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Abstract

In this paper, we propose a novel linear discriminant analysis criterion via the
Bhattacharyya error bound estimation based on a novel L1-norm (L1BLDA)
and L2-norm (L2BLDA). Both L1BLDA and L2BLDAmaximize the between-
class scatters which are measured by the weighted pairwise distances of class
means and meanwhile minimize the within-class scatters under the L1-norm
and L2-norm, respectively. The proposed models can avoid the small sample
size (SSS) problem and have no rank limit that may encounter in LDA. It
is worth mentioning that, the employment of L1-norm gives a robust perfor-
mance of L1BLDA, and L1BLDA is solved through an effective non-greedy
alternating direction method of multipliers (ADMM), where all the projec-
tion vectors can be obtained once for all. In addition, the weighting constants
of L1BLDA and L2BLDA between the between-class and within-class terms
are determined by the involved data set, which makes our L1BLDA and
L2BLDA adaptive. The experimental results on both benchmark data sets
as well as the handwritten digit databases demonstrate the effectiveness of
the proposed methods.
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direction method of multipliers

1. Introduction

Linear discriminant analysis (LDA) [1, 2] is a well-known supervised di-
mensionality reduction method, and has been extensively studied since it was
proposed. LDA tries to find an optimal linear transformation by maximizing
the quadratic distance between the class means simultaneously minimizing
the within-class distance in the projected space. Due to its simplicity and
effectiveness, LDA is widely applied in many applications, including image
recognition [3–6], gene expression [7], biological populations [8], image re-
trieval [9], etc.

Despite the popularity of LDA, there exist some drawbacks that restrict
its applications. As we know, LDA is solved through a generalized eigenvalue
problem Sbw = λSww, where Sb and Sw are the classical between-class
scatter and the within-class scatter, respectively. When dealing with the
SSS problem, Sw is not of full rank and LDA will encounter the singularity.
Moreover, since LDA is constructed based on the L2-norm, it is sensitive to
the presence of outliers. These make LDA non-robust. In addition, since the
rank of Sb is most c− 1, where c is the class number, LDA can find at most
c− 1 meaningful features, which is also a limitation.

For solving the above non-robustness issues, many endeavors were made
from different aspects, including using the null space information [10, 11], the
subspace learning technique [3, 9, 12], the regularization technique [7, 13],
incorporating a model of data uncertainty in the classification and optimizing
for the worst-case [14], utilizing the pseudo inverse of Sw [15], and using the
robust mean and scatter variance estimators [16, 17]. For the rank limit issue,
incorporating the local information [18] and the recursive technique [19–22]
were usually considered. Recently, the employment of the L1-norm rather
than the L2-norm in LDA was studied to cope with the non-robustness and
rank limit problems. Li et al. [23] considered a rotational invariant L1-norm
(R1-norm) based LDA, while the L1-norm based LDA-L1 [24–26], ILDA-L1
[27], L1-LDA [28] and L1-ELDA [29] were also put forward, where their scat-
ter matrices are measured by the R1-norm and L1-norm, respectively. The
matrix based LDA-L1 was further raised and studied [30–32]. The extension
to the Lp-norm (p > 0) [33, 34] scatter covariances was also used in LDA.
However, as pointed in [29], some of the above methods were still not robust
enough.
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As we know, minimizing the Bhattacharyya error [35] bound is a reason-
able way to establish classification [2, 37]. In this paper, based on the Bhat-
tacharyya error bound, a novel robust L1-norm linear discriminant analysis
(L1BLDA) and its corresponding L2-norm criterion (L2BLDA) are proposed.
Both of them can avoid the singularity and the rank limit issues, and the
employment of the L1-norm makes our L1BLDA more robust.

In summary, the proposed L1BLDA and L2BLDA have the following
several characteristics:
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Figure 1: Artificial data set and its projections obtained by LDA, L2BLDA, and L1BLDA.

• Both L1BLDA and L2BLDA are derived by minimizing the Bhat-
tacharyya error bound, which ensures the rationality of the proposed meth-
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ods. Specifically, we prove that the upper bound of the Bhattacharyya error
can be expressed linearly by the between-class scatter and the within-class
scatter, so that minimizing this upper bound leads to our optimization prob-
lem of the form min −SbB +D ·SwB, where SbB is the between-class scatter,
SwB is the within-class scatter, and D weights SbB and SwB. In particular, it
should be pointed out that the weight D is calculated based the input data,
so that our models adapt to different data sets.
• For the between-class scatter and within-class scatter, L1BLDA uses

the L1-norm (LASSO) loss f1(a) = |a|, while both the scatters of L2BLDA
and LDA are described by the L2-norm (square) loss f2(a) = |a|2. It is
obvious that the difference between f2(a) and f1(a) becomes larger as |a|
getting larger, so we expect that L1BLDA is more robust than L2BLDA and
LDA when the data set contains outliers.

To testify the robustness of L1BLDA, we here perform an experiment on
a simple data set with four classes. The first class contains 120 data samples,
while each of the other three classes contains 30 data samples. We apply the
following three algorithms LDA, our L1BLDA and L2BLDA on the data set
and obtain the one dimensional projected data, as shown in Fig. 1. Then two
additional outliers are added on the above data for testing. It is obvious that
for our L1BLDA, the outliers have little influence to its projection direction,
and the projected samples are separated well. On the contrary, LDA and
LB2DLDA are greatly affected by outliers.
• Two nongreedy adaptive algorithms are proposed for the optimization

problems in solving L1BLDA and L2BLDA, respectively: i) for L1BLDA,
it is solved by an effective ADMM algorithm, which is characterized by a
one-time projection matrix without the need to recursively solve a single
projection vector. Compared with traditional recursive algorithm for L1-
norm based LDA, our ADMM approach could maintain the orthogonality and
the normalization of the projection directions; ii) for L2BLDA, it is solved
through a standard eigenvalue decomposition problem that does not involve
the inversion operation, rather than a generalized eigenvalue decomposition
problem in LDA.
• Our L1BLDA and L2BLDA can avoid the singularity caused by the

SSS problem. Moreover, L1BLDA does not have the rank limit issue.
The notation of the paper is given as follows. All vectors are column ones.

Given the training set T = {x1, x2, . . . , xN} with the associated class labels
y1, y2, . . . , yN belonging to {1, 2, . . . , c}, where xl ∈ R

n for l = 1, 2, . . . , N .
Denote X = (x1, x2, . . . , xN ) ∈ R

n×N as the data matrix. Assume that the
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i-th class contains Ni samples. Then
c∑

i=1

Ni = N . Let x = 1
N

N∑
l=1

xl be the

mean of all samples and xi =
1
Ni

Ni∑
j=1

xij be the mean of samples in the i-th

class.
The paper is organized as follows. Section 2 briefly reviews LDA. Section 3

and Section 4 elaborate on our L2BLDA and L1BLDA, respectively. Section
5 makes comparisons of the proposed methods with their related methods.
At last, concluding remarks are given in Section 6.

2. Linear discriminant analysis

The main idea of LDA is to find an optimal projection transformation
matrix W such that the ratio of between-class scatter to within-class scatter
is maximized in the projected space of W ∈ R

n×d, d ≤ n. Specifically, LDA
solves the following optimal problem

max
W

tr(WTSbW)

tr(WTSwW)
, (1)

where the between-class scatter matrix Sb and the within-class scatter matrix
Sw are defined by

Sb =
1

N

c∑

i=1

Ni(xi − x)(xi − x)T (2)

and

Sw =
1

N

c∑

i=1

Ni∑

j=1

(xij − xi)(xij − xi)
T . (3)

The optimization problem (1) is equivalent to the generalized problem Sbw =
λSww where λ 6= 0, with its solution W = (w1, . . . ,wd) given by the first d
largest eigenvalues of (Sw)

−1Sb in case Sw is nonsingular. Since the rank of
Sb is at most c − 1, the number of extracted features is less or equal than
c− 1.
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3. L2-norm linear discriminant analysis criterion via the Bhat-
tacharyya error bound estimation

The error probability minimization is a natural way to obtain dimen-
sionality reduction for classification, who involves the maximization of prob-
abilistic distance measures and probabilistic dependence measures between
different classes [2, 3, 36–40]. Since the Bayes classifier is the best classifier
which minimizes the probability of classification error, minimizing its error
rate (called the Bayes error or probability of misclassification [2]) is expected
to lead to good classification model. The Bayes error is defined as

ǫ = 1−
∫

max
i∈{1,2,...,c}

{Pipi(x)}dx, (4)

where x ∈ R
n is a sample vector, Pi and pi(x) are the prior probability and

the probability density function of the ith class for the data set T , respec-
tively. The computation of the Bayes error is a very difficult task except in
some special cases, and an alternative way of minimizing the Bayes error is to
minimize its upper bound [2, 41]. In particular, the Bhattacharyya error [35]
is a widely used upper bound that provides a close bound to the Bayes error.
In the following, we will derive a novel L2-norm linear discriminant analysis
criterion via the Bhattacharyya error bound estimation, named L2BLDA,
and give its solving algorithm. The Bhattacharyya error bound is given by

ǫB =

c∑

i<j

√
PiPj

∫ √
pi(x)pj(x)dx. (5)

We now derive an upper bound of ǫB under some assumptions.

Proposition 1. Assume Pi and pi(x) are the prior probability and the prob-

ability density function of the ith class for the training data set T , respec-
tively, and the data samples in each class are independent identically nor-

mally distributed. Let p1(x), p2(x), . . . , pc(x) be the Gaussian functions given

by pi(x) = N (x|xi,Σi), where xi and Σi are the class mean and the class

covariance matrix, respectively. We further suppose Σi = Σ, i = 1, 2, . . . , c,
and xi and Σi can be estimated accurately from the training data set T .
Then for arbitrary projection vector w ∈ R

n, the Bhattacharyya error bound
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ǫB defined by (5) on the data set T̃ = {x̃i|x̃i = w
T
xi} satisfies the following:

ǫB ≤−
N

8

c∑

i<j

√
PiPj||wT (xi − xj)||22 +

N

8
∆||wT

X−w
T
xI||22

+
c∑

i<j

√
PiPj,

(6)

where ∆ = 1
4

c∑
i<j

√
PiPj||xi − xj ||22.

Proof: We first note that pi(x̃) = N (x̃|x̃i, σi), where x̃i = wT x̃i is the i-class
mean and σi is the i-class standard variance in the 1-dimensional projected
space.

Then we have [2]

∫ √
pi(x̃)pj(x̃) = e−

(˜̄xi−˜̄xj)2

8σ2 . (7)

Since

σ2 =
1

N

c∑

i=1

Ni∑

j=1

(wT (xi
j − xi))

2
2 =

1

N

N∑

l=1

(wTxl −wTxtl)
2

=
1

N
||wTX −wTxI||22,

(8)
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we have

ǫB ≤
c∑

i<j

√
PiPje

− 1
8

(˜̄xi−˜̄xj)2

σ2

=
c∑

i<j

√
PiPje

−(
˜̄xi−˜̄xj
2
√

2σ
)2

≤
c∑

i<j

√
PiPj(1−

( ˜̄xi − ˜̄xj

2
√
2σ

)2
)

=
c∑

i<j

√
PiPj −

N

8

c∑

i<j

√
PiPj ·

||wT (xi − xj)||22
||wTX −wTxI||22

≤
c∑

i<j

√
PiPj −

N

8

c∑

i<j

√
PiPj · ||wT (xi − xj)||22

+
N

8

c∑

i<j

√
PiPj ·∆′

ij ||wTX −wTxI||22,

(9)

where ∆′
ij ≥ 1

4
||xi − xj ||22, xI = (xt1 , . . . ,xtl , . . . ,xtN ) ∈ R

n×N , and xtl is the
center of the class that the l-th sample xl belongs to, l = 1, 2, . . . , N . The
second inequality of (9) holds by the fact that e−x2 ≤ 1 − x2 for x ≥ 0. For
the last inequality, since ||wT (xi − xj)||22 ≤ ||w||22 · ||xi − xj||22 = ||xi − xj ||22
and 1

||wTX−wTxI||22

(
1− 1

||wTX−wTxI||22

)
≤ 1

4
, we have

||wT (xi − xj)||22 ·
1

||wTX−wTxI||22
(1− 1

||wTX−wTxI||22
)

≤1

4
||xi − xj ||22,

(10)

which implies

||wT (xi − xj)||22
||wTX−wTxI||22
≥||wT (xi − xj)||22 −

1

4
||xi − xj ||22 · ||wTX−wTxI||22

≥||wT (xi − xj)||22 −∆′
ij · ||wTX−wTxI||22,

(11)

and hence (9).
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By taking ∆ =
c∑

i<j

√
PiPj∆

′
ij = 1

4

c∑
i<j

√
PiPj||xi − xj||22, we then obtain

(6). �

We are now ready to derive our optimazation problem from Proposition 1.
As stated before, we try to minimize the Bhattacharyya error bound. There-
fore, by minimizing the right side of (6) and neglecting the third constant

term
c∑

i<j

√
PiPj and the constant coefficient N

8
, we get the formulation of our

L2-norm based Bhattacharyya bound linear discriminant analysis (L2BLDA)
as

min
w

− 1

N

∑

i<j

√
NiNj |wT (xi − xj)|2 +∆

c∑

i=1

Ni∑

j=1

|wT (xi
j − xi)|2

s.t. wTw = 1,

(12)

where ∆ = 1
4

c∑
i<j

√
PiPj||xi − xj||22. The above optimization problem gives

us one projective discriminant direction. In general, to project the data into
higher dimensional space, our L2BLDA formulates as the following:

min
W

− 1

N

∑

i<j

√
NiNj ||WT (xi − xj)||22 +∆

c∑

i=1

Ni∑

j=1

||WT (xi
j − xi)||22

s.t. WTW = I,

(13)

where W ∈ R
n×d, d ≤ n. The geometric meaning of L2BLDA is clear. By

minimizing the first term in (13), the sum of the distances in the projected
space between the centroid of i-th class and the centroid not in the i-th
class is guaranteed to be as large as possible. Minimizing the second term
in (13) makes sure any sample be close to its own class centroid in the low
dimensional space. The coefficients 1

N

√
NiNj in the first term weight distance

pairs between the i-th and the j-th class, while the constant ∆ in front of
the second term plays the balancing role while also makes sure minimum
error bound be guaranteed. The constraint WTW = I forces the obtained
discriminant directions orthogonormal to each other, which ensures minimum
redundancy in the projected space.

L2BLDA can be solved through a simple standard eigenvalue decompo-
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sition problem. In fact, problem (13) can be rewritten as

min
W

tr(WTSW)

s.t. WTW = I,
(14)

where

S =− 1

N

∑

i<j

√
NiNj(xi − xj)(xi − xj)

T +∆

c∑

i=1

Ni∑

j=1

(xi
j − xi)(x

i
j − xi)

T .

(15)

Then W = (w1,w2, . . . ,wd) is given by the d orthogonormal eigenvectors
that correspond to the first d smallest eigenvectors of S.

4. L1-norm linear discriminant analysis criterion via the Bhat-
tacharyya error bound estimation

4.1. L1BLDA Bhattacharyya error bound derivation

In this section, we derive a different upper bound of the Bhattacharyya
error under the L1-norm measure, aiming to construct a robust L1-norm
based Bhattacharyya bound linear discriminant analysis (L1BLDA). Similar
to L2BLDA, we first give the following proposition.

Proposition 2. Assume Pi and pi(x) are the prior probability and the prob-

ability density function of the ith class for the training data set T , respec-
tively, and the data samples in each class are independent identically nor-

mally distributed. Let p1(x), p2(x), . . . , pc(x) be the Gaussian functions given

by pi(x) = N (x|xi,Σi), where xi and Σi are the class mean and the class

covariance matrix, respectively. We further suppose Σi = Σ, i = 1, 2, . . . , c,
and xi and Σi can be estimated accurately from the training data set T . Then
for arbitrary projection vector w ∈ R

n, there exist some constants B and C
such that the Bhattacharyya error bound ǫB defined by (5) on the data set

T̃ = {x̃i|x̃i = w
T
xi} satisfies the following:

ǫB ≤− B
c∑

i<j

√
PiPj||wT (xi − xj)||1 +BΩ||wT

X−w
T
xI||1

+ C

c∑

i<j

√
PiPj ,

(16)
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where Ω =
√
n
4

c∑
i<j

√
PiPj ||xi − xj||1.

Proof: From (7), we have

ǫB ≤
c∑

i<j

√
PiPje

− 1
8

(x̃i−x̃j )
2

σ2

≤
c∑

i<j

√
PiPje

− 1
8

(wT
xi−w

T
xj)

2

1
N

N∑
i=1

(wT xk−wT xlk
)2

=

c∑

i<j

√
PiPje

−N
8

( ||wT (xi−xj)||2
||wT X−wT xI||2

)2

≤
c∑

i<j

√
PiPje

−N
8

( ||wT (xi−xj)||1
||wT X−wT xI||1

)2

.

(17)

Here the last inequality of (17) follows from the fact that

||wT (xi − xj)||2
||wTX−wTxI||2

=
||wT (xi − xj)||1
||wTX−wTxI||2

≥ ||w
T (xi − xj)||1

||wTX−wTxI||1
. (18)

We now derive a linear upper bound g(x) of the right side of (17). Denote
h(x) = e−bx2

, 0 ≤ x ≤ a, b > 0. It is easy to know that h(x) is concave
when 0 ≤ x ≤ 1√

2b
, and h(x) is convex when x ≥ 1√

2b
. Therefore, when

x ≥ 1√
2b
, the linear function passing through ( 1√

2b
, h( 1√

2b
)) and (a, h(a)) is

the tightest linear upper bound of h(x), e.g., g(x) = −e−
1
2b −e−ba2

a− 1√
2b

x+
(
e−

1
2b −

1√
2b
· e−ba2−e−

1
2b

a− 1√
2b

)
. When 0 ≤ x ≤ 1√

2b
, it is obvious that there exists some

constant s > 0 such that g(x) = −e−
1
2b −e−ba2

a− 1√
2b

x+
(
e−

1
2b − 1√

2b
· e−ba2−e−

1
2b

a− 1√
2b

+ s
)

is tangent to h(x) and also a linear upper bound of h(x).
In summary, if we define

g(x) = −Ex+ C, (19)

where E = e−
1
2b −e−ba2

a− 1√
2b

, C = e−
1
2b − 1√

2b
· e−ba2−e−

1
2b

a− 1√
2b

+ s if 0 ≤ x < 1√
2b

and

C = e−
1
2b − 1√

2b
· e−ba2−e−

1
2b

a− 1√
2b

if x ≥ 1√
2b
, b = N

8
, then by combining (17) we

11



have

ǫB ≤
c∑

i<j

√
PiPjg

( ||wT (xi − xj)||1
||wTX−wTxI||1

)

=
c∑

i<j

√
PiPj

(
− B

||wT (xi − xj)||1
||wTX−wTxI||1

+ C
)

≤ −B
c∑

i<j

√
PiPj · ||wT (xi − xj)||1 +BΩ||wTX−wTxI||1 + C

c∑

i<j

√
PiPj,

(20)

where Ω =
√
n
4

c∑
i<j

√
PiPj||xi − xj ||1 similar as in Proposition 1. �

Therefore, by minimizing the upper bound (16) of the Bhattacharyya
error, we get the formulation of L1BLDA as

min
W

− 1

N

∑

i<j

√
NiNj ||WT (xi − xj)||1 + Ω

c∑

i=1

Ni∑

s=1

||WT (xi
s − xi)||1

s.t. WTW = I,

(21)

where W ∈ R
n×d, d ≤ n.

Problem (21) expresses the similar ideal of L2BLDA, but with the L2-
norm terms in L2BLDA replaced with the L1-norm ones, and with different
weighting constaints. Therefore, minimizing (21) makes the sum of the dis-
tances in the projected space between the centroid of the i-th class and the
centroid not in the i-th class under the L1-norm measure as large as possible,
also ensures each sample be close to its own class centroid. As in L2BLDA,
the coefficients in the first term of L1BLDA weight the distances between dif-
ferent classes, and Ω weights the between-class and the within-class scatters.
The orthogonormal constraint WTW = I again guarantees the minimum
redundancy in the projected space.

4.2. L1BLDA algorithm

We now give the solving algorithm of L1BLDA. As we see, the non-
smoothness and non-convexity of the objective of L1BLDA (21) together with
the orthonormal constraint make L1BLDA difficult to solve by traditional
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optimal techniques. Here we give an ADMM algorithm to solve it. To apply
ADMM, we first transfer (21) to its following ADMM form

min
W,Bij Zis,D

−
∑

i<j

||Bij ||1 + Ω

c∑

i=1

Ni∑

s=1

||Zis||1 + ℓ(W)

s.t.
1

N

√
NiNjW

T (xi − xj)−Bij = 0, i < j,

WT (xi
s − xi)− Zis = 0,

D−W = 0,

i = 1, . . . , c, j = 1, . . . , Ni,

(22)

where Bij , Zis ∈ R
d, W,D ∈ R

n×d, and ℓ(W) =

{
0, WTW = I

+∞, otherwise.

Then the augmented Lagrangian is given by

Lρ(W,Bij ,Zis,D;uij ,vij,Q)

= −
c∑

i<j

||Bij ||1 + Ω
c∑

i=1

Ni∑
j=1

||Zis||1 + ℓ(W)

+
c∑

i<j

uT
ij(

1
N

√
NiNjW

T (xi − xj)−Bij)

+
c∑

i=1

Ni∑
j=1

vT
ij(W

T (xi
s − xi)− Zis) +QT (D−W)

+ρ
2

c∑
i<j

|| 1
N

√
NiNjW

T (xi − xj)−Bij||22

+ρ
2

c∑
i=1

Ni∑
j=1

||WT (xi
s − xi)− Zis||22 + ρ

2
||D−W||2F ,

(23)

where uij, vij ∈ R
d, Q ∈ R

n×d are dual variables for i = 1, . . . , c, j =
1, . . . , Ni, and ρ > 0 is the penalty parameter. < · > denotes the inner
product, where for two matrices P = (pij) and H = (hij) of the same size,
their inner product is defined as < P,H >=

∑
pijhij.

By letting αij = uij/ρ, βij = vij/ρ and Γ = Q/ρ for i = 1, . . . , c, j =
1, . . . , Ni, the scaled form Lagrangian of (23) can be formed as (without
considering terms only contain αij , βij or Γ)
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Lρ(W,Bij ,Zis,D;αij,βij ,Γ)

= −
c∑

i<j

||Bij ||1 + Ω
c∑

i=1

Ni∑
j=1

||Zis||1 + ℓ(W)

+ρ
2

c∑
i<j

|| 1
N

√
NiNjW

T (xi − x)−Bij +αij||22

+ρ
2

c∑
i=1

Ni∑
j=1

||WT (xi
s − xi)− Zis + βij ||22

+ρ
2
||D−W+ Γ||2F .

(24)

Then the ADMM algorithm for problem (22) can be presented as Algorithm
1. For step (a) in Algorithm 1, we need to solve

Wk+1 =argmin
W

Lρ(W,Bk
ij ,Z

k
is,D

k;αk
ij,β

k
ij ,Γ

k)

=argmin
W

ℓ(W) +
ρ

2

c∑

i<j

|| 1
N

√
NiNjW

T (xi − xj)−Bk
ij +αk

ij||22

+
ρ

2

c∑

i=1

Ni∑

j=1

||WT (xi
s − xi)− Zk

is + βk
ij||22

+
ρ

2
||Dk −W+ Γk||22

=argmin
W

ℓ(W) +
ρ

2
tr(WT (

c∑

i<j

NiNj

N2
(xi − xj)(xi − xj)

T )W)

+
ρ

2
tr(WT

c∑

i=1

Ni∑

j=1

(xi
s − xi)(x

i
s − xi)

T )W)

+
ρ

2
tr(WTW)− ρ

[
tr(

c∑

i<j

1

N

√
NiNj(xi − xj)

TW(Bk
ij −αk

ij))

+ ρ · tr(
c∑

i=1

Ni∑

j=1

(xi
s − xi)

TW(Zk
is − βk

ij))

+ ρ · tr((Dk + Γk)TW)
]

(25)
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=argmin
W

ℓ(W) +
ρ

2
tr[WT (

c∑

i<j

NiNj

N2
(xi − xj)(xi − xj)

T

+
c∑

i=1

Ni∑

j=1

(xi
s − xi)(x

i
s − xi)

T + I)W]

− ρ · tr[(
c∑

i<j

1

N

√
NiNj(B

k
ij −αk

ij)(xi − xj)
T

+
c∑

i=1

Ni∑

j=1

(Zk
is − βk

ij)(x
i
s − xi)

T + (Dk + Γk)T )W]

=argmin
W

ℓ(W) +
ρ

2
tr(WTGW) + ρ · tr((Ak)TW),

=argmin
W

ρ

2
tr(WTGW) + ρ · tr((Ak)TW)

s.t. WTW = I,

where G =
c∑

i<j

NiNj

N2 (xi−xj)(xi−xj)
T +

c∑
i=1

Ni∑
j=1

(xi
s−xi)(x

i
s−xi)

T + I ∈ R
n×n,

and (Ak)T =
c∑

i<j

1
N

√
NiNj(B

k
ij−αk

ij)(xi−xj)
T +

c∑
i=1

Ni∑
j=1

(Zk
is−βk

ij)(x
i
s−xi)

T +

(Dk + Γk)T ∈ R
d×n. The above problem is equivalent to

argmin
W

ρ

2
[tr(WTGW) + 2 · tr((Ak)TW)]

s.t. WTW = I,
(26)

From Algorithm 1, we see that we need to solve optimization problems
in steps (a)-(d). In the following, we will give specific solutions to these four
types of problems.

Now we solve problem (26) by two cases.
Case 1: d = n. Since G is positive definite, we can further write G =
G0(G0)

T by Cholesky decomposition, where G0 is an invertible lower trian-
gular matrix. Then problem (25) is equivalent to

argmin
W

ρ

2
||GT

0W− (G0)
−1Ak||2F

s.t. WTW = I.
(27)
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Algorithm 1 Scaled ADMM algorithm for problem (13).

Input: Data set T = {(x1, y1), ..., (xm, ym)}; the positive tolerances ǫpri

and ǫdual. Set the iteration number k = 0 and initialize D0 ∈ R
n×d,B0

ij ∈ R
d,

Z0
is ∈ R

d and α0
ij ,β

0
ij ∈ R

d, Γ0 ∈ R
n×d, i = 1, . . . , c, j = 1, . . . , Ni; maximum

iteration number ItMax.
Process:
while k < ItMax

(a) Wk+1 = argmin
W

Lρ(W,Bk
ij,Z

k
is,D

k;αk
ij ,β

k
ij,Γ

k);

(b) Bk+1
ij = argmin

Bij

Lρ(W
k+1,Bij ,Z

k
is,D

k;αk
ij ,β

k
ij,Γ

k);

(c) Zk+1
is = argmin

Zis

Lρ(W
k+1,Bk+1

ij ,Zis,D
k;αk

ij,β
k
ij ,Γ

k);

(d) Dk+1 = argmin
Zis

Lρ(W
k+1,Bk+1

ij ,Zk+1
is ,D;αk

ij ,β
k
ij,Γ

k);

(e) αk+1
ij = αk

ij + ( 1
N

√
NiNj(W

k+1)T (xi − xj)−Bk+1
ij );

(f) βk+1
ij = βk

ij + ((Wk+1)T (xi
s − xi)− Zk+1

is );

(g) Γk+1 = Γk + (Dk+1 −Wk+1)
Until

||rk+1|| = max
i,j
{|| 1

N

√
NiNj(W

k+1)T (xi − xj)−Bk+1
ij ||2,

||(Wk+1)T (xi
s − xi)− Zk+1

is ||2, ||Wk+1 −Dk+1||2} ≤ ǫpri

and
||sk+1|| = max

i,j
{||ρ(xi − xj)(B

k+1
ij −Bk

ij)
′||2,

||ρ(xi
s − xi)(Z

k+1
is − Zk

is)
′||2, ||ρ(Dk+1 −Dk)||F} ≤ ǫdual.

Output: W∗ = Wk+1.

16



In this situation, problem (27) is a balanced Procrustes problem [42], and
can be solved asWk+1 = Pk

1(P
k
2)

T , where Pk
1 and Pk

2 are orthogonal matrices
from the SVD

Ak = Pk
1Σ

kPk
2.

Case 2: d < n. In this situation, problem (26) is an unbalanced Procrustes
problem [43], and there is no analytic solution. We here adopt a recently
proposed convergent algorithm studied in [44] to solve (26). Specifically, we
use Algorithm 2.

Algorithm 2 Algorithm for problem (26) when d < n.

(a) Compute the dominant eigenvalue a of G.
(b) Randomly initialize W ∈ R

n×d such that WTW = I.

(c) Update M← 2(aI−G)W− 2Ak.
(d) Calculate W by solving the following problem:

max
W

T
W=I

tr(WTM).

(e) Iteratively perform the above steps (c) and (d) until
convergence.

For step (b) in Algorithm 1, we need to solve

Bk+1
ij =argmin

Bij

Lρ(W
k+1,Bij,Z

k
is,D

k;αk
ij ,β

k
ij ,Γ

k)

=argmin
Bij

−
c∑

i<j

||Bij||1

+
ρ

2

c∑

i<j

|| 1
N

√
NiNj(W

k)T (xi − xj)−Bij +αk
ij ||22.

(28)

By direct computation, its solution can be given as

Bk+1
ij =





1
N

√
NiNj(W

k)T (xi − xj) + αk
ij + 1/ρ,

if 1
N

√
NiNj(W

k)T (xi − xj) +αk
ij ≥ 0;

1
N

√
NiNj(W

k)T (xi − xj) + αk
ij − 1/ρ,

if 1
N

√
NiNj(W

k)T (xi − xj) +αk
ij < 0,

for i = 1, 2, . . . , c.
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For step (c) in Algorithm 1, we need to solve

Zk+1
is =argmin

Zis

Lρ(W
k+1,Bk+1

ij ,Zis,D
k;αk

ij,β
k
ij ,Γ

k)

=argmin
Zis

Ω

c∑

i=1

Ni∑

j=1

||Zis||1 +
ρ

2

c∑

i=1

Ni∑

j=1

||(Wk+1)T (xi
s − xi)− Zis + βk

ij||22.

(29)

Its solution can be given through soft thresholding function:

Zk+1
is = ΦΩ/ρ[(W

k+1)T (xi
s − xi) + βk

ij ]

for i = 1, 2, . . . , c and j = 1, 2, . . . , Ni, where Φκ(a) =






a− κ, a > κ

0, |a| ≤ κ

a+ κ, a < −κ
.

For step (d) in Algorithm 1, we need to solve

Dk+1 =argmin
D

Lρ(W
k+1,Bk+1

ij ,Zk+1
is ,D;αk

ij ,β
k
ij,Γ

k)

=argmin
D

ρ

2
||D−Wk+1 + Γk||2F ,

(30)

whose solution is componentwisely given by

Dk+1 = Wk+1 − Γk.

5. Experiments

In this section, we perform experiments to test the proposed methods on
some UCI benchmark data sets and two handwritten digit databases. Several
related dimensionality reduction methods, including PCA [45], PCA-L1[46],
LDA [2], LDA-L1 [24] are used for comparison. The learning rate parameters
for LDA-L1 is chosen from the set {10−4, 10−3, . . . , 101}. To test the discrim-
inant ability of various methods, the nearest neighbor classification accuracy
(%) in the projected space is used as an indicator, where the projected space
is obtained by applying each dimensionality reduction method on the train-
ing data. All the methods are carried out on a PC with P4 2 GHz CPU and
2 GB RAM memory by Matlab 2017b.
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5.1. The UCI data sets

We first apply the proposed methods on 21 benchmark data sets. All
the data sets are normalized to the interval [0, 1], and their information is
listed in Table 1. Random 70% percent data is used for training, and the
rest data forms the test set. To test the robustness of our L1BLDA, we also
add random Gaussian noise to each training data. In specific, 30% and 50%
percent features are added with random Gaussian noise of mean zero and
variance 0.1, respectively. The classification results on the original data sets
and the noise data sets are listed in Table 2, Table 3 and Table 4, respectively.
From the tables, we see no matter which situation, L1-norm based methods
generally perform better than the L2-norm ones, and our L1BLDA performs
the best comparing to the other methods. When the noise is added, the
performance for all the methods degenerates on almost all the data sets.
However, our L1BLDA is less affected comparing to the other methods. To
see the results more clearer, we also depict the mean accuracies for each
method over all the data sets in Figure 2, and list their average ranks in
Table 5. One can see that our L1BLDA outperforms the others.

Table 1: UCI data sets information.

Data set Sample no. Feature no. Class no. Data set Sample no. Feature no. Class no.

Australian 690 14 2 Iris 150 4 3
BUPA 345 6 2 Monks3 432 6 2
Car 1782 6 4 Musk1 476 166 2
Credit 690 15 2 Libras 360 90 15
Diabetics 768 8 2 Sonar 208 60 2
Echocardiogram 131 10 2 Spect 267 44 2
Ecoli 336 7 8 TicTacToe 958 27 2
German 1000 20 2 Titanic 2201 3 2
Haberman 306 3 2 Waveform 5000 21 2
Hourse 300 2 2 WPBC 198 34 2
House votes 435 16 2

5.2. Handwritten digit databases

In this subsection, the behaviors of various methods are investigated on
two handwritten digit databases, including the MNIST database and the
USPS database.

19



Table 2: Classification results on original UCI data sets.

Data set
PCA PCA-L1 LDA LDA-L1 L2BLDA L1BLDA

Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim)

Australian 81.16 (7) 80.19 (6) 80.19 (1) 82.31 (8) 82.31 (2) 83.57 (3)
BUPA 60.19 (6) 61.17 (2) 56.31 (1) 63.11 (6) 65.05 (3) 70.87 (4)
Car 93.63 (3) 76.25 (6) 50.00 (3) 75.87 (5) 93.82 (5) 92.28 (5)
Credit 81.64 (5) 82.61 (3) 80.68 (1) 82.61 (8) 81.16 (6) 82.61 (5)
Diabetics 71.74 (4) 70.87 (8) 68.70 (1) 73.48 (7) 70.87 (8) 72.17 (5)
Echocardiogram 87.18 (9) 87.18 (8) 87.18 (1) 87.18 (10) 87.18 (9) 87.18 (9)
Ecoli 78.22 (7) 80.20 (4) 77.23 (7) 77.23 (7) 78.22 (5) 80.20 (6)
German 73.67 (18) 73.67 (17) 69.33 (1) 74.33 (15) 73.67 (18) 74.67 (3)
Haberman 71.43 (3) 71.43 (3) 51.65 (1) 68.13 (2) 73.63 (2) 74.73 (2)
Hourse 84.44 (11) 80.00 (11) 64.44 (1) 82.22 (17) 83.33 (11) 84.44 (13)
House votes 88.46 (18) 87.69 (16) 91.54 (1) 90.77 (7) 90.77 (16) 91.54 (16)
Iris 100 (1) 100 (3) 100 (2) 100 (3) 100 (4) 100 (3)
Monks3 63.08 (3) 60.77 (3) 60.00 (1) 70.00 (1) 56.15 (5) 73.85 (1)
Musk1 63.08 (41) 83.92 (44) 76.92 (1) 83.92 (45) 83.92 (45) 83.92 (44)
Libras 52.38 (15) 52.38 (15) 44.76 (14) 52.38 (11) 52.38 (15) 52.38 (16)
Sonar 56.45 (9) 56.45 (9) 46.77 (1) 62.90 (7) 56.45 (9) 62.90 (5)
Spect 83.75 (5) 78.75 (4) 71.25 (1) 78.75 (2) 81.25 (5) 83.75 (6)
TicTacToe 97.57 (14) 96.88 (15) 94.44 (1) 95.83 (15) 99.31 (14) 93.75 (15)
Titanic 67.73 (1) 70.30 (1) 67.73 (1) 70.30 (2) 67.73 (1) 70.30 (1)
Waveform 86.23 (3) 86.13 (3) 81.40 (1) 86.60 (4) 86.53 (3) 85.80 (9)
WPBC 67.80 (1) 67.80 (1) 66.10 (1) 67.80 (2) 71.19 (7) 72.88 (1)

PCA PCA-L1 LDA LDDA-L1 L2BLDA L1BLDA
65
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Figure 2: The mean accuracies for various methods on the UCI data sets.
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Table 3: Classification results on the UCI data sets with 30% features added with Gaussian
noise.

Data set
PCA PCA-L1 LDA LDA-L1 L2BLDA L1BLDA

Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim)

Australian 81.64 (9) 81.64 (2) 78.74 (1) 84.54 (7) 81.64 (2) 84.54 (7)
BUPA 56.31 (6) 57.28 (1) 57.28 (1) 60.19 (2) 56.31 (3) 68.93 (1)
Car 81.66 (4) 70.08 (6) 45.56 (3) 67.57 (2) 81.80 (3) 84.56 (5)
Credit 83.57 (15) 84.06 (9) 78.26 (1) 86.47 (12) 83.57 (15) 85.99 (7)
Diabetics 73.04 (8) 73.04 (8) 63.04 (1) 74.35 (3) 73.04 (8) 75.65 (7)
Echocardiogram 76.92 (1) 82.05 (6) 74.36 (1) 84.62 (2) 79.49 (8) 84.62 (2)
Ecoli 77.23 (4) 75.25 (7) 75.25 (5) 75.25 (5) 75.25 (6) 78.22 (4)
German 71.67 (8) 73.00 (8) 67.33 (1) 72.33 (18) 72.00 (5) 73.33 (6)
Haberman 75.82 (3) 75.82 (3) 61.54 (1) 72.53 (1) 75.82 (3) 75.82 (3)
Hourse 80.00 (9) 77.78 (8) 65.56 (1) 85.56 (8) 78.89 (10) 82.22 (8)
House votes 89.23 (11) 87.69 (16) 90.77 (1) 90.00 (10) 87.69 (16) 92.31 (3)
Iris 88.89(2) 91.11 (3) 97.78 (2) 93.33 (3) 93.33 (3) 97.78 (2)
Monks3 65.38 (2) 47.69 (1) 51.54 (5) 53.08 (1) 74.62 (2) 76.92 (5)
Musk1 79.72 (27) 78.32 (21) 65.73 (1) 79.72 (11) 79.72 (48) 83.22 (12)
Libras 60.00 (24) 57.14 (37) 39.05 (13) 61.90 (34) 57.14 (23) 56.19 (24)
Sonar 45.16 (3) 50.00 (3) 54.84 (1) 54.84 (1) 43.55 (6) 67.74 (1)
Spect 75.00 (9) 82.50 (18) 60.00 (1) 81.25 (6) 73.75 (9) 80.00 (7)
TicTacToe 90.97 (6) 91.67 (18) 45.14 (1) 92.71 (16) 91.32 (7) 92.71 (15)
Titanic 70.30 (1) 70.30 (1) 70.30 (1) 70.30 (1) 70.30 (1) 70.30 (1)
Waveform 81.67 (8) 81.87 (12) 80.86 (1) 83.60 (17) 81.73 (12) 84.27 (6)
WPBC 72.88 (15) 67.80 (7) 59.32 (1) 76.27 (25) 71.19 (3) 76.27 (4)
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Table 4: Classification results on the UCI data sets with 50% features added with Gaussian
noise.

Data set
PCA PCA-L1 LDA LDA-L1 L2BLDA L1BLDA

Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim)

Australian 82.61 (7) 83.57 (3) 78.74 (1) 83.09 (5) 83.09 (7) 84.06 (6)
BUPA 58.25 (2) 57.28 (4) 62.14 (1) 59.22 (2) 60.19 (2) 67.96 (4)
Car 78.19 (5) 70.08 (6) 44.21 (3) 68.73 (4) 77.03 (5) 78.57 (4)
Credit 79.71 (4) 76.81 (6) 78.26 (1) 81.64 (6) 76.81(15) 81.64 (4)
Diabetics 66.52 (8) 69.57 (4) 62.17 (1) 67.83 (6) 66.52 (8) 69.57 (3)
Echocardiogram 84.62 (2) 79.49 (4) 79.49 (1) 84.62 (8) 82.50 (7) 84.62 (3)
Ecoli 78.22 (7) 78.22 (7) 75.25 (7) 73.27 (5) 78.22 (7) 78.22 (7)
German 70.33 (5) 70.67 (10) 68.33 (1) 73.67 (8) 69.33 (14) 74.67 (3)
Haberman 70.33 (3) 71.43 (3) 63.74 (1) 70.33 (3) 70.33 (3) 74.73 (2)
Hourse 83.33(17) 82.22(23) 76.67(1) 82.22(26) 84.44(15) 85.56(18)
House votes 90.00(7) 92.31(12) 91.54(1) 92.31(15) 90.00(16) 92.31(5)
Iris 88.89 (1) 84.44 (2) 82.22 (1) 86.67 (3) 84.44 (4) 91.11 (2)
Monks3 51.54 (1) 65.38 (3) 48.46 (1) 72.31 (2) 49.23 (5) 70.77 (2)
Musk1 77.62 (35) 77.62 (129) 62.24 (1) 78.33 (93) 77.62 (35) 78.33 (38)
Libras 59.05 (48) 61.90 (54) 42.86 (3) 60.95 (60) 55.24 (39) 59.05 (29)
Sonar 51.61 (6) 56.45 (1) 48.39 (1) 59.68 (3) 53.23 (7) 59.68 (7)
Spect 77.50 (7) 78.75 (8) 70.00 (1) 80.00 (7) 78.75 (7) 81.25 (8)
TicTacToe 94.44 (9) 92.36 (15) 58.68 (1) 93.40 (16) 94.44 (9) 89.93 (15)
Titanic 67.73 (1) 67.73 (1) 67.73 (1) 67.73 (1) 67.73 (1) 70.30 (1)
Waveform 76.73 (11) 76.67 (19) 75.27 (1) 77.27 (16) 76.73 (20) 78.00 (19)
WPBC 76.26 (8) 74.58 (7) 59.32 (1) 74.58 (27) 77.97 (9) 79.66 (6)
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Table 5: Average ranks of various methods for the accuracies on the UCI data sets.

Data set PCA PCA-L1 LDA LDA-L1 L2BLDA L1BLDA

Australian 4.00 3.50 5.83 2.50 3.00 1.17
BUPA 5.17 4.50 3.83 4.17 2.33 1.00
Car 2.33 4.00 6.00 5.00 2.00 1.67
CMC 2.33 5.00 5.67 2.00 4.17 1.83
Credit 3.83 3.00 5.83 1.50 5.00 1.83
Diabetics 3.83 3.17 5.83 2.00 4.67 1.50
Echocardiogram 3.50 4.00 5.00 2.33 3.83 2.33
Ecoli 2.67 2.83 5.00 5.33 3.50 1.67
German 4.33 3.00 6.00 2.33 4.33 1.00
Glass 4.00 2.50 4.83 3.00 5.33 1.33
Haberman 3.33 2.67 6.00 4.67 2.83 1.50
Heartstatlog 4.50 3.33 3.67 2.67 5.83 1.00
Hourse 2.50 4.83 6.00 3.17 3.00 1.50
House votes 4.83 4.50 2.50 2.83 4.83 1.50
Ionosphere 3.33 4.33 5.33 1.83 5.00 1.17
Iris 3.83 4.33 3.67 3.33 3.83 2.00
Monks3 3.33 4.33 5.33 2.33 4.33 1.33
Musk1 4.00 3.83 4.83 2.83 2.83 1.67
Libras 2.83 2.50 6.00 2.00 3.83 3.83
Sonar 4.67 3.67 4.83 1.83 4.67 1.33
Spect 3.50 3.00 6.00 2.83 3.83 1.83
TicTacToe 2.83 3.33 5.67 2.83 2.17 4.17
Titanic 1.83 3.17 2.83 3.17 2.83 3.17
Waveform 3.83 4.00 6.00 1.67 3.17 2.33
WPBC 3.50 4.67 6.00 3.00 2.67 1.17
Average rank 3.55 3.66 5.19 2.94 3.50 1.88
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5.2.1. The MNIST database

The MNIST database contains 70000 digit images with 10 classes of the
size 28×28. We up-sample the images to the size 16×16, and further reshape
them to vectors of the length 256. 30% data from each class are randomly
selected for training, while the rest data is used for testing. Further, Gaussian
noise with mean 0 and variance 0.05 is added on the training data, where the
noise covers random 30% rectangular area of each image. The contaminated
digit images are displayed in Figure 3. All the methods are then applied on
the original training data and the contaminated training data. We show the
classification results in Table 6.

Figure 3: The contaminated samples from the MNIST database.

Table 6: Classification results on the MNIST database.

Data
PCA PCA-L1 LDA LDA-L1 L2BLDA L1BLDA

Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim)

Original data 96.79 (53) 96.81 (66) 86.24 (9) 96.50 (246) 96.81 (56) 96.79 (57)
Noise data 71.90 (225) 72.27 (256) 77.57 (9) 91.41 (166) 92.28 (151) 92.31 (156)

The table shows that for the original data, all the methods behave sim-
ilarly except for LDA. However, when the samples are contaminated, PCA,
PCA-L1 and LDA are all greatly influenced by noise, while LDA-L1 and
our L2BLDA, L1BLDA have small changes. In addition, our L2BLDA and
L1BLDA are both better than LDA-L1, and our L1BLDA has the best per-
formance. It demonstrates the effectiveness of the proposed methods. To see
how the reduced dimension affect each method, we depict the variation of
accuracies along dimensions, as shown in Figure 4. For the original data, as
the dimension grows, the accuracies of all the methods fist grow rapidly and
then keep steady with the similar performance. When the noise is considered,

24



our L1BLDA and L2BLDA and LDA-L1 affected less by noise comparing to
PCA and PCA-L1, while our L2BLDA and L1BLDA have the higher accu-
racies than LDA-L1 after dimension 17. This demonstrates the effectiveness
of the proposed method.
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Figure 4: The variation of accuracies along different dimensions on the MNIST database.

5.2.2. The USPS database

The USPS database contains 11000 samples with 10 classes of dimension
256, and each sample corresponds to a digit. We randomly select 80% samples
from each class for training, while the rest data is used for testing. To test
the robustness of the proposed method, we further add black block on each
training data, where the block covers random 20% rectangular area of each
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image, as shown in Figure 5. As before, all the methods are then applied

Figure 5: The contaminated samples from the USPS database.

on the original training data and the contaminated training data, and the
corresponding results are given in Table 7 and Figure 6. When no noise is
added, our L2BLDA performs the best, while our L1BLDA, PCA and PCA-
L1 are comparable to L2BLDA. However, when the image is contaminated,
L1BLDA behaves the best, which shows its robustness. Similar to the MNIST
database, the variation of accuracies along different dimensions shown in
Figure 6 also demonstrates the superiority of our proposed methods.

Table 7: Classification results on the USPS database.

Data
PCA PCA-L1 LDA LDA-L1 L2BLDA L1BLDA

Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim) Acc (Dim)

Original data 97.53 (55) 97.53 (53) 92.63 (9) 96.88 (139) 97.58 (58) 97.53 (46)
Noise data 86.86 (55) 86.95 (87) 79.64 (9) 87.68 (232) 88.41 (80) 90.09 (61)

6. Conclusion

This paper proposed two novel L1-norm and L2-norm based linear dis-
criminant analysis (L1BLDA and L2BLDA) which were upper bounds of the
theoretical framework of the Bhattacharyya optimality. Different from the
classical LDA, they both maximize the weighted pairwise between-class scat-
ter and minimize the within-class scatter, while their weighting constants are
determined by the involved data set. They both can be solved through sim-
ple nongreedy algorithms. The constructions of L1BLDA and L2BLDA make
them effective, and the application of L1-norm makes L1BLDA possess ro-
bustness. The experimental results also support their superiority. Our Mat-
lab code can be downloaded from http://www.optimal-group.org/Resources/Code/L1BLDA.html.
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Figure 6: The variation of accuracies along different dimensions on the USPS database.
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