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Learning Discriminative Domain-Invariant Prototypes for

Generalized Zero Shot Learning

Yinduo Wang, Haofeng Zhang, Zheng Zhang, Yang Long, Ling Shao

Highlights

1. A method called Discriminative Domain-Invariant Prototypes (DDIP) is

proposed to solve the projection domain shift problem by recognizing samples in

combined domains;

2. Orthogonal constraint is employed to make all the prototypes including both

seen and unseen classes to be orthogonal to each other to scatter them;

3. The discriminative prototypes are restricted to distribute on the surface of an

unit hyper-spherical;

4. Extensive experiments on four popular shows the effectiveness of the

proposed method.

Highlights (for review)
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Abstract

Zero-shot learning (ZSL) aims to recognize objects of target classes by transfer-

ring knowledge from source classes through the semantic embeddings bridging.

However, ZSL focuses the recognition only on unseen classes, which is unreason-

able in realistic scenarios. A more reasonable way is to recognize new samples

on combined domains, namely Generalized Zero Shot Learning (GZSL). Due

to the fact that the source domain and target domain are disjoint and have

unrelated classes potentially, ZSL and GZSL often suffer from the problem of

projection domain shift. Besides, some semantic embeddings of prototypes are

very similar, which makes the recognition less discriminative. To circumvent

these issues, in this paper, we propose a novel method, called Learning Dis-

criminative Domain-Invariant Prototypes (DDIP). In DDIP, both target and

source domains are combined and projected into a hyper-spherical space, which

is automatically learned by a regularized dictionary learning. In addition, an

orthogonal constraint is employed to the latent hyper-spherical space to ensure

all the class prototypes, including seen classes and unseen classes, to be orthog-

onal to each other to make them more discriminative. Extensive experiments on

four popular benchmark and a large-scale datasets are conducted on both GZSL
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and standard ZSL settings, and the results show that our DDIP can outperform

the state-of-the-art methods.

Keywords: Generalized Zero Shot Learning (GZSL), Domain-Invariant

Learning, Orthogonal Constraint, Dictionary Learning

1. Introduction

With the deep and mature application of machine learning and neural net-

works [6, 30, 37, 47, 18, 36, 45], the accuracy of object recognition has reached

the level beyond humans. Unfortunately, models trained on one single dataset

can only be applied on the same domain of the training set and hardly to be5

generalized to other datasets, that is to say, when there comes a novel category,

which is from a different domain, the model may become ineffective. Therefore,

it is necessary to find a method to solve such problem. Fortunately, Zero Shot

Learning (ZSL) [52, 51, 1, 32, 23, 38, 55, 22, 25] is such a method proposed

to recognize novel categories. ZSL is inspired by the behaviour of our human10

beings that when we meet new categories, we often utilize some auxiliary in-

termediate information, e.g., predefined descriptions, to construct a connection

between seen and unseen categories. Therefore, in the field of ZSL, we simi-

larly employ semantic vectors, e.g., attribute by experts [12], as intermediate

information to achieve our purpose of recognizing novel categories. In the past15

decade, ZSL has made great success. However, standard ZSL only focuses on

classifying new objects just within the scope of unseen categories, which is un-

reasonable in realistic scenarios. The more reasonable way is to find its label on

both seen classes (source domain) and unseen classes (target domain), which is

often called Generalized Zero Shot Learning (GZSL) [8, 53].20

In ZSL setting, samples are divided into seen and unseen categories, which

are disjoint from each other. Although they can be regarded as two related

domains with some shared semantics, there are still lots of differences between

source (train) and target (test) domains, e.g., both ‘tiger’ and ‘elephant’ have

same semantic ‘teeth’, but the teeth of tiger are short and sharp while those of25
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elephant are huge and coarse, and they have obvious visual differences. Thus,

if the model is only trained by the samples from source domain, it will cause

a huge bias on target domain during testing, and result in that the model will

significantly prefer seen classes to unseen ones, and finally lead to inaccurate

recognition. This phenomenon is called projection domain shift problem, which30

is first proposed in [14]. Due to the great influence of domain shift problem on

recognition performance, how to facilitate the methods to alleviate it becomes

a key issue in this field. Fu et al. proposed a transductive strategy to add

the unlabelled unseen data into training set to solve such problem, and make

a significant improvement [14]. Thereafter, many transductive methods, such35

as Quasi-Fully Supervised Learning (QFSL) [39], Joint Embedding Dictionary

Model (JEDM) [46] have been emerging. However, in realistic scenarios, unla-

belled unseen data is inaccessible during training in most circumstances. Thus,

transductive method is not the best way to address this problem.

In addition, some predefined attributes are very similar to each other, which40

make them less discriminative, e.g., the categories of ‘blue wale’ and ‘hamper-

back wale’ have many same attributes, which makes the embedded vectors much

similar with each other, and finally lead to error classification. Zhang et al. [50]

tried to disperse the distance between the prototypes of seen classes. However,

this method only considers the prototypes of seen classes, while the unseen45

classes are totally ignored. The result of such method is that the prototypes of

similar unseen classes still gather together, and finally lead to poor performance.

Jiang et al. [19] built a latent space to align the visual prototypes and semantic

prototypes for both seen classes and unseen classes, but they did not consider

to enlarge the distance between similar prototypes, which still cannot address50

the semantic ambiguity of similar classes, especially on the more realistic setting

GZSL.

In order to solve the aforementioned problems, in this paper, we propose a

novel and effective method, namely learning Discriminative Domain-Invariant

Prototypes (DDIP), to combine both domains in a latent space and disperse55

all the prototypes. The novelties of our model are in the following three as-
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pects. Firstly, to make our model become more generalizable for both source

and target domains, we employ not only seen samples, including feature and

class prototypes, but also unseen class prototypes during our training phase to

build relationship between source domain and target domain. Secondly, differ-60

ent from directly learning a projection from visual space to semantic space, in

our DDIP, we first establish a latent space where we combine the both domains,

then we conduct sparse coding to learn two dictionaries for visual-latent and

semantic-latent projection, in this way, class prototypes of combined domains

in latent space share a same public dictionary to represent themselves, which can65

effectively alleviate projection domain shift problem. Thirdly, a novel orthogo-

nal constraint is applied in latent space to make our model more discriminative,

especially on GZSL. Concretely, the best way is to restrain the normalization

and orthogonality of each class prototype, thus, the latent space can also be

recognized as a hyper-spherical space, which is illustrated in Fig. 1. To the best70

of our knowledge, it is the first time to establish a specific relationship between

source and target domains to address the projection domain shift problem by

constructing a hyper-spherical space.

In our DDIP, there are three submodules, Visual Prototype Learning is to

learn the class prototypes in visual space; Domain Combination is to learn the75

two dictionaries for projection and Orthogonal Constraint adds the constraint

of orthogonality in latent hyper-spherical space for both seen classes and unseen

classes. After imposing the three submodules, we devise a novel objective func-

tion and develop an iterative optimization algorithm to solve it. We test our

DDIP method on four benchmark and a large-scale datasets under both GZSL80

setting and standard ZSL setting, and extensive experimental results show that

our method can outperform all the state-of-the-art methods under both two set-

tings with a fast training speed. The contributions of our work are as follows,

• We propose a novel and effective model, called Discriminative Domain-

Invariant Prototypes (DDIP), to alleviate the problems of projection do-85

main shift and semantic ambiguity.
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• To build relationship between seen classes and unseen classes, a latent

hyper-spherical space is defined to adapt both source and target domains,

and a dictionary learning method is also employed to learn the prototypes

of all categories in this novel space.90

• To make the combined domains more discriminative, especially for the

more realistic setting, GZSL, we define a constraint that each prototype

in the hyper-spherical space is normalized and orthogonal to each other,

which can well disperse the similar prototype of both seen and unseen

classes, and finally lead to performance improvement.95

• Extensive experiments are conducted on five popular datasets, and the

results show that our DDIP method can outperform the state-of-the-art

methods on both GZSL and ZSL settings.

The rest of this paper is organized as follows: in Section 2, we briefly review

some related work on ZSL& GZSL and domain shift, and our proposed model100

will be described in details in Section 3. In Section 4, we reports some exper-

imental results under both GZSL, ZSL and some other pertinent settings and

some discussions on these results. At last, we draw a conclusion of this paper

in Section 5.

2. Related work105

2.1. Imbalance Learning and ZSL

In many realistic scenarios, the datasets are often unbalanced, that is to say,

in these dataset, one category significantly out-number those from the other

categories (imbalanced distribution of categories). It is well known that many

classification and recognition algorithms are sensitive to the imbalanced distri-110

bution of categories, so many strategies have been proposed to deal with the

imbalance Learning. In [5], Bi et al. combined the improved ECOC (Error Cor-

recting Output Codes) method for tackling class imbalance, and the diversified

ensemble learning framework for finding the best classification algorithm for

5
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Blue WhaleTiger

Source Domain Target Domain

Kill Whale

Original After

Figure 1: An illustration of the orthogonal constraint in a hyper-spherical space.

each individual sub-dataset. Moreover, Zhang et al. proposed an open source115

software for multi-class imbalanced data classification in [48]. Recently, Zhou et

al. in [58] proposed a GAN to generate more discriminant fault samples using a

scheme of global optimization, a generator was designed to generate those fault

feature extracted from a few fault samples and a discriminator was designed to

filter the unqualified generated samples in the sense that qualified samples are120

helpful for more accurate fault diagnosis. When the phenomenon of imbalance

becomes more extreme, we can not get any training samples of one category,

the task will become zero shot learning.

2.2. ZSL and GZSL

Both ZSL and GZSL models are trained without samples from test cate-125

gories, but during testing phase, ZSL classify unseen samples within the area of

unseen categories, while GZSL aims at a more realistic setting, which is a more

practical and challenging task, classifying unseen instances on both seen and

unseen classes. So far, many researchers have been devoting to ZSL and GZSL.

Early efforts such as DAP [22] directly train their models through proba-130
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bilistic attributes and try to estimate their classifiers by a maximum posterior.

In ALE [2] and SJE [3], Akata et al. proposed a model which learns a projection

from feature to semantic space by a bilinear compatibility function. Besides,

other ZSL baseline methods like CONSE [31] and SSE [56] try to reduce the

influence of using manual attributes by constructing unseen attribute from the135

instances of seen categories. Furthermore, Kodirov et al. for the first time used

the concept of Semantic Auto-Encoder (SAE) to reconstruct visual features from

semantic embeddings, which is proved to able to generalize better to the new

unseen classes [21]. U. Atzmon et al. in LAGO[4] utilized a probabilistic model

to get the natural soft and/or relations in semantic space. After that, Y. Li et al.140

in DMaP[24] devoted to exploit the intrinsic relationship among attribute man-

ifold and the transfer ability of visual-semantic embedding. Recently, Zhao et

al. in DIPL[57] proposed a domain-invariant feature self-reconstruction method

by optimizing a simple linear formulation which casts ZSL into a min-min op-

timization problem. Hayashi et al. tried to make clustering for the training145

data and predict the category of the test sample by detecting whether the data

falls into the learned clusters [17], which can also achieve good performance.

However, these ZSL methods often pay much attention to establish a projection

by employing only instances from seen classes (source domain) and do not make

the full use of prototypes of unseen categories (target domain).150

Verma et al. proposed a simple generative framework, which models each

class-conditional distribution as an exponential family distribution and the pa-

rameters of the distribution of each seen/unseen class are defined as functions

of the respective observed class attributes [40]. Zhang et al. in [50] addressed

GZSL problem as a Triple Verification problem and proposed a unified optimi-155

sation of regression and compatibility functions. Long et al. [51, 28] proposed to

construct a projection from attributes of seen classes to visual features, and then

use the attributes of unseen classes to synthesize unseen visual feature, which

is subsequently utilized to train a supervised model for all classes. Fu et al. in

[15] proposed a deep weighted maximum margin framework to concentrate on160

the learning of class prototypes and try to make the learned class prototypes
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in latent space become more discriminative. Although both seen and unseen

attributes are utilized in these methods, they are processed separately, which

cannot well solve the difference between them.

In addition, due to the fact that there was no agreed upon ZSL benchmark,165

Xian et al. [44] defined a new benchmark by unifying both the evaluation pro-

tocols and data splits of several publicly available datasets. They also analyzed

a significant number of the state-of-the-art methods in depth, both in the clas-

sic ZSL setting and the more realistic GZSL setting, which has made a great

contribution to this research field.170

2.3. Domain Shift

The difference between source domain and target domain often leads to bad

generalization from train to test, which is defined as the domain shift problem,

and this problem is first introduced into ZSL by Fu et al. [14]. Fu et al. in

this paper tried to address domain shift problem by employing Canonical Cor-175

relation Analysis (CCA) to make sure the embedding vectors still have high

correlation with the original ones when mapping the low-level image features

into two different latent space. Now there are two types of methods to ad-

dress this problem, one is the inductive method by combining both seen and

unseen attributes into training phase, and the other is transductive method,180

which allows models to be trained with both labeled instances of seen classes

and unlabeled instances of unseen classes. For inductive setting, Long et al. in

PSEUDO[27] put Maximum Mean Discrepancy (MMD) and Maginalized Cor-

rupted into ZSL field to solve the domain shift problem. And Kidorov et al.

tried to add a reconstruction item from semantic embeddings to visual features185

to alleviate the domain shift problem, but the effect is limited. Jiang et al. [19]

proposed a Coupled Dictionary Learning (CDL) framework to simultaneously

align the visual-semantic structures, which intents to gather the advantages of

the discriminative information in the visual space and the relations in the se-

mantic space. Although CDL can mitigate the domain shift problem to some190

extent, it performs bad on the more realistic GZSL setting because it ignore the
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discrimination between all classes.

The concept of transductive setting is first proposed by [14], which devel-

oped a multi-view Bayesian label propagation algorithm to improve ZSL in the

embedding space. Unsupervised Domain Adaptation (UDA) [20] formulates a195

regularized sparse coding framework, which uses the target domain class labels’

projections in the semantic space to regularize the learned target domain pro-

jection. Song et al. [39] proposed a Quasi-Fully Supervised Learning (QFSL)

method by training a transductive deep neural network, where the labelled

source images are mapped to several fixed points specified by the source cate-200

gories, and the unlabelled target images are forced to be mapped to other points

specified by the target categories. However, we argue that this setting is not in

line with the practical application that the unlabelled unseen data are usually

inaccessible.

3. Methodology205

3.1. Problem Definition

Given a dataset D, which is composed of two groups, seen classes S and

unseen classes U , where S = {1, · · · , s} and U = {s+ 1, · · · , s+u}, S and U are

disjoint S∪U = ∅. There are N d-dimensional visual features of labeled training

samples in matrix Xs ∈ Rd×N , and K d-dimensional features of unseen classes210

in testing set Xu ∈ Rd×K . For auxiliary semantic space, given a set As ∈ Rl×s,

which represents the corresponding class-level s l-dimensional attributes of seen

classes, and similarly, Au ∈ Rl×u represents that of unseen classes. Standard

inductive setting, which is employed by our proposed method, assumes that Xs,

As and Au are known in advance, and the goal is to recognize unseen samples215

Xu.

3.2. Framework

The general idea of our approach is to address projection domain shift prob-

lem and make the predictive model more discriminative on GZSL. Therefore,
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Figure 2: Illustration of the proposed DDIP framework.

semantic prototypes of target domain Au should also be taken full usage. We220

first learn the visual prototypes with a minimization of Mean Square Error

(MSE), and then define an intermediate latent space, where a dictionary learn-

ing method is employed to learn the prototypes with the projection constraints

from both visual space and semantic space. Furthermore, we apply an orthog-

onal constraint in the latent space to make the learned latent prototypes more225

discriminative. The main framework of our proposed DDIP is illustrated in

Fig. 2, and the detailed description of approach can be found in the following

subsections.

3.2.1. Visual Prototype Learning

Our DDIP aims to perform classification on the class prototypes in all spaces.

Since the latent prototypes should be learned with the projection from both

visual prototypes and semantic prototypes, and the class prototypes in semantic

space can be directly obtained as As and Au, the class prototypes in visual

space should be firstly computed. We have the label of each seen samples and

their corresponding class prototypes As, so the prototype of each class can be

easily calculated as the average value of all samples from the same category.

But there is an obvious weakness, the prototypes obtained in this way may be

unrepresentative, therefore we consider to relax this kind of hard constraint and

put it into automatically learning style, similar as that in [19], which can be
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written as,

Lp = min
Ps

‖Xs − PsT ‖2F , (1)

where ‖•‖2F is the Frobenius norm of a matrix, Ps ∈ Rd×s is the seen class230

prototypes that learn from visual space and T represents an aggregation of

one-hot vectors, and each one-hot vector denotes the label of its corresponding

sample.

3.2.2. Domain Combination

In the context of GZSL, most existing methods are devoted into conducting a

direct projection from feature to semantic space. Since the distributions of data

from source and target domains are often different, such practice often causes

domain shift problem. Different from them, and inspired by [20, 19], in this

paper we formulated the learning of projection as a dictionary learning problem.

Each visual feature element can be considered as an instance corresponding to an

attribute, for example, in visual space, the weight of a basis visual feature, like

whether an animal ‘has tail’, can be a corresponding coefficient in dictionary,

and represented by referring to it. Different from [20], which build up two

dictionaries for source and target domains respectively, our DDIP learns two

dictionaries too, but one is for visual to latent space projection and another is

for semantic to latent space, thus in our proposed DDIP, both source and target

domains share the same dictionary, thence the two domains can be linked in the

latent space. Compared with those methods that do not take full usage of the

target prototypes, our model is prone to become more generalizable for target

domain, and can significantly alleviate the projection domain shift problem. Due

to the two projection directions in framework and each direction has samples

from source and target domain, thus the loss function in this part contains four

terms and can be written as following,

Ld = min
Ps,Pu,D1,D2,Cs,Cu

‖Ps −D1Cs‖2F + λ‖As −D2Cs‖2F

+α(‖Pu −D1Cu‖2F + λ‖Au −DT
2 Cu‖2F )

+µ1‖D1‖2F + µ2‖D2‖2F ,

(2)
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where, Ps is the visual prototypes of seen classes obtained in the previous part,235

D1 and D2 denote the two dictionaries respectively. Cs ∈ Rp×s, Cu ∈ Rp×u

denote the representation of prototypes in the latent space of combined domains.

Then, Pu ∈ Rd×u indicates the automatic learned class prototypes of target

domain in visual space, and these prototypes can help further optimizing the

dictionaries. µ1 and µ2 control the relative importance of the two regularization240

terms.

3.2.3. Orthogonal Constraint

Orthogonal constraint submodule is the most important part of our archi-

tecture, where a relationship is built between source and target domains to

make all prototypes in the latent space of both domains more discriminative.245

Since class prototypes should be normalized in combined domains firstly, the

orthogonal prototypes in latent space can be considered as been projected into

the same hyper-spherical space, as shown in Fig. 1. For example, in ‘Original’

hyper-spherical space, it can be found that the class prototypes of ‘Blue Whale’

and ‘Killer Whale’ are very close to each other. Due to the fact that making250

all the class prototypes far away from each other is impossible on a constrained

hyper-spherical space, but letting them have equal distance is the best way to

encourage them more separable, e.g., as shown in ‘After’ of Fig. 1, restricting

all the prototype vectors be orthogonal to each other can be the best and sim-

plest way. Among prior works, Zhang et al. has used this kind of constraint in255

[50], and they conducted it only on source domain in the proposed framework.

By contrast, our DDIP applies the orthogonal constraint on combined domains,

which is the first time a specific relative relationship between prototypes from

source and target domains has been built. This relationship can make proto-

types more identifiable and easier to be differentiated. Furthermore, our model260

is built upon the combined domains, thus it is more suitable for GZSL.

We denote ci as one of the prototypes in latent space of combined domains.

The orthogonal constraint here is that each prototype ci is normalized and

orthogonal to the others, i.e., the inner product of ci and cj(i 6= j) equals to 0,

12
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and ci
T
ci equals to 1. Concretely, we first concatenate the seen prototype Cs

and unseen prototype Cu as [Cs,Cu], then the loss function can be represented

as,

Lo = min
Cs,Cu

‖[Cs,Cu]T [Cs,Cu]− I‖2F , (3)

by expanding Eq. 3, we can obtain,

Lo = min
Cs,Cu

∣∣∣∣∣

∣∣∣∣∣


 CT

s Cs CT
s Cu

CT
u Cs CT

u Cu


−


 I 0

0 I



∣∣∣∣∣

∣∣∣∣∣

2

F

. (4)

Then, the final loss function of this submodule can be written as,

Lo = min
Cs,Cu

‖CT
s Cs − I‖2F + ‖CT

u Cu − I‖2F + ‖CT
s Cu‖2F . (5)

Combing all the aforementioned items, the final objective function is,

L = Ld + βLp + γLo, (6)

where, the relative importance of the three items are controlled by β and γ.

3.3. Optimization

The final objective function can be written as follows according to Eq. 1-Eq.

6,

L = min
Ps,Pu,D1,D2,Cs,Cu

‖Ps −D1Cs‖2F + λ‖As −D2Cs‖2F

+ α(‖Pu −D1Cu‖2F + λ‖Au −DT
2 Cu‖2F ) + µ1‖D1‖2F

+ µ2‖D2‖2F + β‖Xs − PsT ‖2F + γ(‖CT
s Cs − I‖2F

+ ‖CT
u Cu − I‖2F + ‖CT

s Cu‖2F ).

(7)

Eq. 7 is not simultaneously convex for Ps, Pu, D1, D2, Cs, Cu, but it is

convex for only one variable when fixing the others, thus we can conduct the265

optimization with an iterative strategy.

3.3.1. Initialization

First, we calculate the similarities between unseen prototypes to seen ones

as the initialization of Cu and the average vector of samples in each class as the
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initialization of Ps. Second, we initialize D2 by the forth and the last terms of270

Eq. 2. Third, Cs can be initialized by the second and the last terms of Eq. 2.

Subsequently, we get D1 by the first and the second last terms of Eq. 2. The

last variable Pu can be obtained by the third term of Eq. 2.

3.3.2. Optimization

We conduct optimization via an iterative strategy as follows,275

(1) Update Ps. By fixing the other variables, the subproblem can be written

as,

Ps = arg min
Ps

‖Ps −D1Cs‖2F + β‖Xs − PsT ‖2F . (8)

By conducting the derivative of the right part of Eq. 8 with respect to Ps,

and setting it to 0, then the closed-form solution of Eq. 8 can be obtained

as,

Ps = (βXsT
T + D1Cs)(I + TT T )−1. (9)

(2) Update Cs. By fixing the other variables, the subproblem can be repre-

sented as,

Cs = min
Cs

‖Ps −D1Cs‖2F + λ‖As −D2Cs‖2F

+ γ(‖CT
s Cs − I‖2F + ‖CT

s Cu‖2F ).

(10)

By conducting the derivative of the right part of Eq. 10 with respect to

Cs and setting it to 0, we can obtain,

(DT
1 D1 + λDT

2 D2 + 2γCsC
T
s − 2γI + γCuC

T
u )Cs

=(DT
1 Ps + λDT

2 As).
(11)

Since the Eq. 11 contains the cubic term of Cs, a complex computation

is required to obtain its solution. Thus, we use a iterative approximate

solution to replace it,

Cs = (DT
1 D1 + λDT

2 D2 + 2γCsC
T
s − 2γI + γCuC

T
u )−1

(DT
1 Ps + λDT

2 As).
(12)
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It should be noted that the Cs on the right side is an abbreviation of

Ct−1
s , where t indicates the current number of iterations, and Cs on the280

left side stands for the result of current iteration Ct
s.

(3) Update D1. We first fix the other variables, then set the derivation with

respect to D1 and let it to 0, we can obtain the closed-form solution as,

D1 = (PsC
T
s + αPuC

T
u )(CsC

T
s + CuC

T
u + µ1I)−1. (13)

(4) Update D2. By fixing the other variables, we can obtain the closed-form

solution similar as computing D1,

D2 = (λAsC
T
s + αλAuC

T
u )(λCsC

T
s + αλCuC

T
u + µ2I)−1. (14)

(5) Update Cu. We first fix the other variables, and then, Similar as comput-

ing Cs, we can obtain the iterative approximate solution as,

Cu = (αDT
1 D1 + αλDT

2 D2 + 2γCuC
T
u − 2γI + γCsC

T
s )−1

(αDT
1 Pu + αλDT

2 Au),
(15)

where, Cu on the right side is an abbreviation of Ct−1
u , and Cu on the

left side stands for Ct
u.

(6) Update Pu. By fixing the other variables, we can easily obtain the closed-

form solution as,

Pu = D1Cu. (16)

Based on the above analysis, the learning algorithm is outlined in Algorithm

1.285

3.4. Generalized Zero Shot Recognition

Since there are three distinct spaces in our DDIP, visual (v), semantic (s)

and latent hyper-spherical (d) spaces, and we have obtained class prototypes

in any of them respectively, thus we can make the test in any spaces. In our

method, instead of simply making the final classification result in one single290
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Algorithm 1 Inference of the training phase

Input: The training data Xs, the aggregation of its one-hot corresponding

labels T , the class prototypes of seen and unseen classes As and Au;

The hyper-parameters α, β, γ, µ1, µ2, λ;

The iterative number iter.

Output: The learned dictionary D1,D2, and class prototypes in visual and

hyper-spherical space Ps,Pu and Cs,Cu.

1: Initialize D1,D2,Ps,Pu,Cs,Cu with the strategy described in Sec. 3.3.1;

2: for K = 1→ iter do

3: Update Ps based on Eq. 9;

4: Update Cs based on Eq. 12;

5: Update D1 based on Eq. 13;

6: Update D2 based on Eq. 14;

7: Update Cu based on Eq. 15;

8: Update Pu based on Eq. 16;

9: end for

10: return D1,D2,Ps,Pu,Cs,Cu.

space, we proposed a Global Evaluation that classify a new sample based on a

comprehensive evaluation of the probability distributions in all spaces.

Concretely, we firstly obtain the Similarity (Sim) between test sample and

class prototypes in each space and then utilize these Sims to calculate the

probability (pi) of test sample belongs to each class with Softmax in individual295

or multiple spaces.

3.4.1. In Visual Space

Since we have obtained class prototypes of unseen classes Pu and seen classes

Ps in visual space, we can directly calculate the similarities Simv with cosine

distance between each class prototype and test sample xi by combining them

into Pall = Ps∪Pu as our search space for GZSL. Thereafter, the probability of

sample xi belongs to M th class in visual space piMv can be obtained by applying
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softmax function. Concretely, the similarities and probability can be obtained

with the following formulation,





Simi
v = xT

i Pall,

piMv =
eSimiM

v

∑
c∈(U∪S) e

Simic
v
,

(17)

where, Simic
v means the similarity between the sample xi and the cth prototype

in visual space. In addition, we should change Pall to Pu, and the search space

to U when making prediction on standard ZSL setting,.300

3.4.2. In Hyper-spherical Space

Firstly, since we have built up a dictionary D1 as a bridge between visual

to hyper-spherical space, we can get the representations of test samples in this

space by the following formulation,

arg min‖xi −D1ci‖2F + θ‖ci‖2F , (18)

where, ci represents the corresponding representation of test samples in hyper-

spherical space. θ is the balancing coefficient parameter for the second item.

Subsequently, Since Cs and Cu have been learned from the model, same as the

approach employed in visual space, we first combine them as Call and calculate305

the similarities Simi
d between ci and Call, and then compute the probability

pi
d in hyper-spherical space by employing softmax function on Simi

d with the

similar formulation as Eq. 17.

3.4.3. In Semantic Space

After the computation in latent space, we can get the representation of test

samples as ci. In addition, we also have the semantic dictionary D2, thus, the

sample representation in semantic space can be obtained as,

ai = D2ci. (19)

Then, the similarities in semantic space can be calculated by using ai and310

Aall as same as the method in above two spaces, where Aall = As ∪ Au.
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Subsequently, the probability pi
s in Semantic space can be easily evaluated with

softmax.

3.4.4. In Multiple-Space

Vectors in visual space can take along with more visual information, while315

vectors in semantic space contain more semantic information, and latent spher-

ical is a compromised space that has both the pros of the two spaces, thus

making evaluation in multiple-space can improve the performance, including

v+ s, v+d, d+ s, v+d+ s. To be specific, we normalize the similarities in three

spaces and directly add them, e.g., Simvs = Simv + Sims. Then, these new320

similarities can be used to obtain the probability values in multiple-space, e.g.,

pivs, same as the above strategy with Eq. 17.

3.4.5. Global Evaluation

At last, a Global Evaluation is designed to comprehensively predict the test

samples by using the maximum probabilities of each sample xi belongs to each

class in all spaces. For example, if we have the probability of test sample

xi belongs to M th class in respective space, i.e., piMv , piMd , piMs , piMvs , piMds ,

piMvd , piMvds, we can get the global probability piMmax belonging to M th class from

the maximum of them, and then classify the test sample xi by the following

formulation,

`i = arg max
c∈(U∪S)

picmax. (20)

3.5. Computational Complexity

In training stage, our DDIP is optimized in an iterative strategy, so we325

compute the algorithm complexity of single iteration first. Optimizing every

variable in our model only needs the executions of matrix multiplication and

inversion. Specifically, Updating Ps requires the computational complexity of

O(Nds), next, updating Cs and Cu need the same complexity of O(dp2). More-

over, for updating D1 and D2, it will cost the same complexity of O(sp2), at330

last, updating Pu costs O(dps). Thus, the total computational complexity is
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Algorithm 2 Inference of the class prediction

Input: The testing data xi, the manual annotation of seen and unseen classes

As and Au, the learned dictionary D1,D2, and class prototypes in visual and

hyper-spherical space Ps,Pu and Cs,Cu.

Output: Classification result `i.

1: Combine As and Au, Ps and Pu, Cs and Cu into Aall, Pall and Call;

2: Project xi into hyper-spherical and semantic spaces to get its representation

in each space by D1 and D2 based on Eq. 18 and Eq. 19;

3: Calculate the similarities between test sample and class prototypes in each

space, Simv,s,d;

4: Normalize the Simv,s,d and add them in pairs to obtain Simvs,vd,ds,vds;

5: Utilize these Sims to obtain the probability of test sample xi belongs to

M th class in respective space piMv , piMd , piMs , piMvs , piMds , piMvd , piMvds;

6: Get the maximum of above probabilities as piMmax;

7: Calculate the maximum probabilities of test sample xi belongs to each class

picmax(c ∈ (U ∪ S);

8: Classify test sample xi based on Eq. 20.

O(k(Nds+dp2+sp2+dps)), where k represents the number of iterations. Due to

the fact that the feature dimension d is usually bigger than the number of seen

classes s, and the latent dimension p is bigger than s, so the final computational

complexity is max(O(kdp2),O(kdNs)). In the test stage, the computational335

complexity in three spaces are O(d(u+s)), O(p(u+s)),O(l(u+s)) respectively,

thus the final computational complexity is max(O(d(u + s)),O(p(u + s))) for

prediction.

4. Experiments

4.1. Datasets340

In our experiments, we employ four popular benchmark and a large-scale

datasets, i.e., SUN (SUN attribute) [33], CUB (Caltech-UCSD-Birds 200-2011)
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[41], AWA(Animals with Attributes) [22], aPY(Attribute Pascal and Yahoo)

[11] and a large-scale dataset ImageNet [35]. SUN is a dataset of fine-grained

complex visual scenes and CUB is of bird-species images. In addition, we also345

employ two coarse grained datasets, AWA and aPY, AWA is consisted of differ-

ent animal pictures and the training 20 classes in aPY are known from Pascal

VOC [10] and 12 classes collected from Yahoo! [11] are used for testing. The

other details of these datasets can be found in Tab. 1. ‘SS’ refers to number

of Seen Samples in training, ‘TS’ is the number of samples from unseen classes350

for test, while ‘TR’ is for seen ones. ImageNet is a large-scale dataset, which

has totally 25400 images and 1000-dim class-level attributes. 1000 classed of

ILSVRC 2012 are used as seen classes and 360 classes of ILSVRC 2010 that are

not used in ILSVRC 2012 are used as unseen classes. In addition, we adopt the

split strategy which is proposed by [44].355

4.2. Experimental Setting

We exploit the extracted features with ResNet-101 [18] as our input, and

the same attributes employed in the evaluation in [44]. Additionally, there are

six hyper-parameters α, β, λ, γ, µ1 and µ2 in our method. Due to the fact

that different dataset is often suitable with different parameters, thus we fine-360

tune our hyper-parameters in the range [0.01, 0.1, 1, 10, 100] by employing a

cross validation strategy. To be specific, we hereby compare the difference of

ZSL cross-validation to conventional machine learning approaches. Compared

to inner-splits of training samples within each class, ZSL problem requires inter-

splits by in turn regarding part of seen classes as unseen, for example, 20% of the365

seen classes are selected as the validational unseen classes in our experiments,

and the parameters of best average performance of 5 executions are picked as

the optimal parameters for each dataset. It should be noted that the parameters

may not be the most suitable for the test set, because the labels of test data are

strictly inaccessible during training.370
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Table 1: Summary of the five datasets.

Datasets
Dimension Class Number Samples Number

Feat. Att. Seen Unseen SS TS TR

SUN[33] 2048 102 645 72 10320 1440 2580

CUB[41] 2048 312 150 50 7057 2967 10320

AWA[22] 2048 85 40 10 19832 4958 5685

aPY[11] 2048 64 20 12 5932 7924 1483

ImageNet[35] 1024 1000 1000 360 20000 - 5400

4.3. Results on GZSL

The evaluation criteria employed to evaluate our model under GZSL setting

is the harmonic mean H, which can be calculated by

H =
2× acctr × accts
acctr + accts

, (21)

where, acctr and accts are the accuracies of test samples from seen classes and

unseen classes respectively, and we adopt the following average per-class top-1375

accuracy as the final result, which can be written as,

accC =
1

|C|

|C|∑

c=1

# correct predictions in c

# samples in c
, (22)

where, |C| is the number of test classes C. The experimental results on all four

datasets are recorded in Tab. 2. Due to the fact that our DDIP is linear, we

make the comparison with some other linear state-of-the-art methods.

From Tab. 2, it is obviously that our DDIP can outperform all the other380

baselines method on the the most important metric H, especially on AWA

and aPY. Specifically, we improve H by 4.7% on SUN, 2.0% on CUB, 18.5% on

AWA and 19.4% on APY respectively. Obviously, the fundamental reason for the

improvement of H is the raising of accuracies of test samples from unseen classes

ts. Compared with those existing methods, which only train models with the385

samples from source domain and are over-fitting on tr, our proposed DDIP can
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Table 2: Comparison of our DDIP and state-of-the-art methods on GZSL. Bold font stands

for the best result of the corresponding column. ‘-’ means not reported.

SUN CUB AWA APY

Method ts tr H ts tr H ts tr H ts tr H

DAP[22] 4.2 25.1 7.5 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0

CONSE[31] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0

LATEM[43] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2

ALE[2] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7

DEVISE[13] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2

SJE[3] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9

ESZSL[34] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6

SYNC[7] 7.0 43.4 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3

SAE[21] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2

CDL [19] 21.5 34.7 26.5 23.5 55.2 32.9 28.1 73.5 40.6 19.8 48.6 28.1

GFZSL[40] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 0.0 83.3 0.0

LAGO[4] 18.8 33.1 23.9 21.8 73.6 33.7 23.8 67.0 35.1 - - -

PSEUDO[27] 19.0 32.7 24.0 23.0 51.6 31.8 22.4 80.6 35.1 15.4 71.3 25.4

KERNEL[49] 21.0 31.0 25.1 24.2 63.9 35.1 18.3 79.3 29.8 11.9 76.3 20.5

TRIPLE[50] 18.2 28.9 22.3 21.6 47.5 29.7 18.2 87.5 30.2 8.8 59.1 15.4

VZSL [42] 15.2 23.8 18.6 17.1 37.1 23.8 22.3 77.5 34.6 8.4 75.5 15.1

LESAE [26] 21.9 34.7 26.9 24.3 53.0 33.3 19.1 70.2 30.0 12.7 56.1 20.1

LESD [9] 15.2 19.8 17.2 14.6 38.5 21.2 12.6 71.0 21.4 11.8 49.3 19.0

Ours 36.8 27.7 31.6 36.6 37.5 37.1 53.6 65.9 59.1 37.3 65.6 47.5

obtain a much more balance result on ts and tr. We ascribe this improvement to

the advantage of our DDIP, which combines both source and target domains in

latent space, and makes the learned prototypes more discriminative from each

other by the constrain of orthogonal.390
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Table 3: Comparison of our DDIP and state-of-the-art methods on ZSL. Bold font stands for

the best result of the corresponding column. ‘-’ means not reported.

Method(%) SUN CUB AWA aPY Average

DAP[22] 39.9 40.0 44.1 33.8 39.5

CONSE[31] 38.8 34.3 45.6 26.9 36.4

LATEM [43] 55.3 49.3 55.1 35.2 48.7

ALE [2] 58,1 54.9 59.9 39.7 53.2

DEVISE[13] 56.5 52.0 54.2 39.8 50.6

SJE [3] 53.7 53.9 65.6 32.9 51.5

ESZSL[34] 54.5 53.9 58.2 38.3 51.2

SYNC[7] 56.3 55.6 54.0 23.9 47.5

SAE[21] 40.3 33.3 43.0 8.3 46.6

CDL [19] 63.6 54.5 69.9 43.0 57.8

GFZSL [40] 62.5 42.0 55.6 32.8 48.2

LAGO[4] 57.5 57.8 - - -

PSEUDO[27] 60.4 57.2 66.2 40.4 56.1

KERNEL[49] 61.7 57.1 71.0 45.3 58.8

TRIPLE[50] 59.3 54.9 64.7 40.9 55.0

VZSL [42] 52.0 43.8 63.7 30.3 47.5

LESAE [26] 60.0 53.9 66.1 40.8 55.2

LESD [9] 50.4 38.9 53.4 29.8 43.1

Ours 63.7 54.0 72.1 51.2 60.2
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Table 4: ZSL results on ImageNet dataset. Bold font stands for the best result of the corre-

sponding column.

Method(%) Top-1 Top-5

DEVISE[13] 5.2 12.8

AMP[16] 6.1 13.1

CONSE[31] 7.8 15.5

ESZSL[34] 8.3 18.2

EMBED[54] 11.0 25.7

SAE[21] 12.9 27.2

Ours 13.1 27.9

4.4. Results on ZSL

Since many methods give the results only on ZSL, we here also conduct

the same experiment to show the priority of our method. For four benchmark

datasets, similar with the experiment on GZSL, we adopt the average per-class

top-1 accuracy as the final accuracy for ZSL, and the final results can be found in395

Tab. 3. It can be clearly observed that our method obtains the best performance

on SUN, AWA and APY and a comparable result on CUB. To be specific, our

DDIP can outperform the listed best methods by 0.1% on SUN, 1.1% on AWA

and 5.9% on APY respectively. As for CUB, we get a little bit lower result.

This phenomenon is caused by the fact that CUB is a fine-grained dataset400

and the discriminative features of CUB are local, while our method focuses on

global prototypes. Despite that, our method still can obtain 54% classification

accuracy, and just has 3.8% lower than the best method LAGO [4]. However,

we believe that a good method should perform well on every dataset rather than

just on a single one, thus we also compare the average performance on different405

datasets, and record the result in the last column of Tab. 3. According to the

average values, we can clearly find the average performance of our DDIP can

outperform all the state-of-the-art methods, which indicates the effectiveness

of our approach. For large-scale dataset ImageNet, we test Top-1 and Top-5

accuracy under ZSL setting. As shown in Tab. 4, our method outperforms the410
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48.7 65.2 43.3 SUN
63.6 54 72.1 51.2 CUB
24.5 27.3 40.6 28.1 AWA
31.6 37.1 59.1 47.5 APY

30.8 36.3 57.1 38.4
31.6 37.1 59.1 47.5

(a) Average or Automatically

Learning

59 48.7 65.2 43.3 SUN
63.6 54 72.1 51.2 CUB
24.5 27.3 40.6 28.1 AWA
31.6 37.1 59.1 47.5 APY

30.8 36.3 57.1 38.4
31.6 37.1 59.1 47.5

(b) Direct Projection or Dic-

tionary Learning

48.7 65.2 43.3 SUN
63.6 54 72.1 51.2 CUB
24.5 27.3 40.6 28.1 AWA
31.6 37.1 59.1 47.5 APY

30.8 36.3 57.1 38.4
31.6 37.1 59.1 47.5

(c) With/Without Orthogo-

nal Constraint (OC).

Figure 3: Influence of each submodule.

listed best methods by 0.2% on Top-1 and 0.7% on Top-5, demonstrating the

scalability of our model to large-scale problems.

4.5. Ablation Study

4.5.1. Effect of Each Submodule

In this section, we conduct experiments to show the effect of dictionary415

learning and orthogonal constraint respectively.

Firstly, we remove the Visual Prototype Learning submodule. Instead of au-

tomatically learning, we let the average value of each class as its corresponding

class prototype representation, and the results under convention ZSL setting

can be found in Fig. 3(a). It can be obviously found that the prototypes420

that are learned from Visual Prototype Learning submodule can generate bet-

ter recognition results, especially on APY. By conducting the average as the

initialization value and adding minor adjustments automatically based on that,

the prototypes in visual space can become more representative.

Secondly, we replace the dictionary learning part into direct projection by425

utilizing an embedding matrix and test the model under ZSL setting, the results

can be found in Fig. 3(b). It is clear that the recognition performances of

dictionary learning are better than those of direct projection on all four datasets,

which indicates that sharing the same dictionary for both seen and unseen classes

can effectively deal with the problem that data from seen and unseen classes430
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Table 5: Influence of Orthogonal Constrain on Different Categories

Settings

Datasets
SUN CUB AWA APY

None 24.7 27.4 40.6 28.1

Unseen Only 24.5 27.7 44.6 43.1

Seen Only 26.6 34.2 46.9 46.9

Seen + Unseen 31.6 37.1 59.1 47.5

always has different distribution, that is to say, our model can significantly

alleviate the projection domain shift problem.

Thirdly, in order to investigate the influence of Orthogonal Constraint, we

train our model with and without this constraint, test them under the GZSL

setting, and record the results in Fig. 3(c). From the figure, we can clearly see435

that training with this constraint can dramatically boost the harmonic mean

on all four datasets. The orthogonal constraint on latent hyper-spherical space

can make the both seen and unseen class prototypes we learned become more

discriminative, thus the harmonic mean, which is calculated by accuracy of both

seen and unseen categories, can make a great improvement. Especially on AWA440

and APY, due to the fact that these two datasets are both coarse-grained, in

other words, making the prototypes of coarse-grained datasets orthogonal is

much easier than that of a fine-grained one, e.g., CUB only contains images of

birds, thus the effect with this constraint can be less conspicuous than that on

AWA and APY.445

4.5.2. Influence of Orthogonal Constraint on Different Categories

To further illustrate the detail effectiveness of our proposed orthogonal con-

straint on combined domain in latent hyper-spherical space, in this section, we

conduct experiments to investigate whether orthogonal constraint on different

categories can make different performance. To be specific, we employ two vari-450

ants of our model: constraint on unseen class only and constraint on seen class

only. Tab. 5 records the performance of these two variants on GZSL setting,
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and the results with the original full model and the model without orthogonal

constraints can also be found in Tab. 5. It is obvious that employing the orthog-

onal constraint of unseen or seen classes only can enhance the performance but455

the improvement is limited, while applying constraint on both seen and unseen

classes can boost the final results significantly on all four datasets. We ascribe

this phenomenon to the orthogonality of combined domains, which indicates

that employing orthogonal constraint on seen or unseen classes individually is

fragmentary, while combining them and taking the relationship between them460

into account is much more suitable for GZSL.

4.5.3. Different Dimensions of Latent Space

In this section, we conduct experiment to show whether the dimension of the

latent hyper-spherical space has an effect on the final recognition results. The

results on four datasets are illustrated in Fig. 4, where the X-axis represents the465

multiple of dimension of latent space relative to the number of categories. To be

specific, we simply change the initialization method of Cu by concatenating K

Cu, then the dimension of latent space can be changed to K times to the original

one. From Tab. 4, it is obvious that there is a common characteristic on the

four datasets: H can reach the peak when the dimension is around two times to470

the number of categories, and it can be lower when dimension is too low or too

high. Since we need at least same dimension as the category number to make

all classes orthogonal to each other in latent space, the dimension cannot be too

low. Besides, too high dimension may bring too much redundant information.

4.5.4. Performance in Different Spaces475

As described above, there are three different spaces in our model, and each

of them can be taken as the testing space. Therefore, in this section we il-

lustrate the testing results in different spaces separately and the effect of our

proposed Global Evaluation on four datasets in Fig. 5. Bars on the left show

the accuracies on ZSL setting and the right ones record the evaluation criteria480

H on GZSL. Each dataset has four bars, which from left to right means the
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Figure 4: Comparison with different dimensions for latent space.
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Figure 5: An illustration of the results of ZSL&GZSL on four datasets in different spaces.

testing results in Visual, Latent (hyper-spherical), Semantic and results of our

Globel Evaluation. It can be obviously found that compared with the results

in visual and hyper-spherical spaces (see Semantic vs. Visual and Latent), the

test results in semantic space obtains the worst performance. This phenomenon485

is caused by that the original manual class prototypes in semantic space lack

discriminative properties. Also the results in Latent space (see Latent vs. Vi-

sual and Semantic) are always better than those in other two spaces, which also

indicates that the class prototypes we learned in latent space are more discrim-

inative. For GZSL, performance in latent hyper-spherical space is also better490
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Figure 6: ZSL accuracies (Y-axis) with different value of hyper-parameters(X-axis).

than that in other two spaces, which reveals that our hyper-spherical space is

generalizable to the whole domain. Moreover, by taking our proposed Global

Evaluation (see Global vs. Others), the recognition performance in ZSL and

GZSL can be further improved, which can be ascribed to the combination of

the advantages of all three spaces.495

4.5.5. Parameters Analysis

There are six hyper-parameters in our proposed method, α, β, λ, γ, µ1 and

µ2, in order to discuss the robustness of using different values of each hyper-

parameter, in this section, we take APY as an example to show the influence

of each hyper-parameter. To be specific, since we set all the hyper-parameters500

range from 1× 10−2 to 1 × 102, and the stride is ten times, in this experiment,

we fix the five of six hyper-parameters on the optimal value, which is [10, 0.1,

10, 0.1, 0.01, 0.1] for APY, and change the left one. We record the result on

ZSL setting, and draw the curves in Fig. 6.

Generally speaking, different hyper-parameters often mean different impor-505

tance of each constraint, thus they often lead to different performance, which

can be seen in Fig. 6. However, we can still clearly find that the performance

is kept stable within a wide range, which proves that our method can be robust
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Figure 7: The cosine similarities of class prototypes in latent hyper-spherical space on AWA.

Best viewed in color.

for using different values of hyper-parameters.

4.6. Similarities of Class Prototypes510

Since we all know that the more different the class prototypes are from each

other, the easier the input samples can be classified, we illustrate the change of

similarities of class prototypes in this section. We calculate the cosine similarity

of each class prototype on AWA, and visualize the similarity matrix in Fig. 7.

Specifically, vectors from 0# to 40# in matrix are seen classes prototypes and515

the rest belong to unseen classes. Fig. 7(a) demonstrates the original manual

prototypes in semantic space, while Fig. 7(b) illustrates the class prototypes

that our DDIP learned in latent hyper-spherical space. From the comparison

of two figures, we can obviously found that the prototypes we learned are much

more differentiable from each other, which demonstrates the effectiveness of our520

model. Noted that not only seen classes become more discriminative against

seen, seen against unseen, and unseen against unseen also become more dis-

criminative. For example, we pick out three pairs, the left one is the similarity

between ’weasel’ (Seen) and ’hamster’ (Seen), the upper one denotes the simi-

larity of ‘Killer Whale’ (Seen) and ‘Blue Whale’ (Unseen) and the last one is525

‘Walrus’ (Unseen) to ‘Seal’ (Unseen). These three pairs are very similar un-

der the attributes of manual annotation, over 0.78 in cosine similarity, and it
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Table 6: The time cost of train and test of different methods on AWA.

Method Train Time(s) Test Time(s)

SSE[56] 2981 20.72

ESZSL[34] 53 0.21

AMP[16] 1936 0.43

SAE[21] 4.9 0.27

Ours 1.4 0.73

is difficult to classify them directly using original attribute, while our model

can make them much more different and the similarities between them decrease

to less than 0.67, which shows the superiority of our submodule of orthogonal530

constraint.

4.7. Computational Cost Analysis

Since our DDIP is a linear model, the train and test can be efficient. There-

fore, in this section we make a comparison with some other no-deep models on

the efficiency on AWA and the results are illustrated in Tab. 6. Due to the fact535

that our model is consist of simple matrix addition, subtraction, multiplication

and division only and without Sylvester function, which costs the most time

in SAE [21], thus our model is much faster than SAE. Since our model makes

evaluations on three independent and four combined spaces, the test time can

be a sightly longer, but the train phase of our model is much faster than the540

other methods, which means our model can be extended to larger datasets.

4.8. Visualization in Latent Space

The objective of orthogonal constraint in latent hyper-spherical space is to

disperse all classes and make them more discriminative. Thus, in order to have

a more intuitive understanding, we employ t-SNE [29] on AWA to illustrate545

the distributions of samples in this space. Specifically, we choose representative

class pairs whose cosine similarities of prototypes in semantic space is rank high

on the list, i.e., they are very similar and hard to be classified. After that,

31

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



60

Killer Whale Persian Cat Greman Shepherd
Blue   Whale Siamese Cat Leopard SpiderMonkey

Chimpanzee
Wolf

Bob Cat

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

(a) without OC

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

(b) with OC

Figure 8: Visualization of similar classes on AWA in latent space, where ‘OC’ means Orthog-

onal Constraint. Best viewed in color.

we finally get five pairs, including eight seen classes and two unseen classes,

which can be found in the legend of Fig. 8. In Fig. 8, we illustrate the data550

distributions of the samples from the selected classes with and without the

orthogonal constraint in the latent space. From this figure, it can be clearly

seen that the samples of ‘Killer Whale’ (Seen) and ‘Blue Whale’ (Unseen) are

overlapped without orthogonal constraint, while our DDIP can separate them

effectively. This phenomenon can also be found in seen-seen pairs, e.g., ‘Persian555

Cat’ and ‘Siamese Cat’, which indicates our DDIP can perform well not only in

the source domain, but also in the whole domain.

5. Conclusion

In this paper, we proposed a novel and effective GZSL recognition model

named DDIP, which aims to alleviate the influence of projection domain shift560

problem. Specifically, to construct relationship between the prototypes of seen

classes and unseen classes, we define a effective latent hyper-spherical space to

combine both source domain and target domain. In addition, a sparse cod-

ing is employed to learning the dictionaries to project features and semantics

into latent space, and an orthogonal constraint is also applied in latent space to565
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make the prototypes more discriminative. We developed an iterative optimizing

algorithm to solve the proposed DDIP method, and conducted extensive exper-

iments on four popular datasets. The results on both GZSL and ZSL show that

our DDIP can outperform the state-of-the-art methods, which demonstrate the

superiority of our method.570
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