t, θ, ϕ0, ϕ1|α0, α1, β) =
∏

b∈B
p(ϕ0

B |α0)p(ϕ
1
B |α1)∗

∏

f∈F
(p(θf |β)

∑

tf∈0,1
θ
tf
f (1− θf )1−tf

∏

c∈Cf

p(oc|ϕtfBc
)) (22)

2) Estimating Truth: Given the likelihood of all parameters
in our model and the observations, the maximum posterior
estimation for t is:

tMAP = argmax
t

∫ ∫ ∫
p(o, b, t, θ, ϕ0, ϕ1)dθdϕ0dϕ1

(23)
If we search the space of all possible truth assignments

for t{MAP}, it would be prohibitively inefficient. So we use
Collapsed Gibbs Sampling method to speed up the inference
algorithm. Gibbs sampling is used to generate the sequence
of samples, whose stationary distribution is what we want to
estimate.

Let t−f = {f ′ ∈ F, f
′ 6= f} . We iteratively sample the

truth for each entity given the current truth labels of other
entities:

p(tf = i|t−f , o, b) ∝ βi
∏

c∈Cf

n−fBc,i,oc+αi,oc

n−fBc,i,0
+ n−fBc,i,1

+ αi,0 + αi,1
(24)

where n−fBc,i,j
= |{c′ ∈ C−f |bc′ = bc, tf

c
′ = i, oc′ = j}|,

i.e., the number of bc’s claims whose observation is j, and
referred entity is not f and its truth is i. These counts reflect
the quality of bc based on claims of entities other than f , e.g.,
n−fBc,0,0

is the number of true negative claims of bc, n
−f
Bc,0,1

is the false positive count, n−fBc,1,0
is the false negative count,

and n−fBc,1,1
is the true positive count.

This procedure implies that the sampling of the truth of
each entity is based on the prior for the truths and the object
qualities estimated on other entities. We present the pseudo-
code of the implementation of the Collapsed Gibbs Sampling
in Algorithm 2.

3) Estimating Object Quality: Given the truths estimated in
the previous step, we can obtain the predictions of the object
quality information from the TFOR model.

Since the posterior of object quality is also a Beta distribu-
tion, a maximum posterior estimate of the object quality has
a closed-form solution as follows:

sensitivity(b) = ϕ1
b =

E[nb,1,1] + α1,1

E[nb,1,0] + E[nb,1,1] + α1,0 + α1,1
(25)

specificity(b) = 1−ϕ0
b =

E[nb,0,0] + α0,0

E[nb,0,0] + E[nb,0,1] + α0,0 + α0,1
(26)

Algorithm 2 Collapsed Gibbs Sampling for Truth Finding
//Initialization step
1:for all f ∈ F do
2: sample tf from random()
3: if (random<ρ) then tf =1;
4: else tf =0;
5: for all c ∈ Cf do
6: nBc,tf ,oc++;

//end for
//end for
//Sampling step
7:for i←1 to K do
8: i++;
9: for all f ∈ F do
10: ptf ← βtf ,p1−tf ← β1−tf
11: for all c ∈ Cf do
12: ptf =

ptf ∗(nBc,tf ,oc−1+αtf ,oc )

nBc,tf ,1+nBc,tf ,0−1+αtf ,1+αtf ,0

13: p1−tf =
p1−tf

∗(nBc,1−tf ,oc−1+α1−tf ,oc )

nBc,1−tf ,1+nBc,1−tf ,0−1+α1−tf ,1+α1−tf ,0

//Sample tf from conditional distribution
14: if random<

p1−tf

ptf +p1−tf
then

15: tf ← 1− tf ;
16: nBc,1−tf ,oc–; //update the counts
17: nBc,tf ,oc++; //update the counts

//calculate the expectation of tf
18: if i > burnin and i%thin = 0 then
19: p(tf = 1)← p(tf = 1) + tf ;

//end for
//end for

//end for

where E[nb,1,1] =
∑
c=C,bc=b,oc=j

p(tfc = j) is the ex-
pected quality counts of object b which depends on the truth
probability of each fact b’s claims output by Algorithm 2.

We initialize the truths using the voting and mean method
for each entity and calculate the initial counts for each object.
Then we update the object reliabilities in each source, truths,
object trustworthiness and quality counts accordingly. The
iterative procedure will stop after the Gibbs sampling reaches
a steady state.

V. TRUTH FINDING BY GROUP RELIABILITY ESTIMATION

In this Section, we will present our truth finding model
by group reliability estimation model TFGR. We formulate
this model as an optimization problem that updates object
groups, group weights and truths iteratively by minimizing
the weighted deviation summation between the truths and
observations. We also present the methods to obtain the object
group weights and truths.

A. Basic Definitions

We first introduce the related concepts and notations used
in the TFGR model as well as the problem statement. We use
data source 1 (Table 5 (a)) as an example to explain these
concepts.
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Object Education Profession Phone Address City

User1 High school Builder 9078****35 Add1 Akiachak

User2 Doctor Student 9078****25 Add5 Akiachak

User3 Master Engineer 9070****11 Add3 Anchorage

User4 Doctor Professor 9073****16 Add4 Anchorage

(a) Data source 1

Object Education Profession Phone Address City

User1 High school Sales 9078****35 Add1 Akiachak

User2 Bachelor Manager 9075****01 Add2 Atmautluak

User3 Master Manager 9070****11 Add3 Anchorage

User4 Doctor CEO 9073****16 Add6 Anchorage

(b) Data source 2

Object Education Profession Phone Address City

User1 High school Builder 9078****12 Add1 Akiachak

User2 Doctor Student 9075****01 Add5 Akiachak

User3 Master Engineer 9070****11 Add3 Anchorage

User4 Doctor CEO 9073****16 Add6 Anchorage

(c) Data source 3

Table V: Data source set

Object Education Profession Phone Address City

User1 High school Builder 9078****12 Add1 Akiachak

User2 Doctor Student 9078****25 Add5 Akiachak

User3 Master Manager 9070****11 Add3 Anchorage

User4 Doctor CEO 9073****16 Add6 Anchorage

Table VI: Ground truths

Definition 6. An object is an item of interest, e.g., “User1”. An
object group is a subset of objects in one source. An attribute is
an attribute to describe the object, e.g., “Education”. A source
is the place where information about objects’ attributes can
be collected, e.g., Data source 1. An observation is the data
describing an attribute of an object from a source, e.g., User1’s
education from data source 1 is High school. An entity is an
attribute of an object, e.g., “User1’s education”. Truth is the
accurate information of an entry, which is unique, e.g., the
real User1’s education degree.

Remark. We follow the assumption that every entity has
only one correct value rather than multi-truths.

Definition 7. S(k) is the collection of observa-
tions of all objects on all attributes by the k-
th source {vk11, . . . vk1M , . . . vkN1, . . . v

k
NM}. Let

S = {S1, S2, . . . Sk, . . . , SK} be the set of observations that
can be taken as Input. Each claim c has the format of vknm,
where n denotes the attribute number, m denotes the object
number, k the source number, and vknm the observation on
attribute n of object m provided by source k. The Output S(t)

is a collection of truths for all objects on all attributes in the
t-th iteration {vt11, . . . vt1M , . . . vtN1, . . . v

t
NM}, where v(t)nm is

the truth on the n-th attribute of the m-th object in the t-th
iteration, w(t)

km the trustworthiness of the m-th object in the
k-th source in t-th iteration and w

(t)
kg the trustworthiness of

the g-th object group in the k-th source in t-th iteration.

Note that a higher wkm in Table 3 indicates that the object m
is more reliable than other objects in source k and observations
from this object are more likely to be accurate. This is under
the basic heuristic idea that a claim is more likely to be true if
it is provided by trustworthy sources (especially if by many of
them) and a source is trustworthy if most its claims are true.

Definition 8. Problem definition. Given a source
set {S1, S2, . . . Sk, . . . , SK} with observation set
{v111, . . . vk1M , . . . vkN1, . . . v

K
NM} for M objects and

Nattributes, we want to learn the object group list and
object reliabilities W = {wkm}m=1toM

k=1toK for each object in
each source and the final truth for each entity v∗nm.

For true claims that are more consistent than false ones, it
is reasonable to believe that we will find the true claims at the
end. Apart from the basic heuristic idea, we also believe that
different object groups may have different trustworthinesses
because of their unique characteristics. Using group reliability
will enable us to describe the source trustworthiness more
effectively.

Example 9. As shown in Table 5, data sources 1 and 3
have similar source reliabilities while data source 1 is more
accurate in User1 object and data source 3 is more accurate
in User4 object. That is to say, in data source 1, object 1
is more reliable than other objects. Using the refined group
reliability will enable us to infer truths more accurately.

Based on this reasoning, the proposed TFGR model cal-
culates the group reliabilities and entry truths by iteratively
minimizing the deviation summation between the claims and
truths weighted by the object group reliabilities. The initial
truths are generated by the voting and mean methods. The
iteration procedure terminates when the successive truth table
entry difference is below the threshold δ.

B. The TFGR Framework

We propose the following optimization framework to utilize
the object group weight that describes the reliability degree of
the source. The more reliable an object group is, the closer
its observations to the truths are. Thus we should minimize
the summation of weighted deviations from the truths to the
multi-source observations, where the weights reflect the object
group reliabilities. This results in our following optimization
framework:

min
S(∗),W

f(S(∗),W ) =

K∑

k=1

Gk∑

g=1

wtkg

mkg∑

m=1

N∑

n=1

d(v(t)nm, v
(k)
nm)

s.t.ξ(W ) = 1 (27)

Through minimizing the target function, we will get two sets
of variables S(t) and W alternately, where S(t) corresponds
to the set of truths in the t-th iteration and W represents
the object group weight set. Loss function dn measures the
deviation from the observation v

(k)
nm to the truth v

(t)
nm in the
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t-th iteration. Usually, it outputs a high value if the deviation
is high and low value otherwise. Weight wtkg reflects the
trustworthiness of the g-th object group in the k-th source in
the t-th iteration. The higher value of wtkg , the more trustable
the object group. ξ(W ) reveals the distributions of object
group weights.

We iteratively conduct two steps to get the final object group
weight set and the truth set through the following procedure.

Step I: Object Group Division. With the initial truths set
S∗, we divide the objects into groups according to
the deviation correlation between different objects in
one source.

{g11, . . . . . . , gkGk
} ← partition(d(v(t)nm, v

k
nm)) (28)

Step II: Object Group Weights Update. For static values of
the truths, we compute object group weights based
on the variations between the truths in the current
iteration and the claims made by the corresponding
object:

W t ← argmin f(S(t)) (29)

Step III: Truths Update. For fixed weight wtkg of each
object group, we update the truth set by minimizing
the weighted variations between the current truth set
and the corresponding observations. By computing
the truth for every entry, we can obtain the collection
of truths of (t+ 1)-th iteration S(t+1).

v(t+1)
nm ← argmin f(W t, {d(v(t)nm, vknm)}) (30)

The pseudo code of the TFGR method is given in Algorithm
3. The three steps will be elaborated in the following sections.

C. Object Group Division

Dividing objects into groups is motivated by the observation
that object reliability is not consistent across the entire dataset.
Some objects are more trustable than others because of their
characteristics. We propose the following three steps to divide
the objects into groups where object’s credibility is consistent
within each group and different across different groups. This
will help us infer the truth more effectively. Furthermore, the
following object division computation procedure indicates that
the closer of object reliabilities are, the higher probability the
objects are in one group, and there are M groups at most and
one at least.

Step I: Calculate the reliability of each object.
In this step, we are given the inferred truths and observations
of each object on all attributes. First, we compute the (truth,
observation)-deviation of each entry on each attribute of each
object using loss function d. Then we sum up the deviations of
each object to obtain the object derivation. As all objects have
the same attributes, we can compare their deviations directly.

Step II: Sort the object deviations in descending order.
Step III: Place all the objects in the same group if their

reliability differences are below the threshold ∆. At

Algorithm 3 Truth Finding by Group Reliability Estima-
tion
Input: Observations made by K sources: {S(1), . . . , S(K)}
Output: The true value for each entity
S(∗) = {v(∗)nm}N,Mn=1,m=1 and object weights

W = (w11 . . . w1M , w21 . . . w2M , . . . . . . , wK1 . . . wKM ) .
1: Initialize the truths S(1) ;//using voting and mean methods
2: t=1;//the first iteration
3: repeat
4: Divide every source into object groups

{g11, g12, . . . g1G1
, . . . . . . gK1, . . . , gKGK

}
with group number
{m11,m12, . . .m1G1 , . . . . . .mK1, . . . ,mKGK

}
using Algorithm 2;

5: Update object group weights
W t = (wt11 . . . w

t
1G1

, . . . . . . , wtK1 . . . w
t
KGK

)
according to (3) to reflect groups’
reliability based on the estimated truths;

6: for k ← 1 to K do
7: for g ← 1 to GK do
8: for n← 1 to N do
9: Compute the truth of the objects in the g-th

goup on the n-th attribute v(t)ng according
to (4) based on the current estimation
of object group weights {wtkg};

10: end for
11: end for
12: t++;
13: until Convergence criterion is satisfied; //the successive
//truth table entry difference is below the threshold δ twice
14: return S(∗) and W .

the end of this step, we will get the object groups
and group number of each source.

EXAMPLE 1. Let us consider the records in Table 1(a).
Suppose the inferred truths are the values, and we use
0-1 function as the deviation function for categorical
attributes, and square function for continuous attributes.
We first compute the overall deviation of each object in
this data source. The observations of User1 are “High
school”,“Builder”,”9078****35”,”Add1”,”Akiachak”,
and the inferred truths are “High
school”,“Builder”,”9078****12”,”Add1”,”Akiachak”, so
the deviation of User1 is 0+0+1+0=1. Similarly, the
deviations of User2, User3 and User4 are 1, 1 and 2
respectively. Second, the descending order of the object
deviations are 2, 1, 1 and 1, corresponding to User4, User1,
User2 and User3. Third, suppose the threshold is 0.5, then
User1, User2 and User3 will be in one group because their
deviation differences are below the threshold. Finally we
obtain two object groups {User4}, {User1, User2 and User3}.

D. Object Group Weight Assignment

We use the following regularization function to compute
the object group weight assignment in the t-th iteration by
constraining the summation of formula exp(−wtkg):
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ξ(W)=
K∑

k=1

Gk∑

g=1

exp(−wtkg) (31)

Theorem 10. Given the truth set, the optimization problem
(27) with convex function (31) in the constraint has the global
optimal solution given by

wtkg = log



∑K
k′=1

∑M
m′=1

∑N
n′=1 d(v

(t)

n′m′
, v

(k
′
)

n′m′
)

∑N
n=1 d(v

(t)
nm, v

(k)
nm)


 (32)

Proof: As the truths are static , (27) has only one set
of variables W . We assume a variable θkg = exp(−wtkg) to
prove the convexity of the optimization problem (27). Then
(27) can be expressed as follows:

min f(θkg) =
K∑

k=1

GK∑

g=1

(
− log(θkg)

mkg∑

m=1

N∑

n=1

d(v(t)nm, v
(k)
nm)

)

(33)

s.t.

K∑

k=1

GK∑

g=1

θkg = 1 (34)

The objective function of (33) is a linear combination of
negative logarithm functions, and the constraint is linear in
θkg , so (33) is convex. Thus, the optimization problem (27)
with constraint (34) is convex, and any local optimum is also
global optimum [23].

Then we apply the Lagrange multipliers to solve (33) as
follows:

L({θkg}K,GK

k=1,g=1, λ) =
K∑

k=1

GK∑

g=1

( − log(θkg)∗

mkg∑

m=1

N∑

n=1

d(v(t)nm, v
(k)
nm)

)
+ λ(

K∑

k=1

GK∑

g=1

θkg − 1) (35)

where λ is a Lagrange multiplier. Let the partial derivative
of Lagrangian with respect to θkg be 0, and we can get:

N∑

n=1

d(v(t)nm, v
(k)
nm) = λθkg (36)

From the constraint that
∑K
k=1

∑GK

g=1 θkg = 1, we can
derive that

λ =
K∑

k=1

M∑

m=1

N∑

n=1

d(v(t)nm, v
(k)
nm) (37)

Plugging (37) and wkg = − log(θkg) into (36), we obtain
(32).

Since we have calculated the deviations of all the entries in
front, then we can compute the object weights directly using
(32).

This object calculation formula indicates that an object with
observations closer to the truths will have a greater weight.

Therefore, (31) is a reasonable constraint function because it
leads to a meaningful object weight assignment formula.

Example 11. Back to the last example. Given the attribute
groups {User2}, {User1, User2 and User3} in Example 5, we
use Equation 7 to calculate the group weights. The deviations
have been calculated in the object division step, so we can
get group weights 1, 2, indicating {User1, User2 and User3}
is the most reliable group in data source 1 as it has the least
error rate.

E. Truth Computation

Given the object group weight set, we can use (30) to
compute the truth set. The loss function in (30) is determined
by the attributes, and different attributes’ truth computation
may be quite different from each other due to their different
characteristics. Li et al. [12] discussed the loss functions about
categorical and continuous data in detail. The most commonly
used loss function for categorical data is 0-1 loss (Equation
(38)) in which an error occurs if the observation is different
from the truth. One common loss function for continuous data
is normalized squared loss (Equation (39)).

Formally, if the m-th object is categorical, the deviation
between the observation v(k)nm and the truth v(t)nm is defined as:

d(v(t)nm, v
(k)
nm) =

{
1 v

(t)
nm 6= v

(k)
nm,

0 otherwise.
(38)

If the m-th object is continuous, the deviation function is
defined as:

d(v(t)nm, v
(k)
nm) =

(v
(t)
nm − v(k)nm)2

std(v
(1)
nm, . . . , v

(K)
nm )

(39)

This computation procedure is consistent with the basic
heuristic that an observation stated by reliable sources will be
more likely to be regarded as the truth. As stated in Algorithm
3, the iteration procedure will stop if the difference between
the successive truth set entries is below the threshold δ twice.
Then we will get the final weight set and truth set.

VI. EXPERIMENTS

In Section 5.1, we first introduce the performance measures
and baseline methods with their parameter settings, and then
describe the three real-world datasets. In Section 5.2.1 we
compare the performance of the proposed methods with the
baselines. We will also show the convergence rate and run
time in Section 5.2.2. The experimental results show that
the proposed methods can significantly reduce the error rate
compared with the state-of-the-art conflict resolution baseline
methods.

A. Experiment Setup

1) Performance Measures: Given the observations of all
entities in each object, we need to find out the object
reliabilities and entity truths using our proposed methods
automatically and compare them with the given ground truths
to evaluate the performance of these methods. The TFOR
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model runs in a semi-supervised form, the TFAR and TFGR
models are implemented in an unsupervised form. We use
Error Rate, Distance and Cos as the deviation functions
for heterogeneous data types. We use confusion matrix to
obtain the specificity and sensitivity of objects. Error Rate
is the inconsistent proportion between the output and the
ground truths of categorical data. Distance is the mean of
the 2-normalized absolute distance between the output and
the ground truths of continuous data. Cos is the reverse
cosine similarity between the output to the ground truths.
Confusion matrix is the consistent and inconsistent counts
between the output and ground truths. Specificity of object b is
the probability of false facts being claimed as false. Sensitivity
of object b is the probability of true facts being claimed as true.
For all measures, the lower the value, the better performance
of the method.

2) Baselines and parameter settings: We mainly compare
our methods with the following methods as they are either
classical or state-of-the-art.
• Voting: It is a straightforward way to obtain the truths

from a set of observations by taking the value with the
maximum count without considering source reliability.
This method can only be applied to categorical data.

• CRH [12]: Iteratively calculate the source weights and
truths by minimizing the weighted deviation between the
truths and observations. It can be applied to heteroge-
neous data types.

• CATD [11]: Detect the truths from conflicting data with
the long-tail phenomenon by considering the source re-
liability and confidence interval of the estimation. It can
be applied to numerical data type.

• TEM [36]: Model the truth existence by incorporating
three measures in a graphical model, silent rate, false
spoken rate and true spoken rate. This method uses source
reliability.

• MTF [29]: It is an integrated Bayesian approach to
solve the multi-truth discovery problem by taking source
features into account and reformulating the multi-truth-
finding problem based on the mappings between sources
and values.

• FaitCrowd [18]: Capture various expertise levels on dif-
ferent topics using a probabilistic model. It estimates both
topical expertise and true answers simultaneously.

3) Environment: All the experiments are conducted on a
windows PC with 4 GB RAM, Intel Core i7 CPU, algorithms
are implemented in MATLAB R2013a. All the baselines are
under the advised parameter settings to achieve their best
performance.

4) Data Description: The Diabetes Dataset. This dataset is
obtained from Weka-3-7 (data mining software) datasets. This
dataset has 8 continuous attributes, one categorical attribute
and one text type attribute, 768 objects, and 6912 observations.
We generate a dataset consisting of 10 multiple conflicting
sources by injecting different kinds of noise into different
attributes of ground truth. We take the variation dataset as the
input to our approach and baseline methods. We change the
data randomly to generate the input data source. A parameter
α is used to control the reliability degree of each attribute (a

lower α indicates the attribute is altered in a lower chance,
we use α = 0.1 to 0.5). In this way, we simulated a dataset
with attribute reliability in various degrees in all data sources.
The Labor Dataset. The full name of this dataset is Final
settlements in labor negotiations in Canadian industry. This
dataset was provided by Stan Matwin from Computer Science
Dept of University of Ottawa in Canada. It consists of 57
objects with 16 attributes and was monthly publication. This
dataset is also the ground truth of our Labor Data Source. We
generate this source by injecting different noises into different
objects of the ground truth. A parameter µ is used to control
the variation degree of each object by varying its value. In
this way, we simulated a data source with various attribute
reliabilities in different dataset. The German Credit Dataset.
This dataset was provided by Professor Dr. Hans Hofmann
from Okonometrie University in Germany. It contains 1000
instances and 20 attributes (8 categorical attributes, 7 numer-
ical attributes, 5 text type attributes) from 10 sources. The
ground truths are also provided.

B. Experiment Results

1) Estimating Truth and Object Reliability: We evaluate
the performances of both our methods and baselines on
categorical, continuous and text data types using Error Rate,
Distance and Cos respectively in the TFAR framework. We use
Equations (25) and (26) to calculate the sensitivity and speci-
ficity of the TFGR framework. Similarly, we use Equation (32)
and different deviation functions to obtain the object group
reliabilities and truth estimations in the TFOR framework. We
summarize the performance of all the methods on Diabetes
Dataset in Table 7. We can observe that the proposed TFAR
approach achieves better performance than all the baselines.
This is because the baseline methods either fail to take entity
hardness into consideration or cannot deal with heterogeneous
data types with the fine-grained attribute reliability. From
the comparison we can see that TFAR can model source
reliability more accurately by inferring attribute reliability and
adjusting the reliability by entity hardness. This also justifies
our assumption that attribute reliability is more accurate than
sources reliability. The TGOR and TFGR models are not good
at modeling the attribute reliabilities.

The quality estimation with truth threshold 0.5 of all
methods on Labor Data Set is summarized in Table 8. It
is obvious that TFOR performs better than other methods.
Because other methods all use source reliability to measure the
trustworthiness of a source and ignore the fact that different
labor record reliabilities may be different from each other. On
the contrary, the proposed TFOR method takes every object
in each source as an independent “source” , and computes
an object’s reliability through inferring the graphical model.
The TFGR does not perform as well as TFOR due to its
hardness in setting an appropriate difference threshold to bring
objects into groups with random object reliabilities. The TFAR
model does not perform well in dealing with different object
trustworthinesses.

We can observe that the TFGR method performs best in
quality estimation on the German Credit Dataset in Table 9.
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Method Specificity Sensitivity
TFAR 0.97 0.95
TFOR 0.86 0.84
TFGR 0.85 0.82
CRH 0.9 0.89
MTF 0.81 0.78

CATD 0.78 0.75
Voting 0.65 0.72

Table VII: Performance Comparison on Diabetes Dataset

Method Specificity Sensitivity
TFAR 0.81 0.85
TFOR 1.0 0.96
TFGR 0.98 0.91
TEM 0.91 0.85
MTF 0.75 0.88

FaitCrowd 0.90 0.90
Voting 0.64 0.74

Table VIII: Performance Comparison on Labor Data set

The TFGR method divides several object groups according to
their reliabilities. It coincidences with the common sense that
there exist several credit levels in a Credit System as different
levels enjoying quite different rights.

Through the above experiments we can draw the conclusion
that the TFAR model performs well when the attribute trust-
worthiness are different from each other, and the TFOR model
performs well when the object reliabilities are inconsistent
with each other while the TFGR model performs better when
there are several object reliability levels among all objects.

2) Efficiency: Convergence rate. Since our inference algo-
rithm is an iterative procedure, we now show the convergence
rate using Credit Dataset. We make 4 sequential predictions
using the samples in the first 10 iterations with sample gaps
0, 1, 2, 3 respectively. We repeat 5 runs to count for random-
ization due to sampling and compute the average specificity
and sensitivity which are shown in Figure 3. We can see that
they can reach stable after only 5 iterations, showing that the
proposed method converges quickly in practice. Runtime. All
three methods have a linear time complexity on the number
of claims in the data. To achieve the same accuracy, TFGR
takes less time than TFOR as it computes the deviations more
efficiently in groups rather than individual objects.

Method Specificity Sensitivity
TFAR 0.84 0.88
TFOR 0.99 0.97
TFGR 1.0 0.98
TEM 0.94 0.81
MTF 0.67 0.83

FaitCrowd 0.85 0.90
Voting 0.62 0.78

Table IX: Performance Comparison on German Credit Dataset

Figure 3: Convergence Rate

VII. CONCLUSION

We proposed three effective models, TFAR, TFOR and
TFGR, for truth finding by estimating the reliabilities on
heterogeneous attributes, objects and object groups in a multi-
source environment respectively. In our TFAR model, we gave
an optimization framework and its implementation algorithm
for computing attribute reliabilities to achieve more accurate
description of source trustworthiness. In our TFOR model, we
presented a generative process to obtain the object reliability
by regarding truth as a latent variable and applying the
Bayesian approach that can incorporate prior knowledge about
the truths of objects, and developed an efficient inference
algorithm based on Gibbs sampling to infer the truths. In our
TFGR model, we presented an optimization framework and
its implementation algorithm for iteratively computing object
group reliabilities. Experiments on three real world datasets
show that the proposed methods have better performance than
the classical and state-of-the-art baseline methods.

There are still interesting challenges on this problem. Our
method is based on the intuition that attributes are independent
with each other and their values are static. However, these
assumptions may not always hold (e.g., a person’s title may
have relationship with his age, an attribute’s value may change
over time). As our future work, we will extend our study to
take into consideration of the relationship among attributes
and dynamic changes of attribute values in order to gain
deep insight into formulated problem and the behavior of its
solution. We will also incorporate prior knowledge of object
characteristics such as truth counts etc. into the TFOR mode
to obtain a more accurate description of the object reliability.
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