


determine the prediction. According to the results, the proposed method can pre-
dict the physical activity and functional fitness levels with high accuracy, even
using only one cycle. Thus, the approach described in the present work could
be implemented in future mobile health systems to identify the physical activity
profile of older adults.

Keywords: Physical activity, Functional fitness, Deep Learning, Inertial signal,
Deep Convolutional Autoencoder/sep Convolutional Network

1. Introduction

One of the most problematic conditions in older adults population is the fragility
(Clegg et al., 2013). According to a relatively recent study (Choi et al., 2015), the
global prevalence of fragility was found from 4.9% to 27.3%, and prefragility was
established from 34.6% to 50.9%. In views of this framework, it is logical that
fragility has been considered as a prior public health problem (Cesari et al., 2016,
Curtis et al., 2017). In that way, older adults are associated with a reduction in
the functionality of the musculoskeletal system. It is related to a bone mass and
strength loss, and a decrease in hormone production (Hong et al., 2015). There-
fore, all these physiological changes involve an increase in the risk of developing
different clinical conditions (Cruz-Jentoft et al., 2017).

Besides, physical activity-based programs seem to be an effective intervention
to prevent fragility (Bullo et al., 2018, Karinkanta et al., 2015, Lagerros et al.,
2017). Nevertheless, to know the functional level of the older adults, and conse-
quently plan the intervention, there are several tests. One of the most used tests to
evaluate the functional exercise capacity is the 6-minutes walking test (6MWT).
It is considered as a simple, non-invasive, and reproducible test that reflects the
physical condition status of the tested subject through an objective measurement
(ATS Committee on Proficiency Standards for Clinical Pulmonary Function Lab-
oratories, 2002, Lima et al., 2018). In that sense, the use of accelerometers, such
as Actigraph, Mini-Mitter or IM systems, to assess the physical activity is widely
employed in the research literature (Murphy, 2009). Hence, the revolution of us-
ing smartphone applications is providing new opportunities for physical activity
and functional fitness assessment.

Smartphones incorporate different sensors that allow them to perform differ-
ent tasks (Banos et al., 2015, Gaikwad et al., 2016). Among these sensors, they
are provided with accelerometers, making available the physical activity quantifi-
cation. Furthermore, smartphone applications, also well-known as apps, makes
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their use more suitable for a broader population, allowing them to monitor and
manage several chronic conditions (Salazar et al., 2018). Therefore, these devices
can get the sensors information and store and share it (by WiFi, 3G, LTE, etc.)
with another remote device to submit it to a post-processing stage (Moral-Munoz
et al., 2018).

Classification of time series data such as signals generated by inertial sensors
are difficult to be classified in a sample-as-features fashion: the high dimension-
ality of the feature space along with the limited number of samples (as it is usual
in biomedical problems) produces the so-called curse of the dimensionality prob-
lem, limiting the generalization capabilities of the model. In that way, a post-
processing stage to compute relevant information to classify inertial signals by
extracting statistical temporal and spectral descriptors reduces the dimensional-
ity of the feature space improving the generalization capability of the model and
reducing the computational burden. While temporal features are based on statis-
tics computed directly over the time signal, spectral features require computing
the Power Spectrum (PSD) of the signal to extract information (i.e., power) in
different sub-bands. This has been traditionally carried out by Fourier (Aggar-
wal and Ryoo, 2011) or Wavelet Analysis (Ayachi et al., 2016, Lockhart et al.,
2013, Aggarwal and Ryoo, 2011). However, these analysis methods present some
drawbacks related to the non-stationary nature of the inertial signals.

Furthermore, the use of features computed from the time signal (such as mean,
variance, or amplitude-related features) as well as features derived from the PSD
spectrum (peak power, spectral centroid, spectral kurtosis, etc.) could neither be
descriptive enough or capture the pattern related to class discrimination. Thus,
our hypothesis is that the physical activity and functional levels of older adults
could be predicted using two complementary methods that extract disciminative
features from the inertial signals recorded during the 6MWT.

In this paper, we present two different approaches based on deep learning
architectures. The first consist on using a Convolutional Autoencoder (CAE) to
extract features from the acceleration data. These features are then classified using
a support vector machine. The second approach presented in this paper consist on
using a convolutional neural network (CNN) that firstly extract features from the
acceleration data and then, uses a perceptron-like network (fully connected layers)
to implement a classifier. In this case, the same network extracts features and
classify them. Moreover, we compare the results obtained using the deep learning-
based approaches presented in this paper, to the previously presented in (Galán-
Mercant et al., 2018), which uses only signal processing techniques (specifically,
Empirical Mode Decomposition) to decompose the acceleration signals and then
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computes classical time and frequency statistical descriptors. These descriptors
eventually classified using a support vector machine.

Thus, The novelty of this paper is twofold. Firstly, we used the 6 minutes
walking test to explore human movement patters related to fragility. Secondly, we
proposed a method that avoids either to use of classical statistical signal process-
ing techniques or the computation of predefined statistics as features to describe
the signals. Instead, we propose two deep learning architectures that automatically
compute specific features through a learning process. In this way, we present two
methods that can be seen as complementary. The CAE approach uses unsuper-
vised learning to compute representative features that can be eventually classified.
The CNN consist in a convolutional stage that extracts features and a classification
network. These two approaches perform equally (in view of the statistical analy-
sis), but provides two ways using different learning paradigms to extract features
from inertial signals using machine learning.

The rest of the paper is organized as follows. Section 2 describes the current
studies available in which the 6MWT is measured using accelerometers. Next,
Section 3 presents the database used to assess the method proposed in this work
along with a description of the methodology, including the feature extraction pro-
cess from the original inertial signals. Then, the results obtained are shown in
Section 4 and finally, conclusions and future work is presented in Section 5.

2. Related work

As stated above, smartphones incorporate several sensors that make them suit-
able to measure different physical parameters. Furthermore, several new devices
have appeared that also include this technology, such as smartwatches and smart-
bands. Therefore, several papers can be found in the current literature in which
physical condition was predicted using the accelerometer sensor. In that way,
Drover et al. (2017) used Fourier transform to classify older adults according to
their fall risk, using the 6MWT acceleration data obtained by a commercial device.
Furthermore, Similä et al. (2017) also employed Fourier transform to detect early
signs of balance deficits using acceleration data obtained during the Berg Bal-
ance Scale, Timed-Up-and-Go, and 4-meters walk test. Besides, Vervoort et al.
(2016) applied Wavelet analysis to classify the population according to the ag-
ing effects, through the inertial sensor data obtained during the Timed-Up-and-Go
test. A study to predict the physical activity and functional fitness levels applying
Empirical Mode Decomposition (EMD) features to the acceleration data obtained
during the 6MWT using a smartphone is yet to be undertaken. According to the
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previously addressed, this approach takes into account the non-stationary nature
of the inertial signals.

Therefore, this kind of analysis allows us to think of the future application
for new devices, such as smartwatches and smartbands. The reliability and valid-
ity of different fitness tracker (smartbands) to measure the step count during the
2-minutes walking test (2MWT) in older adults have been assessed, reporting ac-
ceptable outcomes. Nevertheless, new devices more accurate to measure physical
activity in a free-living environment are needed. In this sense, a study (Duncan
et al., 2018) recommends taking precautions considering the walk-related data
obtained by iPhone accelerometer in free-living condition; they can reach a mean
bias of 21.5% or an imbalance of 1340 steps/day. On another note, they consider
that iPhone accelerometer is suitable in laboratory conditions, with a mean bias
of less than 5% (acceptable for pedometers). Therefore, current user-available
technologies need to be designed for controlled scenarios.

Previous works such as (Lockhart et al., 2013, Yang et al., 2012), are fo-
cused on the classification of human movement, using classical signal processing
techniques to preprocess the inertial signals and to extract statistical descriptors.
Specifically, in (Lockhart et al., 2013), spatio-temporal features are derived from
wavelet analysis. Other works such as (Yang et al., 2012) present a tool to com-
pute temporal, spectral and spatio-temporal features to describe the inertial signals
aiming to model the gait. These works aims to classify inertial signals, focused
on Human Activity Recognition (HAR) but not to predict clinical labels related to
the physical status or more specifically, to fragility risk. In this way, the previous
work (Galán-Mercant et al., 2018) proposes the use of EMD as decomposition
method to obtain the time signal on different frequency sub-bands. Then, tempo-
ral and spectral features are extracted and used to classify the time series. Beyond
the use of classical signal processing techniques, machine learning approaches
constitute an alternative to extract representative or discriminative features from
inertial signals, without the previous knowledge or assumptions needed to ad-
dress the problem from a classical signal processing point of view (stationarity or
periodicity, for instance). Furthermore, current Deep Learning techniques have
demonstrated their success in different complex classification problems (Bengio,
2009, Zhang et al., 2018) and their ability extracting features at different abstrac-
tion levels (Ortiz et al., 2016).

A survey paper for the use of different Deep Learning-based methods for HAR
is presented in Wang et al. (2018), using public datasets. In this paper, the use of
different architectures such as Deep Neural Networks, Deep Belief Networks and
CNNs is slightly reviewed. The use of CNNs is also presented in Cho and Yoon
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(2018) for the two-classes HAR problem. In addition, a method for 6-class HAR
classification is presented in Zeng et al. (2014). Nevertheless, previous works us-
ing classical signal processing techniques, including multiresolution and wavelet
analysis (Vishwakarma et al., 2015) or autoregressive models (He, 2010), show
similar performance using computationally lighter methods. On the contrary, the
classification of subjects according to clinical labels regarding their physical ac-
tivity require models capable of extracting discriminative features and figuring out
patterns (Galán-Mercant et al., 2018).

3. Materials and methods

3.1. Dataset
The dataset employed in the present study to apply CAE and CNN was ob-

tained from a group of subjects. Information relative to anthropometric measures
and physical activity was recorded in form of inertial signals. These signals can
be seen as sequences of acceleration values sampled at a specific rate (namely,
sampling rate). In this case, acceleration in the three axes (x,y,z) are sampled
simultaneously. In our case, a sampling rate of 32 Hz was used, which means
that 32 acceleration values are stored per second. This results in a sequence of
acceleration values periodically sampled and temporarily sorted. This, in general
is called time series.

3.1.1. Study subjects
In order to get the information into this cross-sectional study, a total of 17 older

adults (14 women and 3 men), were recruited between May and July 2016 from
a primary health center in Lisbon (Portugal). The Inclusion criteria were: older
adults who could get up and down from a chair five times without at external-
internal aid, and older adults who could complete over 6 minutes walking as fast
as possible without at external-internal aid. Each participant received a detailed
explanation of the study and gave written informed consent before participation.
This study complied with the principles of the Declaration of Helsinki. All study
procedures were approved by the institutional review boards of the participating
institutions.

3.1.2. Protocol
Four different types of variables were recorded from our subjects: I) anthropo-

metric measurements, II) physical activity levels, III) functional fitness levels and
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IV) 6-Minutes Walking Test. In that way, the inertial signals was only obtained
during the 6MWT.

I) Anthropometric Measurements: The anthropometrics procedures described
were obtained following the guidelines of The International Society for the Ad-
vancement of Kinanthropometry (ISAK) (Ross et al., 1978). Height and weight
were recorded with the participant barefoot and in light clothing. The subject,
standing in anatomical position with the occipital region, back, gluteal region and
heels in contact with the height rod, takes a deep breath for height measurement.
Height is the distance from the vertex to the soles of the feet. Body mass index
(BMI) was calculated by dividing weight in kilograms (kg) by height in square
meters (m2). Calf circumference on the dominant side was measured at the point
of the widest diameter of the calf. Mid-upper arm circumference on the dominant
side was measured on the upper arm at the midpoint between the acromion and
the olecranon.

II) Physical Activity Level: Physical activity level (PAL) were assessed and
subjects were classified as sedentary/inactive, insufficiently active or active ac-
cording to the classification of physical behavior (American College of Sports
Medicine, 2013). An active participant was considered who perform 30 min of
moderate activity at least 5 days a week and/or 20 min of vigorous activity 3 days
per week or a combination of both. All the subjects were classified as sedentary or
insufficiently active profiles. Thus, the variable was considered as dichotomous.
From the 17 participants, 64.71% were sedentary/inactive and 35.29% insuffi-
ciently active.

III) Functional Fitness Level: The Senior Fitness Test battery was used to
assess functional fitness level of the participants. The tests were performed ac-
cording to guidelines and protocols for administration (Rikli and Jones, 2013).
Lower limbs strength was measured with the 30s chair stand test (30-s CST); to
measure aerobic endurance we used the 6-min walk test (6MWT) (ATS Com-
mittee on Proficiency Standards for Clinical Pulmonary Function Laboratories,
2002); and estimated distance walked was calculated with a validated equation
(Troosters et al., 1999).

IV) 6 Minutes Walking Test: The inertial data is acquired during the 6MWT,
which consists of repetitive 30 meters short walks at his/her own pace with a point
to point track (marked with small cones with 5-meters increment signalization).
Two chairs may be available at the two points limits to rest in case the subject
becomes symptomatic. Although the safety of this test is high, it is recommend-
able to perform by a qualified personal. In that way, the aim is to obtain different
cycles in the inertial signal, each corresponding to a different walk. An iPhone 4
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was snugly secured to the test subjects by a neoprene fixation belt over the sternum
with the screen looking forward to obtain the signal data (Figure 1).

Figure 1: Kinematic data collection procedure.

Information about all the characteristics and measures recorded of the partici-
pants is shown in Table 1.

Table 1: Descriptive and clinical characteristic of the subjects (n=17)

Mean SD
Age (years) 83.26 6.56
Weight (Kg) 64.53 7.42
Height (m) 1.52 0.07
BMI (kg/m2) 28.03 2.74
6MWT (m) 359.26 107.50
30-s CST (repetitions) 11.37 4.89

3.2. Signal pre-processing
3.2.1. Signal filtering

Most of the information related to human movement is contained in frequen-
cies below 20 Hz. This way, the resultant signal is firstly smoothed by low pass
filtering using a Butterworth 5th order filter with a cut-off frequency of 16 Hz
to comply with the Niquist theorem. This aims to remove spikes with a high-
frequency content that only contributes to the final features as noise.

3.2.2. Automatic signal segmentation
As explained above, inertial data is acquired during the 6MWT. As a result,

different cycles appear in the inertial signal, each corresponding to a different
walk. A previous protocol (Galán-Mercant and Cuesta-Vargas, 2014) was used to
identify the kinematic variables of the 6MWT. In this protocol, the linear acceler-
ation was measured along three orthogonal axes using the iPhone 4 accelerometer.
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The application used to obtain kinematic data was xSensor Pro, Crossbow Tech-
nology, Inc. The data sampling rate was set to 32 Hz. A previous study showed
an internal error (standard deviation of the difference between measurements by
two different observers) of 4.0’ for the iPhone and 3.4’ for the protractor (Galán-
Mercant et al., 2014).This way, the overall test signal has to be firstly segmented
to extract the excerpts corresponding to each walk. This has been addressed by
detecting activity periods on the x-axis of the gyroscope signal which indicates
a rotation of the body around its axis. This determines (as shown in Figure 2b)
abrupt changes in the acceleration corresponding to changes in the movement
direction due to the specific orientation of the accelerometer used in the experi-
ments. Figure 1 has been added in this revision to illustrate how direction changes
mainly affect to the gyroscope x-signal. Then, this is treated as an activity de-
tection problem, where non-activity periods corresponds to changes of direction
(turn at the end of the corridor according to the 6 minutes walking test). This
activity detection in the x-axis of the gyroscope is determined by computing its
envelope, using the magnitude of the analytical signal obtained using the Hilbert
transform. Then, the activity period is detected by thresholding the signal, so that
it stays at least a minimum number of samples above the threshold. This provides
a robust enough method for the automatic segmentation which worked correctly
over all the available samples in our database.

Figure 2 (a) shows the original magnitude m of the resultant acceleration
m =

√
x2 + y2 + z2 over time. The method described above is used to seg-

ment the gyroscope x-axis signal, shown in 2 (b) and then, segmentation mask is
applied onto the m signal. The result is shown in Figure 2 (c). In order to ho-
mogenize the segment length, each extracted segment is cut to keep 1200 center
samples. Subsequently, a pool containing all the segments is composed as well as
the corresponding indexes to identify the segments belonging to a specific subject.
This way, each segment obtained from each subject is used as an input to the au-
toencoder. This deals with a twofold objective. Since segments belonging similar
condition subjects are thought to contain similar information, these segments can
be pooled and labelled to have more available data to train the classifier, reducing
the overfitting effect and improving the generalization capabilities of the model.
On the other hand, classification can be carried out on single segments that can be
subsequently combined to improve the classification performance.

Figure 3 shows all the stages involved in the proposed method. This includes
1) the acquisition of the raw inertial signals, 2) preprocessing, 3) feature extraction
and 4) classification and 5) combination. Figure 2 shows the general methodology
proposed in this work. This consist of four stages:
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Figure 2: Resultant acceleration (a), gyroscope x-axis segmented (b) and resultant acceleration
segmented (c)
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Figure 3: Overall method, including segmentation of the inertial signals, feature extraction, clas-
sification and ensemble

1. Preprocessing. After raw inertial signals are acquired using the IMU, sam-
pled at 32 Hz, they are low-pass filtered, since information related to human
movement is contained in low-frequency components. Specifically, a 15Hz,
5th order Butterworth filter is used.

2. Segmentation. As explained in the introduction, the 6 minutes walking test
consists on a series walks along a 30m corridor. However, the entire time
series (containing all the walks) is stored during the signal acquisition. This
preprocessing step takes advantage of the gyroscope x-axis signal to detect
turns around (see IMU orientation in Figure 1), and each of these walks is
what we called segment. Each segment will be treated as a sample.

3. Feature extraction. This step aims to compute descriptors from each seg-
ment. These descriptors has to be informative enough to represent the
signals and eventually, to classify them (discriminative information). Un-
like previous approaches (Lockhart et al., 2013, Yang et al., 2012, Galán-
Mercant et al., 2018) that use a priori known, statistical descriptors, we pro-
pose the use of deep learning architectures to learn features. Specifically,
two methods (CAE and CNN) are presented, that uses unsupervised and
supervised learning, respectively. Deep-learning based methods allow to
compute the most discriminative and specific features from raw data, avoid-
ing the use of signal decomposition methods (such as Fourier or Wavelet
analysis) that use a predefined basis. On the other hand, supervised and un-
supervised methods presented here can be used for complementary objec-
tives. The unsupervised, CAE-based method is focused on the extraction of
representative features in a lower dimensional space. These features can be
further used for classification or regression once the network is trained. Su-
pervised CNN-based method generates specific features during the learning
process when the network is trained to differentiate between classes. The
resulting discriminative features reveal specific samples and shapes of the
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original signals that activates neurons at different layers for a specific class.
4. Classification and combination. The features extracted from each segment

are then used to feed a supervised classifier. This results in a prediction
for each segment of the same subject. Hence, these predictions have to be
combined to produce an unique outcome. This is addressed by a majority-
voting strategy, whose mathematical details are provided in Section 3.4.2

3.3. Convolutional Neural Networks
In the last years, deep learning architectures have beat the state-of-the-art re-

sults in classification problems. Different neural architectures, usually composed
by a high number of layers have been proposed to this aim. In this way, CNN
has become one of the most popular models due to the classification performance
provided in the image analysis field (Baldi, 2011, Krizhevsky et al., 2012, Sabour
et al., 2017, Ortiz et al., 2018). CNNs are bioinspired by the convolutional re-
sponse of neurons whose combination in different layers allow to extract features
in an increasing abstraction levels. The same principle can be applied to time
series data to learn representative or discriminative features since neighbourhood
samples are usually related and patterns can be found from that relationship.

Convolutional layers perform the convolution operation of their input xi−1
with a set of K filters wi. This way, the kth convolution term for the kth filter is

wik ∗ xi−1 =
N−1∑
l=0

[
wik(N − l) · xi−1(j + l)

]
(1)

In CNNs, it is usual to reduce the size of the feature maps in subsequent lay-
ers. This downsampling effect is addressed by the so-called Pooling, which con-
sist in computing the maximum or average value in a window (MaxPooling and
MeanPooling, respectively). In our case, the feature reduction is performed by
MaxPooling layers.

3.3.1. Batch Normalization
Batch normalization (BN) (Ioffe and Szegedy, 2015) layers aims to increase

the stability of the network. This layer standarizes the output of a previous ac-
tivation layer by subtracting the batch mean and dividing by the batch standard
deviation for each feature. Let B = {y1,...m} a batch containing the activation out-
put for m samples. Then, the batch mean and batch variance can be respectively
defined as

µB =
1

m

m∑
i=1

yi, σ2
B =

1

m

m∑
i=1

(xi − µB)2 (2)
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and samples in the batch B can be normalized as

ŷi =
xi − µB√
σ2
B + ε

(3)

where ε is a constant added to the batch variance for numerical stability Ioffe
and Szegedy (2015).

Afterwards, the normalized activation ŷi is shifted and scaled as:

zi = γŷi + β (4)

where (β, γ) are two parameters to be learnt.
Thus, BN adds noise to the activation values, producing a regularization ef-

fect that reduces the layer inter-dependence. As a consequence, BN reduces the
overfitting and improves the generalization ability of the autoencoder.

3.4. Feature extraction by Deep Convolutional Autoencoder
Autoencoders (Bengio, 2009) are neural architectures which aim to compute a

compact (low-dimensional) representation of high-dimensional samples through
unsupervised learning. They are usually presented as symmetric structures com-
posed of some layers with a bottleneck at the center. Thus, while the first part,
also called encoder, is fed with the input data samples x, the second part, also
called the decoder uses the output of the decoder as input. The entire architec-
ture is trained by minimizing the reconstruction error between the output and the
input. In other words, the autoencoder learns the best representation of the input
data samples in a low-dimensional, latent space. Hence, an autoencoder can be
seen as a combination of 1) an encoding function e : Rn → Rd that compresses
the input data samples x into the latent space z ∈ Rd and 2) a decoding function
d : Rd → Rn that reconstruct the original samples from their compressed version
while minimizing the reconstruction error.

Autoencoders have traditionally been composed of fully connected layers,
similarly that in multilayer perceptron networks. These architectures perform rea-
sonably well for many applications. However, applications requiring the process-
ing of data manifolds with complex structures and distributions, usually require
to compute more complex features corresponding to a higher abstraction level.
This can be addressed by constructing autoencoders containing convolutional lay-
ers, providing two main advantages. On the one hand, convolutional layers allow
us computing features taking into account neighbourhood signal values. On the
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Figure 4: Deep Convolutional Autoencoder architecture used to compute a reduced set of features
from the intertial signals.

other hand, the use of deep architectures provides the arena to compute features
in a higher abstraction level.

Unlike methods referred in Section 2 in which a set of predefined temporal
or spectral features are computed, we propose the use of CAE to automatically
learn representative features from the raw inertial signals by unsupervised learn-
ing. The specific CAE architecture used in this work is shown in Figure 4. The
encoder section input is composed of time series data from the three acceleration
axes (x,y,z) separately, and separate convolutions are also performed at the first
layer. The result of the individual convolutions is then concatenated to fed the
subsequent encoder layer. After each convolution operation, an activation func-
tion that implements the non-linear behaviour of the layer is performed. In our
case, the Rectified Linear Unit activation (ReLU) (LeCun et al., 2015) is applied
in all layers but in the last one, where linear activation used. ReLU is a non-
saturating activation function defined as g(x) = max(0, x) that avoids negative
activation values. On the contrary, the linear activation is simply the identity func-
tion g(x) = x. Subsequently, a MaxPooling operation with 2 samples filter and
stride of 2 samples, downsamples the convolution result by a factor of 2. Overall,
the encoder section is composed of four convolutional layers, two MaxPoolings
using a stride of 2 (in order to reduce in a half the sample) as well as a batch nor-
malization layer. The output of the encoder is a Dense layer to embed the output
of the last convolutional layer in fewer dimensions. The decoder stage starts at the
Dense layer and uses a structure composed of five convolutional layers to trans-
form back into the original space. In this stage, upsampling layers counteract the
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effect of max-pooling layers used in the encoder stage Goodfellow et al. (2016).
Additionally, Figure 4 shows the use of the Scaled exponential Linear Unit

(SeLU) (Klambauer et al., 2017), that is defined as:

SeLU(x) = λ

{
α(exp(x)− 1) if x ≤ 0

x if x > 0
(5)

SeLU activation has advantages over the ReLU activation, due to its self-
normalizing properties that tend to produce standarized activations. This improves
the robustness of the learning process, especially in deep networks.

Moreover, the mean squared error is used as loss function to minimize the
reconstruction error, along with the RMSprop optimizer

L =
1

N

∑
i

(xi − x̃i)
2 (6)

where xi is the ith sample of the dataset and x̃i is its reconstructed version, ob-
tained at the output of the CAE.

In order to visually assessing the discriminative properties of the extracted
features, we used the T-SNE algorithm (van der Maaten and Hinton, 2008) to
obtain a 2D view of each segment and the class distribution. Thus, Figure 5 shows
the 2D representation of the features, labelled by different clinical criteria: Figures
5a, 5b and 5c show a 2D of the features for the PAL, 30s-CST and total distance
travelled during the 6MWT, respectively.

3.4.1. Feature classification by Support Vector Classifier
Once the CAE is trained, the encoder Section is used to compute k features

(f1,...k) from the inertial signals. Then, these features are classified using a linear
Support Vector Classifier (SVC). A linear classifier can be defined as

g(fi) = W>fi + b (7)

The training of the classifier consists on calculating W and b, to define the
best separating hyperplane as fiW> + b = 0. The computation of the hyperplane
can be formulated in different ways. In Support Vector Machines, the hyperplane
is computed by maximizing the margin 2

‖W‖ to the hyperplane as

max
W

2

‖W‖
subject toW>fi + b =

{
≥ +1, if li = +1

≤ −1, if li = −1
(8)
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Figure 5: Embedings of the feature space obtained using the Deep Autoencoder. Different class
distributions are considered according to different clinical labelling criteria (a) distance, (b) 30-s
CST, (c) PAL
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3.4.2. Combining segments in CAE-SVM classifier
As explained in Section 3.2.2, the autoencoder is trained using single seg-

ments extracted from the inertial signals (x, y and z axes) of each subject. Since
segments extracted from subjects with similar condition (i.e. the same clinical la-
bel) are expected to be similar (i.e. similar features can be extracted from them),
we used the same classification model. However, this method considerably aug-
mented the available data, reducing the model overfitting. Otherwise, a combi-
nation of classifiers is usually considered to be more accurate and robust than
the individual - also called weak - classifiers (Kittler et al., 1998, Liu et al., 2012).
Hence, classification results based on single segments from a subject are combined
using a majority voting strategy aiming to improve the classification performance
and stability. Let ok, {k = 1, ...K} be the prediction based only on the k − th
segment and Cj,  = 0, 1 the label assigned to j − th class. These predictions
can be combined by computing the number of segments N that predict the class j
(Kim et al., 2003):

Nj = #{k|ok = Cj} k = {1, ..., K} (9)

and the combined prediction O can be computed as:

O = argmax
j

Nj (10)

3.5. Classification using a Self-Normalizing Convolutional Neural Network
In this Section, we show the use of the CNNs shown in Figure 6 to classify the

inertial signals. The overall method is the same as shown in Figure 3, but in this
case, feature extraction and classification is performed by a single CNN, without
the use of a support vector classifier.

Architecture in Figure 6 uses similar hyperparameters than the ones in the case
of the autoencoder (Figure 4, determined by experimentation. Thus, convolutions
using a kernel of 10x1 data points and stride of 1 point are used in all the cases.
Moreover, MaxPooling layers reduce the size of the data at subsequent layers by
a factor of 2. Besides, dense layers composing the fully connected stage contain
256, 256 and 2 units. The last one, corresponding to the number of classes. SeLU
activation function is used in all cases but in the last layer which uses softmax
activation. Finally, AlphaDropout (p=0.5) is used to regularize the network in
order to improve the generalization ability.
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Figure 6: Architecture of the Convolutional Network used to in this Section

3.5.1. Combining segments in CNN classifier
In the case of CNN-based classifier, two output neurons are present in the last

layer. Since a softmax function activates this layer, the prediction is represented by
two values (the activation of each output neuron) corresponding to the probability
of a sample to belong to a specific class. Indeed, a majority voting strategy is used
to combine the predictions obtained for all the segments from a subject.

The score of the combination of different predictions corresponding to all seg-
ments from a subject is performed as

S =

K0∑
i=1

s0i −
K1∑
j=1

s1j i 6= j (11)

where K0 and K1 are the number of segments classified as class 0 and class1,
respectively, and s0i and s0i are the scores obtained for the segments corresponding
to class 0, and class 1, respectively.

4. Results and discussion

In this Section, we present the results obtained using the architectures de-
scribed in previous Sections, namely CAE and CNN Deep Learning architectures,
as well as the comparison to the EMD-based method proposed in Galán-Mercant
et al. (2018). All the implementations have been developed in Python, and in the
case of deep learning architectures, we used Tensorflow (Abadi et al., 2015) and
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Keras (Chollet et al., 2015) along with the python Application Programming In-
terface. Classification performance is evaluated by means of the area under the
Receiver Operating Curve (ROC), which provides a measure of the trade-off be-
tween sensitivity and specificity. In addition, ROC curves are also computed. All
the experiments were carried out by cross-validation, specifically leave-one-out
cross-validation. Cross-validation is of crucial importance in classification ex-
periments to prevent double-dipping. Thus, in this work, the performance of the
proposed methods have been assessed by Leave-One-Out to determine its general-
ization ability, taking special care of not using the test data in any of the previous
training steps. Cross-validation is a general method to estimate the generaliza-
tion error. It is worth noting that unfortunately, there is no way to determine the
optimal network architecture. This requires performing many simulations to de-
termine the optimal architecture (structure, type of layers and hyperparameters).
This has been done by splitting the training data into train and validation subsets:
the network is trained with the train subset whereas the performance metric to
tune the hyperparameters is determined by the validation subset.

Figure 8 shows the classification performance in terms of the Area Under the
Curve (AUC) and its dependence on the dimension of the embedding space. More-
over, this figure shows the ensemble-based method outperforms the classification
results using single segments and can be used to determine the optimal embedding
dimension. Hence, an embedding dimension of 25 has been chosen for classifi-
cation using the distance travelled during 6MWT and 30-s CST, while the best
results for PAL are obtained for a dimension of 20.

As shown in Table 2 the classifier based on CNN performs better than the
CAE-SVM approach. However, the features obtained by CAE are more easy to
interpret and pave the way to measure quantitative differences between subjects.
Furthermore, the projection on a low dimensional space (i.e. 2D or 3D) of the
inertial signals allows to measure the evolution of different clinical variables as a
result of an intervention program.

Table 2: Classification results

Criteria EMD CAE CNN
Acc Sens Spec AUC Acc Sens Spec AUC Acc Sens Spec AUC

Distance 1.00 1.00 1.00 1.00 0.94 0.96 0.95 1.00 0.99 0.98 0.99 1.00
30S − CST 0.52 0.57 0.50 0.51 0.70 0.75 0.66 0.68 0.70 0.76 0.75 0.77

PAL 0.70 0.57 0.80 0.74 0.73 0.75 0.69 0.70 0.88 0.90 0.83 0.80
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Figure 7: Area Under ROC curve obtained according to different clinical labelling criteria (a)
distance travelled during 6MWT, (b) 30-s CST, (c) PAL for single segments and by majority voting
ensemble.
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Figure 8: Comparison of ROC curves obtained by different classification methods according to
different clinical labelling criteria (a) PAL, (b) 30-s CST, (c) distance travelled during 6MWT, for
single segments and by majority voting ensemble.
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4.0.1. Exploring CNN features
Exploring the network insights once it is trained can provide information re-

garding the samples the network is considering to extract discriminative features.
Thus, tools directed to reveal the parts of the signal the network is focusing on,
break with the black box view of the Deep learning architectures which are usu-
ally though as high accuracy classifiers. Analyzing the network activation on a
specific input is a way to take a step beyond the classification results. One usual
way to reveal the features computed during the training stage consist of explor-
ing the activation that an input belonging to a specific class produces in different
parts of the network. The most frequent procedure in CNNs is to analyze the raw
features at the input layer that activate specific neurons at the output layer, which
helps to understand the information the network is using to classify samples (i.e.
to detect differences between subjects from different classes). This is addressed
here by computing the saliency maps (Simonyan et al., 2013). Saliency maps are
a representation of changes in the network output concerning small changes in the
input, being able to highlight those regions of the image that play a more impor-
tant role in the output. In classical CNN for classification, saliency is obtained by
computing the gradient of an output category for the input. Moreover, the Class
Activation Maps (CAM) Zhou et al. (2016), also aim to localize class-specific re-
gions in the input signal that contain relevant discriminative information. Instead
of using gradients concerning output as in saliency maps, CAM projects back the
weights of the output layer on to the convolutional feature maps.

Figures 9a, 9b and 9c shows the mean CAM according to the corresponding
clinical criteria for non-risk subjects. At the same time, Figures 9d, 9e and 9f
show the mean CAM for risk subjects. It is worth noting that a segment on the
center of the 6MWT is used to generate the activations. These maps, figure out
the relative importance of different parts of a segment, have been computed by
composing a 2D image containing the CAM values corresponding to each signal
sample. Then, the resultant acceleration is overlapped.

CAM maps aims to show the parts of the signal where the neural network
is extracting features for a specific class. Thus, CAM maps shown in Figure ??
depict the samples being used for classification by the neural network. As shown
in these figures, different time samples are used for classification depending on the
label being predicted, which suggest that information related to the clinical status
determined by different labels are present at different time instants. Furthermore,
the relative importance is shown using different colors according to the colorbar
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Figure 9: Mean Class Activation Maps obtained for (a,d) distance travelled during 6MWT, (b,e)
30-s CST, (c,f) PAL for non-risk (a,b,c) and risk (d,e,f) subjects. Colorbar indicates the relative
importance of different regions in a normalized scale [0,1]

shown in this figure.
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5. Conclusions and future directions

In this work, we present two methods to predict the physical activity and func-
tional fitness levels through inertial data acquired through a simple method based
on a smartphone during the 6MWT.

In previous works, temporal, spectral or spatio-temporal features are extracted
from the IMU signals, using methods based on Fourier analysis, or Wavelet Anal-
ysis. However, the classical stationarity or periodicity assumptions needed for the
validity of these methods are not always met. As an alternative to avoid these
assumptions, EMD method is used in (Galán-Mercant et al., 2018) to decompose
the acceleration signal into band-limited components (Intrinsic mode functions) to
subsequently extract statistical time and frequency descriptors. Nevertheless, the
calculation of a priori known statistical features is still needed. In this paper, we
propose an unsupervised feature extraction method based on CAE that avoids the
classical assumptions of Fourier or Wavelet Analysis, i.e., the signal stationarity
or the use of a predefined basis of functions. Unlike these decomposition meth-
ods, CAE learns the best representation of the input in a lower dimensional space
utilizing the minimization of the reconstruction error. The discriminative ability
of the extracted features has been assessed using a support vector classifier. Ad-
ditionally, a second Deep Learning model also based on a CNN is used to directly
perform the classification of the subjects according to different clinical criteria.
These two methods are complementary. The CAE method extract features that
allow representing the samples in a lower dimensional space, and that informa-
tion can be used to assess the evolution of a clinical variable such as PAL when a
subject is under some clinical intervention. In future work, we plan to address the
quantitative measure of clinical variables through the distance between samples in
the embedding space. Complementarily, the CNN classifier aimed to directly clas-
sify the subjects dealing with the prediction of a clinical label employing patterns
found in the intertial signals.

The proposed method outperforms previous approaches based on features ex-
tracted using classical signal processing methods, and in the future, similar archi-
tectures could be used to predict other clinical labels. In that way, the application
of this kind of predictive methods supposes an important advance for future clin-
ical assessment and monitoring. It could be implemented in m-health systems to
automatically identify patients profiles, making the e-health management easier
and also reducing the cost of health services.
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