

Edinburgh Research Explorer

Holistic discovery of decision models from process execution
data

Citation for published version:
De Smedt, J, Hasić, F, vanden Broucke, S & Vanthienen, J 2019, 'Holistic discovery of decision models
from process execution data', Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2019.104866

Digital Object Identifier (DOI):
10.1016/j.knosys.2019.104866

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Knowledge-Based Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1016/j.knosys.2019.104866
https://doi.org/10.1016/j.knosys.2019.104866
https://www.research.ed.ac.uk/en/publications/e4759806-19eb-4ccb-8c8e-f7d263ba531b

Holistic Discovery of Decision Models from
Process Execution Data

Johannes De Smedt

University of Edinburgh Business School Management Science and Business Economics

Group, 29 Buccleuch Place, EH8 9JS, Edinburgh, UK

Faruk Hasić, Seppe K.L.M vanden Broucke, Jan Vanthienen

KU Leuven Faculty of Economics and Business Department of Decision Sciences and
Information Management, Naamsestraat 69, 3000 Leuven, Belgium

Abstract

The analysis of business processes is a multifaceted problem that is comprised

of analysing both activities’ workflow, as well as the decisions that are made

throughout that workflow. In process mining, the automated discovery of pro-

cess models from event data, a strong emphasis can be found towards discov-

ering this workflow, as well as how data influences that workflow, i.e., decision

point analysis. Nonetheless, the data that is pertaining to the activities in the

workflow does not necessarily correlate with the control flow. Decisions that

influence variables that are used by activities can also impact other variables

used later in the workflow without interfering with the order in which activities

are executed. Discovering this has not been addressed in literature, as current

decision mining techniques still rely on control flow.

To address this, Process Mining Integrating Decisions (P-MInD) is proposed.

It relies on uncovering the influence of activities on their variables and connects

them by making use of sequence dependencies present in the data. Furthermore,

it allows to find autocorrelations, as well to incorporate case variables. This

allows to establish a holistic image of the decision layer, captured with Decision

∗Corresponding author
Email address: Johannes.DeSmedt@ed.ac.uk (Johannes De Smedt)

Preprint submitted to Knowledge-Based Systems February 21, 2019

Model and Notation (DMN), that is consistent with the discovered control flow.

Furthermore, decision model conformance checking, i.e., the matching of event

logs with holistic models, is proposed to offer a way to verify whether the models

are corresponding with the behaviour that is present in the current system. P-

MInD is implemented and used on real-life data to verify its effectiveness.

Keywords: Decision mining, Process mining, Decision Model and Notation,

DMN.

1. Introduction

The contemporary surge of data collection within various systems and in

a plethora of formats has urged data scientists to establish data mining tech-

niques that are tailored towards a variety of settings. One such setting, which

has a strong presence within organizations, are processes. Processes are stored

on a case basis, i.e., they report on the execution of various activities (events)

pertaining to a certain entity, e.g., a patient, an insurance claim, and so on.

These data, sequences of events stored in a case-based fashion, require appro-

priate techniques to retrieve insights adequately. Process mining is a popular

new topic [1] which is regarded as a novel approach established to analyse the

execution of processes within an information system. Applications for process

mining and subsequent analysis can be found in a number of areas, such as

back-end operations (call center routing), hospitals (care paths), manufacturing

(production), and so on.

The research area, however, has long been dominated by a strong empha-

sis on the control flow, i.e., retrieving models to capture the execution se-

quences by means of concurrent models such as Petri nets [2] or Business Process

Model and Notation (BPMN) models [3]. While these outcomes are suitable for

analysing deviating process executions and bottlenecks, throughput time, and

other scheduling-based questions, the data that is used and stored throughout

still hides considerable information that is left untouched. One of the major

attempts to uncover the insights that are recorded next to behavioural data in

2

information systems, was the use of decision mining in processes as introduced

in [4]. By using variables tied to activity execution, decision mining is able to

build predictive models that explain why certain paths in a process are followed

at fixed locations in the workflow that allow for exclusive choice (so-called XOR-

gates or -splits). Essentially, this approach is still very much control flow-driven

and can be considered as decision point analysis. Many other techniques have

been proposed to improve upon the first attempts in order to solve problems

regarding the analysis of loops and other routing constructs such as invisible

activities. Nevertheless, establishing the discovery of how the control flow is

driving the variables, and how the variables are interrelated throughout the

process, can only be captured when dedicated models are introduced.

Recently, the uptake of research on decision modelling in a process context

has led to initiatives such as Decision Model and Notation (DMN) [5], a coun-

terpart of BPMN to capture the relation between activities, variables, and how

they establish decisions in a workflow. As such, a process model’s decision layer

is offloaded from including intricate variable and relational information, whilst

increasing the expressiveness to include decision logic in a process and retaining

a separation of concerns.

To complement the insights from decision mining, new approaches have in-

troduced the discovery of DMN models from process data [6, 7]. Nevertheless,

the focus remains with explaining the control flow, or at least with models that

are incorporating control flow constructs. In this paper, Process Mining In-

tegrating Decisions (P-MInD) is introduced. P-MInD mines the relationship

between activity variables and does so in a control flow-agnostic, but control

flow-compliant fashion, i.e., behavioural information is used to ensure decisions

orders are corresponding with the behaviour seen in the event log. This ensures

P-MInD adheres to the separation of concerns, while obtaining insights that

previously remained hidden.

P-MInD contributes to the area of decision model mining in processes lit-

erature by introducing an approach to mine for decisions independent of, but

consistent with the control flow which can incorporate case attribute, as well

3

as discover autocorrelations of variables that appear in activities. Furthermore,

by using the concept of shifts, it can reveal how variables are sometimes in-

fluenced, and sometimes not influenced when used by activities that occur in

loops. All these elements constitute a stronger, more in-depth view of the de-

cisions that are made in a process, which we refer to as holistic. Finally, this

paper also introduces a decision model-driven conformance checking approach,

which can validate all the separate decision models that comprise the holistic

decision model.

P-MInD utilizes the concept of Variable-Activity Pairs (VAPs) to constitute

decisions in event logs, i.e., the combination of an activity influencing a variable

in the process. These VAPs are retrieved from the process execution log (here-

after called event log), taking into account the occurrence of the location within

the execution, a particular shift caused by a VAP, to pinpoint which VAPs are

related to which VAPs within the trace. This allows to construct dependencies

taking into account the sequence which is relatable to the control flow model (i.e.

process model) and use the reoccurrence of an VAP to mine autocorrelations.

To establish the relation between an activity and its variables, correlation or the

structure of predictive models is used. Depending on the number of occurrences

and the execution order of the activities, the influence over the variables is dif-

ferent. Therefore, the traces that exhibit a similar VAP-pattern are clustered to

find models to ensure consistency between control flow and decision model(s).

This approach is desirable within event logs, as the variation in execution paths

is typically correlated with the case’s characteristics, e.g., extraordinary patients

exhibiting an unusual ailment might be facing a care path that deviates from

other patients. Hence, the VAPs contribute significantly to the holistic nature

of the discovered decisions models, as they allow for the discovery of autocor-

relation and loops through splitting up activity occurrences. The findings are

implemented in the Process Mining (ProM) framework and is available in the

latest release.

This paper extends the findings of [8] where the initial version of P-MInD

and the concept of a holistic process model was introduced and strengthens it

4

in various ways. First of all, it introduces variable-attribute pairs to capture

relations, which makes it possible to capture autocorrelations and also explains

which shift, i.e., which appearance of an activity influencing a variable, is re-

sponsible for the relationship between activities and variables. Secondly, it

introduces a conformance checking approach, which also applies to the models

introduced in [8]. Finally, this paper also reports on the incorporation of case

attributes into decision models.

The paper is structured as follows. Section 2 illustrates why integrated, holis-

tic decision discovery is necessary and how it relates to other techniques with

a running example, completed with other related work and the contributions

of this paper. The main concepts for decision mining are discussed in Section

3 and applied in Sections 4 and 5 that introduce the discovery algorithm and

conformance checking approach respectively. Section 6 introduces the imple-

mentation which is used for empirical evaluation subsequently. Section 7 wraps

up the paper with a discussion of results and future work.

2. Motivation, related work, and contributions

In this section, an example process containing various types of decisions is

illustrated. Next, the presence of decision points, as well as decision models is

discussed. For a full survey on the various types of decisions in processes and

how to mine them, we refer to [9]. Furthermore, this section addresses related

work in the fields of decision modelling and data-centric process approaches.

Finally, the section concludes by outlining the main contributions of this paper.

2.1. Illustrative example

Consider the example in Figure 1, representing a procurement process in

Colored Petri nets (CPN) [10]. The process starts off with the receipt of an

order. At that moment, the value of the order (v), and type (t) are set and

passed on through the process. Once the purchase is confirmed, the shipping

method is determined. Afterwards, the shipping price is determined as well

5

v=value
t=type
s=shipprice
r=return
c=custtype

Order
received

Purchase
confirmed

Shipping method
determined

Shipped by
mail

[s<=100]

Shipped per
courier

[s>100]

Invoice sent
[r=0]

Refund requested Filed

Recollection
letter

[r>0]

Figure 1: Running example of a procurement process in which a customer can return a product

captured in a colored Petri net. Note that all the arcs should carry all the variables, but are

omitted for clarity.

(s). Note that this entails two different decisions. The former is a control flow

decision, i.e., the routing of what activity to execute is decided based on the

shipping price. To obtain the latter, a decision is made based on the type (t)

and value (v) to find a value for s. Afterwards, both s and r can influence the

routing, but the decision of s is independent of the control flow. After shipping,

the customer can determine whether a refund is necessary. Possibly, a new

product is shipped, or a recollection letter. By setting the refund variable r,

the control flow is influenced. Finally, once all customer-based activities are

performed, the order is filed and classified. A decision is made on what type

of customer the process was dealing with. The outcome is stored in variable c.

Again, this variable is set based on the value of previously set variables, such

as s, t, r, and v.

In Table 1, a potential event log of two cases is depicted which illustrates

these decisions. In this case n refers to the case id to identify what customer is

dealt with. First, upon entering the system, Order received (OR) sets t and v.

These values will be used later on to determine the shipping value s in Shipping

method determined. In both cases, an invoice is sent, and the product is shipped

by mail. In case 1, however, a refund is requested. Again, the shipping method

is determined, and the customer does not have access to corporate discounts

resulting in a higher shipping cost s. Since it pertains to a refund, a recollection

letter is sent. Finally, in both cases the customer lifetime value is calculated by

6

activity Filed.

a n v t s r c a n v t s r c

OR 1 10 1 0 0 0 OR 2 200 3 0 0 0

PC 1 10 1 0 0 0 PC 2 200 3 0 0 0

SMD 1 10 1 6 0 0 SMD 2 20 3 15 0 0

SM 1 10 1 6 0 0 SC 2 20 3 15 0 0

IS 1 10 1 6 0 0 IS 2 20 3 15 0 0

RR 1 17 2 6 1 0 F 2 20 3 15 0 514

SMD 1 17 2 8 1 0

RL 1 17 2 8 1 0

SC 1 17 2 8 1 0

F 1 17 2 8 1 89

Table 1: Event log generated by executing the process model of Figure 1.

2.2. Decision point analysis

Decision point analysis focuses on the XOR-splits that can be found within

a workflow (typically Petri nets), typically mined from an event log [4]. These

splits resemble decisions towards executing a particular activity within the pro-

cess. By using the data that is available next to the activities, i.e., the event

data, as independent variables within predictive models that use the activities

present after the decision point as a discrete dependent variable. Many issues

remain, most notably finding the correct data that is of relevance to the decision

point for which a model is produced. Consider the example, the places after

activity Shipping method determined are decision points (depending on the def-

inition used, one can claim the activity itself is the decision point) in which it

is decided what type of shipping needs to be used and whether an invoice or

recollection letter needs to be sent. The rules that can be retrieved for this, are

included in the guards on the activities. In trace 1, however, this decision is

made twice. Hence, it remains to be seen what data is to be used. A simple

heuristic is to use the latest data only, or an alternative is the usage of all pre-

vious data up until that point. Hence, loops, or repetition of behaviour, is hard

to interpret in decision points [4]. E.g., in [11], the latest data is used. Next, the

presence of hidden activities, i.e., activities without a label that are included for

routing purposes, make it unclear what activities that are connected to them

7

further in the execution as their number can grow quickly. Besides, loops come

into play again, as activities decide over themselves. Finally, overlapping rules,

i.e., rules that point to multiple activities after the decision point are a problem

as well. A solution for overlapping rules was found in [12].

Many extensions and improvements to decision point analysis were proposed

since, e.g., by using improved inference techniques [13] and alignments [14] and

finding overlapping rules [12]. An overview of many of these works can be found

in [15]. The learning of Markov models to capture decision point outcomes is

similar to many of the Petri net approaches as well [16].

2.3. Decision model mining

Decision models focus not only on the control flow aspect, but rather on

all decisions that are made within the workflow. The DMN standard visualizes

decision models as a hierarchical, acyclic model that connects decisions with

their input variables, the knowledge required to make a decision, and the other

decisions it provides a subdecision for. To be able to connect the decision

models with process models, a common ground is found in the activities in the

process model. Indeed, activities make decisions within processes. Decision

point analysis takes the activities placed before decision points (places within

a Petri net or gateways in BPMN) as a decision. This can be linked to DMN

models, as in [7]. However, this still only reflects on single decisions and separate

DMN models. A decision model encompasses the full decision lifecycle of a

process, including multiple decisions and their relationships. A more holistic

approach would be to connect the variables of various decision points, and how

they affect each other. Such an approach was provided by [6], work based on [7]

and [17], which bridges the gap between various decision points and predefined

relationships. In the example, however, no multiple decision points are present,

except for the repeating one at Shipping method determined. The technique,

however, is not capable of dealing with loops. It would be capable of finding

relationships between attributes, e.g., if the shipping price is dependent on the

type and value of a product. Nonetheless, the decision on the shipping price

8

would still need to be linked to an ad-hoc generated decision, or a decision point,

as all variables/attributes are compared with each other globally. Hence, the

control flow is still enclosed within the decision models, something that does not

correspond with the setup of the DMN standard’s view on integration between

decisions and processes.

2.4. Data-centric methods, decision modelling, and related approaches

Bayesian approaches for decision modelling in process execution (analysis)

exist as well, most notably [18] uses Bayesian inference networks to predict

decision outcomes, and [19] construct belief networks for event logs. The former

discusses how to represent and predict decision model outcomes from process

executions, but does not relate to activities directly. The latter are similar to P-

MInD in that they establish networks of activities and variables, but the problem

of loops is not addressed. Furthermore, the technique only uses parametric

models and has the main purpose of still discovering control flow models, rather

than decision models.

Conformance checking of discovered decisions has not necessarily been ad-

dressed directly, but data-aware approaches such as [20] and [21] can be used

to analyse either data-enriched, or decision point-based process models.

Contrary to focusing on the control flow, other works exist that rather start

from the data perspective while either incorporating control flow for clarifica-

tion, or by structuring the results. In [22] a general framework for correlating

business activity variables and process variables is proposed, and in [23], the re-

source perspective is mixed with the control flow for recommendations of future

executions.

In the more general research area of decision modelling many works are fo-

cusing on DMN and other decision modelling frameworks such as Product Data

Models [24, 25], as well as the work on multi-perspective object-oriented process

models such as Guard-Stage-Milestone [26] and its discovery [27] and Object-

Centric Behavioural Constraint Models [28]. In [9], a framework to position

efforts on decision modelling and mining in processes is proposed. Many works

9

focus on capturing business rules in decision tables [29, 30] and the separation

of concerns between process and decision model [31, 32, 33] has drawn an ex-

tensive part of recent literature. DMN has also been applied in the context of

disaster management [34].

2.5. Contributions

P-MInD [8] rather uses the relationship between activities and variables

to establish decisions. A combination of an activity deciding on a particular

variable is used as a decision, meaning that activities can appear in multiple

decisions. The variables serve both as an input to the decision, as well as the

output (the variable that is decided on) and allow for the construction of a deci-

sion model. In the example, Shipping method confirmed decides on the shipping

price (s), and the Filed activity decides on the customer type (c). Hence, two

decisions are made, which are also connected through s, as information regard-

ing the shipping can influence the type of the customer c. By starting from

the activities to build models or establish correlation, not all variables need to

be compared or used in different combinations in a possibly very large vari-

able space. Besides, P-MInD takes into account the precedence between the

occurrence of variable-activity pairs forming decisions to be consistent with the

workflow. In this work, a more rigorous approach is devised to connect deci-

sions by using, instead of precedence, the shifts of a variable. Every change

in the value of a variable is recorded and linked to a decision. This renders

P-MInD capable of pinpointing what position within a trace the decisions are

made, and allows for introducing autocorrelation, i.e., decisions influencing their

later instantiations. It also allows to deal with loops and picking up the correct

information for different versions of decisions. Finally, the approach naturally

finds the decision inputs, i.e., other decisions, that correspond with the traces

in which the shifts occur. That way, all models that are built out of the event

log are bundled in clusters of traces, effectively bundling the integrated decision

and process models in clusters in which the control flow is completely aligned

with the data flow (as in the partial ordering of DRDs) along the different shifts.

10

Customer purchase
decision  v

Shipping method
determined (1)  s

Shipping method
determined (2)  s

Filed  c

Customer purchase
decision  t

Refund requested  r

𝑠 =
𝑣

10
+ 2 × 𝑡

𝑐 = 𝑣 × 𝑡 − 𝑟 ∗ 10

𝑠 =
𝑣

10
+ 2 × 𝑡 + 𝑟 × 1.10

Figure 2: Decision Requirements Graph capturing the decision model present in the Petri net

extended with decision logic.

A decision model, more specifically a Decision Requirements Graph (DRG) is

visualized in Figure 2 to illustrate what decisions are present in the process.

3. Preliminaries

In this section, the concepts of event logs, activities, and decisions are de-

vised.

3.1. Decisions

Definition 1. A decision d ∈ Ddm is a tuple (I,O, L), where I ⊆ ID is a set

of input symbols, O a set of output symbols and L the decision logic defining the

relation between symbols in I and symbols in O with I ∩O = ∅.

In case of decision tables, a commonly used reasoning construct in decision

models, I and O contain the names of the input and output elements, respec-

tively, and L is the table itself, i.e., the set of decision rules present in the table.

As of now, we consider the decision logic L to be a predictive model that links

every input to every output. In DMN, decisions and decision logic make up the

nodes of a DRG, which are defined as follows.

11

Definition 2. A Decision Requirements Graph is a directed acyclic graph (Ddm∪

ID ∪ Ld, E), that connects the decisions, decision logic, and inputs with edges

E ⊆ Ddm ×Ddm ∪ L×Ddm ∪ ID ×Ddm.

As illustrated in the example in Section 2, the decisions are represented as

squares, where knowledge nodes are illustrated as semi-rounded parallelograms.

Inputs are not used in this work, but are typically represented as rounded rect-

angles in DRGs.

3.2. Event Logs

Process mining and its related techniques employ the notion of event log to

define the structure of data suitable for activity- and case-based discovery.

Definition 3. An event log is a tuple (E, A, λ, V, var, V al, L), where:

– E is a set of events.

– A is a set of activities (event types).

– λ : E → A is a labelling function mapping events to activities.

– V is a set of variables.

– var : E → P(V) is a function mapping events to the subset of variables

used in this event.

– For each v ∈ V a partial function valv : E → domv mapping events to

values in the domain of v. We denote the set of these partial functions as

V al.

– L ⊆
⋃
n∈NE

n a non-empty set of event tuples in the log which contains

traces σ ∈ L which are sequences of events σ = 〈e1, ..., e|σ|〉.

For the sake of brevity we use var(a) = {v ∈ var(E)|λ(E) = a}, i.e., var(a)

for a ∈ A denotes all variables appearing with the events with label a. σa is a

subsequence of σ, σa ⊆ σ where σa = 〈ei ∈ σ | λ(ei) = a, a ∈ A〉.

Typically, special variables include the timestamp (t ∈ V) and resource

(res ∈ V). The timestamp is denoted as T (e) = valt(e).

12

3.3. Business Activities

Decisions do not surface solely as the driver of control flow. Rather, they

steer the routing of cases because of decision outcomes that are needed as inputs

to other decisions, but also make changes in the data layer of the process without

influencing the cases’ workflow directly. The latter introduces numerous types

of activities that are representatives of the decision model in the process model:

Definition 4. The input and output data variables of business activities are

defined as follows:

– I : A→ P(V), function mapping a certain set of variables to the input of

a certain activity,

– O : A → P(V), function mapping a certain set of variables to the output

of a certain activity.

This enables the construction of the following activity types:

1. Operational activities (inputs (optional), no outputs): do not have

any influence on the process’ decision dimension and only act as a per-

former of a specific action that is tied to that specific place in the control

flow. They might serve as the end of a decision. They are provided with

the decision inputs needed, which are not used further in the process,

Ao = {a ∈ A | O(a) = ∅, }.

2. Administrative activities (no inputs, outputs): have the purpose to

introduce decision inputs into the process,

Aa = {a ∈ A | I(a) = ∅ ∧ O(a) 6= ∅}.

3. Decision activities (inputs, outputs): serve a true autonomous deci-

sion purpose as they transform decision inputs into a decision outcome,

Ad = {a ∈ A | I(a) 6= ∅ ∧O(a) 6= ∅}.

It holds that Aa ∪ Ao ∪ Ad = A. Typically, the decision points that are used

for decision mining in processes are of the decision activity type, but tailored

13

towards deciding which activity should be performed next based on the event

labels. Note that these are not included in V .

We can now make the connection with decisions and decision models. For

discovery purposes, we add the notion of shift and correlation to obtain the final

version of decisions discovered from event logs:

Definition 5. A decision d in a process is a tuple (Id, a, od, Ld) with:

– Id ⊆ {ai ∈ Aa ∪Ad | O(ai) ∈ I(a)} the possible inputs,

– od ∈ O(a) with a ∈ A, and

– Ld : Id × od → R a predictive model assigning a real-valued evaluation

metric.

Many activities within a process can be linked to different decisions. This

insight is something that is in contrast with control flow-based decision model

approaches as they are tied with activities as decisions. Other decisions serve

as inputs as they set variables that serve as an input for a. Hence, inputs are

replaced by administrative activities. Note that there is only one output node,

contrary to the more general formulation in Definition 1 to conform with the

setup of predictive models with a single dependent variable. However, the same

activity can have the same inputs for multiple outputs in different decisions.

4. P-MInD

P-MInD follows three main steps which are outlined in detail below. First,

the event log is scanned to register all shifts of variable values. Next, these shifts

are used to discover the different DRGs. Finally, the models are merged and

returned per top-level activity decision. This section is structured accordingly.

4.1. Finding shifts

To capture the dynamics of variables in event logs and the influence of ac-

tivities over them, the concept of shifts is introduced.

14

Definition 6. A shift sequence σv,a ⊆ σa is a subsequence of events of a in

trace σ where σv,a = 〈ei ∈ σa | valv(ei) 6= valv(ei−1)〉, i.e., all occurrences of a

where the previous value of v is different from the current value. A shift sv,aσ,i is

the ith of those occurrences in σv,a = 〈sv,aσ,1, ..., s
v,a
σ,|σv,a|〉.

We denote Sv,a = {sv,aσ,i | s
v,a
σ,i ∈ σv,a, ∀σ ∈ L} all shifts for the variable-

activity pair (v, a), and Sv,an all the nth shifts of (v, a). Separate shift sequences

for σv can be constructed similarly.

To capture the shifts, Algorithm 1 is operationalised. All parameters are

indicated in green. First, the event log is traversed and for every event it is

checked whether a shift has occurred (Algorithm 1 lines 3-11). In case the

previous value of a variable is different (line 8), this is recorded in the sequence

of shifts σv,a. All shift sequences are stored for later use and querying according

to Definition 6. The first event of a trace is considered responsible to introduce

the variables, and hence also captures case attribute values which are considered

constant over the trace σ, i.e., valv(ei) = valv(ej),∀ei 6= ej ,∀ei, ej ∈ σ.

Next, in lines 12-17, it is determined whether the shift ratio of a VAP is

high enough, i.e., whether the activity alters the value of a particular variable

enough times to assume there is an influence over the variable. The sensitivity

of the algorithm to perform this filtering is set by the minShift parameter,

which is a percentage. All VAPs that exceed the parameter’s value are retained

for building predictive models later. Other variables that are not necessarily

set, i.e., there are too few shifts but they are set by the activity and contain at

least 2 values (meaning they can be discriminative in a predictive model), are

kept as possible inputs of the activity.

4.2. Connecting activities

To capture the relationship between activities through their variables for a

certain shift, we introduce DMN models for mining as follows:

Definition 7. A DMN model for mining is a tuple (D,E,C,L, T) with:

– D ⊆ V ×A× N the set of Variable-Attribute-Shift number (VAS) tuples,

15

Algorithm 1 Mining decision models from an event log

1: procedure Mine DMN mod(L) . Input: Log and parameters

2: DRG← ∅ . DRG used as global variable throughout algorithms

3: σv,a ← 〈〉, ∀(v, a) ∈ V × A

4: for σ ∈ L do . All traces in the log

5: for et ∈ σ do . All events in the trace

6: if et−1 6= ∅ then . Skip first event to avoid non-existing et−1

7: for v ∈ var(et) do

8: if valv(et−1) 6= valv(et) then

9: σv,a ← et . Store the event in the shift sequence

10: else

11: σv,a ← et, ∀v ∈ var(et) . Store first value as shift

12: for v ∈ V do

13: for a ∈ A do

14: if |{valv(s) | s ∈ Sv,a}| > 1 then . The variable is discriminative

15: if |σv,a| > minShift · |L| then . Enough shifts occurred for VAP

16: O(a)← O(a) ∪ v

17: I(a)← I(a) ∪ v

. Find all inputs set by other activities occurring before certain shifts

18: for (v, a, n) ∈ {(v, a, n) ∈ V × A× N | σv,a 6= ∅ ∧ n ∈ [1,maxShift]} do

19: Tv ← {σ | sv,aσ,n 6= ∅} . All shifting traces with at least n shifts

20: DRG← drd = (D ∪ d = (v, a, n), E, L,C, Tv)

21: Find input variables(v, a, n, drd)

22: DRG← eliminate duplicates(DRG)

23: return DRG

– E ⊆ D ×D the connection between the VASs,

– C : E → R, the correlation to weigh the connections between elements of

D,

– L : P(V)× V → R the predictive models, and

– T ⊆ L a set of traces for which the model holds.

Once all possible VASs are captured, they are used as candidate top-level

nodes, in a DRG as illustrated in Algorithm 1 lines 18-20. The corresponding

traces, i.e., the ones in which there are [1, maxShift] shifts, are analyzed further.

Every decision variable-activity pair (v, a) for which v ∈ O(a) that is retained

after reading the event log is considered as the top node in a decision model.

Next, it is checked what other VAPs constituted an influence over the input

16

variables of the top activity in Algorithm 2. These inputs were established in the

previous staged by populating I and O, i.e., the goal is to connect activities that

set a v2 that has a relationship with variable v through a. To this purpose the

correlation is calculated between the values of v2 and v (binary) and by building

a predictive model (n-ary) later (line 16). Correlation is calculated by means

of RELIEF, which was introduced for two class problems in [35] and extended

for multiclass problems in [36]. RELIEF is a feature selection approach similar

to information gain or chi square weighing, but is capable of dealing with both

numeric and nominal data and is robust to noise and multicollinearity. Hence,

it is more suitable than standard Pearson correlation to weigh the importance

of variables within the process data. In line 4 of Algorithm 2 only traces in

which (at least) n shifts for (v, a) occur are stored. For all these traces, it is

checked whether (v2, a2)-pairs for a particular shift occurrence n2 is happening

before the influence of a on v (Algorithm 2, lines 5-9). For every (v2, a2, n2)

tuple the values of v2 are stored and eventually checked for their correlation

with v in lines 10-13 given that enough traces are supporting this shift order.

In case there exist more than 1 shift in the trace of (v, a), this means that

previous shifts might have influenced v through a. Hence, autocorrelations are

also part of D. The number of possible shifts can be limited by the maxShift

parameter, as this depends on the event log. Especially longer traces might

contain more intricate relations in which the influence of the reoccurrence of

shifts is important to discover even autocorrelations. Here it becomes noticeable

how partial order restrictions are introduced to ensure that correlations are

following the availability of variable information according to the availability in

the traces. In Figure 3, it is illustrated how VAPs are appearing throughout a

trace, and how their correlations might behave over different shifts.

If combinations of variables manipulated by activities for a certain shift are

withheld in M for particular traces, possible predictive models are generated

over the different subsets of traces supporting these v, a, n triples in D. There

is a vast amount of possible subsets of traces, especially if maxShift is high and

plenty if different shifts of the same VAPs are considered and passing minTraces,

17

Figure 3: Example of three traces and the existing correlations indicated by dashed lines.

These correlations are retrieved and stored to build the predictive models over the traces.

i.e., a subset of the event log with minimum size. To limit discovering all

possible combinations of pairs over all traces, a particular rationale is followed

to generating possible models which is outlined in Algorithm 3 and is illustrated

graphically in Figure 4. Starting from the biggest trace cluster, variables are

iteratively added to obtain models that hold for certain parts of the event low.

Depending on the overlap of the traces, new clusters are made, that will be

tested as new models (i.e. a combination of traces and a set of shifted-based

VAPs). By using parameter minDev, expressed as a percentage, it is ensured that

a variable that is added is sufficiently different and is not only slightly different.

To this purpose, the pairs are sorted according to how many traces are withheld

during correlation checking. Iteratively, new combinations of variables over a

collection of traces are generated, as long as their size is big enough.

Once the different combinations are captured in M , a predictive model is

built for all models correlating with (v, a, n) with all other triples on this level

in D2. Various predictive models can be built and many have merits in differ-

ent situations. As a placeholder, P-MInD uses classification trees and regression

trees, however, any other inference algorithms such as artificial neural networks,

regressors, and so on can be used instead. The model is stored in L. Before the

models are built, categorical variables with a high number of values (>50% of

the trace size) are filtered, for they are very unlikely to contain any predictive

18

𝐶 = ∅

𝐶 = 𝑇𝑣1
𝐶 = 𝑇𝑣1 , 𝑇𝑣1 ∪ 𝑇𝑣2

𝐶 = 𝑇𝑣1 , 𝑇𝑣1 ∪ 𝑇𝑣2 , 𝑇𝑣1 ∪ 𝑇𝑣2 ∪ 𝑇𝑣3 , 𝑇𝑣1 ∪ 𝑇𝑣3 , 𝑇𝑣3
𝐶 = 𝑇𝑣1 , 𝑇𝑣1 ∪ 𝑇𝑣2 , 𝑇𝑣1 ∪ 𝑇𝑣2 ∪ 𝑇𝑣3 , 𝑇𝑣1 ∪ 𝑇𝑣2 ∪ 𝑇𝑣3 ∪ 𝑇𝑣4

𝐶 = 𝑇𝑣1 , 𝑇𝑣1 ∪ 𝑇𝑣2 , 𝑇𝑣1 ∪ 𝑇𝑣2 ∪ 𝑇𝑣3 , 𝑇𝑣1 ∪ 𝑇𝑣2 ∪ 𝑇𝑣3 ∪ 𝑇𝑣4 , 𝑇𝑣1 ∪ 𝑇𝑣5 , 𝑇𝑣5𝐿

𝑇 𝑣
1
=
{𝑡
|𝑆
𝑡𝑣
1
,𝑎
1
,𝑛
1
≠
∅
}

𝑇 𝑣
2 𝑇 𝑣

3

𝑇 𝑣
4

𝑇 𝑣
5

Figure 4: Constructing potential models iteratively starting with the biggest subset of traces.

Note that the subsets that are too small (< |L| · minTraces) are indicated in red.

information. All numerical values are normalized first. The same procedure is

followed when the RELIEF score is calculated as well. Depending on what trace

cluster the set of triples is holding, a new DMN model is established to store

that different models hold for different traces. The outcome of the predictive

model is measured in Mean Root Squared Error (MRSE) for it can capture the

performance of both continuous and discrete values. The latter are captured

with a quadratic loss function to be able to calculate the MRSE. The MRSE

is a values between 0 and 1, as the continuous values are normalized, and the

quadratic loss function ensures an outcome in the same range. It has to exceed

the minSupport parameter to establish an interesting enough relationship be-

tween variables and . Finally, after finding all inputs and the models influencing

v, a, n, the algorithm continues recursively to repeat the same procedure for all

the triples in D2 that serve as an input in the particular traces of T .

Finally, P-MInD stops by eliminating duplicates at the end of Algorithm

1. The output consists of all generated DRG tuples. At every stage, it is also

checked whether the correlation for a certain pair of VAS has not already been

19

correlated over a set of the same traces, and whether the combination of d and

D2 in Algorithm 2 over T has not already been used to build a predictive model

to ensure no double calculations are performed.

Algorithm 2 Finding all input variables

1: procedure Find input variables(d = (v, a, n), drd = (D,E,L,C, Tv))

. Construct model with a a decision activity of v as top node

2: M,D2 ← ∅

. Loop all activities that set variables that serve as an input for v:

3: AV ← {(v2, a2) ∈ V × A | v2 ∈ I(a) ∧ v2 ∈ {v | v ∈ O(a2)}}

4: for (v2, a2) ∈ AV do

5: for d2 = (v2, a2, n2) ∈ {(v2, a2, n2) ∈ V ×A× N | σv2,a2 6= ∅ ∧ n2 ∈ [1,maxShift]} do

6: valv, valv2 , T ← ∅ . Stores the values of the variables, traces

7: for σ ∈ Tv do

. Include values where shift of a2 for v2 occurs before a shifting v in σ:

8: if sv2,a2σ,n2
< sv,aσ,n then

9: valv ← valv ∪ valv(sv,aσ,n), valv2 ← valv2 ∪ valv2 (sv2,a2σ,n2
), T ← T ∪ σ

. Store the inputs that are correlated with values of v over enough traces:

10: if |T | > |L| ·minTraces ∧ corr(valv, valv2) > minCorr then

11: D2 ← d2

12: M ← (d2, T)

13: C(d, d2)← corr(valv, valv2) . Correlation between both nodes

14: sort(M) . Sort shifts according to |T |

. Going through different models holding over different trace clusters T :

15: for (D2, T) ∈ Find input models(M) do

. D2 provides the independent variables, v the dependent variable

16: L(D2, v)← Build predictive model(D2, v, T)

17: if L(D2, v) > minSupport then

18: for d2 ∈ D2 do

19: D ← d2

20: E ← (d2, d)

21: if T = Tv then

22: Find input variables(od2 , ad2 , nd2 , drd)

23: else . Other trace cluster requires different model to be built

24: re-estimate C for T and adjust E accordingly to obtain Cn, En

25: DRG← drdn = (D,En, L, Cn, T)

26: Find input variables(od2 , ad2 , nd2 , drdn)

27: return (D,E)

20

Algorithm 3 Finding all overlapping models

1: procedure Find input models(M) . M a set of tuples of act.-var. pairs over traces

2: models← ∅ . Generated models

3: cov ← ∅ . Covered traces

4: for ((v, a, n), T) ∈M do

5: for (D,Tm) ∈ models do . Check all possible input models

6: if T = Tm then . If traces are the same, add to model

7: D ← D ∪ (v, a, n)

8: else if T ⊂ Tm ∧ |T | > |L| ·minTraces then

9: models← (D ∪ (v, a, n), T)

10: else if T ∪ Tm 6= ∅ ∧ |T∪Tm||T | > minDev then

11: models← (D ∪ (v, a, n), T \ Tm)

12: cov ← T

13: if T (cov ∧ |T | > |L| ·minTraces then

14: models← ((v, a, n), T)

15: cov ← T

16: return models

4.3. Consolidation of models and behavioural information

The output consists of a set of DRGs. They can be outputted according

to several abstractions. First of all, models can be retrieved and visualized

according to the traces to which they apply. I.e., models that are generated for

the same traces have the same T . This has the benefit of being able to visualize

the decision models over the same behavioural model (see infra). Secondly, it is

possible to visualize the models depending on the top-level nodes in the decision

models, and bundle all models according to whether they are a more specific, or

altered version of the DRG of this top node to capture the difference between

trace clusters regarding a certain top-level VAP.

Besides decision model information, it is also possible to mine the traces T

for each model to obtain a behavioural model such as BPMN models or Petri

nets. This allows to illustrate how the activities and decisions are intertwined

and provides a full, holistic overview that captures both perspectives of the

recorded execution.

21

5. DMN model conformance checking

DMN models and DRGs that are discovered from an event log can be useful

for many reasons including visualization and description, but also for verification

purposes. Conformance checking is deeply rooted in process mining to quantify

the quality of the discovered models, but also to measure conformance with

other, unseen data.

This section will focus on the conformance along two dimensions. First of

all, DRGs have to be corresponding with the underlying process model to ensure

that the execution of the process supports the order of decisions. Secondly, the

DRGs can be compared to other decision models that were inferred from other

event logs.

5.1. Conformance with process model

The DRGs that are part of the final DMN output contain partial orders that

are compatible with the process models generated for the trace clusters they are

in. However, if other DRGs are verified over a process model, or the the output

DRGs of P-MInD over another process model, a conformance check needs to be

performed.

To obtain such a check, P-MInD queries the reachability graph [2, 37] of

a Petri net mined over the traces in the cluster. The reachability graph of

a bounded Petri net is a transition system constructed as follows. The ini-

tial marking is the initial state. Every reachable marking from M0 is a state.

Transitions between pairs of states represent the transitions that lead from a

marking to another by means of a firing. A state in which no transitions are

enabled anymore is called a final state. After its construction, the reachability

graph can be queried to verify the sequences in which the activities are used in

the DRGs and indicate which partial order relationships in the DRG are not

allowed by the behavioral model underpinning its execution. Also reoccurring

activities, i.e., activities with multiple shifts in the same model, can be checked

for whether they are occurring in the same order as the DRG dictates.

22

Note that this requires the use of a concurrent discovery model that delivers

models that provide the correct class of Petri nets for which the reachability

can be calculated. Hence, in the examples, and the implementation in ProM

discussed in Section 6, Inductive Miner [38] is used.

P-MInD is a decision-first approach. While it is aligned with the behav-

ioral information in the underlying event log, and hence with discovered process

models, this step is rather aimed at positioning the decision models within the

global model rather than fixing any misalignments.

5.2. Conformance with other decision models

Decision models contain both the structure of how the decisions are made

by the activities, as well as the knowledge nodes or decision logic that is present

in the form of predictive models.

To verify the correspondence of a DRG with unseen event logs, the decisions

in the form of activity-attribute pairs need to be retrieved as well. Hence, to

verify DRGs over event logs, those event logs are mined with P-MInD as well,

in order to obtain DRGs that can be matched with the DRGs in the model to

be verified. Next, DRGs are compared in order to find whether the decision

behavior in the unseen process data corresponds with the decision behavior

modeled in the DRGs. In order to achieve this comparison, the coverage between

two DRGs DRG1 = (D1, E1, C1, L1, T1) and DRG2 = (D2, E2, C2, L2, T2) is

introduced as follows:

match(DRG1, DRG2) = Σd∈D1
(d ∈ D2)

+ Σ(d1,d2)∈E1
((d1, d2) ∈ E2)× C1(e = (d1, d2))

(1)

coverage(DRG1, DRG2) =
match(DRG1, DRG2)

|D1|+ |E1|
(2)

Equations 1 and 2 allow find the best matching DRG2 generated from the

unseen process data for every DRG1 in the DRGs contained in the decision

model to be verified. In case DRG1 contains decision logic, traces that are

corresponding with DRG2 can be validated over the predictive models in L2

23

in order to obtain the same quality metrics that are used to constructs the

models earlier (i.e. AUC or accuracy). Note that other traces can be replayed

over DRG1 as well, however, a high, ideally complete coverage where C1 is not

considered, will ensure that the variables (i.e. an activity-attribute pair for a

certain shift) can actually be validated over the predictive model without a high

number of missing variables or values.

By combining both checks on the structure of decisions, as well as the de-

cision logic captured in the original model, a comprehensive overview of the

quality of conformance can be calculated that pinpoints mismatches, i.e., be-

tween DRGs structure in terms of missing activities and arrows, as well as

incompatibility in terms of data. E.g., an event log might have the same de-

cision structure, however, the data used for making those decisions might be

vastly different from what was used to model the original model for which the

verification was performed.

6. Experimental evaluation

In this section, the implementation of P-MInD is illustrated on a real-life

event log. To this purpose, the 2017 BPI Challenge log1 was chosen because it

is one of the few commonly used event logs containing a significant activity data

component. Next, the influence of the parameters is illustrated on the same log.

All high-resolution screenshots can be found online2.

6.1. Implementation

P-MInD is available as a plugin in the Process Mining (ProM)3 framework

and is available in the ProM repository. The underlying predictive models are

created with Weka 4. It offers all parameters, i.e., minShift, minCorr, minDev,

and so on, as well as the possibility to either use parametric or non-parametric

1https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
2https://github.com/JohannesDeSmedt/PMInD
3http://promtools.org
4https://www.cs.waikato.ac.nz/ml/weka/

24

https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://github.com/JohannesDeSmedt/PMInD
http://promtools.org
https://www.cs.waikato.ac.nz/ml/weka/

correlation. Screenshots of output produced by both P-MInD and the P-MInD

conformance checker can be found in Figures 5, 6, 7, and 8.

Figure 5: Screenshot of the P-MInD ProM implementation. On the top of the screen, the var-

ious top-level decisions (activity(shift)→variable number of traces) are selectable. Below, the

DRG of one of the variants of the decision is displayed, with the corresponding Petri net for the

traces supporting the model shown below. Parameters used: (minShift=10, minSupport=60,

minTraces=10, minCorr=10, minDev=90)

6.2. 2017 BPI Challenge log

This event log captures a loan application process at a financial institution.

It consists of 25,337 events in 1,383 traces over 25 activities, 6 case variables,

and 12 activity variables. The set of variables includes the credit score of the

applicant (denoted CreditScore), monthly costs of the loan, initial withdrawal

amount, the resource handling the activity (denoted org:resource) and so on.

The latter are all recorded together with the activities as they occur. Some

variables are solely case-based, i.e., application type (denoted ApplicationType),

25

Figure 6: Screenshot of a different decision model from the same run as Figure 5

loan reason, and requested amount. The process follows a relatively straight-

forward control flow where an application and subsequently a potential offer is

created, submitted, handled, accepted or rerouted to the submission state for

re-evaluation. The activities are preceded by the letters O, A, and W depending

on whether they deal with the activities pertaining to an Offer (e.g. O Create

Offer), the Application (e.g. A Create Application), or the Work item (e.g.

W Call incomplete files). For an overview, we refer to the various submissions5.

P-MInD can be used to effectively capture the decisions made throughout.

In Figure 5, the output shows how a decision was made regarding the credit

5https://www.win.tue.nl/bpi/doku.php?id=2017:challenge

26

https://www.win.tue.nl/bpi/doku.php?id=2017:challenge

Figure 7: Screenshot of the P-MInD ProM conformance implementation. On the top of the

screen, the variants of the top-level decision W Validate Application for variable org:resource

shift 2 are selectable and compared with models from the other DRG set from the other log

with the highest coverage. Missing arcs and nodes are indicated in red, missing arcs and nodes

missing in the model used for comparison are indicate in a lighter yellowish colour.

Figure 8: Screenshot of the P-MInD ProM conformance implementation for two conforming

DRGs with a high coverage score and replay of traces in event log 2 over the model created

with log 1 (upper model).

27

score after having decided on the credit score previously (as the second shift

is being decided on as indicated as (2)). Both the resource, i.e., the person

handling the claim, as well as whether the offer was selected previously when

the first offer was made (i.e. the execution of O Create Offer influencing variable

Selected to form VAP O Create Offer→Selected for the first shift (1)) are inputs

to the decision on the credit score, the second time it was visited by VAP

O Create Offer→CreditScore(2). The arrows indicate the number of executions

for which these relations exists (in this case 1,698), as well as the RELIEF score

of the variables that are obtained from correlating org:resource and Selected with

CreditScore. The file symbols include the decision model, i.e., predictive model

that uses the input variables in order to predict the outcome of the credit score.

Note that this only pertains to the subset of the traces in which this decision

was taken. Other decisions which pertain to the event log are included on the

top of Figure 5 and include decisions regarding what resources (org:resource)

are handling the cases, and what variables influence these decisions. Typically,

this pertains to certain application types (as illustrated in Figures 7 and 8),

and the other resources that handled the case before. They are more prevalent

and relevant to more traces in the event log, e.g., up to 4,540 traces for VAP

W Complete application→org resource(1).

The workflow in Figure 5 (the color scheme indicates what activities are

involved) indicates that O Create Offer is indeed executed multiple times as it

contained in different paths that contain loops. The application is rejected, and

follows the full workflow to end up at the second offering. This example shows

how P-MInD is capable of finding decisions that are not included in the control

flow, indeed, there is no influence of the control flow on routing the offer past

a certain XOR-split, as O Create Offer will be executed regardless. It is rather

the content of the activity, i.e., its variables, that establish a decision. The

importance of using VAPs, especially combined with shifts, is apparent as well.

Otherwise, the influence of O Create Offer over multiple executions during the

same case is lost.

In Figure 6, we see what resource (org:resource) is used for A Accepted, and

28

how this depends on the case, I.e., the application type. The discovered decision

tree for this model, which is outputted by P-MInD separately, is shown in Table

2, and indicates how the application type and the resource determine what user

is used to finally make the acceptance decision in A Accepted.

In Figure 7, two models from different parts of the event log are compared

with the conformance checking and how the model also captured autocorrelation

(of org:resource), as well as influence of case variables (A Create Application

introduces Application Type at the beginning of every workflow). Notice also

how many different activities are present. Although not visualized, the ordering

of activities can be visualised as well. A Create Application sets org:resource

first, after which A Accepted changes it later on in the workflow.

In Figure 9, the conformance checking approach incorporating data approach

presented in [14] is shown for the same event log. The Petri net is also mined

with Inductive Miner, and is annotated for the data layer by the approach. In

hexagonal elements, the variables are all linked to the transitions for which the

guards contain the variable. The conditions that allow for a certain event to

happen based on the data that is currently holding in the dataset, is added to

the arcs. E.g., many arcs indicate which resource is required for executing a

particular activity. While the approach provides an in-depth insight into how

the variables are set and used for control flow execution, one cannot derive

what iteration of a certain loop (of which many are present in the Petri net) is

causing a particular activity to be executed. Furthermore, while decision trees

are underpinning the creation of the guards, they do not relate activities to

other activities directly, only indirectly through the connection with the vari-

ables present in the graph. Finally, no case attributes and autocorrelated can

be used with this approach. However, in contrast with P-MInD, it is better

capable of explaining how the control flow is established and influenced by the

data, detailing the exact outline of the whole trace, rather than the separate de-

cisions. Nevertheless, the often spaghetti-like nature of process graphs makes it

hard to untangle how data is actually used. Most notably, this process contains

many invisible/silent transitions for introducing skipping and looping activities,

29

A Create Application → org:resource (1994,1) = User 10: User 33

A Create Application → org:resource (1994,1) = User 31

— A Create Application → (case) ApplicationType (1994,1) = New credit: User 51

— A Create Application → (case) ApplicationType (1994,1) = Limit raise: User 18

A Create Application → org:resource (1994,1) = User 30: User 138)

A Create Application → org:resource (1994,1) = User 73: User 41

A Create Application → org:resource (1994,1) = User 14: User 39

A Create Application → org:resource (1994,1) = User 36: User 52

A Create Application → org:resource (1994,1) = User 35: User 24

A Create Application → org:resource (1994,1) = User 13: User 28

A Create Application → org:resource (1994,1) = User 34: User 97

A Create Application → org:resource (1994,1) = User 11: User 97

A Create Application → org:resource (1994,1) = User 18: User 47

A Create Application → org:resource (1994,1) = User 16: User 53

A Create Application → org:resource (1994,1) = User 38: User 73

A Create Application → org:resource (1994,1) = User 37: User 38

A Create Application → org:resource (1994,1) = User 15: User 38

A Create Application → org:resource (1994,1) = User 1: User 37

A Create Application → org:resource (1994,1) = User 2: User 60)

A Create Application → org:resource (1994,1) = User 3

— A Create Application → (case) ApplicationType (1994,1) = New credit: User 10

— A Create Application → (case) ApplicationType (1994,1) = Limit raise: User 46

A Create Application → org:resource (1994,1) = User 109: User 29

A Create Application → org:resource (1994,1) = User 43: User 97

A Create Application → org:resource (1994,1) = User 20: User 41

A Create Application → org:resource (1994,1) = User 25: User 23

A Create Application → org:resource (1994,1) = User 46: User 28

A Create Application → org:resource (1994,1) = User 24: User 51

A Create Application → org:resource (1994,1) = User 23: User 18

A Create Application → org:resource (1994,1) = User 22: User 15

A Create Application → org:resource (1994,1) = User 28: User 18

A Create Application → org:resource (1994,1) = User 49: User 61

A Create Application → org:resource (1994,1) = User 26: User 3

A Create Application → org:resource (1994,1) = User 4: User 19

A Create Application → org:resource (1994,1) = User 5: User 97

A Create Application → org:resource (1994,1) = User 7: User 42

A Create Application → org:resource (1994,1) = User 9: User 33

Table 2: Decision table for W Complete Application→org:resource (1) in Figure 6.

30

which makes it hard to trace variables and their values back to a particular ac-

tivity or even execution path. Overall, we recognize P-MInD and the approach

complementary where P-MInD gives a more detailed insight traces in which

decisions are causing significant correlations, while this approach is addressing

the global control flow that holds for all traces. It is worth pointing out how,

while both techniques build predictive models, the dependent variables used are

different. P-MInD uses the values of the variables in the activities as dependent

variables to establish relationships with the other variables present, while the

conformance checking approach uses the activity labels as the dependent vari-

able to predict the control flow. This is apparent when comparing the decision

rules/trees that are included in Table 2 for P-MInD, and in Figure 9 for the

conformance checking approach. As illustrated in Section 2, the technique pre-

sented in [6] cannot deal with the control flow behaviour contained in the event

log, since loops are present. Hence, the technique cannot be used for bench-

marking, and has not been validated over real-life data logs, but only synthetic

examples containing no loops.

6.3. Parameter assessment

P-MInD contains a variety of parameters. We illustrate their impact on two

excerpts of the 2017 BPI Challenge log, i.e., log 1 contains February-May (7,529

cases) and log 2 contains July-December (18,560 cases), to establish an intuition

on their impact on training and to guide users of the algorithm. Results on the

average number of edges and nodes, average depth of the DRG and maximal

depth, and number of trace clusters per run are contained in Tables 3 and 4.

Clearly, the impact of the minTrace parameter is the most significant, com-

bined with the minCorr parameter. The lower the required correlation for an

VAP, the more relations will appear, and the more and larger models will be

created. The shift ratio, the initial filter to capture whether there is an in-

fluence of an activity over a variable, seems of less importance. If an activity

influences a variable, its influence is clear and intense. The minimum support

is also of less importance. Only 60% and 70% support are shown, as similar

31

Figure 9: Screenshot of the approach presented in [14] and [39]. It contains the variables in

hexagons which are linked up with the transitions that contain guards containing the variables

for routing purposes.

32

results were achieved with lower and higher support values. D, E, and depth

stand for the average number of decisions, the average number of edges, and the

average depth of the decision models respectively.

Overall, the average number of nodes per model never exceeds six with

no more than 10 relationships between VAPs, meaning that the models are

relatively small and comprehensible. The presence of models with a depth

of five and visual inspection of the models learns that many models contain

autocorrelations. In fact, the latter are very common and can be intuitively

linked to the structure of many processes; loops and repetitions are often used

to work around the same problem that needs refinement. In this case, the

adjustment of the offer details and the revalidation of the offers are causing

these repetitions. Finally, it can be noted that there exist more models in the

first dataset. Given that it is smaller, it is easier for the algorithm to pick up the

relationships. In the bigger log, the thresholds need to be lower to obtain the

correlations that exist for only a small amount VAPs, as most of the behaviour

in the event logs is straightforward and not causing any convoluted workflows

where offers are reconsidered.

6.4. Concluding remarks

We have shown that P-MInD is capable of providing a holistic picture of

the data relations in an event log by finding trace clusters in which predictive

models relating variables to activities show how decisions are made. E.g., in

the case of the 2017 BPI Challenge, insights into the variables influencing the

assignment of a credit score (Figure 5) are uncovered by using VAPs for each

time the credit score is determined, how this decision is made differently in

various trace clusters, and how, in the case of assigning resources (Figure 7),

the application type of the case is combined with the insight of which resource

created and accepted the case.

By combining all these different insights, i.e., autocorrelation, disentangle-

ment through VAPs with shifts, case attributes, and the independence of -

though in consistency with- the workflow, P-MInD brings out holistic decision

33

minSupport minShift minCorr minTraces D E depth max depth #trace clusters

60

10

10 10 6 9 3 5 72

10 20 4 5 2 4 28

10 30 3 3 2 3 9

20 10 4 5 2 4 32

10–20–30

20 20 4 3 2 3 18

20 30 3 2 2 3 6

30 10 3 2 2 3 9

30 20 3 2 2 3 7

30 30 3 2 2 3 3

20 10 10 6 9 3 5 67

20–30

10 20 4 5 2 4 28

10 30 3 3 2 3 9

20 10 4 5 2 4 30

30 10 10 6 9 3 5 70

70

10

10 10 6 10 3 5 65

10 20 4 6 2 4 24

10 30 3 2 2 3 6

20 10 4 5 2 4 31

10–20–30

20 20 4 3 2 3 17

20 30 3 2 2 3 5

30 10 3 2 2 3 8

30 20 3 2 2 3 6

30 30 3 2 2 3 2

20 10 10 6 10 3 5 66

20–30

10 20 4 6 2 4 24

10 30 3 2 2 3 6

20 10 4 5 2 4 29

30 10 10 6 10 3 5 63

Table 3: Models created for the BPI 2017 Challenge February-May. All parameters are

expressed in percentages.

models that go beyond a single model, or multiple models trying to span the full

event log. Rather, P-MInD addresses coherent clusters of traces enriched with

the evolution of the decisions throughout them in the form of autocorrelations

with multiple roles for activities depending on their influence over variables.

The underlying decision models in the form of decision trees can be used to

uncover the current decisions in a process, and be used to alter current business

practices. E.g., if certain resources are involved with assigning credit to cases

they are not responsible for, this can be uncovered by investigating how the

underlying cases in the traces allowed this regardless.

P-MInD differs significantly from other related techniques, mainly in the

variables used, and the underlying predictive models that are generated from

34

minSupport minShift minCorr minTraces D E depth max depth #trace clusters

60

10

10 10 4 5 2 4 38

10 20 4 5 2 4 25

10 30 3 3 2 3 13

20 10 3 2 2 3 9

10–20–30

20 20 3 2 2 2 5

20 30 3 2 2 2 4

30 10 0 0 0 0 0

30 20 0 0 0 0 0

30 30 0 0 0 0 0

20 10 10 4 5 2 4 36

20–30

10 20 4 5 2 4 25

10 30 3 3 2 3 13

20 10 3 3 2 3 8

30 10 10 4 5 2 4 36

70

10

10 10 4 5 2 4 36

10 20 4 5 2 4 25

10 30 3 3 2 3 13

20 10 3 2 2 3 9

10–20–30

20 20 3 2 2 2 5

20 30 3 2 2 2 4

30 10 0 0 0 0 0

30 20 0 0 0 0 0

30 30 0 0 0 0 0

20 10 10 5 5 2 4 34

20–30

10 20 4 5 2 4 25

10 30 3 3 2 3 13

20 10 3 3 2 3 8

30 10 10 4 5 2 4 34

Table 4: Models created for the BPI 2017 Challenge July-December. All parameters are

expressed in percentages.

them. With P-MInD activities can take part in multiple decisions, as illustrated

in the example in Section 2 and in the case study discussed earlier. Furthermore,

our approach allows for loops and multiple instantiations of decisions, while

providing decision models that are not localised. Rather, the obtained decision

models span accross the whole trace execution span in which the control flow

and data flow are fully aligned.

Nevertheless, for a view on the control flow, P-MInD can still benefit from

being underpinned by approaches such as [39], who tie decisions to control flow

elements. Also, a high number of trace clusters might require different users

of the process to adequately be informed about the results, and the relation

between the clusters.

35

7. Conclusion

In this paper, we introduced the Process Mining Integrating Decisions frame-

work for the discovery of decision models from event logs. It is the first approach

to retrieve holistic decision models from process execution data by making use of

variable-activity pairs that are analysed for autocorrelations, looping informa-

tion over multiple iterations, long-distance dependencies, and the relationship

between case variables and activities. P-MInD also does not incorporate control

flow information but maintains consistency with the behavioural information in

the event log. This allows for getting a deeper insight into how activities are in-

fluencing variables during the execution of a process by building predictive mod-

els while maintaining compatibility with the workflow and behavioural models.

Furthermore, it was illustrated how these models can be used for conformance

checking to compare different outcomes according to their decision structure, as

well as their suitability in terms of predictive results.

Future work will focus on integrated conformance checking, i.e., blending the

control flow and decision perspective into one comprehensive framework to cap-

ture how activities are behaving in either models. It will also be investigated to

what extend these models can be used for predicting next-activity-in-sequence

by blending existing behavioural techniques with the predictive models estab-

lished with P-MInD.

References

[1] W. van der Aalst, Data Science in Action, in: Process Mining, Springer,

2016.

[2] T. Murata, Petri nets: Properties, analysis and applications, Proceedings

of the IEEE 77 (4) (1989) 541–580.

[3] OMG, Business Process Model and Notation (BPMN) 2.0 (2011).

[4] A. Rozinat, W. M. P. van der Aalst, Decision Mining in ProM, in: Business

36

Process Management, Lecture Notes in Computer Science, Springer, 2006,

pp. 420–425.

[5] OMG, Decision Model and Notation (2015).

URL http://www.omg.org/spec/DMN/1.0/

[6] E. Bazhenova, S. Bülow, M. Weske, Discovering Decision Models from

Event Logs, in: BIS, Vol. 255 of Lecture Notes in Business Information

Processing, Springer, 2016, pp. 237–251.

[7] K. Batoulis, A. Meyer, E. Bazhenova, G. Decker, M. Weske, Extracting De-

cision Logic from Process Models, in: Advanced Information Systems Engi-

neering - 27th International Conference, CAiSE 2015, Stockholm, Sweden,

June 8-12, 2015, Proceedings, 2015, pp. 349–366.

[8] J. De Smedt, F. Hasic, S. K. L. M. vanden Broucke, J. Vanthienen, Towards

a Holistic Discovery of Decisions in Process-Aware Information Systems, in:

BPM, Vol. 10445 of Lecture Notes in Computer Science, Springer, 2017,

pp. 183–199.

[9] J. De Smedt, S. K. L. M. vanden Broucke, J. Obregon, A. Kim, J.-Y. Jung,

J. Vanthienen, Decision mining in a broader context: an overview of the

current landscape and future directions, in: Business Process Management

Workshops, Lecture Notes in Business Information Processing, Springer,

2016.

[10] K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri Nets and CPN Tools

for modelling and validation of concurrent systems, STTT 9 (3-4) (2007)

213–254.

[11] M. de Leoni, F. M. Maggi, W. M. P. van der Aalst, Aligning Event Logs

and Declarative Process Models for Conformance Checking, in: BPM, Vol.

7481 of Lecture Notes in Computer Science, Springer, 2012, pp. 82–97.

37

http://www.omg.org/spec/DMN/1.0/
http://www.omg.org/spec/DMN/1.0/

[12] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, Decision

Mining Revisited - Discovering Overlapping Rules, in: CAiSE, Vol. 9694 of

Lecture Notes in Computer Science, Springer, 2016, pp. 377–392.

[13] M. de Leoni, M. Dumas, L. Garćıa-Bañuelos, Discovering Branching Condi-

tions from Business Process Execution Logs, in: FASE, Vol. 7793 of Lecture

Notes in Computer Science, Springer, 2013, pp. 114–129.

[14] M. de Leoni, W. M. P. van der Aalst, Data-aware process mining: discov-

ering decisions in processes using alignments, in: Proceedings of the 28th

annual ACM symposium on applied computing, ACM, 2013, pp. 1454–1461.

[15] M. de Leoni, F. Mannhardt, Decision discovery in business processes.

[16] G. T. Lakshmanan, D. Shamsi, Y. N. Doganata, M. Unuvar, R. Khalaf,

A markov prediction model for data-driven semi-structured business pro-

cesses, Knowl. Inf. Syst. 42 (1) (2015) 97–126.

[17] E. Bazhenova, M. Weske, Deriving Decision Models from Process Models by

Enhanced Decision Mining, in: Business Process Management Workshops,

Vol. 256 of Lecture Notes in Business Information Processing, Springer,

2015, pp. 444–457.

[18] K. Batoulis, A. Baumgraß, N. Herzberg, M. Weske, Enabling dynamic

decision making in business processes with DMN, in: Business Process

Management Workshops, Vol. 256 of Lecture Notes in Business Information

Processing, Springer, 2015, pp. 418–431.

[19] T. Savickas, O. Vasilecas, Belief network discovery from event logs for busi-

ness process analysis, Computers in Industry 100 (2018) 258–266.

[20] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst,

Data-driven process discovery: revealing conditional infrequent behavior

from event logs, in: Advanced Information Systems Engineering (CAiSE),

Springer, 2017.

38

[21] M. de Leoni, P. Felli, M. Montali, A holistic approach for soundness ver-

ification of decision-aware process models, in: ER, Vol. 11157 of Lecture

Notes in Computer Science, Springer, 2018, pp. 219–235.

[22] M. de Leoni, W. M. P. van der Aalst, M. Dees, A General Framework

for Correlating Business Process Characteristics, in: BPM, Vol. 8659 of

Lecture Notes in Computer Science, Springer, 2014, pp. 250–266.

[23] A. Kim, J. Obregon, J.-Y. Jung, Constructing Decision Trees from Process

Logs for Performer Recommendation, in: Business Process Management

Workshops, Vol. 171 of Lecture Notes in Business Information Processing,

Springer, 2013, pp. 224–236.

[24] I. T. P. Vanderfeesten, H. A. Reijers, W. M. P. van der Aalst, Product

Based Workflow Support: Dynamic Workflow Execution, in: CAiSE, Vol.

5074 of Lecture Notes in Computer Science, Springer, 2008, pp. 571–574.

[25] H. van der Aa, H. Leopold, K. Batoulis, M. Weske, H. A. Reijers, Integrated

Process and Decision Modeling for Data-Driven Processes, in: Business

Process Management Workshops, Vol. 256 of Lecture Notes in Business

Information Processing, Springer, 2015, pp. 405–417.

[26] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. F. T. H. III, S. Hobson,

M. H. Linehan, S. Maradugu, A. Nigam, P. N. Sukaviriya, R. Vacuĺın,

Introducing the Guard-Stage-Milestone Approach for Specifying Business

Entity Lifecycles, in: WS-FM, Vol. 6551 of Lecture Notes in Computer

Science, Springer, 2010, pp. 1–24.

[27] V. Popova, D. Fahland, M. Dumas, Artifact Lifecycle Discovery, Int. J.

Cooperative Inf. Syst. 24 (1).

[28] G. Li, R. M. de Carvalho, W. M. P. van der Aalst, Automatic discovery

of object-centric behavioral constraint models, in: BIS, Vol. 288 of Lecture

Notes in Business Information Processing, Springer, 2017, pp. 43–58.

39

[29] D. Calvanese, M. Dumas, Ü. Laurson, F. M. Maggi, M. Montali, I. Teine-

maa, Semantics and analysis of DMN decision tables, in: BPM, Vol. 9850

of Lecture Notes in Computer Science, Springer, 2016, pp. 217–233.

[30] D. Calvanese, M. Dumas, F. M. Maggi, M. Montali, Semantic DMN: for-

malizing decision models with domain knowledge, in: RuleML+RR, Vol.

10364 of Lecture Notes in Computer Science, Springer, 2017, pp. 70–86.

[31] T. Biard, A. L. Mauff, M. Bigand, J. P. Bourey, Separation of decision mod-

eling from business process modeling using new ”decision model and no-

tation” (DMN) for automating operational decision-making, in: PRO-VE,

Vol. 463 of IFIP Advances in Information and Communication Technology,

Springer, 2015, pp. 489–496.

[32] F. Hasic, J. D. Smedt, J. Vanthienen, Augmenting processes with decision

intelligence: Principles for integrated modelling, Decision Support Systems

107 (2018) 1–12.

[33] F. Hasić, J. De Smedt, J. Vanthienen, A Service-Oriented Architecture

Design of Decision-Aware Information Systems: Decision as a Service, in:

On the Move to Meaningful Internet Systems. OTM 2017 Conferences,

Springer International Publishing, Cham, 2017, pp. 353–361.

[34] F. E. A. Horita, J. P. de Albuquerque, V. Marchezini, E. M. Mendiondo,

Bridging the gap between decision-making and emerging big data sources:

An application of a model-based framework to disaster management in

brazil, Decision Support Systems 97 (2017) 12–22.

[35] K. Kira, L. A. Rendell, A practical approach to feature selection, in: ML,

Morgan Kaufmann, 1992, pp. 249–256.

[36] I. Kononenko, Estimating attributes: Analysis and extensions of RELIEF,

in: ECML, Vol. 784 of Lecture Notes in Computer Science, Springer, 1994,

pp. 171–182.

40

[37] W. Reisig, G. Rozenberg, Lectures on Petri Nets I: Basic Models, Advances

in Petri Nets, the volumes are based on the Advanced Course on Petri Nets,

held in Dagstuhl, September 1996, Vol. 1491 of Lecture Notes in Computer

Science, Springer, 1998.

[38] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Discovering Block-

Structured Process Models from Event Logs - A Constructive Approach,

in: Petri Nets, Vol. 7927 of Lecture Notes in Computer Science, Springer,

2013, pp. 311–329.

[39] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, Bal-

anced multi-perspective checking of process conformance, Computing 98 (4)

(2016) 407–437.

41

	Introduction
	Motivation, related work, and contributions
	Illustrative example
	Decision point analysis
	Decision model mining
	Data-centric methods, decision modelling, and related approaches
	Contributions

	Preliminaries
	Decisions
	Event Logs
	Business Activities

	P-MInD
	Finding shifts
	Connecting activities
	Consolidation of models and behavioural information

	DMN model conformance checking
	Conformance with process model
	Conformance with other decision models

	Experimental evaluation
	Implementation
	2017 BPI Challenge log
	Parameter assessment
	Concluding remarks

	Conclusion

