
SurvLIME: A method for explaining machine learning survival

models

Maxim S. Kovalev, Lev V. Utkin and Ernest M. Kasimov
Peter the Great St.Petersburg Polytechnic University (SPbPU)

St.Petersburg, Russia
e-mail: lev.utkin@gmail.com, maxkovalev03@gmail.com, kasimov.ernest@gmail.com

Abstract

A new method called SurvLIME for explaining machine learning survival models is proposed.
It can be viewed as an extension or modification of the well-known method LIME. The main
idea behind the proposed method is to apply the Cox proportional hazards model to approximate
the survival model at the local area around a test example. The Cox model is used because it
considers a linear combination of the example covariates such that coefficients of the covariates can
be regarded as quantitative impacts on the prediction. Another idea is to approximate cumulative
hazard functions of the explained model and the Cox model by using a set of perturbed points in a
local area around the point of interest. The method is reduced to solving an unconstrained convex
optimization problem. A lot of numerical experiments demonstrate the SurvLIME efficiency.

Keywords: interpretable model, explainable AI, survival analysis, censored data, convex opti-
mization, the Cox model.

1 Introduction

Many complex problems in various applications are solved by means of deep machine learning models,
in particular deep neural networks, at the present time. One of the demonstrative examples is the
disease diagnosis by the models on the basis of medical images or another medical information. At the
same time, deep learning models often work as black-box models such that details of their functioning
are often completely unknown. It is difficult to explain in this case how a certain result or decision is
achieved. As a result, the machine learning models meet some difficulties in their incorporating into
many important applications, for example, into medicine, where doctors have to have an explanation
of a stated diagnosis in order to choose a corresponding treatment. The lack of the explanation
elements in many machine learning models has motivated development of many methods which could
interpret or explain the deep machine learning algorithm predictions and understand the decision-
making process or the key factors involved in the decision [4, 18, 35, 36].

The methods explaining the black-box machine learning models can be divided into two main
groups: local methods which derive explanation locally around a test example; global methods which
try to explain the overall behavior of the model. A key component of explanations for models is the
contribution of individual input features. It is assumed that a prediction is explained when every
feature is assigned by some number quantified its impact on the prediction. One of the first local
explanation methods is the Local Interpretable Model-agnostic Explanations (LIME) [43], which uses
simple and easily understandable linear models to locally approximate the predictions of black-box

1

ar
X

iv
:2

00
3.

08
37

1v
1

 [
cs

.L
G

]
 1

8
M

ar
 2

02
0

models. The main intuition of the LIME is that the explanation may be derived locally from a set of
synthetic examples generated randomly in the neighborhood of the example to be explained such that
every synthetic example has a weight according to its proximity to the explained example. Moreover,
the method uses simple and easily understandable models like decision rules or linear models to locally
or globally approximate the predictions of black-box models. The method is agnostic to the black-box
model. This means that any details of the black-box model are unknown. Only its input and the
corresponding output are used for training the explanation model. It is important to mention a work
[16], which provides a thorough theoretical analysis of the LIME.

The LIME as well as other methods have been successfully applied to many machine learning
models for explanation. However, to the best of our knowledge, there is a large class of models for
which there are no explanation methods. These models are applied to problems which take into
account survival aspects of applications. Survival analysis as a basis for these models can be regarded
as a fundamental tool which is used in many applied areas especially in medicine. The survival
models can be divided into three parts: parametric, nonparametric and semiparametric [23, 56]. Most
machine learning models are based on nonparametric and semiparametric survival models. One of the
popular regression model for the analysis of survival data is the well-known Cox proportional hazards
model, which is a semi-parametric model that calculates effects of observed covariates on the risk of
an event occurring, for example, the death or failure [11]. The proportional hazards assumption in
the Cox model means that different examples (patients) have hazard functions that are proportional,
i.e., the ratio of the hazard functions for two examples with different prognostic factors or covariates
is a constant and does not vary with time. The model assumes that a patient’s log-risk of failure is a
linear combination of the example covariates. This is a very important peculiarity of the Cox model,
which will be used below in explanation models.

A lot of machine learning implementations of survival analysis models have been developed [56]
such that most implementations (random survival forests, deep neural networks) can be regarded
as black-box models. Therefore, the problem of the survival analysis result explanation is topical.
However, in contrast to other machine learning models, one of the main difficulties of the survival
model explanation is that the result of most survival models is a time-dependent function (the survival
function, the hazard function, the cumulative hazard function, etc.). This implies that many available
explanation methods like LIME cannot be applied to survival models. In order to cope with this
difficulty, a new method called SurvLIME (Survival LIME) for explaining machine learning survival
models is proposed, which can be viewed as an extension or modification of LIME. The main idea
of the proposed method is to apply the Cox proportional hazards model to approximate the survival
model at a local area around a test example. It has been mentioned that the Cox model considers a
linear combination of the example covariates. Moreover, it is important that the covariates as well as
their combination do not depend on time. Therefore, coefficients of the covariates can be regarded as
quantitative impacts on the prediction. However, we approximate not a point-valued black-box model
prediction, but functions, for example, the cumulative hazard function (CHF). In accordance with
the proposed explanation method, synthetic examples are randomly generated around the explainable
example, and the CHF is calculated for every synthetic example by means of the black-box survival
model. Simultaneously, we write the CHF corresponding to the approximating Cox model as a function
of the coefficients of interest. By writing the distance between the CHF provided by the black-box
survival model and the CHF of the approximating Cox model, we construct an unconstrained convex
optimization problem for computing the coefficients of covariates. Numerical results using synthetic
and real data illustrate the proposed method.

The paper is organized as follows. Related work can be found in Section 2. A short description of
basic concepts of survival analysis, including the Cox model, is given in Section 3. Basic ideas of the

2

method LIME are briefly considered in Section 4. Section 5 provides a description of the proposed
SurvLIME and its basic ideas. A formal derivation of the convex optimization problem for determining
important features and a scheme of an algorithm implementing SurvLIME can be found in Section 6.
Numerical experiments with synthetic data are provided in Section 7. Similar numerical experiments
with real data are given in Section 8. Concluding remarks are provided in Section 9.

2 Related work

Local explanation methods. A lot of methods have been developed to locally explain black-box
models. Along with the original LIME [43], many its modifications have been proposed due to success
and simplicity of the method, for example, ALIME [47], NormLIME [2], DLIME [62], Anchor LIME
[44], LIME-SUP [24], LIME-Aleph [40], GraphLIME [25]. Another very popular method is the SHAP
[49] which takes a game-theoretic approach for optimizing a regression loss function based on Shapley
values [33]. Alternative methods are influence functions [31], a multiple hypothesis testing framework
[9], and many other methods.

An increasingly important family of methods are based on counterfactual explanations [54], which
try to explain what to do in order to achieve a desired outcome by means of finding changes to some
features of an explainable input example such that the resulting data point called counterfactual has a
different specified prediction than the original input. Due to intuitive and human-friendly explanations
provided by this family of methods, it is extended very quickly [17, 22, 32, 52]. Counterfactual
modifications of LIME have been also proposed by Ramon et al. [41] and White and Garcez [57].

Many aforementioned explanation methods starting from LIME [43] are based on perturbation
techniques [14, 15, 39, 53]. These methods assume that contribution of a feature can be determined
by measuring how prediction score changes when the feature is altered [12]. One of the advantages
of perturbation techniques is that they can be applied to a black-box model without any need to
access the internal structure of the model. A possible disadvantage of perturbation technique is its
computational complexity when perturbed input examples are of the high dimensionality.

Descriptions of many explanation methods and various approaches, their critical reviews can be
found in survey papers [1, 3, 10, 18, 45].

It should be noted that most explanation methods deal with the point-valued predictions produced
by black-box models. We mean under point-valued predictions some finite set of possible model
outcomes, for example, classes of examples. A main problem of the considered survival models is that
their outcome is a function. Therefore, we try to propose a new approach, which uses LIME as a
possible tool for its implementing, dealing with CHFs as the model outcomes.

Machine learning models in survival analysis. A review of survival analysis methods is
presented by Wang et al. [56]. The Cox model is a very powerful and popular method for dealing
with survival data. Therefore, a lot of approaches modifying the Cox model have been proposed last
decades. In particular, Tibshirani [51] proposed a modification of the Cox model based on the Lasso
method in order to take into account a high dimensionality of survival data. Following this paper,
several modifications of the Lasso methods for the Cox model were introduced [27, 30, 50, 59, 63]. In
order to relax the linear relationship assumption accepted in the Cox model, a simple neural network
as well as the deep neural networks were proposed by several authors [13, 19, 28, 42, 64]. The SVM
approach to survival analysis has been also studied by several authors [6, 29, 48, 58]. It turned out
that the random survival forests (RSFs) became a very powerful, efficient and popular tool for the
survival analysis. Therefore, this tool and its modifications, which can be regarded as extensions of
the standard random forest [8] on survival data, were proposed and investigated in many papers, for

3

example, in [26, 34, 37, 38, 46, 55, 60, 61], in order to take into account the limited survival data.
Most of the above models dealing with survival data can be regarded as black-box models and

should be explained. However, only the Cox model has a simple explanation due to its linear relation-
ship between covariates. Therefore, it can be used to approximate more powerful models, including
survival deep neural networks and RSFs, in order to explain predictions of these models.

3 Some elements of survival analysis

3.1 Basic concepts

In survival analysis, an example (patient) i is represented by a triplet (xi, δi, Ti), where xT
i =

(xi1, ..., xid) is the vector of the patient parameters (characteristics) or the vector of the example
features; Ti is time to event of the example. If the event of interest is observed, then Ti corresponds to
the time between baseline time and the time of event happening, in this case δi = 1, and we have an
uncensored observation. If the example event is not observed and its time to event is greater than the
observation time, then Ti corresponds to the time between baseline time and end of the observation,
and the event indicator is δi = 0, and we have a censored observation. Suppose a training set D
consists of n triplets (xi, δi, Ti), i = 1, ..., n. The goal of survival analysis is to estimate the time to
the event of interest T for a new example (patient) with feature vector denoted by x by using the
training set D.

The survival and hazard functions are key concepts in survival analysis for describing the distri-
bution of event times. The survival function denoted by S(t) as a function of time t is the probability
of surviving up to that time, i.e., S(t) = Pr{T > t}. The hazard function h(t) is the rate of event at
time t given that no event occurred before time t, i.e.,

h(t) = lim
∆t→0

Pr{t ≤ T ≤ t+ ∆t|T ≥ t}
∆t

=
f(t)

S(t)
, (1)

where f(t) is the density function of the event of interest.
By using the fact that the density function can be expressed through the survival function as

f(t) = −dS(t)

dt
, (2)

we can write the following expression for the hazard rate:

h(t) = − d

dt
lnS(t). (3)

Another important concept in survival analysis is the CHF H(t), which is defined as the integral of
the hazard function h(t) and can be interpreted as the probability of an event at time t given survival
until time t, i.e.,

H(t) =

∫ t

−∞
h(x)dx. (4)

The survival function is determined through the hazard function and through the CHF as follows:

S(t) = exp

(
−
∫ t

0

h(z)dz

)
= exp (−H(t)) . (5)

4

The dependence of the above functions on a feature vector x is omitted for short.
To compare survival models, the C-index proposed by Harrell et al. [21] is used. It estimates how

good a survival model is at ranking survival times. It estimates the probability that, in a randomly
selected pair of examples, the example that fails first had a worst predicted outcome. In fact, this is
the probability that the event times of a pair of examples are correctly ranking.

3.2 The Cox model

Let us consider main concepts of the Cox proportional hazards model, [23]. According to the model,
the hazard function at time t given predictor values x is defined as

h(t|x,b) = h0(t)Ψ(x,b) = h0(t) exp (ψ(x,b)) . (6)

Here h0(t) is a baseline hazard function which does not depend on the vector x and the vector b;
Ψ(x,b) is the covariate effect or the risk function; bT = (b1, ..., bm) is an unknown vector of regression
coefficients or parameters. It can be seen from the above expression for the hazard function that
the reparametrization Ψ(x,b) = exp (ψ(x,b)) is used in the Cox model. The function ψ(x,b) in the
model is linear, i.e.,

ψ(x,b) = bTx =
∑m

k=1
bkxk. (7)

In the framework of the Cox model, the survival function S(t|x,b) is computed as

S(t|x,b) = exp(−H0(t) exp (ψ(x,b))) = (S0(t))
exp(ψ(x,b))

. (8)

Here H0(t) is the cumulative baseline hazard function; S0(t) is the baseline survival function. It
is important to note that functions H0(t) and S0(t) do not depend on x and b.

The partial likelihood in this case is defined as follows:

L(b) =

n∏
j=1

[
exp(ψ(xj ,b))∑
i∈Rj

exp(ψ(xi,b))

]δj
. (9)

Here Rj is the set of patients who are at risk at time tj . The term “at risk at time t” means
patients who die at time t or later.

4 LIME

Before studying the LIME modification for survival data, this method is briefly considered below.
LIME proposes to approximate a black-box model denoted as f with a simple function g in the

vicinity of the point of interest x, whose prediction by means of f has to be explained, under condition
that the approximation function g belongs to a set of explanation models G, for example, linear models.
In order to construct the function g in accordance with LIME, a new dataset consisting of perturbed
samples is generated, and predictions corresponding to the perturbed samples are obtained by means
of the explained model. New samples are assigned by weights wx in accordance with their proximity
to the point of interest x by using a distance metric, for example, the Euclidean distance.

An explanation (local surrogate) model is trained on new generated samples by solving the following
optimization problem:

arg min
g∈G

L(f, g, wx) + Φ(g). (10)

5

Here L is a loss function, for example, mean squared error, which measures how the explanation
is close to the prediction of the black-box model; Φ(g) is the model complexity.

A local linear model is the result of the original LIME. As a result, the prediction is explained by
analyzing coefficients of the local linear model.

5 A basic sketch of SurvLIME

Suppose that there are available a training set D and an black-box model. For every new example
x, the black-box model with input x produces the corresponding output in the form of the CHF
H(t|x) or the hazard function h(t|x). The basic idea behind the explanation algorithm SurvLIME
is to approximate the output of the black-box model in the form of the CHF by means of the CHF
produced by the Cox model for the same input example x. The idea stems from the fact that the
function ψ(x,b) in the Cox model (see (6)) is linear and does not depend on time t. The linearity
means that coefficients bi of the covariates in ψ(x,b) can be regarded as quantitative impacts on
the prediction. Hence, the largest coefficients indicate the corresponding importance features. The
independence of ψ(x,b) on time t means that time and covariates can be considered separately, and
the optimization problem minimizing the difference between CHFs is significantly simplifies.

In order to find the important features of x, we have to compute some optimal values of elements
of vector b (see the previous section) of the Cox model such that H(t|x) would be as close as possible
to the Cox CHF denoted as HCox(t|x,b). However, the use of a single point may lead to incorrect
results. Therefore, we generate a lot of nearest points xk in a local area around x. For every generated
point xk, the CHF H(t|xk) of the black-box model can be computed as a prediction provided by the
survival black-box model, and the Cox CHF HCox(t|xk,b) can be written as a function of unknown
vector b. Now the optimal values of b can be computed by minimizing the average distance between
every pair of CHFs H(t|xk) and HCox(t|xk,b) over all generated points xk. Every distance between
CHFs has a weight wk which depends on the distance between xk and x. Smaller distances between xk
and x produce larger weights of distances between CHFs. If explanation methods like LIME deal with
point-valued predictions of the example processing through the black-box model, then the proposed
method is based on functions characterizing every point from D or new points x. Fig. 1 illustrates
the explanation algorithm. It can be seen from Fig. 1 that a set of examples {x1, ...,xN} are fed to
the black-box survival model, which produces a set of CHFs {H(t|x1), ...,H(t|xN)}. Simultaneously,
we write CHFs HCox(t|xk,b), k = 1, ..., N , as functions of coefficients b for all generated examples.
The weighted average distance between the CHFs of the Cox model and the black-box survival model
allows us to construct an optimization problem and to compute the optimal vector b by solving the
optimization problem.

It should be noted that the above description is only a sketch where every step is a separate task.
All steps will be considered in detail below.

6 Minimization of distances between functions

It has been mentioned that the main peculiarity of machine learning survival models is that the output
of models is a function (the CHF or the survival function). Therefore, in order to approximate the
output of the black-box model by means of the CHF produced by the Cox model at the input example
x, we have to generate many points xk in a local area around x and to consider the mean distance
between the CHFs for generated points xk, k = 1, ..., N , and the Cox model CHF for point x. Before
deriving the mean distance and its minimizing, we introduce some notations and conditions.

6

Figure 1: A schematic illustration of the explanation algorithm

7

Let t0 < t1 < ... < tm be the distinct times to event of interest, for example, times to deaths from
the set {T1, ..., Tn}, where t0 = mink=1,...,n Tk and tm = maxk=1,...,n Tk. The black-box model maps
the feature vectors x ∈ Rd into piecewise constant CHFs H(t|x) having the following properties:

1. H(t|x) ≥ 0 for all t

2. maxtH(t|x) <∞

3.
∫∞

0
H(t|x)dt→∞

Let us introduce the time T = tm + γ in order to restrict the integral of H(t|x), where γ is a very
small positive number. Let Ω = [0, T]. Then we can write∫

Ω

H(t|x)dt <∞. (11)

Since the CHF H(t|x) is piecewise constant, then it can be written in a special form. Let us divide
the set Ω into m+ 1 subsets Ω0, ...,Ωm such that

1. Ω = ∪j=0,...,mΩj

2. Ωm = [tm, T], Ωj = [tj , tj+1), ∀j ∈ {0, ...,m− 1}

3. Ωj ∩ Ωk = ∅ for ∀j 6= k

Let us introduce the indicator functions

χΩj (t) =

{
1, t ∈ Ωj ,
0, t /∈ Ωj .

(12)

Hence, the CHF H(t|x) can be expressed through the indicator functions as follows:

H(t|x) =

m∑
j=0

Hj(x) · χΩj (t) (13)

under additional condition Hj(x) ≥ ε > 0, where ε is a small positive number. Here Hj(x) is a part
of the CHF in interval Ωj . It is important that Hj(x) does not depend on t and is constant in interval
Ωj . The last condition will be necessary below in order to deal with logarithms of the CHFs.

Let g be a monotone function. Then there holds

g(H(t|x)) =

m∑
j=0

g(Hj(x))χΩj
(t). (14)

By using the above representation of the CHF and integrating it over Ω, we get

∫
Ω

H(t|x)dt =

∫
Ω

 m∑
j=0

Hj(x)χΩj (t)

 dt

=

m∑
j=0

Hj(x)

[∫
Ω

χΩj
(t)

]
dt =

m∑
j=0

Hj(x) (tj+1 − tj) . (15)

8

The same expressions can be written for the Cox CHF:

HCox(t|x,b) = H0(t) exp
(
bTx

)
=

m∑
j=0

[
H0j exp

(
bTx

)]
χΩj (t), H0j ≥ ε. (16)

It should be noted that the distance between two CHFs can be replaced with the distance between
two logarithms of the corresponding CHFs for the optimization problem. The introduced condition
Hj(x) ≥ ε > 0 allows to use logarithms. Therefore, in order to get the convex optimization problem
for finding optimal values of b, we consider logarithms of the CHFs. It is important to point out
that the difference of logarithms of the CHFs is not equal to the difference between CHFs themselves.
However, we make this replacement to simplify the optimization problem for computing important
features.

Let φ(t|xk) and φCox(t|xk,b) be logarithms of H(t|xk) and HCox(t|xk,b). Here xk is a generated
point. The difference between functions φ(t|xk) and φCox(t|xk,b) can be written as follows:

φ(t|xk)− φCox(t|xk,b)

=

m∑
j=0

(lnHj(xk))χΩj (t)−
m∑
j=0

(
ln(H0j exp

(
bTxk

)
)
)
χΩj (t)

=

m∑
j=0

(
lnHj(xk)− lnH0j − bTxk

)
χΩj

(t). (17)

Let us consider the distance between functions φ(t|xk) and φCox(t|xk,b) in metric L2:

D2,k (φ, φCox) = ‖φ(t|xk)− φCox(t|xk,b)‖22

=

∫
Ω

|φ(t|xk)− φCox(t|xk,b)|2 dt

=

m∑
j=0

(
lnHj(xk)− lnH0j − bTxk

)2
(tj+1 − tj) . (18)

The function lnHj(xk) − lnH0j − bTxk is linear with b and, therefore, convex. Moreover, it is

easy to prove by taking the second derivative over bj that the function
(
A− bTxk

)2
is also convex,

where A = lnHj(xk)− lnH0j . Since the term (tj+1 − tj) is positive, then the function D2,k (φ, φCox)
is also convex as a linear combination of convex functions with positive coefficients.

According to the explanation algorithm, we have to consider many points xk generated in a local
area around x and to minimize the objective function

∑N
k=1 wkD2,k (φ, φCox), which takes into account

all these generated examples and the corresponding weights of the examples. It is obvious that this
function is also convex with respect to b. The weight can be assigned to point xk as a decreasing
function of the distance between x and xk, for example, wk = K(x,xk), where K(·, ·) is a kernel. In
numerical experiments, we use the function defined in (24).

Finally, we write the following convex optimization problem:

min
b

N∑
k=1

wk

m∑
j=0

(
lnHj(xk)− lnH0j − bTxk

)2
(tj+1 − tj) . (19)

One of the difficulties of solving the above problem is that the difference between functions H(t|x)
and HCox(t|x,b) may be significantly different from the distance between their logarithms. Therefore,

9

in order to take into account this fact, it is proposed to introduce weights which “straighten” functions
φ(t|x) and φCox(t|x,b). These weights are defined as

v(t|x) =
H(t|x)

φ(t|x)
=

H(t|x)

ln(H(t|x))
. (20)

Taking into account these weights and their representation vkj = Hj(xk)/ ln (Hj(xk)), the opti-
mization problem can be rewritten as

min
b

N∑
k=1

wk

m∑
j=0

v2
kj

(
lnHj(xk)− lnH0j − bTxk

)2
(tj+1 − tj) . (21)

The problem can be solved by many well-known methods of the convex programming.
Finally, we write the following scheme of Algorithm 1.

Algorithm 1 The algorithm for computing vector b for point x

Require: Training set D; point of interest x; the number of generated points N ; the black-box
survival model for explaining f(x)

Ensure: Vector b of important features
1: Compute the baseline cumulative hazard function H0(t) of the approximating Cox model on

dataset D by using the Nelson–Aalen estimator
2: Generate N − 1 random nearest points xk in a local area around x, point x is the N -th point
3: Get the prediction of the cumulative hazard function H(t|xk) by using the black-box survival

model (the function f)
4: Compute weights wk = K(x,xk) of perturbed points, k = 1, ..., N
5: Compute weights vkj = Hj(xk)/ ln (Hj(xk)), k = 1, ..., N , j = 0, ...,m
6: Find vector b by solving the convex optimization problem (21)

7 Numerical experiments with synthetic data

In order to study the proposed explanation algorithm, we generate random survival times to events
by using the Cox model estimates. This generation allows us to compare initial data for generating
every points and results of SurvLIME.

7.1 Generation of random covariates, survival times and perturbations

Two clusters of covariates x ∈ Rd are randomly generated such that points of every cluster are
generated from the uniform distribution in a sphere. The covariate vectors are generated in the d-
sphere with some predefined radius R. The center p of the d-sphere and its radius R are parameters
of experiments. There are several methods for the uniform sampling of points x in the d-sphere with
the unit radius R = 1, for example, [5, 20]. Then every generated point is multiplied by R. The
following parameters for points of every cluster are used:

1. cluster 0: center p0 = (0, 0, 0, 0, 0); radius R = 8; number of points N = 1000;

2. cluster 1: center p1 = (4,−8, 2, 4, 2); radius R = 8; number of points N = 1000.

10

Figure 2: Two clusters of generated covariates depicted by using the t-SNE method

The parameters of clusters are chosen in order to get some intersecting area containing points from
both the clusters, in particular, the radius is determined from the centers as follows:

R =

⌈
‖p0 − p1‖2

2

⌉
+ 2. (22)

The clusters after using the well-known t-SNE algorithm are depicted in Fig. 2.
In order to generate random survival times by using the Cox model estimates, we apply results

obtained by Bender et al. [7] for survival time data for the Cox model with Weibull distributed
survival times. The Weibull distribution with the scale λ and shape v parameters is used to generate
appropriate survival times for simulation studies because this distribution shares the assumption of
proportional hazards with the Cox regression model [7]. Taking into account the parameters λ and v
of the Weibull distribution, we use the following expression for generated survival times [7]:

T =

(
− ln(U)

λ exp(bTx)

)1/v

, (23)

where U is the random variable uniformly distributed in interval [0, 1].
Parameters of the generation for every cluster are

1. cluster 0: λ = 10−5, v = 2, bT = (10−6, 0.1,−0.15, 10−6, 10−6);

2. cluster 1: λ = 10−5, v = 2, bT = (10−6,−0.15, 10−6, 10−6,−0.1).

It can be seen from the above that every vector b has three almost zero-valued elements and two
“large” elements which will correspond to important features. Generated values Ti are restricted by
the condition: if Ti > 2000, then Ti is replaced with value 2000. The event indicator δi is generated
from the binomial distribution with probabilities Pr{δi = 1} = 0.9, Pr{δi = 0} = 0.1.

Perturbation is one of the steps of the algorithm. According to it, we generate N nearest points xk
in a local area around x. These points are uniformly generated in the d-sphere with some predefined

11

radius r = 0.5 and the center at point x. In numerical experiments, N = 1000. Weights to every
point are assigned as follows:

wk = 1−
√
‖x− xk‖2

r
. (24)

7.2 Black-box models and approximation measures

As black-box models, we use the Cox model and the RSF model [26]. The RSF consists of 250 decision
survival trees. The approximating Cox model has the baseline CHF H0(t) constructed on generated
training data using the Nelson–Aalen estimator. The Cox model is used in order to check whether the
selected important features explaining the CHF H(t|x) at point x coincide with the corresponding
features accepted in the Cox model for generating training set. It should be noted that the Cox model
as well as the RSF are viewed as black-box models whose predictions (CHFs or survival functions)
are explained. To study how different cases impact on the quality of the approximation, we use the
following two measures for the Cox model:

RMSEmodel =

√√√√ 1

n

n∑
i=1

∥∥∥bmodel
i − bexpl

i

∥∥∥
2
, (25)

RMSEtrue =

√√√√ 1

n

n∑
i=1

∥∥∥btrue
i − bexpl

i

∥∥∥
2
, (26)

where bmodel
i are coefficients of the Cox model which is used as the black-box model; btrue

i are coeffi-

cients used for training data generation (see (23)); bexpl
i are explaining coefficients obtained by using

the proposed algorithm.
The first measure characterizes how the obtained important features coincide with the correspond-

ing features obtained by using the Cox model as the black-box model. The second measure considers
how the obtained important feature coincide with the features used for generating the random times to
events. Every measure is calculated by taking randomly n points x from the testing set and compute
the corresponding coefficients.

In order to investigate the quality of explanation when the black-box model is the RSF, we use
another measure:

RMSEapprox =

√√√√ 1

n

n∑
i=1

∑
j∈J

(
H(tj |xi)−HCox

(
tj |xi,bexpl

i

))2

, (27)

where J is a set of time indices for computing the measure.

This measure considers how the obtained Cox model approximation HCox

(
tj |xi,bexpl

i

)
is close

to the RSF output H(tj |xi). We cannot estimate the proximity of important features explaining the
model because we do not have the corresponding features for the RSF. A comparison of the important
features with the generated ones is also incorrect because we explain the model (the RSF) output
(H(t|xi)), but not training data. Therefore, we use the above measure to estimate the proximity of
two CHFs: the Cox model approximation and the RSF output.

12

7.3 Experiment 1

To evaluate the algorithm, 900 examples are randomly selected from every cluster for training and
100 examples are for testing. Three cases of training and testing the black-box Cox and RSF models
are studied:

1. cluster 0 for training and for testing;

2. cluster 1 for training and for testing;

3. clusters 0 and 1 are jointly used for training and separately for testing.

The testing phase includes:

• Computing the explanation vector bexpl for every point from the testing set.

• Depicting the best, mean and worst approximations in accordance with Euclidean distance
between vectorsd bexpl and bmodel (for the Cox model) and with Euclidean distance between

H(tj |xi) and HCox

(
tj |xi,bexpl

i

)
(for the RSF). In order to get these approximations, points

with the best, mean and worst approximations are selected among all testing points.

• Computing measures RMSEmodel and RMSEtrue for the Cox model and RMSEapprox for the
RSF over all points of the testing set.

The three cases (best (pictures in the first row), mean (pictures in the second row) and worst
(pictures in the third row)) of approximations for the black-box Cox model under condition that
cluster 0 is used for training and testing are depicted in Fig. 3. Left pictures show values of important
features bexpl, bmodel and btrue. It can be seen from these pictures that all experiments show very
clear coincidence of important features for all models. Right pictures in Fig. 3 show survival functions
obtained from the black-box Cox model and from the Cox approximation. It follows from the pictures
that the approximation is perfect even for the worst case. Similar results can be seen from Fig. 4,
where training and testing examples are taken from cluster 1.

Figs. 5 and 6 illustrate different results corresponding to cases when training examples are taken
from cluster 0 and cluster 1. One can see that the approximation of survival functions is perfect,
but important features obtained by SurvLIME do not coincide with the features used for generating
random times in accordance with the Cox model. This fact can be explained in the following way.
We try to explain the CHF obtained by using the black-box model (the Cox model in the considered
case). But the black-box Cox model is trained on all examples from two different clusters. We have a
mix of data from two clusters with different parameters. Therefore, this model itself provides results
different from the generation model. At the same time, one can observe from Figs. 5 and 6 that the
explaining important features coincide with the features which are obtained from the black-box Cox
model. These results are interesting. They show that we explain CHFs of the black-box model, but
not CHFs of training data.

The approximation accuracy measures for four cases are given in Table 1. In fact, the table repeats
the results shown in Figs. 3-6.

In the same way, we study the black-box RSF model by using three cases of its training and
testing. The results are shown in Fig. 7 where the first, second, third, and fourth rows correspond
to the four cases of experiments: cluster 0 for training and for testing; cluster 1 for training and for
testing; clusters 0 and 1 are jointly used for training and separately for testing. Every row contains

13

Figure 3: The best, mean and worst approximations for the Cox model (training and testing sets from
cluster 0)

Table 1: Approximation accuracy measures for four cases of using the black-box Cox model
Clusters for Cluster for RMSEmodel RMSEtrue

training testing 0 1
0 0 0.016 0.014
1 1 0.038 0.048
{0, 1} 0 0.023 0.089
{0, 1} 1 0.014 0.065

14

Figure 4: The best, mean and worst approximations for the Cox model (training and testing sets from
cluster 1)

15

Figure 5: The best, mean and worst approximations for the Cox model (the training set from clusters
0,1 and the testing set from cluster 0)

Figure 6: The best, mean and worst approximations for the Cox model (the training set from clusters
0,1 and the testing set from cluster 1)

16

Figure 7: The best, mean and worst approximations for the RSF model

pairs of survival functions corresponding to the best, mean and worst approximations. The important
features are not shown in Fig. 7 because they cannot be compared with the features of the generative
Cox model. Moreover, the RSF does not provide the important features like the Cox model. One can
again see from Fig. 7 that SurvLIME illustrates the perfect approximation of the RSF output by the
Cox model.

7.4 Experiment 2

In the second experiment, our aim is to study how SurvLIME depends on the number of training
examples. We use only the Cox model for explaining which is trained on 100, 200, 300, 400, 500
examples and tested on 100 examples from cluster 0. We study how the difference between bmodel and
btrue depends of the sample size. Results of experiments are shown in Fig. 8 where rows correspond
to 100, 200, 300, 400, 500 training examples, respectively, left pictures illustrate relationships between
important features, right pictures show survival functions obtained from the black-box Cox model and
from the Cox approximation (see similar pictures in Figs. 3-6). It is interesting to observe in Fig. 8
how the vectors bexpl, bmodel and btrue approach each other with the number of training examples.

The measures RMSEmodel and RMSEtrue as functions of the sample size are provided in Table
2. It can be seen from Table 2 a tendency of the measures to be reduced with increase of the sample
size for training. The C-index as a measure of the black-box model quality is also given in Table 2.

17

Figure 8: Comparison of important features (left pictures) and survival functions (right pictures) for
the black-box Cox model by 100, 200, 300, 400, 500 training examples

Table 2: Approximation accuracy measures for four cases of using the black-box Cox model
C-index RMSEmodel RMSEtrue

100 0.777 0.027 0.042
200 0.785 0.018 0.031
300 0.787 0.021 0.015
400 0.838 0.019 0.014
500 0.844 0.017 0.015

18

Figure 9: Comparison of important features (left pictures) and survival functions (right pictures) for
the black-box Cox model by 10, 20, 30, 40 training examples

7.5 Experiment 3

Another interesting question for studying is how SurvLIME behaves by a very small amount of train-
ing data. We use the Cox model and the RSF as black-box models and train them on 10, 20, 30, 40
examples from cluster 0. The models are tested on 10 examples from cluster 0. Results of experiments
for the Cox model are shown in Fig. 9 where rows correspond to 10, 20, 30, 40 training examples,
respectively, left pictures illustrate relationships between important features, right pictures show sur-
vival functions obtained from the black-box Cox model and from the Cox approximation (see similar
pictures in Figs. 8). It is interesting to points out from Fig. 9 that important features obtained by
means of SurvLIME differ from the parameters of the Cox model for generating random examples in
the case of 10 training examples. However, they almost coincide with features obtained by the black-
box model. Moreover, it follows from Fig. 9 that important features of SurvLIME quickly converge
to parameters of the Cox model for generating random examples.

The C-index, measures RMSEmodel and RMSEtrue as functions of the sample size are provided
in Table 3. It can be seen from Table 3 that RMSEmodel and RMSEtrue are strongly reduced with
increase of the sample size.

Results of experiments for the RSF are shown in Fig. 10 where rows correspond to 10, 20, 30, 40
training examples, respectively, left pictures illustrate important features, right pictures show survival

19

Table 3: Approximation accuracy measures for four cases of using the black-box Cox model by the
small amount of data

C-index RMSEmodel RMSEtrue

10 0.444 0.231 0.293
20 0.489 0.194 0.197
30 0.622 0.054 0.082
40 0.733 0.047 0.053

Table 4: A brief introduction about datasets
Data set Abbreviation R Package d d∗ m

Chronic Myelogenous Leukemia Survival CML multcomp 5 9 507
NCCTG Lung Cancer LUNG survival 8 11 228

Primary Biliary Cirrhosis PBC survival 17 22 418
Stanford Heart Transplant Stanford2 survival 2 2 185

Trial Of Usrodeoxycholic Acid UDCA survival 4 4 170
Veterans’ Administration Lung Cancer Study Veteran survival 6 9 137

functions obtained from the black-box RSF and from the Cox approximation (see similar pictures in
Fig. 9). It can be seen from Fig. 10 that the difference between survival functions is reduced with
increase the training set. However, in contrast to the black-box Cox model (see Fig. 9), important
features are very unstable. They are different for every training sets. A reason of this important
feature behavior is that they explain the RSF outputs which are significantly changed by the so small
numbers of training examples.

8 Numerical experiments with real data

In order to illustrate SurvLIME, we test it on several well-known real datasets. A short introduction
of the benchmark datasets are given in Table 4 that shows sources of the datasets (R packages),
the number of features d for the corresponding dataset, the number of training instances m and the
number of extended features d∗ using hot-coding for categorical data.

Figs. 11-12 illustrate numerical results for the CML dataset. Three cases of approximation are
considered: best (pictures in the first row), mean (pictures in the second row) and worst (pictures
in the third row). These cases are similar to cases studied for synthetic data. The cases are studied
for the black-box Cox model (Fig. 11) and the black-box RSF (Fig. 12). Again left pictures in
figures show values of important features bmodel and btrue for the Cox model and btrue for the RSF,
right pictures illustrate the approximated survival function and the survival function obtained by the
explained model.

Figs. 13-17 show numerical results for other datasets. Since most results are very similar to the
same results obtained for the CML datasets, then we provide only the case of the mean approximation
for every dataset in order to reduce the number of similar pictures. Moreover, we do not show
important features explaining RSFs because, in contrast to the Cox model, they cannot be compared
with true features. Every figure consists of three pictures: the first one illustrates the explanation
important features and important features obtained from training the Cox model; the second picture
shows two survival functions for the Cox model; the third picture shows two survival functions for the

20

Figure 10: Important features (left pictures) and survival functions (right pictures) for the black-box
RSF by 10, 20, 30, 40 training examples

21

Figure 11: The best, mean and worst approximations for the Cox model trained on the CML dataset

RSF.
If the Cox model is used for training, then one can see an explicit coincidence of explaining

important features and the features obtained from the trained Cox model for all datasets. This again
follows from the fact that SurvLIME does not explain a dataset. It explains the model, in particular,
the Cox model. We also can observe that the approximated survival function is very close to the
survival function obtained by the explained Cox model in all cases. The same cannot be said about
the RSF. For example, one can see from Fig. 12 that the important features obtained by explaining
the RSF mainly do not coincide. The reason is a difference of results provided by the Cox model and
the RSF. At the same time, it can be seen from Figs. 12-17 that the survival functions obtained from
the RSF and the approximating Cox model are close to each other for many models. This implies
that SurvLIME provides correct results.

9 Conclusion

A new explanation method called SurvLIME which can be regarded as a modification of the well-
known method LIME for survival data has been presented in the paper. The main idea behind the
method is to approximate a survival machine learning model at a point by the Cox proportional
hazards model which assumes a linear combination of the example covariates. This assumption allows
us to determine the important features explaining the survival model.

In contrast to LIME and other explanation methods, SurvLIME deals with survival data. It is not
complex from computational point of view. Indeed, we have derived a simple convex unconstrained
optimization problem whose solution does not meet any difficulties. Moreover, many numerical exper-

22

Figure 12: The best, mean and worst approximations for the RSF trained on the CML dataset

Figure 13: The mean approximation for the Cox model (the first and the second picture) and the
RSF (the third picture) trained on the LUNG dataset

23

Figure 14: The mean approximation for the Cox model (the first and the second picture) and the
RSF (the third picture) trained on the PBC dataset

Figure 15: The mean approximation for the Cox model (the first and the second picture) and the
RSF (the third picture) trained on the Stanford2 dataset

Figure 16: The mean approximation for the Cox model (the first and the second picture) and the
RSF (the third picture) trained on the UDCA dataset

24

Figure 17: The mean approximation for the Cox model (the first and the second picture) and the
RSF (the third picture) trained on the Veteran dataset

iments with synthetic and real datasets have clearly illustrated accuracy and correctness of SurvLIME.
It has coped even with problems characterizing by small datasets.

The main advantage of the method is that it opens a door for developing many explanation
methods taking into account censored data. In particular, an interesting problem is to develop a
method explaining the survival models with time-dependent covariates. This is a direction for further
research. Only the quadratic norm has been considered to estimate the distance between two CHFs and
to construct the corresponding optimization problem. However, there are other distance metrics which
are also interesting with respect to constructing new explanation methods. This is another direction
for further research. An open and very interesting direction is also the counterfactual explanation with
censored data. It could be a perspective extension of SurvLIME. It should be noted that SurvLIME
itself can be further investigated by considering its different parameters, for example, the assignment
of weights of perturbed examples in different ways, the robustness of the method to outliers, etc. The
original Cox model has several modifications based on the Lasso method. These modifications could
improve the explanation method in some applications, for example, in medicine applications to take
into account a high dimensionality of survival data. This is also a direction for further research.

Acknowledgement

The reported study was funded by RFBR, project number 20-01-00154.

References

[1] A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable artificial
intelligence (XAI). IEEE Access, 6:52138–52160, 2018.

[2] I. Ahern, A. Noack, L. Guzman-Nateras, D. Dou, B. Li, and J. Huan. NormLime: A new feature
importance metric for explaining deep neural networks. arXiv:1909.04200, Sep 2019.

[3] A.B. Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia,
S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable artificial in-

25

http://arxiv.org/abs/1909.04200

telligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.
arXiv:1910.10045, October 2019.

[4] V. Arya, R.K.E. Bellamy, P.-Y. Chen, A. Dhurandhar, M. Hind, S.C. Hoffman, S. Houde, Q.V.
Liao, R. Luss, A. Mojsilovic, S. Mourad, P. Pedemonte, R. Raghavendra, J. Richards, P. Sattigeri,
K. Shanmugam, M. Singh, K.R. Varshney, D. Wei, and Y. Zhang. One explanation does not fit
all: A toolkit and taxonomy of AI explainability techniques. arXiv:1909.03012, Sep 2019.

[5] F. Barthe, O. Guedon, S. Mendelson, and A. Naor. A probabilistic approach to the geometry of
the l-ball. The Annals of Probability, 33(2):480–513, 2005.

[6] V. Van Belle, K. Pelckmans, S. Van Huffel, and J.A. Suykens. Support vector methods for
survival analysis: a comparison between ranking and regression approaches. Artificial intelligence
in medicine, 53(2):107–118, 2011.

[7] R. Bender, T. Augustin, and M. Blettner. Generating survival times to simulate cox proportional
hazards models. Statistics in medicine, 24(11):1713–1723, 2005.

[8] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[9] C. Burns, J. Thomason, and W. Tansey. Interpreting black box models with statistical guarantees.
arXiv:1904.00045, Mar 2019.

[10] D.V. Carvalho, E.M. Pereira, and J.S. Cardoso. Machine learning interpretability: A survey on
methods and metrics. Electronics, 8(832):1–34, 2019.

[11] D.R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society, Series B
(Methodological), 34(2):187–220, 1972.

[12] M. Du, N. Liu, and X. Hu. Techniques for interpretable machine learning. arXiv:1808.00033,
May 2019.

[13] D. Faraggi and R. Simon. A neural network model for survival data. Statistics in medicine,
14(1):73–82, 1995.

[14] R. Fong and A. Vedaldi. Explanations for attributing deep neural network predictions. In
Explainable AI, volume 11700 of LNCS, pages 149–167. Springer, Cham, 2019.

[15] R.C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.
In Proceedings of the IEEE International Conference on Computer Vision, pages 3429–3437.
IEEE, 2017.

[16] D. Garreau and U. von Luxburg. Explaining the explainer: A first theoretical analysis of LIME.
arXiv:2001.03447, January 2020.

[17] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee. Counterfactual visual explanations.
arXiv:1904.07451, Apr 2019.

[18] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A survey of
methods for explaining black box models. ACM computing surveys, 51(5):93, 2019.

[19] C. Haarburger, P. Weitz, O. Rippel, and D. Merhof. Image-based survival analysis for lung cancer
patients using CNNs. arXiv:1808.09679v1, Aug 2018.

26

http://arxiv.org/abs/1910.10045
http://arxiv.org/abs/1909.03012
http://arxiv.org/abs/1904.00045
http://arxiv.org/abs/1808.00033
http://arxiv.org/abs/2001.03447
http://arxiv.org/abs/1904.07451
http://arxiv.org/abs/1808.09679

[20] R. Harman and V. Lacko. On decompositional algorithms for uniform sampling from n-spheres
and n-balls. Journal of Multivariate Analysis, 101:2297–2304, 2010.

[21] F. Harrell, R. Califf, D. Pryor, K. Lee, and R. Rosati. Evaluating the yield of medical tests.
Journal of the American Medical Association, 247:2543–2546, 1982.

[22] L.A. Hendricks, R. Hu, T. Darrell, and Z. Akata. Grounding visual explanations. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 264–279, 2018.

[23] D. Hosmer, S. Lemeshow, and S. May. Applied Survival Analysis: Regression Modeling of Time
to Event Data. John Wiley & Sons, New Jersey, 2008.

[24] L. Hu, J. Chen, V.N. Nair, and A. Sudjianto. Locally interpretable models and effects based on
supervised partitioning (LIME-SUP). arXiv:1806.00663, Jun 2018.

[25] Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang. GraphLIME: Local inter-
pretable model explanations for graph neural networks. arXiv:2001.06216, January 2020.

[26] N.A. Ibrahim, A. Kudus, I. Daud, and M.R. Abu Bakar. Decision tree for competing risks
survival probability in breast cancer study. International Journal Of Biological and Medical
Research, 3(1):25–29, 2008.

[27] S. Kaneko, A. Hirakawa, and C. Hamada. Enhancing the lasso approach for developing a survival
prediction model based on gene expression data. Computational and Mathematical Methods in
Medicine, 2015(Article ID 259474):1–7, 2015.

[28] J.L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger. Deepsurv: Person-
alized treatment recommender system using a Cox proportional hazards deep neural network.
BMC medical research methodology, 18(24):1–12, 2018.

[29] F.M. Khan and V.B. Zubek. Support vector regression for censored data (SVRc): a novel tool for
survival analysis. In 2008 Eighth IEEE International Conference on Data Mining, pages 863–868.
IEEE, 2008.

[30] J. Kim, I. Sohn, S.-H. Jung, S. Kim, and C. Park. Analysis of survival data with group lasso.
Communications in Statistics - Simulation and Computation, 41(9):1593–1605, 2012.

[31] P.W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70, pages 1885–1894,
2017.

[32] A. Van Looveren and J. Klaise. Interpretable counterfactual explanations guided by prototypes.
arXiv:1907.02584, Jul 2019.

[33] S.M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems, pages 4765–4774, 2017.

[34] U.B. Mogensen, H. Ishwaran, and T.A. Gerds. Evaluating random forests for survival analysis
using prediction error curves. Journal of Statistical Software, 50(11):1–23, 2012.

[35] C. Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
Published online, https://christophm.github.io/interpretable-ml-book/, 2019.

27

http://arxiv.org/abs/1806.00663
http://arxiv.org/abs/2001.06216
http://arxiv.org/abs/1907.02584

[36] W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yua. Interpretable machine learning:
definitions, methods, and applications. arXiv:1901.04592, Jan 2019.

[37] J.B. Nasejje, H. Mwambi, K. Dheda, and M. Lesosky. A comparison of the conditional inference
survival forest model to random survival forests based on a simulation study as well as on two
applications with time-to-event data. BMC Medical Research Methodology, 17(115):1–17, 2017.

[38] I.K. Omurlu, M. Ture, and F. Tokatli. The comparisons of random survival forests and cox
regression analysis with simulation and an application related to breast cancer. Expert Systems
with Applications, 36:8582–8588, 2009.

[39] V. Petsiuk, A. Das, and K. Saenko. Rise: Randomized input sampling for explanation of black-
box models. arXiv:1806.07421, June 2018.

[40] J. Rabold, H. Deininger, M. Siebers, and U. Schmid. Enriching visual with verbal explanations
for relational concepts – combining LIME with Aleph. arXiv:1910.01837v1, October 2019.

[41] Y. Ramon, D. Martens, F. Provost, and T. Evgeniou. Counterfactual explanation algorithms for
behavioral and textual data. arXiv:1912.01819, December 2019.

[42] R. Ranganath, A. Perotte, N. Elhadad, and D. Blei. Deep survival analysis. arXiv:1608.02158,
September 2016.

[43] M.T. Ribeiro, S. Singh, and C. Guestrin. “Why should I trust you?” Explaining the predictions
of any classifier. arXiv:1602.04938v3, Aug 2016.

[44] M.T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic explanations.
In AAAI Conference on Artificial Intelligence, pages 1527–1535, 2018.

[45] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1:206–215, 2019.

[46] M. Schmid, M.N. Wright, and A. Ziegler. On the use of harrell’s c for clinical risk prediction via
random survival forests. Expert Systems with Applications, 63:450–459, 2016.

[47] S.M. Shankaranarayana and D. Runje. ALIME: Autoencoder based approach for local inter-
pretability. arXiv:1909.02437, Sep 2019.

[48] P.K. Shivaswamy, W. Chu, and M. Jansche. A support vector approach to censored targets.
In Seventh IEEE International Conference on Data Mining, ICDM 2007, pages 655–660. IEEE,
2007.

[49] E. Strumbel and I. Kononenko. An efficient explanation of individual classifications using game
theory. Journal of Machine Learning Research, 11:1–18, 2010.

[50] N. Ternes, F. Rotolo, and S. Michiels. Empirical extensions of the lasso penalty to reduce the
false discovery rate in high-dimensional cox regression models. Statistics in medicine, 35(15):2561–
2573, 2016.

[51] R. Tibshirani. The lasso method for variable selection in the cox model. Statistics in medicine,
16(4):385–395, 1997.

28

http://arxiv.org/abs/1901.04592
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1910.01837
http://arxiv.org/abs/1912.01819
http://arxiv.org/abs/1608.02158
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1909.02437

[52] J. van der Waa, M. Robeer, J. van Diggelen, M. Brinkhuis, and M. Neerincx. Contrastive
explanations with local foil trees. arXiv:1806.07470, June 2018.

[53] M.N. Vu, T.D. Nguyen, N. Phan, and M.T. Thai R. Gera. Evaluating explainers via perturbation.
arXiv:1906.02032v1, Jun 2019.

[54] S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without opening the
black box: Automated decisions and the GPDR. Harvard Journal of Law & Technology, 31:841–
887, 2017.

[55] H. Wang and L. Zhou. Random survival forest with space extensions for censored data. Artificial
intelligence in medicine, 79:52–61, 2017.

[56] P. Wang, Y. Li, and C.K. Reddy. Machine learning for survival analysis: A survey.
arXiv:1708.04649, August 2017.

[57] A. White and A.dA. Garcez. Measurable counterfactual local explanations for any classifier.
arXiv:1908.03020v2, November 2019.

[58] A. Widodo and B.-S. Yang. Machine health prognostics using survival probability and support
vector machine. Expert Systems with Applications, 38(7):8430–8437, 2011.

[59] D.M. Witten and R. Tibshirani. Survival analysis with high-dimensional covariates. Statistical
Methods in Medical Research, 19(1):29–51, 2010.

[60] M.N. Wright, T. Dankowski, and A. Ziegler. Random forests for survival analysis using maximally
selected rank statistics. arXiv:1605.03391v1, May 2016.

[61] M.N. Wright, T. Dankowski, and A. Ziegler. Unbiased split variable selection for random survival
forests using maximally selected rank statistics. Statistics in Medicine, 36(8):1272–1284, 2017.

[62] M.R. Zafar and N.M. Khan. DLIME: A deterministic local interpretable model-agnostic expla-
nations approach for computer-aided diagnosis systems. arXiv:1906.10263, Jun 2019.

[63] H.H. Zhang and W. Lu. Adaptive Lasso for Cox’s proportional hazards model. Biometrika,
94(3):691–703, 2007.

[64] X. Zhu, J. Yao, and J. Huang. Deep convolutional neural network for survival analysis with
pathological images. In 2016 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 544–547. IEEE, 2016.

29

http://arxiv.org/abs/1806.07470
http://arxiv.org/abs/1906.02032
http://arxiv.org/abs/1708.04649
http://arxiv.org/abs/1908.03020
http://arxiv.org/abs/1605.03391
http://arxiv.org/abs/1906.10263

	1 Introduction
	2 Related work
	3 Some elements of survival analysis
	3.1 Basic concepts
	3.2 The Cox model

	4 LIME
	5 A basic sketch of SurvLIME
	6 Minimization of distances between functions
	7 Numerical experiments with synthetic data
	7.1 Generation of random covariates, survival times and perturbations
	7.2 Black-box models and approximation measures
	7.3 Experiment 1
	7.4 Experiment 2
	7.5 Experiment 3

	8 Numerical experiments with real data
	9 Conclusion

