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Abstracting Probabilistic Models: Relations, Constraints and Beyond

Vaishak Bellea,b,∗

aSchool of Informatics, University of Edinburgh, Edinburgh, UK.
bAlan Turing Institute, London, UK.

Abstract

Abstraction is a powerful idea widely used in science, to model, reason and explain the behavior of systems in a more
tractable search space, by omitting irrelevant details. While notions of abstraction have matured for deterministic
systems, the case for abstracting probabilistic models is not yet fully understood.

In this paper, we provide a semantical framework for analyzing such abstractions from first principles. We develop
the framework in a general way, allowing for expressive languages, including logic-based ones that admit relational,
deterministic and hierarchical constructs with stochastic primitives. We motivate a definition of consistency between
a high-level model and its low-level counterpart, but also treat the case when the high-level model is missing critical
information present in the low-level model. We go on to prove properties of abstractions, both at the level of the
parameter as well as the structure of the models. We conclude with some observations about how abstractions can be
derived automatically.

1. Introduction

Abstraction is a powerful idea widely used in science to explain phenomena at the required granularity. Think of
explaining a heart disease in terms of its anatomical components versus its molecular composition. Think of under-
standing the political dynamics of elections by studying micro level phenomena (say, voter grievances in counties)
versus macro level events (e.g., television advertisements, gerrymandering). In particular, in computer science, it is
often understood as the process of mapping one representation onto a simpler representation by suppressing irrelevant
information. The motivation is three-fold:

(a) When representing complex pieces of knowledge, abstraction can provide a way to structure that knowledge,
hierarchically or otherwise, so as to yield descriptive clarity and modularity.

(b) Reasoning over large graphs, programs, and other structures is almost always computationally challenging,
and so abstracting the problem domain to a smaller search space is attractive. Even in the case of tractable
representations, such as arithmetic circuits [17], reasoning is polynomial in the circuit size, so clearly a smaller
circuit is more effective.

(c) Lastly, and perhaps most significantly, abstraction features pervasively in commonsense reasoning, and there is
much discussion in the fields of cognitive science and philosophy on the role of abstractions for explanations
[41, 18]; for example, Garfinkel [27] argues that concrete explanations containing too much detail are sensitive
to perturbations and are impractical for understanding physical phenomena. Thus, abstractions will likely be
critical for explainable AI [32], and indeed, much of that literature focuses on extracting high-level symbolic
and/or programmatic representations from low-level data (e.g., [56, 67]).

Formal perspectives on abstraction have matured considerably over the years [30, 50, 2]. In particular, the work of
Banihashemi et al. [2] is noteworthy as it identifies how notions of soundness and completeness relate to the model-
theoretic properties of a high-level abstraction and the corresponding low-level theory. However, the formal analysis
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of abstraction has largely focused on categorical (deterministic and non-probabilistic) domains; that is, both the high-
level and the low-level representations are assumed to be categorical assertions. In that regard, existing frameworks are
not immediately applicable to the fields of probabilistic modeling and statistical machine learning. Indeed, we do not
yet have a full understanding of which aspects of one probabilistic model, representing some low-level phenomena, can
be omitted when building a less granular (possibly non-probabilistic) model standing for a high-level understanding
of the domain.

In this paper, we provide a semantical framework for analyzing such abstractions from first principles. We develop
the framework in a general way, allowing for expressive languages, including logic-based ones that admit relational,
deterministic and hierarchical constructs with stochastic primitives [35, 29]. Representative examples of such lan-
guages include probabilistic databases and statistical knowledge bases, which have received considerable attention
both in the academic and industry circles [68, 58, 72, 21, 55, 10].

In this work, we motivate a definition of consistency between a high-level (probabilistic or logical) model and its
low-level (probabilistic) counterpart, but also treat the case when the high-level model is missing critical information
present in the low-level model. We go on to prove properties of abstractions, both at the level of the parameter as well as
the structure of the models. Put differently, we first motivate a definition of abstraction purely at the level of the model
theory, which then provides the basis for analyzing the properties of “unweighted abstractions.” (That is, probabilities
are simply ignored in that construction.) We use that analysis to investigate how “weighted abstractions” can be
defined. We then study how to incorporate low-level evidence and reason about it in the high-level representation. We
conclude with some observations about how abstractions can be derived automatically.

With the development of this framework, we hope to provide a formal basis for developing probabilistic abstrac-
tions in service of increased modularity, tractability and interpretability.

2. Desiderata

Before developing a framework for abstraction, let us briefly reflect on what is desired of such a framework. To a
first approximation, a formal theory of abstraction can be approached in three stages:

1. How should abstraction be defined between a high-level representation ∆h and a low-level one ∆l?
2. Given ∆h and ∆l, how do we prove that ∆h is an abstraction of ∆l?
3. Given ∆l and a target high-level vocabulary, how do we find ∆h?

At the outset, in this work, we are concerned with (1) and (2), but we will also consider a preliminary investigation of
(3).

In essence, abstractions are about omitting irrelevant details, while providing a less granular language to capture
and reason about the underlying probabilistic components. To motivate that using an example, consider a probabilistic
relational model (PRM) on entity-relationships for a university databaseU (adapted from Heckerman et al. [35]). The
model instantiates constraints for a (parameterised) Bayesian network:

Difficulty Grades IQ

as follows, referred to as the low-level theoryUl in the sequel:

0.7 diff (x, E)

0.1 diff (x,M)

0.2 diff (x,H)

0.25 iq(x, L) ∧ diff (y, E) ∧ takes(x, y) ⊃ grades(x, y, u) for u ∈ {7, 8, 9, 10}

0.25 iq(x, L) ∧ ¬diff (y, E) ∧ takes(x, y) ⊃ grades(x, y, u) for u ∈ {5, 6, 7, 8}

where the constants E,M,H, L stand for easy, medium, hard, low respectively. (A precise encoding will be presented
in a subsequent section.)

The first constraint says that for any given course, say B, the probability that its difficulty level is easy is 0.7. The
fourth constraint says that for any low IQ student taking an easy course, the probability that his grade is 7 is 0.25, and
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likewise, the probability that his grade is 8 is 0.25, and so on. More generally, this theory says that courses come in
three levels of difficulty, and when a low IQ student takes an easy course, his grades can be modeled as a uniform
distribution on {7, 8, 9, 10}, and when he does not take an easy course, it is a uniform distribution on {5, 6, 7, 8}.

A simple yet powerful type of abstraction to apply here is to abstract away the domain. Assuming the above
sentences are the only ones of interest to us, we can lump the constants {M,H} as N, standing for not easy, and lump
the mentioned grade values together as {5, 6} , {7, 8} , {9, 10} and denote them as B,O,G, standing for bad, ok and good
respectively. Then, we would obtain the following model, referred to as the high-level theoryUh in the sequel:2

.7 diff (x, E)

.3 diff (x,N)

.5 iq(x, L) ∧ diff (y, E) ∧ takes(x, y) ⊃ grades(x, y, u) for u ∈ {O,G}

.5 iq(x, L) ∧ diff (y,N) ∧ takes(x, y) ⊃ grades(x, y, u) for u ∈ {B,O}

On closer inspection, the reader may observe that Uh is, in fact, a very faithful abstraction of Ul, in terms of
accurately grouping together probabilistic events. Indeed, we will formally show that the two models agree on a large
class of probabilistic queries. The benefit, of course, is thatUh is defined over a smaller set of random variables.

However, such a faithful alignment may not always be needed, or even feasible. Consider a case where we abstract
by grouping definitions and complex formulas using new predicates. Suppose we had a course listing database C. Let
Cl be a low-level theory:

.9 CS(x) ⊃ diff (x,H)

.8 Physics(x) ⊃ diff (x, E)

1 (AI(x) ⊃ CS(x)) ∧ (Astronomy(x) ⊃ Physics(x))

We may want to define a high-level theory Ch that simply uses Science(x) in place of CS(x) and Physics(x). But
then the weight on rules such as Science(x) ⊃ diff (x,H) or Science(x) ⊃ diff (x, E) may not be immediate to de-
rive, in general. Predicate abstraction can also be used as a strategy to check for probabilistically significant events.
For example, an administrator may only be interested in ensuring that all low IQ students enroll in an easy course:
alert .

= ¬ [∀x,∃y (iq(x, L) ⊃ (takes(x, y) ∧ diff (y, E)))] and specifically, whether that atom ever obtains a non-zero
probability. Indeed, the literature on verification and security often approach the reasoning of complex systems by dis-
tinguishing bad states (e.g., invalid paths, safety conditions) [65], and correspondingly, checking whether such states
are probable or improbable. Naturally, by means of a relational language, such definitions can be arbitrarily complex
and hierarchical, and different from classical works on categorical abstraction, predicates at every level can denote
stochastic primitives.

In that spirit, we show that abstraction can be understood both from the viewpoint of the parameters (i.e., weights
and/or probabilities) and structure (i.e., the logical sentences). While we do discuss the case of aligning probabilities
exactly between the high-level and low-level models, we also consider the most immediate case of parameter ab-
straction where one obtains an alignment between the probable and improbable events. When it comes to abstracting
structure, we show that one wants to ensure that the high-level model is consistent, and perhaps additionally that it
is not missing critical information present at the low-level model. This then motivates a definition of soundness and
completeness.

Our starting point was the work of Banihashemi et al. [2], which introduces a simple way to logically characterize
the differences between a high-level theory and the low-level one, via the well-understood notion of isomorphisms.
We show how that account can be extended to reason about probabilities by appealing to the formulation of weighted
model counting [12], which serves as an assembly language for many popular PRMs. The resulting treatment can

2Although the abstraction uses the same predicates as Ul, note that some of these are essentially new predicates, with different domains. For
example, in Ul, the difficulty ranges over {E,M,H} whereas in Uh, it ranges over {E,N} . The context will make clear whether the predicates and
constants are fromUl or fromUh, and so we do not distinguish symbols fromUh by means of superscripts and such.
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be seen to share much of the simplicity of Banihashemi et al. [2], thereby providing an amenable framework for
understanding probabilistic and logical abstractions of PRMs.

We reiterate that our focus here is primarily about the semantic constraints for analyzing abstractions. Thus, at
the outset, we assume that we are given a high-level theory, capturing the more abstract probabilistic model, and a
low-level theory, understood as the underlying probabilistic model that is to be abstracted. Nonetheless, we conclude
our technical treatment by discussing some ideas for deriving abstractions automatically.

3. Preliminaries

Our technical development will discuss the semantical constraints between different representations, defined in
terms of a mapping between probabilistic events. For the purpose of our results, it will be useful to think in terms
of these representations being knowledge bases (i.e., sentences in some logical language), over which one defines a
measurable space (S ,FS ) [34]. In particular, for any given knowledge base ∆, we imagine S to be some subset of the
set of interpretations of ∆. Moreover, when analyzing how precisely two representations agree, we will be considering
the probabilities of queries that additionally use logical connectives such as conjunction and negation, and so we will
require that measures be well-defined over such connectives.

Concretely, define a relational language Lang with predicate symbols of every arity

{P1(x), . . . , P2(x, y), . . . , P3(x, y, z), . . .} ,

variables {x, y, z, . . .}, connectives ∨,¬,∧,∀ and a set of constants {c1, c2, . . .}, serving as the domain of discourse for
quantification. To facilitate comparisons between vocabularies, we assume that for each high/low-level theory the
relations and domain are finite subsets of this fixed infinite vocabulary. For simplicity, we restrict our attention to
probability spaces over finitely many random variables, as would be instantiated from our assumption. This would
be applicable to most statistical relational languages, such as probabilistic databases, Markov logic networks and
knowledge graphs [68, 58, 21]. Although from a logical viewpoint, we could simply have used a propositional one,
we will introduce a relational language, as is usual in the literature [42].3

Standard abbreviations apply for connectives: we write α ⊃ β (material implication) to mean ¬α ∨ β, α ≡ β
(equivalence) to mean (α ⊃ β) ∧ (β ⊃ α), and ∃xα (existential quantification) to mean ¬∀x¬α. In particular, when the
domain is fixed to a finite set D, we write ∀x α(x) to mean

∧
c∈D α(c). Moreover, α∧ β is equivalent to ¬(¬α∨¬β), so

in proofs, we only consider the connectives {∧,¬} .
The set of ground atoms is defined as:

{P(c1, . . . , ck) | P is a relation, ci ∈ D} .

The set of ground literals is obtained from the set of atoms, and their negations. Henceforth, when we write atoms and
literals, we will implicitly mean ground ones. We often use p and q to denote atoms, and l and d to denote literals.

A model M is a {0, 1} assignment to the set of atoms. Using |= to denote satisfaction, the semantics for a formula
φ is defined inductively: M |= p for atom p iff M[p] = 1; M |= ¬φ iff M |= φ does not hold (also written M 6|= φ);
M |= φ∨ψ iff M |= φ or M |= ψ; and M |= φ∧ψ iff M |= φ and M |= ψ. We write l ∈ M to mean that M |= l for literal l.

We say a formula φ is satisfiable iff there is a model M such that M |= φ. We write ∆ |= φ to mean that in every
model M such that M |= ∆, it is also the case that M |= φ. In particular, we say that φ is valid, written |= φ, iff for every
model M, M |= φ.

To prepare for our technical discussion, we discuss some notational conventions. Given a formula ∆, we write
Lang(∆) to mean the the logical sub-language implicit in ∆: that is, the set of well-formed formulas constructed
from relations {P1(x), . . .} and constants D mentioned in ∆. We can then write α ∈ Lang(∆) to mean such as well-
formed formula. Analogously, we write Lits(∆) to mean the set of literals obtained from Lang(∆). For example, if
∆ = P(c) ∨ Q(c, a), then ¬P(a) ∈ Lang(∆),Q(a, a) ∈ Lang(∆), P(a) ∈ Lits(∆),¬Q(a, c) ∈ Lits(∆), and so on. We often

3If there are infinitely many random variables instantiated from the first-order language, we may consider countably additive probability mea-
sures [26, 33] or other syntactic conditions, as in, for example, [52, 39, 66, 49, 4].

4



abuse notation and write ~c ∈ D to mean that each of the constants mentioned in ~c is taken from D. Finally, given a ∆,
when we write M |= ∆, it is implicit here that we take M to be a model for the language Lang(∆); that is, it is a {0, 1}
assignment to the set of atoms in Lang(∆). We can make this explicit by writing M ∈ Models(Lang(∆)), or simply
M ∈ Models(∆) for short.4

As hinted above, we will now assume that for any ∆, we are given a measurable space (S ,FS ), where S ⊆
Models(∆) [34]. Since Models(∆) is finite, let S = Models(∆) for simplicity. For this measurable space, we further as-
sume that for every α ∈ Lang(∆), Pr(α) is a numeric term; that is, every well-defined formula is accorded a probability.
We further interpret a conditional probability expression as

Pr(α | β) =
Pr(α ∧ β)

Pr(β)

This interpretation places very little restrictions on the computational machinery that one may use [34]. For the
sake of concreteness, weighted model counting (WMC) [1], for example, is a reasonable fit. We remark that nothing in
our technical treatment hinges on using WMC, and we only use the framework to illustrate examples and the encoding
for the university PRM. In some cases, we state useful properties of WMC, but these would hold in virtually all
statistical relational languages and probabilistic logics [34, 42, 24].

WMC is defined over the models of a propositional formula, and serves as an assembly language for a number of
heterogeneous representations, including factor graphs, Bayesian networks, probabilistic databases and probabilistic
programs [1, 68, 25]. WMC enjoys a number of interesting properties that makes it particularly well-suited for our
endeavor. First, it separates the symbolic representation (i.e., a logical encoding of the probabilistic model) from a
weight function denoting the probabilities of variables, which allows us to investigate abstractions both at the level
of structures and at the level of parameters. Second, WMC provides a semantic as well as a computational view
for probabilistic reasoning. Semantically, the models of propositional formulas map to states in probability spaces
(i.e., assignments of values to random variables). Computationally, we are able to reuse SAT technology for building
exact and approximate solvers [31], while still leveraging context-specific independences [8]. In particular, recent
approaches for WMC [12] such as knowledge compilation [17] provide effective ways for enumerating and testing
properties on propositional interpretations.

Essentially, WMC extends model counting, which is the task of counting the models of a propositional formula
[31]. In WMC, weights are additionally accorded to literals, and we are interested in summing the weights of the
models, which is then defined in terms of the product of the literal weights. Standard probabilistic inference, WMC
and model counting are, in fact, closely related problems, with polynomial time reductions to each other, with their
decision versions being #P-hard [1, 70]. Formally,5

Definition 1. Suppose ∆ is a ground first-order sentence. Suppose w is a function that maps the elements of Lits(∆) to
R[0,∞). Then the WMC of ∆ is defined as:

WMC(∆,w) =
∑
M|=∆

∏
l∈M

w(l)

Given a formula φ ∈ Lang(∆), we can query φ wrt evidence e for theory (∆,w) using:

Pr(φ | e,∆,w) =
WMC(φ ∧ e ∧ ∆,w)

WMC(e ∧ ∆,w)

=
Pr(φ ∧ e,∆,w)

Pr(e,∆,w)

(‡)

4The reason we go to some length to discuss our notational conventions is this: when we work with a fixed language, the set of relations, literals,
and models to consider is immediate. That will no longer be true when we are thinking of different logical languages for high-level and low-level
theories, in which case our notation will provide context.

5We define WMC at the level of the ground theory. In the literature, however, a special case of WMC is sometimes considered for relational
languages, where the weight function maps predicates directly to numbers (e.g., [71]). The intuitive idea is to treat this weight function as a template
for all instances of the corresponding predicate, which, on the one hand, simplifies the specification of the weight function, and on the other, admits
effective inference. We do not discuss such ideas here as it is orthogonal to the main thrust of this work (cf. penultimate section).

5



When e = true, we simply write Pr(φ,∆,w). We remark for Pr(φ,∆,w) to be well-defined, which is assumed,
WMC(∆,w) , 0. (Thus, it is assumed that ∆ is satisfiable, and that w does not map all the corresponding literals to 0.)
If the context is clear, we often refer to ∆ as the theory, and to φ as the query or event.

We immediately observe the following property from the definition of WMC.

Theorem 2. If ∆ |= φ, then Pr(φ,∆,w) = 1. If ∆ ∧ φ is not satisfiable, then Pr(φ,∆,w) = 0.

Proof. For the first property, every M such that M |= ∆, M |= φ also, and so WMC(φ ∧ ∆,w) = WMC(∆,w). For the
second, WMC(φ ∧ ∆,w) = 0.

Example 3. We illustrate a WMC encoding forUl based on the university PRM; the encoding for others considered
in this work are analogous. First, note that in atoms such as diff (x, y), the logical variable y captures the possible values
of a random variable. Thus, they are to behave like logical functions. Formally, let Ul be the union of the following,
the free variables being implicitly universally quantified from the outside:

• diff (y, E) ∨ diff (y,M) ∨ diff (y,H)

• f1(x, y, u) ≡ [iq(x, L) ∧ diff (y, E) ∧ takes(x, y) ⊃ grades(x, y, u)] for u ∈ {7, 8, 9, 10}

• f2(x, y, u) ≡ [iq(x, L) ∧ ¬diff (y, E) ∧ takes(x, y) ⊃ grades(x, y, u)] for u ∈ {5, 6, 7, 8}

The reason we need to introduce auxiliary predicates f1 and f2 is because WMC only allows weights on (ground)
literals.

We also need the following hard constraints for capturing the logical functions:

∃u(diff (y, u)), diff (y, u) ∧ diff (y, v) ⊃ u = v

∃u(grades(x, y, u)), grades(x, y, u) ∧ grades(x, y, v) ⊃ u = v

Suppose the domain of quantification for the students is only {A} and for courses is only {B}. We then obtain atoms
such as:

diff (B, E), diff (B,M), diff (B,H), iq(A, L), diff (B, E), takes(A, B), grades(A, B, 7), . . .

with a weight function wl for positive atoms derived from the parametric specification in an obvious fashion:

wl(diff (B, E)) = .7, . . . ,wl( f1(A, B, 7)) = .25, . . .

We let the weight of a negated atom wl(¬a) to be 1 − wl(a). Moreover, the ground instances f1 and f2 obtain the
weights discussed in the parameterized version. The weights of all atoms not mentioning predicates diff , f1, f2 is
taken to be 1. It then follows that Pr(diff (B, E),Ul,w) = .7, and Pr(grades(A, B, 7) | e,Ul,w) = .25, where e =

takes(A, B) ∧ iq(A, L) ∧ diff (A, E).

4. Abstraction Framework

We assume that the abstraction framework is realized in terms of two types of representations: a high-level/abstract
theory that is mapped to a pre-existing low-level/concrete theory. Essentially, the logical symbols (predicates and
constants) may differ arbitrarily between the two theories. In terms of notation, we use the subscript h to refer to
components of the high-level theory, and l to refer to that of the low-level theory.

The first step is to formally establish the construct of a refinement mapping between the two theories: the mapping
associates each high-level atom to a low-level formula, which may be arbitrarily complex.

Definition 4. Suppose ∆h and ∆l are two theories. We say m is a refinement mapping from ∆h to ∆l iff for all high-level
atoms p ∈ Lang(∆h), m(p) = θp for some θp ∈ Lang(∆l).6

The mapping m is assumed to extend to complex formulas φ ∈ Lang(∆h) inductively: for atoms φ = p, m(φ) is as
above; m(¬φ) = ¬m(φ); m(φ ∧ ψ) = m(φ) ∧ m(ψ).

6When the high-level and low-level theories are defined over the same domain of discourse D, m can have a compact specification of the form
m(P(~x)) = θP(~x), where P(~x) is a non-ground predicate, and ~x are the only free variables in θP. So effectively the mapping works by substitutions:
for every instance P(~c), we have m(P(~c)) = θP(~c), where θP(~c) is obtained from θP(~x) by substituting the free variables ~x by ~c.
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It is worth noting that a mapping is deliberately asymmetrical in the sense that its range need not include all the
atoms of the low-level theory. That is, there may be atoms q ∈ Lang(∆l), and consequently, also constants and relations,
that do not appear in m(p) for every p ∈ Lang(∆h). After all, abstractions are about omitting irrelevant details.

In general, we will want to use these mappings to discuss model-theoretic properties of the two theories, so we
introduce the notion of an isomorphism:

Definition 5. Given a refinement mapping m as above, we say that Mh ∈ Models(∆h) is m-isomorphic to Ml ∈

Models(∆l) iff for all atoms p ∈ Lang(∆h), we have Mh |= p iff Ml |= m(p). We write this as Mh ∼m Ml.

Thus, isomorphism provides a way to align the truth values between high-level atom and low-level formulas.
In particular, because of how refinement mappings can be defined for complex formulas, we obtain the following
property:

Theorem 6. Suppose Mh ∼m Ml. Then for all φ ∈ Lang(∆h), Mh |= φ iff Ml |= m(φ).

Proof. We prove by induction on φ. Base case immediate by definition. Negation: Mh |= ¬φ iff Mh 6|= φ iff (by
hypothesis) Ml 6|= m(φ) iff (by semantics) Ml |= ¬m(φ) iff (by definition) Ml |= m(¬φ). Conjunction: Mh |= φ ∧ ψ
iff Mh |= φ and Mh |= ψ iff (by hypothesis) Ml |= m(φ) and Ml |= m(ψ) iff (by semantics) Ml |= m(φ) ∧ m(ψ) iff (by
definition) Ml |= m(φ ∧ ψ).

Example 7. For the university PRM, we provide a mapping mU below. When free variables appear, we take it to
mean that the mapping applies to all substitutions. So, let mU map diff (x, E), takes(x, y), iq(x, L) from Uh to the
same atoms in Ul, mU(diff (x,N)) = diff (x,M) ∨ diff (x,H), mU(grades(x, y, B)) = grades(x, y, 5) ∨ grades(x, y, 6),
mU(grades(x, y,O)) = grades(x, y, 7) ∨ grades(x, y, 8), and mU(grades(x, y,G)) = grades(x, y, 9) ∨ grades(x, y, 10).

Suppose the domain includes a single student A, who takes course B. Suppose Mh is a model of Uh where
{iq(A, L), takes(A, B), diff (B, E), grades(A, B,O)} holds. Now consider the model Ml ofUl where
{iq(A, L), takes(A, B), diff (B, E), grades(A, B, 7)} holds. It is easy to verify that Mh ∼m Ml, because the main question
is whether Ml satisfies mU(grades(A, B,O)) = grades(A, B, 7) ∨ grades(A, B, 8), which it does.

In the following sections, we will discuss the properties of abstractions based on mappings and isomorphisms.

5. Unweighted Abstractions

To obtain intuitions about the properties of abstract models from first principles, we will consider a fundamental
type of abstraction: the absence of probabilities.7 In so much as probabilistic assertions quantify the likelihood of
worlds, omitting probabilities still informs us about the possible and the certain, thus allowing us to test whether ∆h is
consistent with ∆l.

Definition 8. Given a weighted theory (∆,w), the unweighted setting refers to the case when for all atoms p ∈ Lang(∆),
we have w(p) = w(¬p) = 1.

Since probabilities do not occur in the setting, we can establish consistency by checking whether all conclusions
by ∆h (that is, certain events) are also conclusions by ∆l: in other words, are the conclusions sound? We define:

Definition 9. The theory ∆h is a sound abstraction of ∆l relative to refinement mapping m iff for all Ml ∈ Models(∆l),
there is a Mh ∈ Models(∆h) such that Mh ∼m Ml.

Theorem 10. Suppose ∆h is a sound abstraction of ∆l relative to m. Then for all φ ∈ Lang(∆h):
(a) if Pr(m(φ),∆l,wl) > 0 then Pr(φ,∆h,wh) > 0; and (b) if Pr(φ,∆h,wh) = 1 then Pr(m(φ),∆l,wl) = 1.

7Thus, this section can be seen to establish a framework for abstraction in classical (unweighted) model counting.
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Proof. For (a), suppose the antecedent holds, which means there is a Ml ∈ Models(∆l) such that Ml |= m(φ). By
assumption, there is a Mh ∈ Models(∆h) such that Mh ∼m Ml, so Mh |= φ, and Pr(φ,∆h,wh) , 0. (In the unweighted
setting, the weight of Mh cannot be 0, since literals cannot get a 0 weight.)

For (b), suppose antecedent, but not consequent. That is only possible when there is a Ml ∈ Models(∆l) such that
Ml 6|= m(φ). But by assumption, there must be Mh ∈ Models(∆h) such that Mh ∼m Ml. So, Mh 6|= φ by Theorem 6.
Thus, Pr(φ,∆h,wh) , 1. Contradiction.

Example 11. It is easy to check that for the university PRM,Uh is a sound abstraction ofUl wrt mU .
It is fairly straightforward to construct trivially unsound abstractions. To see a less obvious example, consider Cl

from before, and suppose it also included: CS(x) ⊃ Programming(x) and Physics(x) ⊃ Fieldwork(x).And as discussed,
let Ch be a high-level theory consisting of the same sentences but with the predicate Science(x) used everywhere instead
of CS(x) and Physics(x).

Suppose B is a CS-course. Suppose mC is a mapping that replaces Science(x) by CS(x) ∨ Physics(x), but maps
every other predicate to itself. Then, we have Pr(φ | e,Ch,wh) = 1 for φ = Programming(B) ∧ Fieldwork(B) and e =

Science(B), whereas, Pr(m(φ) | m(e),Cl,wl) , 1, because there will be possible worlds where CS(B)∧¬Fieldwork(B).

Sound abstractions ascertain that conclusions by ∆h are consistent with ∆l. What about events considered possible
by ∆h? Because we are omitting information when constructing an abstract model, it may be that ∆h entertains an
event as possible even though ∆l does not.

Definition 12. The theory ∆h is a complete abstraction of ∆l relative to m iff for all Mh ∈ Models(∆h), there is a
Ml ∈ Models(∆l) such that Mh ∼m Ml.

Theorem 13. Suppose ∆h is a complete abstraction of ∆l relative to m. Then for all φ ∈ Lang(∆h): (a) if Pr(φ,∆h,wh) >
0 then Pr(m(φ),∆l,wl) > 0; and (b) if Pr(m(φ),∆l,wl) = 1 then Pr(φ,∆h,wh) = 1.

Proof. For (a), suppose antecedent. Then there is a Mh ∈ Models(∆h) such that Mh |= φ. By assumption, there is a
Ml ∈ Models(∆l) such that Mh ∼m Ml and so Ml |= m(φ), and Pr(m(φ),∆l,wl) , 0.

For (b), suppose antecedent but not consequent. Then, there is a Mh ∈ Models(∆h) such that Mh 6|= φ. But by
assumption, there is a Ml ∈ Models(∆l) such that Mh ∼m Ml, and so Ml 6|= m(φ) by Theorem 6. Thus, Pr(m(φ),∆l,wl) ,
1. Contradiction.

Example 14. The university PRM can be seen as a complete abstraction wrt mU .
To see a case where it is not complete, consider a variant high-level theory U′h where we ignore the difficulty of

courses and have only one rule: iq(x, L) ∧ takes(x, y) ⊃ grades(x, y, u) where u ∈ {B,O,G}. Suppose the low-level
theory is U′l = diff (B,H) ∧ Ul, and A is a low-IQ student who takes B. It is easy to see that Pr(φ,U′h,wh) > 0 for
φ = iq(A, L) ∧ takes(A, B) ∧ grades(A, B,G), because U′h says that any of the three grades levels are possible. But
clearly, B being a hard course means that diff (B,H)∧mU(φ) cannot be satisfiable, and so it is a zero-probability event
wrtU′l .

Definition 15. The theory ∆h is a sound and complete abstraction of ∆l relative to m iff ∆h is both a sound and a
complete abstraction of ∆l relative to m.

Theorem 16. Suppose ∆h is a sound and complete abstraction of ∆l relative to m. Then for every φ ∈ Lang(∆h), (a)
Pr(φ,∆h,wh) > 0 iff Pr(m(φ),∆l,wl) > 0; and (b) Pr(φ,∆h,wh) = 1 iff Pr(m(φ),∆l,wl) = 1.

Proof. Follows from Theorems 10 and 13.

6. Weighted Abstractions

Clearly the above theorems would not hold in general when considering non-trivial weights. It is easy to imagine a
weight function that redistributes weights such that zero probability events in ∆l have high probabilities in ∆h, and vice
versa. So, outside the case of probabilities mapping exactly between ∆h and ∆l (discussed in the next section), we need
to understand how to abstract weighted theories. The previous section provided a recipe for abstractions, from which
properties discussed in Theorems 10 and 13 followed. To a first approximation, then, we can motivate a definition for
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weighted abstractions by requiring that those properties hold categorically, in the form of constraints. But it turns out,
we can do better. We can show that if the property about probable events hold as a constraint wrt a sound or complete
abstraction, then the corresponding property about certain events follows as a consequence. (Recall that this duality is
not about an event and its negation, which would follow from the axioms of probability, but about how the high-level
and low-level theories align.)

To prepare for this approach, let us begin with a few properties that follow from the axioms of probability [24], but
are established here using WMC:

Theorem 17. Suppose (∆,w) is a weighted theory. Then the following hold for all φ, ψ ∈ Lang(∆):

1. If ∆ |= φ then Pr(φ,∆,w) = 1.
2. If φ ∧ ∆ is not satisfiable, then Pr(φ,∆,w) = 0.
3. Pr(¬φ,∆,w) = 1 − Pr(φ,∆,w).
4. Pr(φ ∨ ψ,∆,w) = Pr(φ,∆,w) + Pr(ψ,∆,w) − Pr(φ ∧ ψ,∆,w).
5. If Pr(φ,∆,w) = 0 then Pr(φ ∧ ψ,∆,w) = 0.
6. If Pr(φ,∆,w) > 0 then Pr(φ ∨ ψ,∆,w) > 0.
7. Pr(φ,∆,w) ≥ Pr(φ ∧ ψ,∆,w).

Proof. Proofs for (1) and (2) are already discussed in Theorem 2. For (3), we use the fact that Models(∆) = Models(∆∧
φ) ∪Models(∆ ∧ ¬φ), and |Models(∆)| = |Models(∆ ∧ φ)| + |Models(∆ ∧ ¬φ)|. For (4), we use Models((φ ∨ ψ) ∧ ∆) =

Models(φ∧∆)∪Models(ψ∧∆) but |Models((φ∨ ψ)∧∆)| = |Models(φ∧∆)|+ |Models(ψ∧∆)| − |Models(ψ∧ φ∧∆)|.
For (5), we see that ∆∧ φ has no model (or only zero weight models), and so that clearly also holds for ∆∧ φ∧ ψ. For
(6), the models for ∆∧ φ yield a non-zero probability, and these are clearly included in the models for ∆∧ (φ∨ψ). For
(7), the models of φ ∧ ψ must be a subset (not necessarily proper) of the models of φ.

Definition 18. The theory (∆h,wh) is a weighted sound abstraction of (∆l,wl) relative to refinement mapping m iff ∆h

is a sound abstraction of ∆l relative to m, and for all d ∈ Lits(∆h), if Pr(m(d),∆l,wl) > 0 then Pr(d,∆h,wh) > 0.

We will now show that this stipulation at the level of literals immediately implies the validity of the constraint for
all formulas:

Theorem 19. Suppose (∆h,wh) is a weighted sound abstraction of (∆l,wl) relative to m. Then for all φ ∈ Lang(∆h), if
Pr(m(φ),∆l,wl) > 0 then Pr(φ,∆h,wh) > 0.

Proof. By induction on φ. The case of atoms and negations is immediate by definition. So we only need an argument
for disjunctions. Suppose Pr(m(φ ∨ ψ),∆l,wl) > 0, that is, by definition, Pr(m(φ) ∨ m(ψ),∆l,wl) > 0. By Theorem 17
(4), Pr(m(φ),∆l,wl) + Pr(m(ψ),∆l,wl)− Pr(m(φ)∧m(ψ),∆l,wl) > 0. This is of the form x + y− z > 0, where x, y, z ≥ 0
since these are probabilities. We have 3 cases.

Case x = 0: We note that z = 0 too, by Theorem 17 (5). So y > 0. By hypothesis, Pr(ψ,∆h,wh) > 0, and therefore
Pr(φ ∨ ψ,∆h,wh) > 0 by Theorem 17 (6).

Case y = 0: Symmetric to x = 0.
Case x , 0 and y , 0: By hypothesis, Pr(φ,∆h,wh) > 0 and Pr(ψ,∆h,wh) > 0. Even if Pr(φ ∧ ψ,∆h,wh) > 0, by

Theorem 17 (7), it must be that it is smaller or equal to the other probabilities. (That is, if a, b, c > 0, c ≤ a and c ≤ b,
then a + b − c > 0.) So, Pr(φ ∨ ψ,∆h,wh) > 0.

The key result of this definition is that the property on certain events, seen in Theorem 10 follows as a consequence:

Theorem 20. Suppose (∆h,wh) is a weighted sound abstraction of (∆l,wl) relative to m. Then for all φ ∈ Lang(∆h), if
Pr(φ,∆h,wh) = 1 then Pr(m(φ),∆l,wl) = 1.

Proof. Suppose antecedent but not consequent. Then there is some Ml ∈ Models(∆l) such that Ml 6|= m(φ) and it has
non-zero weight. (If all such Ml have zero weight, then the consequent cannot be falsified because these models do
not influence the probability.) By assumption, there is a Mh ∈ Models(∆h) such that Mh ∼m Ml, and so Mh 6|= φ.

There are now two cases, depending on the weight of the model Mh. (And so the proof deviates from that for
Theorem 10.)
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Case wh(Mh) , 0: The proof follows as in Theorem 10, yielding a contradiction.
Case wh(Mh) = 0: Let M↓h be a formula denoting the conjunction of the literals true at Mh. (Since there are finitely

many atoms, such a formula can be obtained.) Because Mh ∼m Ml, Ml |= m(M↓h).Overloading the notation M↓ to mean
conjunction and set of literals true at M, m(M↓h) ⊆ M↓l , the latter being the set of literals true at Ml. But by assumption
Ml has non-zero weight, which means Pr(M↓l ,∆l,wl) > 0. It follows that Pr(m(M↓h),∆l,wl) > 0, because otherwise
Theorem 17 (5) would be contradicted. By Theorem 19, Pr(M↓h ,∆h,wh) > 0, and so wh(Mh) , 0. Contradiction.

Example 21. The university PRM can be seen to be a weighted sound abstraction wrt mU .
Consider the university PRM with a variant high-level theory U′′h , where the third constraint is the following

instead:

1 iq(x, L) ∧ diff (y, E) ∧ takes(x, y) ⊃ grades(x, y,G)

Consider the query φ = iq(A, L) ∧ diff (B, E) ∧ takes(A, B) ⊃ grades(A, B,O). Clearly, the low-level theory accords a
non-zero probability to mU(φ), but because of the third constraint, U′′h accords a zero probability to φ. Thus, this is
not a sound weighted abstraction.

Following these results, extending complete abstractions as well as sound and complete abstractions is analogous,
which we state here for the sake of completeness. (The proofs are also analogous and hence omitted.)

Definition 22. The theory (∆h,wh) is a weighted complete abstraction of (∆l,wl) relative to refinement mapping m iff
∆h is a complete abstraction of ∆l relative to m, and for all d ∈ Lits(∆h), if Pr(d,∆h,wh) > 0 then Pr(m(d),∆l,wl) > 0.

Theorem 23. Suppose (∆h,wh) is a weighted complete abstraction of (∆l,wl) relative to m. Then for all φ ∈ Lang(∆h),
(a) if Pr(m(φ),∆l,wl) = 1 then Pr(φ,∆h,wh) = 1; and (b) if Pr(φ,∆h,wh) > 0 then Pr(m(φ),∆h,wh) > 0.

Example 24. The university PRM can be seen to be a weighted complete abstraction wrt mU .
Example 14 also applies as an instance of an abstraction that is not weighted complete via:

.33 iq(x, L) ∧ takes(x, y) ⊃ grades(x, y, u) where u ∈ {B,O,G}.

Mainly because the difficulty of courses is ignored, an event is considered probable by the high-level theory but not by
the low-level one.

Definition 25. The theory (∆h,wh) is a weighted sound and complete abstraction of (∆l,wl) relative to refinement
mapping m iff it is both a weighted sound and a weighted complete abstraction.

Theorem 26. Suppose (∆h,wh) is a weighted sound and complete abstraction of (∆l,wl) relative to m. Then for all
φ ∈ Lang(∆h), (a) Pr(m(φ),∆l,wl) = 1 iff Pr(φ,∆h,wh) = 1; and (b) Pr(m(φ),∆l,wl) > 0 iff Pr(φ,∆h,wh) > 0.

Proof. Follows as a corollary from the results on weighted sound, and weighted complete abstractions.

7. Exact Abstractions

The most faithful case of aligning the high-level and low-level theories is when the probabilities coincide for all
high-level queries.8

Definition 27. The theory (∆h,wh) is a weighted exact abstraction of (∆l,wl) relative to refinement mapping m iff ∆h

is a sound and complete abstraction of ∆l relative to m, and for all φ ∈ Lang(∆h), Pr(φ,∆h,wh) = Pr(m(φ),∆l,wl).

Example 28. The university PRM can be seen to be an instance of a weighted exact abstraction wrt mU . (Below we
will consider instances that are not weighted exact abstractions by first appealing to variant definition.)

8The distribution on the high-level theory is essentially a “push-forward” measure [69].
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Definition 27 naturally generalizes previous definitions on weighted and unweighted abstractions in terms of first
stipulating that the logical representations align, and then insisting that probabilities match. One might wonder, of
course, why stipulate the former, and not simply rely on the latter, which would make the treatment much simpler. In
particular, we put forward a definition of weak exact abstractions:

Definition 29. The theory (∆h,wh) is a weak exact abstraction of (∆l,wl) relative to refinement mapping m iff for all
φ ∈ Lang(∆h), Pr(φ,∆h,wh) = Pr(m(φ),∆l,wl).

It is immediate to see that since the constraint for weak exact abstraction is embedded in the notion of a weighted
exact abstraction, if a high-level theory is a weighted exact abstraction then it also a weak exact abstraction.

Proposition 30. Suppose (∆h,wh) and (∆l,wl) are theories and m is a refinement mapping. Suppose (∆h,wh) is a
weighted exact abstraction of (∆l,wl). Then (∆h,wh) is a weak exact abstraction of (∆l,wl).

Proof. By assumption, (a) ∆h is a sound and complete abstraction of ∆l relative to m, and (b) for all φ ∈ Lang(∆h),
Pr(φ,∆h,wh) = Pr(m(φ),∆l,wl). Because of (b), the claim is immediate.

Needless to say, weak exact abstractions do not imply weighted exact abstractions, as there is no requirement that
isomorphisms hold between the models of ∆h and ∆l. Formally:

Theorem 31. Suppose (∆h,wh) and (∆l,wl) are theories and m is a refinement mapping. Suppose (∆h,wh) is a weak
exact abstraction of (∆l,wl) relative to m. Then it does not follow that (∆h,wh) is a weighted exact abstraction of
(∆l,wl).

To prove this claim, it suffices to provide an example that is a weak exact abstraction but not a weighted exact
abstraction. So any unsound and/or incomplete abstraction where the probabilities of high-level atoms are made to
match the low-level mappings would do. Let us consider a simple instance based on Example 11.

Example 32. Based on Example 11, consider a low-level theory C′l with only two sentences CS(x) ⊃ Programming(x)
and Physics(x) ⊃ Fieldwork(x). Let us consider a high-level theoryC′h with the sentences Science(x) ⊃ Programming(x)
and Science(x) ⊃ Fieldwork(x). Thus, we are considering a mapping m that maps Science(x) to CS(x)∨Physics(x), and
Programming(x) and Fieldwork(x) to themselves. As discussed for Example 11, given a constant B, this abstraction is
unsound because there is a low-level model Ml where say CS(B) ∧ Programming(B) ∧ ¬Physics(B) ∧ ¬Fieldwork(B)
holds, but there cannot be any model Mh of C′h where Science(B) ∧ Programming(B) ∧ ¬Fieldwork(B) is true.

Let us now assign probabilities as follows: every world where

(CS(x) ∨ Physics(x)) ∧ ¬Programming(x) ∧ ¬Fieldwork(x)

is falsified obtains a weight of 0. It is now easy to see that Science(x) ⊃ (Programming(x) ∧ Fieldwork(x)) at the high-
level, and correspondingly (CS(x) ∨ Physics(x)) ⊃ (Programming(x) ∧ Fieldwork(x)) at the low-level, are effectively
hard constraints. It is now also easy to distribute weights such that the probabilities align between the two theories,
and therefore we would get a weak exact abstraction but not a weighted exact abstraction.

Here is a particularly extreme case involving an inconsistency:

Example 33. Let ∆l be any theory and let ∆h = ∆l ∧ (p ∨ q), where {p, q} are fresh propositions not present in ∆l.
Let wl be any weight function for ∆l which maps atoms r in ∆l to a number in [0, 1], with the understanding that
wl(¬r) = 1 − wl(r). Let s be any atom in ∆l, and so s is an atom in ∆h by construction. Let m be a mapping that
maps every atom in ∆l to itself, and m(p) = s ∨ ¬s and m(q) = s ∧ ¬s. Furthermore, for every atom r ∈ ∆h − {p, q} ,
let wh(r) = wl(r), wh(p) = 1 (so, wh(¬p) = 0) and wh(q) = 0 (so, wh(¬q) = 1). That is, Pr(p,∆h,wh) = 1 =

Pr(m(p),∆l,wl),Pr(q,∆h,wh) = 0 = Pr(m(q),∆l,wl), and the probabilities of all others atoms in ∆l are the same in
∆h. It is thus clear that (∆h,wh) is a weak exact abstraction of (∆l,wl). In particular, for any Mh ∈ Models(∆h) such
that Mh |= q, we have wh(Mh) = 0 and by extension, letting M↓h be the formula denoting the conjunction of literals
that are true at Mh, Pr(M↓h ,∆h,wh) = 0. It follows also that Pr(m(M↓h),∆l,wl) = 0. Analogously, for all models
Mh ∈ Models(∆h) such that Mh 6|= q, by construction, we have Pr(M↓h ,∆h,wh) = Pr(m(M↓h),∆l,wl).

However, by construction, there is a Mh ∈ Models(∆h) (for example, one where Mh |= q) such that there is no
Ml ∈ Models(∆l) where Ml |= m(q). So ∆h is not a sound and complete abstraction of ∆l relative to m.
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Thus, weighted exact abstractions is a stronger requirement than weak exact abstractions. Clearly, weak exact
abstractions would be much more attractive as they involve fewer checks than weighted exact abstractions, the former
only requiring probabilistic alignment whilst the latter also insisting on logical alignment. So what is to be gained by
the stronger requirement? The answer may depend on the application context. The stronger requirement guarantees
downward compatibility with results like Theorems 16 and 26, and so we can be assured about the correctness of the
abstraction at the qualitative level. For example, when there is only partial knowledge about probabilities, one may
express this knowledge in the form of constraints (e.g., the probability of event α is ≥ 0.4) [33, 24, 6]. In this case,
establishing logical alignment may be worthwhile in the first instance, either until that partial knowledge is resolved,
or in addition to abstracting such constraints. Analogously, probabilities in most real-world applications are typically
learnt from data in a parameter estimation step [43]. In this case, either because the data is not complete or because
observations are obtained at run-time in an online setting, the posteriors might change and so constructing weak exact
abstractions may not be worthwhile. Indeed, if we expect the parameters of the low-level theory to change, we could
consider unweighted abstractions so as to construct a high-level theory that is not sensitive to weights. We would
then match probabilities for a particular training epoch with the added assurance that at least the syntactic form of the
high-level theory does not change from epoch to epoch.

8. Abstracting Evidence

Recall that we can query φ wrt evidence e for theory (∆,w) using :

Pr(φ | e,∆,w) =
WMC(φ ∧ e ∧ ∆,w)

WMC(e ∧ ∆,w)
=

Pr(φ ∧ e,∆,w)
Pr(e,∆,w)

We assumed so far that φ, e ∈ Lang(∆). However, in many applications needing abstraction, it is often the case that
observations are low-level (e.g., readings on sensor), whereas the query is at the high-level (e.g., interactions with
user). In this section, we discuss some ways to reconcile this issue.9

Consider low-level evidence e ∈ Lits(∆l). For simplicity, let e be a literal. Without loss of generality, let mappings
be in conjunctive normal form (CNF). We say a literal is pure in a CNF θ if its complement does not appear in θ. (E.g.,
p is pure in p∨q but not in ¬p∨q; in contrast, ¬p is pure in ¬p∨q but not in p∨q.) We observe that, by construction,
there may be many high-level atoms that map to formulas involving e. So, given a mapping m, let us retrieve these by
concretization:

m−1(e) = {atom p ∈ Lang(∆h) | e is mentioned & pure in m(p)}.

(That is, m(p) is a CNF formula.) Here, m−1(e) is equivalently expressed as a formula:
∨

pi. The idea is that by
looking at high-level atoms where e is pure under the mapping, we are essentially finding atoms that agree with the
evidence (and not its negation).

We can now retrieve all low-level sentences these map to by re-applying m as follows: m(m−1(e)) =
∨

m(pi). (It is
easy to see that e will remain pure in m(m−1(e)).)

An immediate case, then, of conditioning being straightforward is when e = m(m−1(e)):

Theorem 34. Suppose (∆h,wh) is a weighted exact abstraction of (∆l,wl) relative to m. Suppose e ∈ Lits(∆l) and
e = m(m−1(e)). Then for any φ ∈ Lang(∆h), Pr(φ | m−1(e),∆h,wh) = Pr(m(φ) | e,∆l,wl).

Proof. By assumption, the probability of φ ∧ m−1(e) wrt ∆h must be the same as that of m(φ) ∧ m(m−1(e)) at the
low-level.

A simple example is the case of diff (x, E) in the university PRM, as it was mapped to the same atom at both levels.
But beyond this simple case, it is not always possible to reason about low-level events in an exact manner at

the high-level. Indeed, as mentioned before, omitting details is the very goal of abstraction. For example, in the
university PRM, given any course B, Pr(diff (B,M),Ul,wl) = .1, but clearly there is no way to syntactically arrange

9It is conceivable that there may be other approaches for this reconciliation, and in our inquiry as well, it will become clear that a number of
variants present themselves. We also limit the discussion to weighted exact abstractions for simplicity.
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{diff (B, E), diff (B,N)} inUh to obtain that number. Of course, it would not be hard to show a more involved property,
such as Pr(diff (B,N),Uh,wh) ≥ Pr(diff (B,M),Ul,wl).

Rather than treating such properties, we will consider the case where probabilities can correspond exactly. Then,
one way to incorporate low-level evidence is to weaken it, in the sense that conditioning wrt the low-level theory
would suffer from a loss in detail, which is precisely the problem faced by the high-level theory. We may think of
using m(m−1(e)), for example. However, that is not sufficient for conditioning to be correct, because m(m−1(e)) can
say more and less than e. For example, in the university PRM, suppose we have evidence e = diff (B,M) for Ul. So
m−1
U

(e) = diff (B,N), and mU(m−1
U

(e)) = diff (B,M) ∨ diff (B,H), which is saying less than e. This is reasonable. But
suppose for the sake of the argument, mU(m−1

U
(e)) = (diff (B,M) ∨ diff (B,H)) ∧ ¬iq(B, L). This is somewhat artificial

but well-defined: that is, the mapping seems to correlate the fact that B takes a medium or hard course with the fact
that the student does not have a low IQ. The problem is that e does not imply anything about the IQ of B. Thus, if
we use mU(m−1

U
(e)) as evidence, we will be falsely assuming facts that were not observed. We need to ensure that

mU(m−1
U

(e)) may say as much or even less than e, but never more, which, as argued, is tantamount to assuming facts
that are not observed.

To get around this, we stipulate this implication formally:

Definition 35. Given evidence e and mapping m, we define the m-weakening of e as m(m−1(e)). We say this weakening
is deterministic when e |= m(m−1(e)).

As illustrated above, it may not always be the case that e |= m(m−1(e)). Perhaps the most obvious (and reasonable)
case where determinism follows is when m(m−1(e)) is a clause, that is, a disjunction of literals. Because e is pure in
m(m−1(e)), it immediately follows that e |= m(m−1(e)). (E.g., p is pure in p ∨ q, and of course p |= p ∨ q.)

Theorem 36. Suppose (∆h,wh) is a weighted exact abstraction of (∆l,wl) relative to m. Suppose e ∈ Lits(∆l) and its
m-weakening is deterministic. Then, Pr(φ | m−1(e),∆h,wh) = Pr(m(φ) | m(m−1(e)),∆l,wl).

Proof. Proof analogous to Theorem 34.

Example 37. For the university PRM and e = diff (B,M), its mU-weakening is diff (B,M) ∨ diff (B,H). And indeed,
e |= mU(m−1

U
(e)). For the query φ = iq(A, L) ∧ takes(A, B) ∧ grades(A, B,O), its probability given m−1

U
(e) = diff (B,N)

at the high-level coincides with the probability of iq(A, L) ∧ takes(A, B) ∧ (grades(A, B, 7) ∨ grades(A, B, 8)) given
mU(m−1

U
(e)) at the low-level.

It is also worthwhile to consider the case where e ≡ m(m−1(e)). This is the situation where, say, e has just as much
information at the low-level as m−1(e) would at the high-level. In the university PRM, for example, if all we observe
is (diff (B,M) ∨ diff (B,H)) at the low-level, this is precisely as informative as observing diff (B,N) at the high-level in
the context of a map m(diff (B,N)) = (diff (B,M) ∨ diff (B,H)). Of course, since e ≡ m(m−1(e)) immediately implies
e |= m(m−1(e)), the above theorem holds as a consequence.

Equivalently, we could consider the straightforward case where the observation is, in fact, at the high-level. That
is, we observe e′ which is an atom at the high-level, and in the setting of weighted exact abstractions, by way of
Definition 27, we immediately get that for all φ ∈ Lang(∆h), Pr(φ | e′,∆h,wh) = Pr(m(φ) | m(e′),∆l,wl).

Note, in particular, that when m maps a predicate at the high-level to the same predicate at the low-level, then, of
course, low-level evidence e = m−1(e) = m(m−1(e)), which is a degenerate case where the above notions collapse.

9. Deriving Abstractions

The main thrust of this paper is on the semantical properties of abstractions, formulated under the assumption that
we are given the high-level and low-level theory and the appropriate refinement mapping. Based on these properties,
we will now motivate a few directions for deriving abstractions automatically. These directions are to be seen as
schemas that appeal to exhaustive search, and so are not necessarily efficient. In particular, they identify general
properties that hold, based on which special tractable cases, or variations, may be considered.
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9.1. Formula substitutions

Rather than deploying a general search procedure (as motivated in the following section), it is arguably easier
to consider syntactic substitutions where possible. A simple yet useful case where correctness is not compromised
is when complex formulas in the low-level theory appear in the same way everywhere, and so can be abstracted as
a high-level atom. For example, suppose ∆l mentions the atoms {p1, . . . , pk, q, . . . , r}. For simplicity, suppose ∆l is
in conjunctive normal form, that is, ∆l = φ1 ∧ . . . ∧ φn, where φi are clauses, and let λ be a clause only mentioning
{q, . . . , r}. Suppose for every i, either φi does not mention {q, . . . , r} or φi = λ∨ψi,where ψi is a clause only mentioning
{p1, . . . , pk} . In English: the symbols {q, . . . , r} do not appear in φi except as the clause λ. We can construct a high-
level theory that replaces λ with a new atom t. So let ∆h be exactly like ∆l except that every instance of λ is replaced
by t. Clearly the refinement mapping m maps t to λ and all other atoms to themselves. Further, let Pr(pi,∆h,wh) =

Pr(pi,∆l,wl) and Pr(t,∆h,wh) = Pr(λ,∆l,wl). It is now not hard to see that (∆h,wh) is not only a weak exact abstraction
of (∆l,wl) relative to m, but a weighted exact abstraction too.

Proposition 38. Suppose ∆h,wh,∆l,wl,m are as above, and λ is satisfiable. Then (∆h,wh) is a weighted exact ab-
straction of (∆l,wl) relative to m.

Proof. We will first prove that for every Mh ∈ Models(∆h) there is a Ml ∈ Models(∆l) such that Mh ∼m Ml, and
vice versa. So let Mh be any model of ∆h. By assumption, λ is satisfiable, and suppose M′ is one such satisfying
assignment (note: M′ is essentially a partial model for the atoms in Lang(∆l)). Let Ml be exactly like Mh in interpreting
{p1, . . . , pk}, and for the atoms in {q, . . . , r}, let Ml assign exactly as M′ would. It now follows that for every atom
u ∈ Lang(∆h), that is, u ∈ {p1, . . . , pk, t}, we have that Mh |= u iff Ml |= m(u). The case of finding a high-level model
for every low-level model is analogous. Thus, ∆h is a sound and complete abstraction of ∆l relative to m.

In terms of aligning probabilities, the case is immediate by construction.

A slight variant of this idea could be used for abstracting multi-valued (or even continuous) random variables,
provided the queries can be reasoned as Boolean variables (e.g., [48, 36, 5]). We demonstrate using an example below.

Example 39. Let us consider a random variable X that is uniformly drawn from {0, 1, . . . , 9} and suppose we are only
interested in queries about X ≥ 8 or its negation. In our terms, we could imagine X ∈ {0, 1, . . . , 9} to be represented
using the formula p0 ∨ . . . ∨ p9, and X ≥ 8 to mean p8 ∨ p9. More precisely, suppose the low-level theory (∆l,wl) is
one where ∆l contains the following formulas:

• p0 ∨ . . . ∨ p9

• p0 ≡ ¬(p1 ∨ . . . ∨ p9), . . . , p9 ≡ ¬(p0 ∨ . . . ∨ p8)

and wl is such that Pr(p0,∆l,wl) = 0.1, . . . ,Pr(p9,∆l,wl) = 0.1. Thus Pr(p8 ∨ p9,∆l,wl) = 0.2. A high-level theory ∆h

could be constructed as an abstraction containing the single atom q provided:

• m is a mapping m(q) = p0 ∨ . . . ∨ p7;

• wh is defined so that Pr(q,∆h,wh) = 0.8 as a result of which Pr(¬q,∆h,wh) = 0.2.

It is now easy to see that (∆h,wh) is a weighted exact abstraction of (∆l,wl) relative to m.

What is interesting about this example in relation to Proposition 38 is that the λ = p0 ∨ . . . ∨ p7 in question is
abstracted as an atom q as usual, but we are using ¬q to mean p8 ∨ p9, which is not purely syntactical substitution.
We are appealing to the property that ∆l |= (p0 ∨ . . . ∨ p7) ≡ ¬(p8 ∨ p9) obtained by logical equivalence relative to ∆l.
Thus, like in Proposition 38, we are replacing a low-level formula λ with a high-level atom t but unlike that setting, we
are replacing a low-level formula γ with ¬t provided ∆l |= γ ≡ m(¬t). It is not hard to show that a correctness result
also holds in this extended setting.
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9.2. A Generic Search Algorithm

Let us now consider a generic search algorithm for deriving abstractions. We will begin with weak exact abstrac-
tions, as they are clearly simpler to treat than weighted exact abstractions. We return to the latter in a subsequent
section.

The starting point here is that as input we are given the low-level theory (∆l,wl). We are then interested in con-
structing a high-level theory and we assume to be also given the set of high-level predicates

P1
h(x, . . . , y), . . . , Pk

h(x, . . . , z)

from which ∆h is to be constructed. If we now guess a (∆h,wh) and a mapping m, we know from Definition 29 that
testing for the following property would ascertain that the current guess is a weak exact abstraction:

for all φ ∈ Lang(∆h),Pr(φ,∆h,wh) = Pr(m(φ),∆l,wl) (?)

Thus, a general schema might then look as follows:

Data: Low-level theory (∆l,wl), {P1
h(x, . . . , y), . . . , Pk

h(x, . . . , z)}
Result: success / failure

1 (∆h,wh,m) = {}

2 while true do
3 Guess (∆h,wh,m) that is different from previous guesses, where ∆h only uses the mentioned predicates
4 if (?) is true then
5 return success
6 if no more unique guesses then
7 return failure
8 end

Algorithm 1: Guessing (∆h,wh) and refinement mapping m

It is not hard to argue that the algorithm is correct:

Theorem 40. Suppose Algorithm 1 returns success. Then (∆h,wh) together with m is a weak exact abstraction.
Suppose there are one or more weak exact abstractions only using {P1

h(x, . . . , y), . . . , Pk
h(x, . . . , z)}, then Algorithm 1

returns success with one such abstraction. Finally, Algorithm 1 returns failure iff there is no weak exact abstraction.

Proof. Algorithm 1 returns success only when the current guess (∆h,wh,m) satisfies (?). So soundness follows. Since
we do exhaustive search, completeness follows. Analogously, Algorithm 1 returns failure iff none of the guesses from
the exhaustive search satisfy (?).

9.3. Effective Testability

In the above algorithm, the test (?) is challenging, because we would need to compute the probabilities for every
formula. Even though we are assuming a finite vocabulary, we would still need to consider the set of all well-defined
formulas over Boolean connectives of arbitrary but finite length, which is very large. Therefore, one might wonder
if this test could be made easier, the most natural case being that of testing the probabilities of literals, which can be
enumerated easily. Indeed, for a language with k predicates of arity w and a domain of size n, there will be at most
k × nw atoms, and so at most 2 × k × nw literals. We will now show that such a result is possible, but we will need
separable refinement mappings.

Definition 41. Suppose ∆h and ∆l are theories. We say a refinement mapping m from ∆h to ∆l is separable iff for
every α ∧ β ∈ Lang(∆h) such that α and β do not share (high-level) atoms, then it also the case m(α) ∈ Lang(∆l) and
m(β) ∈ Lang(∆l) do not share (low-level) atoms.

We do not expect this stipulation to be problematic in the least, and it seems entirely natural. For separable
refinement mappings, we obtain the following property:
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Theorem 42. Suppose (∆h,wh) and (∆l,wl) are two theories and m is a separable refinement mapping from ∆h to
∆l. Suppose for all literals d ∈ Lits(∆h), Pr(d,∆h,wh) = Pr(m(d),∆l,wl). Then for all φ ∈ Lang(∆h), Pr(φ,∆h,wh) =

Pr(m(φ),∆l,wl).

Proof. Proof by induction on the length of φ. The base case is immediate by definition, so assume for all φ ∈ Lang(∆h)
of length k, Pr(φ,∆h,wh) = Pr(m(φ),∆l,wl). Consider φ ∈ Lang(∆h) of length k + 1, and let d be any atom mentioned
in φ. Observe φ ≡ (φ ∧ d) ∨ (φ ∧ ¬d). Let φi be φ but with every occurrence of d replaced by i ∈ {0, 1} (denoting false
and true) and every occurrence of ¬d replaced by 1 − i. Observe that φ ∧ d ≡ φ1 ∧ d, that is, φ is simplified by setting
all occurrences of d with 1 (true) and by setting all occurrences of ¬d with 0 (false). Analogously, φ ∧ ¬d ≡ φ0 ∧ ¬d.
Because φi eliminates at least one literal from φ, its length is ≤ k and by hypothesis, Pr(φi,∆h,wh) = Pr(m(φi),∆l,wl).
Moreover, since d is not mentioned in φi, it follows that Pr(φi ∧ d,∆h,wh) = Pr(φi,∆h,wh) × Pr(d,∆h,wh), and analo-
gously for Pr(φi ∧ ¬d,∆h,wh), Pr(m(φi) ∧ m(d),∆l,wl), and so on.

From Theorem 17, we know that Pr(α∨β) = Pr(α)+Pr(β)−Pr(α∧β). Let us now apply this to φ. So, Pr(φ,∆h,wh)

= Pr((φ1 ∧ d) ∨ (φ0 ∧ ¬d),∆h,wh)

= Pr(φ1 ∧ d,∆h,wh) + Pr(φ0 ∧ ¬d,∆h,wh) − Pr((φ1 ∧ d) ∧ (φ0 ∧ ¬d),∆h,wh)

= Pr(φ1∧d,∆h,wh) + Pr(φ0∧¬d,∆h,wh) because Pr((φ1∧d)∧ (φ0∧¬d),∆h,wh) = 0 owing to (φ1∧d)∧ (φ0∧¬d)
being inconsistent

= Pr(φ1,∆h,wh) × Pr(d,∆h,wh) + Pr(φ0,∆h,wh) × Pr(¬d,∆h,wh) because d or its negation is not mentioned in φi

= Pr(m(φ1),∆l,wl) × Pr(m(d),∆l,wl) + Pr(m(φ0),∆l,wl) × Pr(m(¬d),∆l,wl) by induction hypothesis

= Pr(m(φ1) ∧ m(d),∆l,wl) + Pr(m(φ0) × m(¬d),∆l,wl) owing to m being separable (that is, m(φi) and m(d) do not
share atoms)

= Pr(m(φ1 ∧ d),∆l,wl) + Pr(m(φ0 ∧¬d),∆l,wl) − Pr(m(φ1 ∧ d)∧m(φ0 ∧¬d),∆l,wl) where Pr(m(φ1 ∧ d)∧m(φ0 ∧

¬d),∆l,wl) = 0 owing to its inconsistency (so is vacuously added)

= Pr(m(φ),∆l,wl).

Therefore, Pr(φ,∆h,wh) = Pr(m(φ),∆l,wl).

Thus, when restricting to separable mappings, we can replace (?) in Algorithm 1 with:

for all literals d ∈ Lits(∆h), Pr(d,∆h,wh) = Pr(m(d),∆l,wl) (??)

In line 4, moreover, we would only be guessing separable mappings. It is then not hard to show that correctness still
holds for the modified Algorithm 1, provided the existence of abstractions is stipulated as being limited to separable
mappings.10

9.4. Effective Testability: Beyond Weak Abstractions

The constraints for weighted exact abstractions are clearly more involved, which, at first glance, would involve enu-
merating models and checking for isomorphic structures. Although this may be possible via techniques like knowledge
compilation [17], one might wonder if simpler tests, like the ones asserted in (??) above, could also be obtained for
weighted exact abstractions. What is really needed in addition to (??), of course, is a way to establish that ∆h is a

10Observe that although our language is relational, most of the results essentially resort to ground theories. This is not uncommon in the literature
on statistical relational learning (e.g., [25]), and as argued earlier, exploiting the relational structure for computational purposes [71] is orthogonal
to the main thrust of this work. Nonetheless, if we were to make further assumptions about the theory, such as stipulating that all instances of a
predicate occur with the same probability [3], we could perhaps simplify (??) further. It might suffice, for example, to simply check the probabilities
of any arbitrary instance of the predicate to ascertain abstractions.

16



sound and complete abstraction of ∆l relative to a mapping m. What we want to avoid, ideally, is a strategy for estab-
lishing the latter via tests involving the set of all well-defined formulas like in (?). We now show that this is indeed
possible.

Below, given a theory ∆, we sometimes think of it as a set of formulas {φ1, . . . , φk}, with the understanding that the
theory is equivalent to φ1 ∧ . . . ∧ φk. We write φi ∈ ∆ to mean that φi is one of the formulas of that set ∆. We will also
assume separable mappings for establishing our results:

Theorem 43. Suppose ∆h and ∆l are logical theories, and m is a separable refinement mapping from ∆h to ∆l. Suppose
for all φ ∈ ∆h, ∆l |= m(φ). Then ∆h is a sound abstraction of ∆l relative to m.

Proof. Suppose Ml is any model of ∆l. Now, by assumption, for every φ ∈ ∆h, ∆l |= m(φ), that is, ∆l |= m(∆h). Because
Ml ∈ Models(∆l), Ml |= m(∆h).

Given all the atoms p1, . . . , pk of Lang(∆h), let d1, . . . , dk be the literals (say, d1 = p1, d2 = ¬p2, and so on) such
that Ml |= m(d1) ∧ . . . ∧ m(dk). (By separability, note that for atoms p, q ∈ Lang(∆h), m(p) and m(q) do not share low-
level atoms.) Let Mh be an interpretation of Lang(∆h) such that Mh |= d1 ∧ . . . ∧ dk. By construction then Mh ∼m Ml.
By Theorem 6, for every φ ∈ Lang(∆h), Mh |= φ iff Ml |= m(φ). Since Ml |= m(∆h), it follows that Mh |= ∆h. Since
such a high-level model can be constructed for any Ml ∈ Models(∆l), ∆h must be a sound abstraction of ∆l relative to
m.

We now turn to completeness:

Theorem 44. Suppose ∆h and ∆l are logical theories, and m is a separable refinement mapping from ∆h to ∆l. Suppose
for all literals d ∈ Lang(∆h), if d ∧ ∆h is satisfiable then so is m(d) ∧ ∆l. Then ∆h is a complete abstraction of ∆l

relative to m.

Proof. Suppose Mh is any model of ∆h. Consider the formula M↓h , which is the conjunction of literals that are true at
Mh. In particular, suppose M↓h = d1 ∧ . . . ∧ dk. Clearly, di ∧ ∆h is satisfiable, and so by assumption, m(di) ∧ ∆l is
satisfiable: let Mi

l be such a model where m(di)∧∆l is true. In particular, let li1∧ . . .∧ liui
be a conjunction of literals true

at Mi
l such that these literals mention all the atoms in m(di) and only them. Put differently, li1∧ . . .∧ liui

|= m(di), and we
can also see li1 ∧ . . . ∧ liui

as a partial interpretation for ∆l. When we consider such partial interpretations for i , j, by
separability it follows that m(di) and m(d j) do not share atoms, so Li = li1 ∧ . . .∧ liui

and L j = l j
1 ∧ . . .∧ l j

u j do not share
atoms, and thus are consistent with each other. In other words, we now have the partial interpretation L1 ∧ . . . ∧ Lk of
∆l such that for each i: (a) Li |= m(di), (b) Li mentions all and only the atoms in m(di). Let Ml be an interpretation of
∆l where L1 ∧ . . . ∧ Lk holds. Then for every atom p ∈ Lang(∆h), Mh |= p iff Ml |= m(p), so Mh ∼m Ml.

Putting it all together, in Algorithm 1, to test whether a guess (∆h,wh,m) is a weighted exact abstraction, we would
need three checks:

1. for all φ ∈ ∆h,∆l |= m(φ);
2. for all literals d ∈ Lang(∆h), if d ∧ ∆h is satisfiable then so is m(d) ∧ ∆l; and
3. (??).

So of course the test involves more computations than for weighted exact abstractions, but as we discuss above,
we additionally obtain logical alignment should that be desired.

9.5. Constraining search
Algorithm 1 is discussed at a general level, which is deliberate, but that also means that no commitment has been

made yet on how to define and constrain the search space.11 The case of formula replacements was discussed in
Section 9.1. Below, we discuss two other strategies. We reiterate that to make the process of deriving abstractions
effective some combination of such strategies along with a suitably restricted fragment is likely needed.

11One could imagine that if the high-level predicates are not provided as input for Algorithm 1, we might then parameterize the algorithm by
providing a vocabulary bound k and an arity bound z, and attempt to guess a high-level theory from k predicates of maximum arity z. If that fails,
the bound could be incremented.
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Partial knowledge: The user might be in a position to suggest (and constrain) the space of possible map-
pings and the syntactical form of the high-level theory. For example, for some unknown ∆h over the predicates
{P1

h(x, . . . , y), . . . , Pk
h(x, . . . , z)}, suppose the user decides to use the same domain as ∆l. Suppose she provides partial

information about the refinement mapping: let m′ be a mapping from atoms p ∈ L to θp, where θp ∈ Lang(∆l) and
L ⊆ Lits(∆h). Let us further assume the user provides partial knowledge of the sentences in ∆h, say ∆′h. Then line 4 of
Algorithm 1 would guess functions m that extends m′ (that is, possible completions of m), and line 3 would guess ∆h

such that ∆′h ⊆ ∆h. It would then follow that with exhaustive search, correctness would still be shown to hold, provided
the existence of abstractions is stipulated as being limited to extensions of the partial knowledge (that is, the partial
knowledge is assumed to be correct in the simplest case). If the user were to provide examples {e1, . . . , ek} instead
of a sub-theory ∆′h, we might take an approach akin to inductive logic programming [53]. That is, we first define a
syntactic bias, that is, a hypothesis spaceH , and find a ∆h ∈ H satisfying a semantic bias (say, ∆h |= e1 ∧ . . . ∧ ek.) In
this case, if Algorithm 1 were to return success, soundness is immediate, but further investigations are needed to show
that an appropriateH also promises completeness.

Decomposability: Rather than searching for abstractions by treating ∆l as a monolithic entity, a pragmatic al-
ternative is possible when the low-level theory is decomposable: that is, it is a set of sentences that are logically
independent of each other. Then, we can identify local abstractions and compose those to obtain a global solution.
Consider the case where ∆l = φ1 ∧ . . . ∧ φk, where φi does not share atoms with φ j for all i , j. Such decompositions
may appear naturally when a joint distribution is characterized over a set of disjoint Markov networks [19, 58, 5], or
may be obtained by knowledge compilation [17] from a more involved theory. Recent advances in tractable learning
[28], which have their roots in knowledge compilation, also identify clusters of random variables that are independent
of each other. It follows that Pr(φi ∧ φ j) = Pr(φi)× Pr(φ j) and Pr(φi ∨ φ j) = Pr(φi) + Pr(φ j)− Pr(φi)× Pr(φ j). Basically
then we can identify ∆h = ψ1∧ . . .∧ψk, where ψi abstracts φi, and shares the structural restriction that ψi and ψ j do not
share atoms for all i , j. The abstraction search would be limited locally to φi, that is, for example, wrt each low-level
Markov network.

Fortunately, we are able to show that this intuitive idea is correctness preserving. We prove the case of complete
abstractions, and the other cases are analogous.

Theorem 45. Suppose ψi is a complete abstraction of φi relative to mi. Suppose φi and φ j do not share atoms for all
i , j, and analogously, ψi and ψ j do not share atoms for all i , j. Then ∆h = ψ1 ∧ . . .∧ψk is a complete abstraction of
∆l = φ1 ∧ . . . ∧ φk relative to m = m1 ∧ . . . ∧ mk (that is, the composite mapping obtained by extending m1 to include
the vocabulary and mapping of m2, which is then extended for m3, and so on.)

Proof. Suppose Mh is any model of ∆h. Consider the formula M↓h , which is the conjunction of literals that are true at
Mh. Consider that M↓h can be written as h↓1 ∧ . . . ∧ h↓k , where:

• hi is an interpretation for Lang(ψi);

• following our notation, h↓i is a conjunction of literals; and so

• h↓i only mentions the atoms from Lang(ψi).

By construction, since Mh is a model of ∆h, hi must be a model of ψi. By assumption, there is a model li of φi such
that hi is isomorphic to li relative to mi. Then let Ml be the model corresponding to the formula M↓l = l↓1 ∧ . . . ∧ l↓k .
By construction, Ml must be a model of ∆l, and moreover, from the isomorphism that holds for hi and li relative to mi,
Mh ∼m Ml.

9.6. Complexity

For a propositional formula, finding a satisfying assignment (SAT) is the prototypical NP-complete problem,
whereas enumerating the set of satisfying assignments, i.e., model counting or #SAT, is the prototypical #P-complete
problem [1, 59, 70]. Weighted model counting, which extends #SAT in according weights to formulas, has a polyno-
mial reduction to the unweighted formulation [1].

So let us consider a worst-case analysis here. To establish that (∆h,wh) is a sound and complete abstraction of
(∆l,wl) relative to m we may appeal to Definition 9 and Definition 12. This means that we would need to enumerate
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the high-level models, which #P-hard in the worst case, and enumerate the low-level models, which is also #P-hard
in the worst case. Given two models Mh and Ml, establishing Mh ∼m Ml requires us to enumerate the atoms in the
high-level language, which is linear in the vocabulary of the high-level language, to test whether the atom is satisfied
(a look-up operation). Since model counting is computationally challenging, the worst-case analysis for establishing
abstractions is perhaps not surprising.

If the problem were approached not by enumerating models per se but rather by computing the probabilities of
formulas, the situation is, of course, still the same. Recall that given n propositions, we can have exponentially many
formulas in general, as discussed before. Thus, the most effective way to establish abstractions is by leveraging the
ideas on testability from above, and simply look to testing probabilities for the literals in the high-level language. Note
that the number of literals is linear in the vocabulary of the language, and so for each literal, we would compute the
probability of that literal wrt the weighted theory. Computing that probability is #P-hard in the worst case, but the
number of calls to the #SAT oracle would be linear (in the vocabulary).

It would be interesting to investigate whether all of this can be made more effective by appealing to strategies such
as knowledge compilation [17], approximate model counting [11], caching of subcomputations [1] and/or tractable
models enforcing certain factorizations [40, 44, 13].

10. Related Work and Discussion

Abstraction is a major topic in knowledge representation [30, 23, 61, 2]. The idea of establishing mappings
between models to yield a semantic theory for abstraction owes its origin to works such as that of Milner [50]. But
formal treatments have been mostly restricted to categorical and non-probabilistic domains. Nonetheless, there have
been various developments in different communities, and we discuss the lineage in more detail below.

Knowledge representation and automated planning: Our framework here is inspired by, and indeed builds on
the proposal by Banihashemi et al. [2], where isomorphism as well as sound and complete abstractions are investi-
gated for (non-probabilistic) situation calculus agent programs. Here, we sought to extend those ideas to establish
probabilistically interesting properties for probabilistic models, including probabilistic relational models (PRMs). For
this, we motivated the notion of unweighted abstractions, which roughly corresponds (at the level of satisfaction and
entailment) to the categorical setting [2]. But by piggybacking on these properties, weighted abstractions and evi-
dence incorporation were motivated and formulated. We then identified the relationship of that framework to a purely
stochastic one (weak exact abstractions), and further studied the automatic derivation of abstractions. Our observations
about decomposability, among other things, need not be limited to stochastic models and may also be applicable in the
categorical setting.

We refer interested readers to the discussion by Banihashemi et al. [2] for a comprehensive account on the use of
abstraction in knowledge representation and automated planning (e.g., hierarchical planning). A particularly interest-
ing direction in this landscape is the work of Giunchiglia and Walsh [30], where operations on abstractions are studied
at the level of the logical theories. We suspect these results can be generalized (and adapted) to our framework with
some effort.

Program synthesis and verification: In the area of program verification, static analysis and abstraction interpre-
tations are commonplace to test the correctness of programs and probabilistic programs. See McIver et al. [47] for a
book length treatment, for example. A number of additional concerns present themselves in a programmatic setting,
including the branching in the presence of stochastic primitives, and stochastic transitions between program states.
The motivation then is to deduce sound abstractions for verifying correctness (e.g., termination) properties. While
some of these works do not consider abstractions themselves to be probabilistic, the developments are related to our
goals. Thus, it would be interesting to study how ideas and techniques from the program analysis literature can be
carry over to our framework, and vice versa. For example, Zhang et al. [73] consider statistical properties of program
behavior to advise abstractions, Sharma et al. [65] relate verification to the learnability of concepts, Holtzen et al. [36]
study abstract predicates for loop-free probabilistic programs, and Monniaux [51] defines abstract representations for
probabilistic program path analysis. On the semantical front, Cousot and Monerau [15] present a detailed and careful
analysis for reasoning about (probabilistic) nondeterminism in programs, but as argued by Holtzen et al. [36], they do
consider the abstractions themselves to be probabilistic structures. This is precisely the focus of Holtzen et al. [36],
where they want to abstract loop-free probabilistic programs as possibly simpler and smaller probabilistic programs.
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These latter programs may then be amenable to automated verification, for example. Roughly, the idea is to transform
a concrete program (in our terms: low-level) to an abstract program (in our terms: high-level). So this work is closest
in spirit to our thrust. They mainly motivate a notion of sound probabilistic over-approximation, with the intent of cap-
turing a distribution over feasible states. In a sense, this is akin to Definition 25, but without any stipulation of logical
alignment, so it is weak. In follow up work, Holtzen et al. [37] introduce the notion of distributional soundness, which
asserts that the probability of a high-level event is equal to the probability of the low-level event. Thus, in a sense, this
is akin to weak exact abstractions. Finally, they also investigate a strategy for finding high-level programs that roughly
corresponds to replacing atomic formulas in the low-level program with an appropriate high-level random variable [37,
Algorithm 1]. That procedure is similar in spirit to our generic search procedure, in the sense of requiring exponential
search in the worst case, but considerably easier given the predefined structural syntax of the sought after abstraction.
They discuss an implementation that also leverages many state-of-the-art techniques from the program verification
community, such as counterexample-guided refinement [14]. Put differently, the setting of loop-free probabilistic pro-
grams built from Bernoulli or other univariate distributions is often much more constrained than a first-order language
in that the grammar only allows conjunctions of positive statements (as in most loop-free sequential programs), and
programs allow the use of the predicate transformer semantics [20] to abstract atomic assertions. Our setting is more
general, in that: (a) high-level abstractions may map onto arbitrarily complex well-defined low-level formulas, (b)
along with weak abstractions, we also motivate theory alignment (such as Definition 27), and (c) the treatment of
evidence at the first-order/logical level allows for a richer perspective. Nonetheless, restricted settings such as the one
investigated for probabilistic programs may represent cases that offer reasonable expressiveness/tractability tradeoffs.
In that regard, refining schemas such as Algorithm 1 to also leverage state-of-the-art techniques from the program
verification community may identify other interesting fragments.

Finally, in the context of inductive logic programming and meta-interpretative learning, there is a long history of
predicate invention and learning abstract programs [16] and their affect on human comprehensibility [62]. Although
the semantic constraints for abstracting is somewhat different, it is possible that our setup regarding partial knowledge
in Section 9 could be realized using such methods.

Probabilistic logical modeling: In the PRM literature, a few recent developments seem to be close in spirit to
abstraction. In the work of Sen et al. [63], the question of making inference more efficient in classes of probabilistic
databases (PDBs) that share certain structural properties is investigated. Roughly, what they are after is a possibly
“compressed” PDB that answers queries exactly as would the original PDB in the manner that inference computations
are not repeated for the shared features. Of course, our framework differs in that the high-level and low-level theory
do not need to have any structural similarities. Moreover, if they do share structural similarities, at this point, we
disregard the issue of how probabilistic computations can be made efficient, as this is somewhat orthogonal to the
main thrust of the paper. We suspect, under some conditions, it might be possible to show that classes of PDBs with
shared features may correspond to abstractions, but conversely, reiterating the point above, simply because ∆h and
∆l are abstractions need not imply that they share structural features. Along these lines, a recent thrust in PRMs is
the question of how to make inference more efficient by exploiting the relational vocabulary, referred to as “lifted
reasoning” [71, 64]. This is justifiably sometimes referred to as a type of “abstraction” [46]. There seem to be two
implications for our work. The first is computational: verifying that ∆h is an abstraction of ∆l could be made more
efficient by appealing to lifted reasoning. (This is, as argued elsewhere, somewhat orthogonal to the main thrust of the
paper.) The second revisits our observations about compressed PDBs [63]. One could, for example, see a non-ground
PRM as the high-level abstraction of the low-level ground PRM, in that none of the domain constants are explicitly
mentioned in the former. So, in that sense, a non-ground PRM would turn out to be an abstraction of a ground PRM,
but simply because ∆h and ∆l are abstractions need not imply that they share the same vocabulary. For the future,
we hope to study the connections between these strands of work and abstraction in more detail, so as to attempt to
formalize these intuitions.

On the topic of reasoning, our framework has some overlap with the principles of representation-independent
probabilistic inference [34]. Here, one is usually interested in the computed conditional queries not being different if
the knowledge base is represented differently, (say) using an abstract logical language. So, Halpern and Koller [34]
motivate a notion of correctness where if a query φ follows a knowledge base ∆, it should also be the case that f (φ)
follows from f (∆) where f is a mapping from one representation to another. Then, a robust inference procedure is one
that respects semantically justifiable properties such as those in Theorem 17 for reasonable mappings. While there is
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some similarity at first glance, there is a crucial conceptual difference: as already argued by Halpern and Koller [34],
unlike the work in representation-independent inference, the two representations are not required to be equivalent in
an exercise on abstraction, because, by definition, an abstraction ignores irrelevant facts. The technical thrust is also
different in our work, such as the identification of weighted exact vs weak exact abstractions, the handling of evidence,
and our analysis on generating abstractions. Following the work of Halpern and Koller [34], a broader treatment
is given by Jaeger [38], where the notion of representation independence is studied for non-classical consequence
more generally, of which probability measures is a special case. Very similar in spirit to our own work as well as
the categorical setting that we build on [2], the purely logical question of when two sentences represent the same
information is considered first, prompting a definition that is virtually identical to unweighted sound and complete
abstractions. As argued above for the case of Halpern and Koller [34], there are numerous differences in terms of
technical thrust, however. In our work, for example: (a) abstractions were analyzed at the level of soundness and
completeness; (b) weighted abstractions were derived by piggybacking on constraints noted in the unweighted setting;
(c) we investigated the difference between probabilistic alignment in the presence and absence of logical alignment;
(d) we considered the incorporation of evidence; and (e) we identified properties for the verification and generation of
abstraction.

We note that although much of our discussion has focused on formal accounts addressing notions of abstraction,
there has been considerable effort on the pragmatic side to connect high-level (mostly logical) concepts with low-level
(mostly probabilistic) variables. Research on symbol acquisition and symbol grounding and its relation to high-
level planning [45], and symbolic concept learning from sub-symbolic methods [9] are prominent examples of such
work. More generally, many commonsensical knowledge base and rule extraction techniques often define concepts at
different levels of granularity, and thus are also relevant from a pragmatic viewpoint [7, 22, 57].

Statistics: When establishing the alignment between the high-level and low-level theory, we looked solely at the
marginal probabilities between two discrete probability distributions. Summarizing distributions is a standard problem
in statistics, and the use of means and moments is common [54]; it is an interesting question whether such constructs
could be useful for defining and/or deriving abstractions (in our sense).

A more standard case of statistical abstraction is when continuous distributions are cast as discrete events by
appealing to the cumulative distribution function. We touched upon this in Section 9.1, and we note that such ideas
have been used for inference in continuous domains via a generalized variant of weighted model counting [5], and for
probabilistic program abstractions [36].

In causal modeling, mapping macro and micro level events is a long-standing concern, which correspond in our
terms to high-level and low-level models. In recent work, for example, Rubenstein et al. [60] study consistency be-
tween micro and macro-level random variables via structural equation models, and so are close in spirit to abstractions.

Let us conclude this section with some observations. Firstly, despite the tremendous amount of attention that
abstraction has received, the framework presented here is useful for a number of reasons: (a) it is downward compatible
with the categorical (and first-order) setting [2]; (b) it identifies probabilistic alignment together with a notion of logical
alignment, the former closely mirroring the analysis on probabilistic program abstractions [36, 37]; and (c) it seems
to agree with the intuitions regarding representation-independence probabilistic inference [34]; and (d) it can leverage
the advances in weighted model counting, including lifted reasoning. Let us now reflect on a few critical points.

It is interesting to note that although the level of generality of our framework allows us to easily draw comparisons
to results from the categorical literature and representation independence, which is useful from a theoretical standpoint,
it may mean that the formal results are somewhat removed from the concerns of high-level modeling languages. For
example, a major issue with PRMs is ensuring that the ground model is acyclic so that inference and sampling methods
can be designed easily. To understand how those issues carry over to abstraction algorithms, we need to understand
how high-level PRMs can be designed that ensure that such properties are not lost on abstraction if present in the low-
level PRM. Conversely, even if the low-level PRM does not enjoy effective inference properties, can a high-level PRM
be obtained that is amenable to those properties? In this work, since our focus was on understanding the semantical
properties of abstractions, such concerns are orthogonal but they may impact our choice for guessing an appropriate
high-level theory.

To that end, existing empirical observations on abstraction-type frameworks are somewhat mixed. Early work
on categorical abstractions [30], for example, noted that “ . . . shows that there are situations where abstraction saves
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time but also situations where it results in less efficiency.” In a similar vein, as discussed by Holtzen et al. [37], factor
graph abstractions for probabilistic programs do not always maintain structural decompositions. On the one hand,
if one takes a worst-case view of the inference problem, it immediately follows that given reasoning with (say) n
atoms in ∆l versus m � n atoms in ∆h, the latter seems preferable. For the case of loop-free sequential probabilistic
programs built from Bernoulli random variables and conditional statements, Holtzen et al. [37] also empirically show
that abstractions can be effective. Moreover, as already mentioned, abstraction is a very successful strategy in the
verification communities. Thus, we think there is a broader question of choosing the most reasonable abstraction, one
that is indeed amenable to effective inference, perhaps more so than the low-level theory.

A parallel concern is about the choosing of a vocabulary that offers maximum comprehensibility [62]. A minor
observation to be made here is that if comprehensibility is all we care about (as opposed to being concerned about
both comprehensibility and tractability), then it is not clear that one would need to fully abstract a theory. Indeed, we
could introduce/invent definitional or semi-definitional predicates of the form P(~x) ⊃ φ(~x) or φ(~x) ⊃ P(~x), where φ(~x)
corresponds to low-level information, the idea being that the user is only exposed to instances of P. Such a construction
would invariably increase the size of the theory, but we would be taking steps toward comprehensibility by designing
predicates to correspond closely to the user’s vocabulary. In fact, the user could be exposed to a combination of
high-level and low-level predicates to provide explanations of a suitable granularity.

Such concerns, of course, affect all frameworks on abstraction, and are not unique to our endeavor. A semantic
theory of correctness such as the one considered in this paper, in that regard, would indeed be at the level of inter-
pretations and not necessarily in the language of the user-specific domain knowledge, perhaps analogous to a theory
on program correctness. We would not expect a mathematical analysis on correct programs to necessarily involve
the syntactic constructs of the programming language represented as is, but rather in terms of suitable mathematical
objects that captures its computational underpinnings (e.g., variable assignment, recursion). In this sense, a semantical
theory on abstraction is (in the non-technical sense) abstract. Owing to our observations and building on this theory,
we do hope that it becomes possible to define and inspect the choosing of effective abstractions in the future.

11. Conclusions

In this work, we were motivated in the development of a formal framework for abstractions, based on isomorphisms
between models, where atoms in a high-level theory can be mapped to complex formulas at the low-level. From that,
we developed a number of accounts of abstraction, as well as the handling of low-level evidence, all of which motivated
some observations about how abstractions can be derived automatically.

Given the increasing interest in abstraction for statistical AI, we hope our framework will be helpful in developing
probabilistic abstractions for increased clarity, modularity and tractability, and perhaps interpretability.
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