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Abstract—In this paper, a dynamic evidential clustering algo-
rithm (DEC) is introduced to address the computational burden
of existing methods. To derive such a solution, an FCM-like
objective function is first employed and minimized to obtain
the support levels of the real singletons (specific) clusters to
which the query objects belong, and then the query objects
isinitially adaptively assigned to outlier, precise or imprecise
one via a new rule-based on the conflicts between the different
support levels. For each imprecise object, it is finally reassigned
to the singleton clusters or related meta-cluster by partial credal
redistribution with the corresponding dynamic edited framework
to reduce the computational burden. The proposed method can
reduce the complexity to the level similar to that of the fuzzy
and possibilistic clustering, which can effectively extend the
application of evidential clustering, especially in big data. The
effectiveness of the DEC method is tested by four experiments
with artificial and real datasets.

Keywords: Dynamic evidential clustering, credal partition,
uncertainty, belief functions, unsupervised classification.

I. INTRODUCTION

Clustering is one of the important branches of unsupervised
pattern recognition and machine learning, and it has been
widely used in various fields [1] including financial analysis,
medical diagnosis, image cutting and information fusion, etc.
The goal of clustering is to group a set of n objects into c
clusters with the edited framework Ω = {ω1, ...ωc} where
the members (objects) in the same cluster are similar in some
way. A variety of methods have been developed for clustering
object and relational data [2]-[4]. In general, the object data
is described with p-dimensional attributes while the relational
data is described by similarity or dissimilarity between objects.
This paper mainly focuses on object data.

There exists a number of clustering methods designed for
object data, and they can be broadly classified into two main
families: hard and soft clustering [5]-[7]. Hard clustering
allows each object to belong to only one cluster, i.e. the
nearest cluster to the object will have it completely, and C-
means algorithm [5] can be regarded as the representative of
hard clustering. In soft clustering, the object will be assigned
to different clusters with various levels of support, where
the most popular fuzzy c-means algorithm (FCM) [6], [8] is
the representative. However, some works [9]−[13] point out
that it may produce some phenomena contrary to intuition
sometimes although FCM has achieved good results, and they
have given some solutions. In [9], for instance, a possibilistic
(PCM) clustering algorithm is introduced by modifying the

objective function to be minimized. A possibilistic fuzzy c-
means clustering algorithm (PFCM) is also proposed in the
literature [11]. The shortcomings of fuzzy partition are ana-
lyzed in detail and new solutions are put forward. In [12], an
improved method of PFCM is proposed and the advantages in
MRI image segmentation are analyzed. It mainly includes two
aspects: considering the relationship between clusters denoted
by intraclass and interclass similarity, and using local label
information to supplement spatial constraints. To reasonably
characterize the outlier, the concept of noise clustering (NC)
[14], [15] is given to make fuzzy and possibilistic partition
more robust via adding a “noise” cluster denoted as ∅. Once
the object is assigned to the noise cluster, it indicates that the
object is too far away from all singleton (specific) clusters,
and naturally regarded as noise or outlier. That is, there are
c + 1 clusters and the object will be assigned to the noise
cluster if the minimum distance between the object and the c
known cluster centers is greater than a given distance δ. The
parameter δ thereby controls the number of outliers.

Recently, a new evidential c-means (ECM) [3] clustering
method, based on the notion of “credal partition” [16], [17],
is proposed under the theoretical framework of belief functions
[18]−[24], which can reasonably model a few objects, named
imprecise objects1. In such case, it will greatly increase the
risk of errors if they are forced to be assigned to singleton
clusters. Specifically, credal partition extends the traditional
probability framework Ω = {ω1, ..., ωc} to the power-set
2Ω, and this additional flexibility allows us to gain a deeper
insight into the data and to improve robustness with respect to
outliers [3], [25]. For instance, Ω = {ω1, ω2, ω3} with c = 3,
then 2Ω = {∅, ω1, ω2, ω3, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},Ω}.
In other words, credal partition can produce three kinds of
cluster: singleton (specific) clusters (e.g. ω1), meta-clusters
(e.g. {ω2, ω3}) defined by the disjunction (union) of several
singleton clusters, and the noise cluster (outlier) represented by
∅. The meta-cluster is also regarded as a separate cluster and
can be considered as a transition cluster among these included

1In the clustering problem, one object simultaneously close to several
singleton (specific) clusters can be difficult to correctly classify since these
close singleton (specific) clusters appear not distinguishable for this object.
In such a case, we consider that the object can belong to the union of these
singleton clusters, called meta-cluster, and considered as a new cluster, we
thereby say that the object is imprecise. In other words, we have an imprecise
object if the object is assigned to the meta-cluster. In contrast, we can say a
precise object if we are sure that the object belongs to one singleton cluster
only, i.e. the object is obviously close to one and only one singleton cluster.
The object, thereby, is naturally assigned to this singleton cluster.
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singleton clusters. Once assigned into meta-cluster, it indicates
that the object may belong to any singleton clusters included
in the meta-cluster and it is regarded as an imprecise one.

In ECM, the object can be assigned not only to singleton
clusters including the noise cluster but also to any meta-
clusters in 2Ω depending on the “mass of beliefs”, denoted
as m(·), which is similar to the membership degree in FCM.
The ECM thereby can be regarded as an evidential version
of the FCM and NC. The difference, however, is that the
ECM introduces the notion of meta-cluster Aj and defines the
center vj as the average value of that of the singleton clusters
included in the meta-cluster Aj . The distance dij between the
object xi and the center vj is taken as the main criterion to
judge whether xi belongs to the Aj or not. Whereas it may
produce unreasonable results if the meta-cluster center is close
to the centers of some singleton clusters. Therefore, a credal c-
means (CCM) clustering method [25] is proposed to overcome
this limitation. In CCM, the object should be not only close to
the center of the meta-cluster but also close to the associated
singleton clusters included in the meta-cluster if the object is
assigned to the meta-cluster. By doing this, the CCM [25] can
produce good results even if the center of meta-cluster is close
to that of the singleton clusters.

Since credal partition has the prominent advantage in char-
acterizing imprecision and uncertainty, it has been extended
to many fields [26]-[28]. These methods, however, are time-
consuming because they spend a lot of meaningless calcula-
tions. This seriously restricts the scope of applications because
we are now in an era of big data. As illustrated in Fig. 1, the
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Figure 1: Illustration of the complexity in credal partition.

centers (i.e. black triangles) of meta-clusters are determined by
the centers (i.e. black pentagrams) of related singleton clusters
in credal partition. In other words, if the centers of singleton
clusters are not real, that of meta-clusters is also unreliable,
for instance, v1, v2 and v3 are only temporary cluster centers,
not the real centers. Thus, the centers (e.g. v1,2 and v2,3) of
meta-clusters are also not exactly in such a case, as shown
in Fig. 1. Therefore, it doesn’t make much sense to calculate

the distances between the object and (large number of) meta-
clusters in each iteration (except the last one). In addition, one
can find that only a few imprecise objects (e.g. O2, O3) are
difficult to accurately be assigned to the singleton cluster (e.g.
ω1 or ω3), and they are only in a few related clusters. If one
assigns each object under the power-set 2Ω, it will also bring
a lot of invalid calculations. For example, one only needs to
assign the object O5 under the sub-frame {ω1, ω2, ω1,2} and
O6 under the sub-frame {ω2, ω3, ω2,3}, where ωi,k , {ωi, ωk}
is denoted for conciseness.

The ECM and CCM also try to reduce the computational
complexity. In general, ECM can generate 2c clusters, for
example, for the framework of discernment Ω = {ω1, ..., ωc}.
However, if there are too many elements in the pow-set 2Ω,
it will cause a huge execution burden since the complexity
of ECM, i.e. O(n · 2c), will increase exponentially with
the increase of c. Thus, the authors consider limiting the
cardinality of the elements in the meta-cluster to 2 (except for
Ω), which can better reduce the computational complexity of
ECM. Of course, this hypothesis is applicable in most cases,
but it may produce unreasonable results in a few cases, for
example, some objects may be indistinguishable among more
than two but less than c singleton clusters. The CCM adopts
a strategy similar to ECM.

To reduce complexity of credal partition as far as possible,
a method, called dynamic evidential clustering (DEC), is pro-
posed in this paper, which contains two steps: 1) preliminary
adaptive credal partition; 2) partial credal redistribution. The
main contributions lie in the following points.

1) An FCM-like objective function is employed to obtain the
support degrees of each object belonging to the real singleton
(specific) clusters, which are then used to preliminary assign
the object as the outlier, precise or imprecise one based on a
given adaptive rule.

2) A CCM-like objective function is then minimized to
reassign the imprecise object to one singleton cluster or related
meta-cluster again by partial credal redistribution with the
corresponding dynamic edited framework. In other words, the
specific dynamic edited framework will replace the power-set
2Ω to reassign each imprecise object.

This paper is organized as follows. The basics of belief
functions is briefly introduced in Section II. The dynamic
evidential clustering algorithm (DEC) is detailed in Section
III. Four experiments using artificial and real datasets are given
in Section IV to illustrate the validity of the DEC with other
respectable methods. Managerial implication is provided in
Section V, followed by Conclusions.

II. BRIEF REVIEW OF BELIEF FUNCTIONS

The theory of belief functions, also called Dempster-Shafer
theory (DST) [18]-[20], which has also been widely used
in classification [29]-[31] and decision-making [23], [32]-
[35]. In belief functions, a set of finite mutually exclusive
and exhaustive elements Ω = {ω1, ω2, · · ·, ωc} is defined
as the framework of discernment of the problem under
study. The set of all subsets of Ω is called the power-
set of Ω, which is represented as 2Ω and contains 2|Ω|
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elements. For example, if Ω = {ω1, ω2, ω3}, then 2Ω =
{∅, ω1, ω2, ω3, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},Ω}. The single-
ton cluster (e.g. ωi) is also called specific cluster. The disjunc-
tion of several singleton elements (e.g. {ω1, ω2}, {ω2, ω3})
represents partial ignorance, and they are called meta-clusters.

Credal partition based on the theory of belief functions has
become one of the research hotspots since it extends the ex-
isting concepts of hard, fuzzy (probabilistic), and possibilistic
partition by allocating, for each object, not only to singleton
clusters but also to meta-clusters. This additional flexibility
allows us to gain a deeper insight in the data and to improve
robustness with respect to outliers [3]. A credal partition [3],
[16] is defined as the n-tuple M = (m1, . . . ,mn), where mi

is the basic belief assignment (BBA) of the object xi ∈ X ,
i = 1, 2, . . . , n associated with the different elements of the
power-set 2Ω. The BBA or mass of belief on the framework
of discernment Ω is a function m(.) from 2Ω to [0, 1], and
satisfies the following conditions:{ ∑

A∈2Ω

m(A) = 1

m(∅) = 0
(1)

All the elements A ∈ 2Ω such that m(A) > 0 are called
the focal elements of m(.). In credal partition, the m(.) is
considered to be related to the distance between the object
and different clusters, and the mass of belief that an object
xi belongs to a meta-cluster depends not only on the distance
between xi and the center of the meta-cluster (i.e. the mean
value of the centers of the singleton clusters contained in the
meta-cluster), but also on the distance between the object xi
and the prototype vector of the singleton clusters included in
the meta-cluster [25]. Since the credal partition is regarded
as the direct extension of FCM under belief functions, the
convergence is similar to that of FCM.

In credal partition, the belief function Bel(.) and plausibility
function Pl(.), corresponding to the lower and upper bounds
of imprecise probability associated with BBAs, can also be
used for decision-making support when adopting pessimistic
or optimistic attitudes if necessary, and they are given for all
A ∈ 2Ω by:

Bel(A) =
∑
B⊆A

m(B) (2)

Pl(A) =
∑

B∩A 6=∅

m(B) (3)

In this paper, one of them can be employed as criteria
for preliminary credal partition, since they have a straight
corresponding relationship in such particular BBAs structure.

III. DYNAMIC EVIDENTIAL CLUSTERING

To reduce the computational complexity of existing evi-
dential clustering methods, a new alternative version, named
dynamic evidential clustering (DEC), is proposed in this
section. It is based on the following two assumptions:

1) For the same query set, the centers obtained in the fuzzy
(possibilistic) partition and that of singleton clusters obtained
by the credal partition are very similar. This means that the

meta-clusters can be ignored in the initial iterations because
the centers of meta-clusters are defined based on the instant
information of the related singleton clusters.

2) Only a part of objects in the query set is difficult to be
accurately assigned to singleton (specific) clusters. They are
then assigned to the related meta-clusters composed of only
several close singleton clusters. Thus, it is not necessary to
expose all the objects under the power-set 2Ω.

By the above assumptions, the DEC method can be summa-
rized as two steps: 1) preliminary credal partition; 2) partial
credal redistribution.

A. Preliminary credal partition

The purpose of this subsection is to preliminary assign each
object in the query set as the outlier, precise or imprecise one
adaptively. To derive such a proposal, let’s consider a query set
X including n objects in p-dimensions with Ω = {ω1, ..., ωc}.
The support degrees of each object belonging to different
singleton (specific) clusters and the noise cluster, called the
mass of beliefs in credal partition, can be minimized by an
FCM-like objective function at first. There exist many methods
to obtain the mass of beliefs. For example, the noise clustering
method [14] can be applied for the query set, and we have
modified it as the version of the credal partition to facilitate
the presentation. The objective function can be expressed as
follows:

JDEC−NC(M1, V1) =

n∑
i=1

c∑
j=1

mβ
ij · d

2
ij +

n∑
i=1

δ2 ·mi∅
β (4)

with the constraint:
c∑
j=1

mij +mi∅ = 1, ∀i = 1, n (5)

where M1 = (m1, ...,mn) ∈ Rn×(|Ω|+1) is the mass of belief
matrix for n objects in X , and V1 ∈ Rc×p is the matrix of
the centers of singleton clusters. dij is the Euclidean distance
between the object xi and the center of singleton cluster ωj .
Parameters β, δ are adjustable with the same meanings as
those in NC [14], ECM [3] and CCM [25]. Since it has the
same structure as NC, we directly give the mass of beliefs
of the query object xi belonging to different clusters (i.e. the
noise and singleton clusters) as follows:

mij =
d
−2/(β−1)
ij

c∑
k=1

d
−2/(β−1)
ik + δ−2/(β−1)

, (6)

and

mi∅ = 1−
c∑
j=1

mij , ∀i = 1, n. (7)

where mij is the mass of belief (i.e. the support degree) of
the object xi belonging to the cluster ωj , and mi∅ represents
the possibility of belonging to the noise cluster (i.e. ∅).

By doing this, we can assign the query object to different
clusters according to the mass of belief matrix. Here the
maximum of belief function Bel(.) given in (2) is used as
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the criteria for the decision-making of the cluster which is
strongly supported by the various mass of beliefs. Specifically,
the object xi is directly assigned to the noise cluster if Bel(∅)
is larger than the others, and defined as:

Beli(∅) > Beli(ωj), j = 1, ..., c (8)

where Beli(∅) = mi∅ and Beli(ωj) = mij since Bel(.) has
a straight corresponding relationship in such particular BBAs
structure [31]. In such a case, we don’t further assign the object
since it is obviously considered as the outlier. Whereas if the
cluster ωj is the most believed cluster for xi, defined by:

Beli(ωj) = max[Beli(ω1), ..., Beli(ωc)]. (9)

one needs to further judge the possibility that the object
belongs to ωj , because Beli(ωj) maybe not significantly
different from others sometimes. A numerical example is given
to explicitly illustrate this.

Table I: The numerical example.

∅ ω1 ω2 ω3

m1 1.0 0 0 0
m2 0 0.9 0 0.1
m3 0 0.01 0.5 0.49
m4 0 0.43 0.42 0.15

Example 1: The 4-tuple M = (m1, m2, m3, m4) in Table
I is an example of preliminary credal partition. One can see
that the objects x1 and x2 likely belong to the outlier ∅ and
the singleton cluster ω1, respectively. In contrast, the objects
x3 and x4 will be assigned to the ω2 and ω1 respectively from
the probabilistic perspective, but it has the risk of error since
this slight difference may be caused by multiple reasons. In
fact, the objects like x3 and x4 need to be further assigned,
because they are likely to be reasonably assigned to the meta-
clusters {ω2, ω3} and {ω1, ω2} respectively in credal partition.

In practice, it can also happen that the belief Beli(ωs) of
the other cluster ωs (s ∈ [1, c], s 6= j) can be very close (or
equal) to the Beli(ωj) of the strongest cluster ωj . In such a
case, the object can also potentially belong to ωs with a high
likelihood, and we should adopt a more cautious strategy in
the preliminary credal partition. That is, we need to consider
all the very likely specific clusters as the potential solution for
xi. The set of these potential singleton clusters can be called
Mi and it is defined by:

Mi = {ωj∪, ...,∪ωs}, Beli(ωj)−Beli(ωs) ≤ ϕ (10)

where ϕ ∈ [0, 1] is a chosen meta-cluster threshold. In fact, ϕ
is a very interesting threshold, which determines the several
frameworks of clustering as follows.

Fuzzy/possibilistic partition: We have a fuzzy/possibilistic
partition with ϕ = 0 since all objects will be assigned directly
to specific (singleton) clusters in the Bayesian framework. We
don’t need to partial credal redistribution for imprecise objects
since there is no meta-cluster at this time. In contrast, the query
set will be clustered under credal partition with ϕ > 0.

Traditional credal partition: We have a traditional credal

    Output preliminary 

credal partition

Input the query set      

Precise object
Imprecise object

Y

N

N

Obtain the mass of belief for each object by an 

FCM-like objective function

Obtain the mass of belief for each object by an 

FCM-like objective function

Y
  Assigned to  

( ) ( )i i jBel Bel 

( ) ( )i j i sBel Bel  − 

Figure 2: Flowchart of the adaptive credal partition.

partition with ϕ = 1, which means that all objects are im-
precise ones in preliminary credal partition. All query objects
need to be credal redistributed under the power-set 2Ω.

Dynamic credal partition: We have a dynamic (partial)
credal partition with ϕ ∈ (0, 1) in this paper because we
consider that only a part of objects in the query set is difficult
to be accurately assigned to singleton clusters.

Based on the above analysis, all clusters in Mi may very
likely correspond to the real (unknown) clusters for xi, and
they appear indistinguishable with respect to the threshold ϕ.
That is, the imprecise object xi needs to be further assigned
under the new frame MΩ

i , and defined as follows:

MΩ
i = {ωj , ..., ωs, {ωj ∪ ωs}, ...,Mi} (11)

By doing this, one can easily find that only a few objects
need to be further reassigned. It can greatly reduce the
computational complexity, and each imprecise object has a
specific dynamic edited framework. A simple example is given
to explicitly illustrate this.

Example 2: Let us consider a chosen meta-cluster threshold
ϕ = 0.1, and the objects x3, x4 in Table I are employed here
to illustrate the specific dynamic edited framework. For the
object x3, one can obtain that ω2 is the most likely cluster with
Bel3(ω2) = max[Bel3(ω1), Bel3(ω2), Bel3(ω3)]. However, it
does not mean that x3 is directly assigned to the singleton
cluster ω2 since there is another cluster (i.e. ω3) that the
object may belong to under the chosen meta-cluster threshold
ϕ = 0.1 with M3 = {ω2 ∪ ω3 |Bel3(ω2)− Bel3(ω3) ≤ 0.1}.
The object x3 thereby is considered as an imprecise object
by preliminary credal partition, and it will be reclustered by
partial credal redistribution with the specific dynamic edited
framework MΩ

3 = {ω2, ω3, {ω2, ω3}}. One can also deduce
that the imprecise object x4 will be reassigned under the spe-
cific dynamic edited framework MΩ

4 = {ω1, ω2, {ω1, ω2}}.
The flowchart is presented in Fig. 2 to explicitly show how
the preliminary credal partition works.
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B. Partial credal redistribution

In DEC, the center vj of the meta-cluster Aj is also defined
as mean value of that of the singleton clusters included in Aj ,
which is similar to ECM [3] and defined mathematically by:

vj =
1

|Aj |

|Aj |∑
k=1

skjvk, with skj =

{
1, if ωk ∈ Aj ;
0, otherwise.

(12)

where vk is center of the singleton cluster ωk, and |Aj | denotes
the cardinality of Aj . Whereas the distance between the object
xi and the meta-cluster Aj depends not only on the distance
between the object xi and the center vj , but also on the
distance between the object xi and the center vk of all the
singleton clusters included in Aj . Thus, the distance D2

ij from
the object to different clusters can be defined as follows:

D2
ij =

{
d2
ij , if |Aj | = 1,∑
Ak∈Aj

d2
ik+d2

ij

|Aj |+1 , if |Aj | > 1.
(13)

where dij is the Euclidean distance between the object xi and
the center vj of the cluster Aj . If Aj is a singleton cluster,
vj is the center of Aj . In contrast, vj is the mean value of
the included singleton cluster centers if Aj is a meta-cluster.

One can find that the distance between the object and the
meta-cluster is similar to that in CCM, but they are different.
In DEC, |Aj |+ 1 in Eq. (13) denotes the number of distances
from the object to different clusters. Whereas |Aj |+ γ varies
with the change of γ of CCM, it may lead to some specific
objects being assigned to meta-clusters and then increase the
number of objects in meta-clusters unreasonably. Once MΩ

i

is obtained, we only need to calculate the distance between
the object and the related clusters in one iteration. This is the
reason that the DEC can greatly reduce the computing time
and produce similar clustering results with ECM and CCM.

For the imprecise object xi withMΩ
i , we need to update its

mass of beliefs m(·) belonging to different clusters under the
edited framework MΩ

i . Assuming that there are q imprecise
objects after preliminary credal partition. Since the centers
of singleton and meta-clusters have been obtained, we can
directly update the mass of belief m(·) for each imprecise
object. Inspired by ECM [3] and CCM [25], the update
formula of mass values can be derived by minimizing the other
sub-objective function denoted as follows:

JDEC−CR(M2, V2) =

q∑
i=1

∑
j/Aj∈MΩ

i

mβ
ijD

2
ij , (14)

subject to:∑
j/Aj∈MΩ

i

mij = 1. (15)

where V2 ∈ R|M
Ω|×p is the center matrix of singleton clusters

and meta-clusters, and D2
ij can be obtained from Eq. (13).

Although Eq. (14) is inspired by ECM and CCM, the noise
cluster is no longer considered here since noise has been well
identified in preliminary credal partition.

Since V2 is known, lagrange multipliers λi are used to solve
the constrained minimization problem with respect to M2 as

follows:

L(M2, λ1, . . . , λn) =JDEC−CR(M2, V2)

−
q∑
i=1

λi(

c∑
j=1

mij − 1).
(16)

By differentiating the Lagrangian with respect to the mij

and λi and setting the derivatives to zero, we obtain:

∂L
∂mij

= βmβ−1
ij D2

ij − λi = 0, (17)

∂L
∂λi

=
∑

j/Aj∈MΩ
i

mij − 1 = 0. (18)

From Eq. (17), we thus have:

mij =

(
λi
β

) 1
(β−1)

(
1

D2
ij

) 1
(β−1)

, (19)

Using Eqs. (18) - (19):(
λi
β

) 1
(β−1)

=
1∑

j/Aj∈MΩ
i

D
−2

(β−1)

ij

. (20)

Returning in Eq. (19), one obtains the necessary condition of
optimality for M2:

mij =
D

−2
(β−1)

ij∑
k/Ak∈MΩ

i

D
−2

(β−1)

ik

. (21)

One can easily find that only one iteration is needed to
obtain the mass of beliefs for each imprecise object xi because
V2 is known. Once the imprecise object is reassigned to
a specific cluster, it indicates that the object is separable
under the current knowledge. In contrast, if the object is final
assigned to the meta-cluster, it indicates that the object may
belong to any singleton clusters included in the meta-cluster
depending on the known information.

1) Guideline for the parameters: There are three parameters
involved in the DEC method: the meta-cluster threshold ϕ, the
weighting exponent β and the outlier threshold δ. The meta-
cluster threshold ϕ can control the number of objects assigned
in meta-clusters, and the larger the ϕ, the more objects in meta-
clusters. Thus, ϕ can be adjusted according to the number of
objects in meta-clusters that one can accept, and ϕ = 0.3 is
the default value. The use of the tuning parameter β is similar
to ECM [3] and CCM [25], and β = 2 can be used as default
value. The parameter δ is strongly dependent on the dataset
to be clustered and controls the amount of data considered as
outliers which has been discussed in NC [14].

2) Discussion for the complexity: In order to reduce the
computational complexity of existing evidential clustering, the
DEC first uses an FCM-like objective function to iteratively
obtain the real centers of singleton clusters and preliminary
adaptively assign the query object as the outlier, precise or
imprecise one by the preliminary credal partition, and then
the results of the partial credal redistribution for imprecise
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objects are used as the final decision-making. Since the partial
credal redistribution is only for a part of objects and only
needs to be iterated once, the computational complexity of
DEC mainly depends on the preliminary credal partition. Thus,
the computational complexity is O(n · c + q) which is much
lower than that of ECM (O(n · 2c)) where n is the number of
the objects in the query set and q is the number of imprecise
objects, and c is the real number of singleton clusters.

The pseudo-code shown in Algorithm 1 is used to clearly
explain the working principle of the DEC method.

Algorithm 1 Dynamic Evidential Clustering Algorithm
Require: Data to cluster: X = {x1, ...,xn} in Rp;

Parameters: c, β, δ, ϕ
Ensure: Cluster decision results

Step 1
Construct the objective function JDEC−NC without meta-
clusters using Eqs. (4)-(5);

Iterate the mass of beliefs for each object by Eqs. (6)-(7);
for the 1-th to n-th query object

Preliminary assign the object as the outlier, precise or
imprecise one using Eqs. (8)-(10);

end
Subreturn: Preliminary credal partition.

Step 2
Calculate the centers of meta-cluster using Eq. (12);
Reconstruct the objective function JDEC−CR for credal
redistribution using Eqs. (14)-(15);

Reiterate the mass of beliefs for the q imprecise objects
using Eqs. (13), (21);
for the 1-th to q-th imprecise object

Reassign the object to singleton cluster or meta-cluster.
end

Subreturn: Partial credal redistribution.
Return: Dynamic credal partition.

IV. EXPERIMENT APPLICATIONS

In this section, four experiments are conducted to evaluate
the performance of the proposed DEC method compared with
C-means [5], FCM [6], NC [14], ECM [3], CCM [25], BPEC
[26]. Experiment 1, Experiment 2, and Experiment 3 are all
particular artificial data to illustrate the use of DEC and the
limitations of FCM, ECM, CCM, and BPEC. Experiment 4
with nine real datasets from UCI repository is presented to
evaluate the performance of the DEC method.

Except for the parameters set in the experiments, the others
are all defaults. Since the introduction of meta-cluster in ECM
[3], the error rate and imprecision rate [25] are used as the
indicators of different methods. The error rate denoted by
Re (in %) is calculated by Re = ne/n, where ne is the
number of clustering errors, and n is the number of objects
under the test. The imprecision rate denoted by Ri (in %)
is calculated by Ri = ni/n, where ni is number of objects
assigned to meta-clusters. Moreover, we also evaluate the
clustering resuts using Credal Rand Index (CRI) [36], which
is employed to measure the closeness of credal partition and

ground truth. The upper bound of CRI is 1, a larger value
corresponds to a better clustering result. In order to compare
the computational complexity of all algorithms more fairly, in
ECM and BPEC, the authors consider to limit the number of
elements in meta-clusters is equal to 2 except for Ω. In CCM,
the number of focal elements in meta-cluster is limited to 2
by a given threshold tc = 2. For more detailed explanation,
please refer to [3], [25], [26]. In addition to the above indexes,
pieces of literature [37]-[39] put forward some other optimality
criteria. Here we employ the objective function value and
the number of iterations to evaluate the performance of the
proposed method. In the tests, we report the mean of the
above-mentioned indexes based on all methods that have been
run 10 times. The elapsed time denoted by T (in second, s).

A. Experiment 1

This experiment is mainly to explain the use of the DEC
in clustering on two 3-class datasets clearly, which we called
Gaussian Data and Round Shape Data, respectively.

(1) Gaussian Data: Let’s consider a 3-class gaussian
dataset, as shown in Fig. 3, to test ECM and DEC. The
set has 3 × 100 = 300 data points from three 2D Gaussian
distributions with the mean variance parameters as follows:

µ1 = (3, 3),Σ1 = 1.5I

µ2 = (0, 0),Σ2 = I

µ3 = (8, 8),Σ3 = I

where µi (i = 1, 2, 3) is the mean vector, Σi (i = 1, 2, 3) is
the covariance matrix, and I is the identity matrix.

In ECM and DEC, the noise threshold is set as δ = 5,
and other parameters are the defaults. The clustering results
of different methods are shown in Fig. 3 (b)-(c).

One can see from Fig. 3 (a) that there are some objects in
the overlapping zones of different clusters ω1 and ω2, which
are difficult to be correctly distinguished for the clusters. The
clusters ω2 and ω3 are far apart, however, many of the objects
belonging to ω1 are incorrectly assigned to the meta-cluster
ω2,3 labeled by pink plus in ECM, as shown in Fig. 3 (b). In
addition, lots of objects belonging to ω1 are assigned to the
total ignorant cluster ω1,2,3 labeled by the black multiplier.
Meanwhile, some objects belonging to ω1 are assigned to the
meta-cluster ω1,3 labeled by the green plus, although there is
no overlapping zone between ω1 and ω3. These unreasonable
clustering results are mainly caused by the close proximity
of different cluster centers (i.e. v1,v2,3,v1,2,3). In contrast,
there is no object in DEC assigned to the meta-clusters ω2,3

and ω1,2,3, as shown in Fig. 3 (c), and the objects in the
overlapping zone are reasonably assigned to the corresponding
meta-cluster ω1,2. The DEC has obtained reasonable results,
which not only reduces the clustering error rate but also
reduces the clustering imprecision compared with ECM.

(2) Round Shape Data: We consider a particular 3-class
dataset in the round shape as shown in Fig. 4 (a), and some
objects are in the overlapping zones. The dataset consists of
594 data points, including 3 outlier data points. The radius of
the round is r = 2 and the centers of the three rounds are
given by the points c1 = (1.5, 2.5), c2 = (0, 0), c3 = (3, 0).



7

-4 -2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

w
1

w
2

w
3

(a)

-4 -2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

w
1

w
2

w
3

w
1,2

w
1,3

w
2,3

w
1,2,3

center

(b)

-4 -2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

w
1

w
2

w
3

w
1,2

center

(c)

Figure 3: Clustering results of 3-class of gaussian dataset by different methods. (a) Original gaussian data. (b) Clustering result
of ECM (Re = 3.00, Ri = 8.00, T = 0.3011s). (c) Clustering result of DEC (Re = 1.00, Ri = 4.00, T = 0.0028s).
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Figure 4: Clustering results of 3-class of round shape dataset by different methods. (a) Original artificial data. (b) Clustering
result of CCM (Re = 7.07, Ri = 17.34, T = 0.5897s). (c) Clustering result of DEC (Re = 4.23, Ri = 20.81, T = 0.0072s).

Here CCM and DEC are applied to clustering the dataset
with δ = 3. Fig. 4 (b)-(c) show the clustering results of CCM
and DEC respectively. The error rate (in %), the imprecision
rate (in %), and computation time (s) of these methods are
given in the caption of each subfigure.

As we can see from Fig. 4 (a), the objects in the clusters ω1,
ω2, and ω3 overlap partially at their edges, and these objects in
overlapping zones are difficult to cluster accurately and clearly.
In Fig. 4 (b), we can see that CCM assigns data points in the
overlapping zones of different clusters to the corresponding
meta-clusters: ω1,2, ω1,3, ω2,3. However, some objects in the
middle zone of these three clusters are not accurately assigned.
This unreasonable assignment is mainly because the meta-
cluster threshold is selected as tc = 2 in CCM. This also
shows that it may be unreasonable for ECM and CCM to
reduce the computational burden by limiting the number of
elements in the meta-cluster in a few cases.

In Fig. 4 (c), the DEC assigns the objects in the overlapping
zones of ω1 and ω2, ω1 and ω3, ω2 and ω3 to meta-clusters
ω1,2, ω1,3 and ω2,3. Meanwhile, the DEC can reasonably
assign the objects in the overlapping zone of these three
clusters to the meta-cluster ω1,2,3 because these objects are
totally unrecognized. Three objects labeled with the black
hexagram are far away from the others, the CCM and DEC
have better detection, and all of them are regarded as the out-
liers. Meanwhile, the execution time of DEC is much shorter

than that of CCM, which indicates that the computational
complexity of DEC is significantly less than CCM.

B. Experiment 2

In this experiment, we consider a 4-class square dataset
including 1000 data points in each cluster with c = 4 as
shown in Fig. 5, and there are two outliers in the dataset. The
distribution intervals of the 4-class of dataset is as follows:

x-label interval y-label interval
ω1 (-1, 1) (-1, 1)
ω2 (0.5, 2.5) (0.5, 2.5)
ω3 (2, 4) (-1, 1)
ω4 (0.5, 2.5) (-2.5, -0.5)

C-means, FCM, NC, ECM, CCM, BPEC, and DEC are
applied to clustering the dataset. NC, ECM, CCM, BPEC and
DEC use the same outlier threshold δ = 2. In BPEC, we take
K = 400. In DEC, we take ϕ = 0.2 and ϕ = 0.3 to test
the effect of parameter adjustment in different methods on the
results. The clustering results of seven methods are shown in
Fig. 5 (b)-(i). The error rate (in %), the imprecision rate (in
%), and computation time (s) of these methods are given in
the caption of each subfigure.

As we can see from Fig. 5 (a), the edges of different clusters
are overlapping partially, and the objects in the zones are
difficult to be clustered accurately and clearly. However, the



8

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

outlier
w

1

w
2

w
3

w
4

(a)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

center

(b)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

center

(c)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

center

(d)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

w
1,2

w
1,3

w
1,4

w
2,3

w
2,4

w
3,4

center

(e)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

w
1,2

w
1,4

w
2,3

w
3,4

center

(f)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

w
1,2

w
1,3

w
1,4

w
2,3

w
2,4

w
3,4

center

(g)

-2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

w
1

w
2

w
3

w
4

w
1,2

w
1,4

w
2,3

w
3,4

center

(h)
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Figure 5: Clustering results of 4-class of square dataset by different methods. (a) Original square data. (b) Clustering result
of C-means (Re = 4.32, T = 0.0113s). (c) Clustering result of FCM (Re = 4.37, T = 0.0321s). (d) Clustering result of
NC (Re = 4.38, T = 0.0445s). (e) Clustering result of ECM (Re = 0.30, Ri = 18.79, T = 6.83s). (f) Clustering result
of CCM (Re = 1.12, Ri = 9.72, T = 5.35s). (g) Clustering result of BPEC (Re = 0.32, Ri = 15.17, T = 10.22s). (h)
Clustering result of DEC with ϕ = 0.2 (Re = 1.50, Ri = 8.38, T = 0.0799s). (i) Clustering result of DEC with ϕ = 0.3
(Re = 0.78, Ri = 12.50, T = 0.1090s).

C-means and the FCM, as shown in Fig. 5 (b) and (c), cluster
these objects into only four singleton clusters ω1, ω2, ω3 and
ω4 based on the probability framework, and the objects in
overlapping zones are assigned to different singleton clusters,
which is obviously unreasonable. In Fig. 5 (a), two objects
labeled black hexagram are farther away from other objects,
which also called outliers, C-means and FCM cannot detect
these outliers, and assign them to ω1 and ω3 respectively. The
NC in Fig. 5 (d) can effectively assign the two objects to
outliers, but there are still some errors for those objects in
different overlapping zones.

In ECM and BPEC, some objects from the specific clusters
are unreasonably assigned to the meta-clusters. This is because

the centers of some meta-clusters and that of singleton clusters
are very close locally. For example, several objects in the
cluster ω1 and ω3 are incorrectly assigned to the meta-
cluster ω2,4 labeled with the black plus. However, the CCM
and DEC can address this problem well. One can find that
only the objects in overlapping zones that are difficult to be
clustered clearly and accurately are assigned to meta-clusters.
For instance, the objects in the overlapping zones of ω1, ω2,
and ω4 are reasonably assigned to meta-clusters ω1,2 and ω1,4.
In addition, with the increases of ϕ from ϕ = 0.2 to ϕ = 0.3,
increasingly objects will be assigned to the meta-clusters, as
shown in Fig. 5 (h)-(i). Although there is little difference in
the error rate between CCM and DEC, the execution time
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of the DEC is obviously lower than that of CCM, and the
DEC will be a good choice when the real-time requirement
for computing is high in engineering applications.

C. Experiment 3

In the third experiment, we test the methods on the dataset
consisting of 180000 points generated by different Gaussian
distributions where each class contains 30000 data points. The
dataset is shown in Fig. 6 (a). Here we take δ = 10, and
the meta-cluster threshold ϕ = 0.2 and ϕ = 0.3 in DEC.
The results obtained by different methods are specified in the
caption of each subfigure.

In Fig. 6 (a), one can clearly see that the objects in the
overlapping zones are difficult to be accurately assigned to sin-
gleton clusters. The ECM and BPEC obtain similar clustering
results in Fig. 6 (b) and (d), and they assign the imprecise ob-
jects to the corresponding meta-clusters with credal partition,
for instance, the objects lying in the overlapping zones of ω1

and ω2 are assigned to the meta-cluster ω1,2. However, ECM
and BPEC also unreasonably assign the objects that originally
belong to singleton clusters to the unrelated meta-clusters. In
Fig. 6 (a), ω2 and ω6 are completely separated, for example,
ECM and BPEC still assign some objects belonging to ω1 to
the meta-cluster ω2,6 labeled by purple plus.

CCM and DEC overcome the limitation since the mass of
belief of the object belonging to the meta-cluster is related not
only to the distance from the object to the meta-cluster center
but also to the distance between the object and the centers of
the singleton clusters included in the meta-cluster. Therefore,
in CCM and DEC, only imprecise objects in overlapping
zones of different clusters are assigned to appropriate meta-
clusters as shown in Fig. 6 (c) and (e)-(f). Whereas CCM and
DEC are different in some cases, especially the computational
complexity of DEC is much lower than that of CCM, which
greatly expands the use of DEC especially in big data. From
Fig. 6, one can see that the DEC take only T = 85.31(s) and
T = 110.90(s) under different meta-clusters threshold, while
ECM, CCM and BPEC take T = 4354.21(s), T = 3833.51(s)
and T = 10534.04(s) respectively. In DEC, it will lead to a
slight increase in the number of objects assigned to meta-
clusters with the increase of ϕ (e.g., ϕ = 0.2 and ϕ = 0.3).
In the applications, one can adjust the parameter ϕ according
to the acceptable imprecision rate.

D. Experiment 4

In this experiment, nine real-world datasets are selected
from the UCI repository to test the performance of DEC
with respect to ECM, CCM, and BPEC. The basic infor-
mation of nine datasets including the number of clusters
(#Clus.), attributes (#Attr.), and instances (#Inst.) are shown
in Table II, and all the detailed information can be found at
http://archive.ics.uci.edu/ml/.

For the Iris and Seeds datasets, the outlier thresholds of
ECM, CCM, BPEC, and DEC are set as δ = 10, and the
Haberman and Appendicitis datasets with δ = 100, while
for other datasets, the outlier thresholds are δ = 1000.
Furthermore, the number of nearest neighbors and quantile

Table II: Basic information of the used datasets.
Name #Clus. #Attr. #Inst.

Iris 3 4 150
Seeds 3 7 210

Haberman 2 3 306
Wine 3 13 178
Magic 2 10 19020

Contraceptive 3 9 1573
Vehicle 4 18 846

Satimage 7 36 6435
Glass 7 9 214

of these nearest neighbors are set for BPEC as follows, for
the nine datasets from Iris to Appendicitis: (30,0.5), (20,0.9),
(20,0.9), (15,0.5), (300,0.9), (115,0.9), (100, 0.9), (500, 0.9)
and (5, 0.5). The other parameters in this experiment are
default. The clustering results of these datasets by different
methods are shown in Table III.

For most of the datasets, CCM and DEC usually obtain
similar results, they provide fewer errors than ECM and BPEC.
For the Wine dataset, the error rate of ECM and BPEC is lower
than that of DEC, whereas its imprecision is much higher, and
even some objects are assigned to total ignorant cluster Ω. In
parallel, DEC has the highest CRI values in most situations,
which truly shows the results obtained by the DEC are much
more reasonable. The execution time of DEC is much lower
than that of ECM, CCM, and BPEC, especially in the case of
a large number of instances or clusters, which indicates that
the DEC can still ensure good performance.

Furthermore, we visualize the clustering result of Iris real
dataset in Fig. 7. Four features are measured from each object.
They are the length and width of sepal and petal. From the
original dataset shown in Fig. 7 (a) and (g), we can see
that ω1 is significantly distinct from ω2 and ω3, but ω2 and
ω3 are partially overlapped. These four methods can easily
separate ω1 from ω2 and ω3. However, it is difficult to separate
ω2 and ω3 in the overlapping zone. In ECM, CCM, and
BPEC, although several objects in the overlapping zone are
assigned to the meta-clusters, there are still some objects
that are misclassified. In DEC, the error rate of clustering
is significantly reduced when the meta-cluster threshold is
from ϕ = 0.2 to ϕ = 0.3. More precisely, the number of
objects with error clustering is reduced from 11 to 8, while
the number of objects in the meta-clusters is increased from
10 to 13. The experiment shows that some objects in the
overlapping zone, which are misclassified by other methods,
are regarded as imprecise objects and then carefully assigned
to the corresponding meta-clusters in DEC.

Fig. 8 shows the ROC curves for imprecision rates and
error rates of ECM and DEC based on different datasets,
where the x-axis denotes the mean of the imprecision rate,
and the y-axis denotes the mean of the error rate with scale
reversed. From Fig. 8, one can intuitively find that different
clustering results can be obtained by adjusting parameters α
and ϕ in ECM and DEC. More precisely, with the reduction of
error rate, the imprecision rate will increment correspondingly.
Interestingly, one can also see from Fig. 8 that the error rate
of DEC, in most cases, is lower than that of ECM when
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(d) (e) (f)

Figure 6: Clustering results of 6-class of dataset by different methods. (a) Original artificial data. (b) Clustering result of ECM
(Re = 1.13, Ri = 1.23, T = 4354.21s). (c) Clustering result of CCM (Re = 0, Ri = 0.30, T = 3833.51s). (d) Clustering result
of BPEC (Re = 0.82, Ri = 1.14, T = 10534.04s). (e) Clustering result of DEC with ϕ = 0.2 (Re = 0, Ri = 0.21, T = 85.31s).
(f) Clustering result of DEC with ϕ = 0.3 (Re = 0, Ri = 0.44, T = 110.90s).

the methods have the same imprecision rate. In practical
applications, both ECM and DEC can control the number
of objects assigned to the meta-clusters by adjusting the
parameters thereby controlling the imprecision rate. Moreover,
the value of ϕ in DEC determines different partition methods.
The DEC becomes a fuzzy/possibilistic partition when ϕ = 0,
i.e. all objects are assigned to different singleton clusters,
and DEC has a traditional credal partition when ϕ = 1,
i.e. all objects are imprecise ones, which are assigned to
singleton clusters or meta-clusters under the power-set 2Ω. The
result of DEC also present that the known information does
not allow us to accurately classify the objects in the meta-
clusters. If one wants to get more accurate results, some other
(possibly expensive) techniques seem necessary to distinguish
and classify these imprecise objects.

In order to verify the effectiveness of the DEC method from
different perspectives, Table IV shows the objective function
values and number of iterations of all datasets. One can see
from Table IV that the number of iterations required for
convergence of the DEC method is significantly less than
that of ECM and CCM. For some datasets, however, the final
objective function value of DEC is greater than that of ECM
and CCM. The reason is that the objective function value of
an object depends mainly on the mass of belief of its most
believed cluster and its distance from the cluster center. We can
find that although DEC, ECM, and CCM can assign objects
to the most believed singleton cluster, the mass of beliefs for

the objects belonging to the most believed cluster in DEC is
greater than that of ECM and CCM. This is because most
precise objects are directly assigned to the c singleton clusters
in DEC without considering meta-clusters, which will result in
a greater mass of beliefs compared to that of ECM and CCM.
Thus, the objective function value of DEC is sometimes greater
than that of ECM and CCM, especially when the number of
clusters is large.

V. MANAGERIAL IMPLICATION

The management of parameters and sensitivity analysis are
important components for the application of the proposed
method [40]-[43]. In this paper, three parameters, i.e. the
meta-cluster threshold ϕ, the weighting exponent β and the
outlier threshold δ, are involved in the proposed DEC method.
Since the parameters β and δ has been discussed in a number
of works, we mainly focus on the choice of the threshold
ϕ in this part. One can find that the proposed DEC method
can deal with fuzzy partition/classical credal partition/dynamic
credal partition mode switching by controlling the threshold
ϕ. This can help us to achieve fuzzy partition when imprecise
information is not allowed in the results. However, sometimes
users are more willing to obtain reliable imprecise results
because the risk of incorrect clustering may be unbearable.
In such a case, DEC can switch to dynamic credal partition,
which greatly reduces the computational complexity compared
to traditional credal partition.
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(a) Original dataset.
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(b) Clustering results of ECM.
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(c) Clustering results of CCM.
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(d) Clustering results of BPEC.
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(e) Clustering results of DEC with ϕ = 0.2.
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(f) Clustering results of DEC with ϕ = 0.3.
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(g) Original dataset.
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(h) Clustering results of ECM.
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(i) Clustering results of CCM.
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(j) Clustering results of BPEC.
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(k) Clustering results of DEC with ϕ = 0.2.
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(l) Clustering results of DEC with ϕ = 0.3.

Figure 7: Clustering results of Iris dataset.
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(b) Haberman data.
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(c) Wine data.
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(d) Magic data.
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(e) Contraceptive data.
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(f) Vehicle data.

Figure 8: ROC curves for imprecision rates and error rates of ECM and DEC based on different datasets.
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(a) Iris data.
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(b) Seeds data.
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(c) Magic data.
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(d) Contraceptive data.

Figure 9: Clustering results of different datasets for various ϕ.

Fig. 9 shows the statistical results of the error and impreci-
sion rates based on the Iris, Seeds, Magic, and Contraceptive
datasets as ϕ changes from 0 to 1. It is easy to see that as
ϕ increases the error rate decreases and the inaccuracy rate
increases, but this does not last forever. The method has a
high sensitivity when ϕ = 0.4, as measured from the point of
view of prudent decision-making, which is consistent with our
intuition. This also demonstrates the validity of the method,
i.e. it is time-consuming and pointless to subject all query
objects to the power-set 2Ω. However, this does not imply

that ϕ = 0.4 is the only value to be taken, as there are also
applications where it is desirable to obtain precise clustering
results. Therefore, we suggest that ϕ ∈ [0, 0.4] and ϕ = 0.3
as the default. The user should set the threshold ϕ based on
an acceptable imprecision rate.

VI. CONCLUSIONS

A new dynamic evidential clustering algorithm (DEC) has
been developed for imprecise objects thanks to the credal
partition, which provides a dynamic edited framework MΩ

i

(MΩ
i ⊂ 2Ω) including several close singleton clusters and

related meta-clusters for each imprecise object to be assigned
more reasonably. The DEC overcomes the shortcomings of
ECM [3] and CCM [25] and greatly reduces the time-
consuming because it eliminates the possible negative impact
of other meta-clusters on imprecise objects and also avoids
a large number of invalid computations compared with the
framework of power-set 2Ω. The proposed method (DEC)
can effectively extend the applications of credal partition,
especially in big data, because it reduces the computational
complexity of credal partition to a level similar to that of the
fuzzy and possibilistic partition (such as FCM [6], PCM [9],
and NC [14]). Four experiments with artificial and real datasets
have been done to verify the performance of the proposed
DEC method with respect to other methods. It should be noted
that in credal partition, once the object is assigned to the
meta-cluster, the object may belong to any singleton cluster
included in the meta-cluster under the known information,
which is also one of the advantages of credal partition – it
can reasonably characterize and represent the imprecision and
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uncertainty caused by a variety of reasons. If one wants to get
more precise results, some other (possibly costly) techniques
or information sources must be developed and used for the
imprecise objects rather than enforce assigning to increase the
risk of errors. In addition, one can find that the imprecision
rate increases as ϕ increases in a smaller range (not [0,1]), but
it does not continue. This is consistent with our assumption
that only part of the objects’ cluster information is imprecise.
Therefore, we recommend that ϕ = 0.3 is the default value.
We will try to give a method of optimizing the threshold ϕ
for different specific datasets in future work.

Table III: Clustering results of different datasets (in %).
Data Set ECM CCM BPEC DEC

Re 8.00 5.33 6.00 5.33
Iris Ri 4.67 8.00 8.00 8.67

CRI 0.8509 0.8631 0.8549 0.9184
T 0.1600 0.0695 0.2949 0.0050
Re 7.62 5.71 7.62 5.71

Seeds Ri 11.43 10.00 10.00 10.95
CRI 0.7977 0.7912 0.7760 0.8367
T 0.0754 0.0730 0.3810 0.0075
Re 43.46 42.16 39.87 42.16

Haberman Ri 11.11 12.42 15.03 12.42
CRI 0.6631 0.7064 0.6821 0.5494
T 0.0912 0.0883 0.2943 0.0104
Re 17.98 27.53 18.54 26.97

Wine Ri 32.02 9.55 29.21 7.30
CRI 0.8207 0.7343 0.8076 0.8814
T 0.5020 0.3813 0.9520 0.0086
Re 43.32 39.33 40.85 37.15

Magic Ri 0.37 8.25 18.05 10.88
CRI 0.6245 0.7421 0.6987 0.5754
T 9.15 9.05 34.66 0.6273
Re 57.91 56.48 54.38 56.82

Contraceptive Ri 7.49 8.35 12.90 12.90
CRI 0.6245 0.6419 0.6519 0.7712
T 2.63 1.53 4.29 0.0600
Re 52.84 51.73 54.14 48.23

Vehicle Ri 8.16 6.03 6.38 10.28
CRI 0.7490 0.7973 0.7558 0.7251
T 2.77 1.69 3.92 0.0626
Re 28.08 30.54 31.45 24.07

Satimage Ri 5.44 8.66 4.83 12.56
CRI 0.7279 0.7523 0.7101 0.8482
T 23.72 18.17 44.58 1.70
Re 48.13 47.66 49.07 46.26

Glass Ri 2.34 6.07 2.34 13.08
CRI 0.6470 0.7007 0.6411 0.7805
T 0.6993 0.3673 2.15 0.0678
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Haberman CCM 15519.06 23
DEC 18860.38 17
ECM 796031.24 75
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