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Abstract—Information granules have been considered to be the 

fundamental constructs of Granular Computing (GrC). As a 

useful unsupervised learning technique, Fuzzy C-Means (FCM) is 

one of the most frequently used methods to construct information 

granules. The FCM-based granulation-degranulation mechanism 

plays a pivotal role in GrC. In this paper, to enhance the quality of 

the degranulation (reconstruction) process, we augment the 

FCM-based degranulation mechanism by introducing a vector of 

fuzzification factors (fuzzification factor vector) and setting up an 

adjustment mechanism to modify the prototypes and the partition 

matrix. The design is regarded as an optimization problem, which 

is guided by a reconstruction criterion. In the proposed scheme, 

the initial partition matrix and prototypes are generated by the 

FCM. Then a fuzzification factor vector is introduced to form an 

appropriate fuzzification factor for each cluster to build up an 

adjustment scheme of modifying the prototypes and the partition 

matrix. With the supervised learning mode of the 

granulation-degranulation process, we construct a composite 

objective function of the fuzzification factor vector, the prototypes 

and the partition matrix. Subsequently, the particle swarm 

optimization (PSO) is employed to optimize the fuzzification 

factor vector to refine the prototypes and develop the optimal 

partition matrix. Finally, the reconstruction performance of the 

FCM algorithm is enhanced. We offer a thorough analysis of the 

developed scheme. In particular, we show that the classical FCM 

algorithm forms a special case of the proposed scheme. 

Experiments completed for both synthetic and publicly available 

datasets show that the proposed approach outperforms the 

generic data reconstruction approach. 

Index Terms—Granulation-degranulation mechanism, Fuzzy 

C-Means (FCM), granular computing, fuzzification factor vector, 

particle swarm optimization (PSO). 

I. INTRODUCTION 

ranular Computing (GrC) is a computation paradigm and 

emerging conceptual framework of information 
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processing, which plays an important role in many areas [1]. 

Information granules are considered to be the fundamental 

building blocks of GrC. As a useful unsupervised learning 
technique, fuzzy clustering has become a powerful approach to 

information granulation [2]. It offers a suite of algorithms 

aiming at the discovery of a structure in the given dataset [3]. 

This type of approach partitions a given input space into several 

regions, depending upon some preselected similarity measures. 

One of the most widely used and effective fuzzy clustering 

approaches is Fuzzy C-Means (FCM) [4]. It has been 

experimentally demonstrated that quite commonly this 

algorithm improves the performance of classification compared 

with the traditional clustering algorithms. 

From the general viewpoint, the FCM is usually regarded as 

a granular information technique, where information granule is 
represented by its prototype (center of the cluster) and a 

partition matrix. Both descriptors are numeric. With the aid of 

constructed prototypes and partitions [5], data are encoded into 

information granules. In other words, numeric data are 

described as prototypes and partition matrices, which is the 

so-called granulation mechanism. Clustering granular instead 

of numeric data provides a novel and interesting avenue of 

investigation [6]. Cluster prototypes and partition matrices are 

obtained by optimizing the fuzzy set-based clustering model [7]. 

In the FCM-based granulation progress, fuzzy clustering 

approaches are used to cluster the numerical data into fuzzy 
information granules [8-15]. Degranulation, as an inverse 

problem of granulation that involves the reconstruction of 

numeric results on the basis of already constructed information 

granules, is also task worth studying. The reconstruction is 

usually referred to as a degranulation or decoding process. To 

some extent degranulation can also reflect the performance of 

granulation mechanism (classification performance of the 

fuzzy clustering) [2, 5]. 

The mechanism of granulation-degranulation [16] involves a 

series of processes of dealing with fuzzy information granules. 

It plays an important role in GrC, just as analog-to-digital (A/D) 

conversion as well as digital-to-analog (D/A) conversion in the 
field of signal processing [17], and 

fuzzification-defuzzification in the field of fuzzy control 

systems. The classification rate and reconstruction 

(degranulation) error are often used as the performance 

evaluation indexes of the FCM-based 

granulation-degranulation mechanism. Previous studies 

indicate that the reconstruction (degranulation) and the 

classification (granulation) are related to each other [4]. In most 

cases, the smaller the degranulation error is, the better the 

performance of granulation becomes [4]. 

In [18], the reconstructed data supervised by the original data 
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is introduced into the FCM clustering, which makes the 

performance of fuzzy clustering enhanced. To improve the 

quality of degranulation, in [5] Hu et al. use a linear 

transformation of the membership matrix to refine the 

prototypes, making the granulation-degranulation mechanism 
optimized. In [19], Rubio et al. combine the GrC and 

granulation-degranulation mechanism to design a 

granular-based FCM algorithm that makes the numerical data 

more reflective. 

Hitherto, the mechanism of granulation-degranulation has 

not been widely and deeply touched upon. The lack of a 

well-established body of knowledge breaks up new 

opportunities and calls for more investigations in this area. 

The main objective of the paper is to develop an enhanced 

scheme of data reconstruction to improve the performance of 

the degranulation mechanism. In the proposed scheme, the 

notion of fuzzification factor vector is introduced such that we 
can assign an appropriate fuzzification factor to each prototype. 

Then, an adjustment mechanism of the prototype and the 

partition matrix is established in the supervised learning mode 

of the granulation-degranulation mechanism. Subsequently, 

particle swarm optimization (PSO) [20] is used to determine an 

optimal fuzzification factor vector by minimizing the 

degranulation error. Thus, with the optimal fuzzification factor 

vector, a reasonable partition matrix and a collection of the 

optimized prototypes are obtained. Finally, the performance of 

degranulation mechanism (reconstruction) is enhanced. The 

augmented granulation-degranulation mechanism can obtain 
superior quality reconstructed data through the modified 

partition matrix and the refined prototypes. Both the theoretical 

investigations and experimental results demonstrate that the 

proposed scheme outperforms the generic way of data 

degranulation. To the best of our knowledge, the idea of the 

proposed approach has not been exposed in previous studies. 

This paper is organized as follows. A generic way of data 

granulation and degranulation is briefly reviewed in Section II. 

The theory of the proposed scheme is introduced in Section III. 

Section IV includes experimental setup and the analysis of 

experiments. Section V concludes this paper. 

II. GRANULATION-DEGRANULATION MECHANISM 

In this part, we briefly review the FCM-based granulation- 

degranulation process. 

A. Granulation 

With an FCM algorithm, the structure in a dataset 

( )nRX X  is expressed in terms of prototypes (clusters) and a 

partition matrix. Then, the dataset is encoded into fuzzy 
information granules with the aid of the constructed prototypes 

and the partition matrix, which is the called granulation. The 

FCM algorithm minimizes the distance-based cost function 

[21-22]: 
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where ( 1,2, , )i i N=x  is the ith data of X , ( 1,2, , )j j C=v  is 

the jth prototype (center) of the cluster, ij  is the degree of 

membership of the ith data belonging to the jth prototype, and 
( 1)m m   is a scalar representing the fuzzification factor 

(coefficient) that exhibits a significant impact on the form of 

the developed clusters [17].  stands for a certain distance 

function (in this paper, the weighted Euclidean distance is used) 

[17]. The above cost function is minimized by iteratively 

updating the partition matrix U and the prototype matrix V [23], 

i.e., 
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where T stands for the transpose operation [24]. Thus, with the 

FCM, the dataset X  is expressed as the prototype matrix V  

and the partition matrix U . 

B. Degranulation 

As an inverse problem of granulation, the degranulation 

involves the reconstruction of numeric results on the basis of 

already constructed information granules, more specifically the 

prototypes of the clusters. The form of the degranulation 
formula results from the minimization of the objective 

function: 

( )
2

2

1 1 1 1

N C N C
m m

i j i j i j i j

i j i j

J d 
= = = =

= = − x x v              (4) 

Using the method of Lagrange multipliers, we find a minimum 

of the objective function, the reconstructed data can be solved 

as follows: 
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where   is the Lagrange multiplier. We determine partial 

derivative of ix  with respect to J  and make it equal to zero. 

The solution to the reconstruction problem comes as follows: 
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It can be seen from (7) that each prototype is weighted by the 

corresponding coordinates of  , and the fuzzification factor is 

an integral part of this aggregation of the prototypes.  
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Fig. 1. Encoding and decoding of numeric data through fuzzy 

information granules. 

The FCM-based granulation-degranulation mechanism can 

be organized in the two phases [17] as displayed in Fig. 1. 

III. AN ENHANCED SCHEME OF DEGRANULATION MECHANISM 

As mentioned above, the fuzzification factor is an important 

parameter in FCM-based granulation-degranulation 

mechanism, which exhibits a significant impact on the form of 

the developed clusters. In the existing methods the fuzzification 

factor is usually set as a numerical value (a scalar) for a dataset 

to adjust (control) the resulting prototypes and indirectly affect 

the partition matrix. However, for most datasets the 

contribution of each datum to the prototypes is significantly 

different. In other words, the performance of the degranulation 

can be enhanced by setting an appropriate fuzzification factor 

for each prototype. In this section we build a supervised model 

of granulation-degranulation mechanism and optimize it to 
improve the performance of degranulation mechanism. 

In this study, the degranulation error is quantified the 

following expression 

2

1 ˆ
eR

N
= −X X                               (8) 

where 
2

A   is the  2-norm [25], expressed as 

max2
=A                               (9) 

where max  is the largest eigenvalue of H
A A , and H represents 

the conjugate transpose [26]. Obviously, the value of eR  is 

affected by the number of clusters C and the fuzzification factor 

m. Next, we concentrate on the detailed realization of the 

augmentation of degranulation mechanism. 

A. Construction of an Objective Function of a Fuzzification 

Factor Vector 

In order to facilitate the analysis and ensuing design, two 

expressions of granulation-degranulation mechanism are 

established: 
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where 1[ , , , ]jm m=m  is a fuzzification factor vector. The 

dimensionality of m
U is C N  and its elements take the form 
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It is clear that in the generic way of data granulation and 

degranulation all the elements of the fuzzification factor vector 

are equal 1 2( )jm m m= = = . To obtain a sound vector of 

fuzzification factors, we build and optimize a composite 
objective function in the form: 
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We have to determine the optimal fuzzification factor vector to 
refine the prototypes and optimize the partition matrix so as to 

minimize the objective function f . 

B. Optimization of the Composite Objective Function with 

Particle Swarm Optimization (PSO) 

The model proposed in this study consists of two stages: an 

unsupervised clustering (granulation mechanism) stage, and a 

supervised refinement stage (supervised by the degranulation 

mechanism). 

At the first stage, a dataset X  is granulated into the partition 

matrix U and the prototypes V with the FCM algorithm. To 

further improve the performance of degranulation (data 

reconstruction), at the second stage, a reconstruction criterion is 

introduced to supervise and refine the prototypes to determine a 

more reasonable partition matrix. Thus, the performance of 

degranulation is enhanced. 

More specifically, we first set an initial fuzzification factor 
vector 0m  for the partition matrix to form the prototypes a 

disturbance according to (15-a). The modified prototypes are 

expressed as follows: 

( )0
ˆ =V V m                                (16) 

Then, with the new prototypes we modify the partition 

matrix in the following way  

2
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Subsequently, we calculate the reconstructed dataset 

(degranulation) X̂  according to (11) with the new partition 

matrix Û  and the prototypes V̂ . In the process of granulation 

and degranulation, we use eR  as a performance index to 

optimize the fuzzification factor vector to determine an 

acceptable fuzzification factor vector. 
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Fig. 2. An overall model: main processing phases. 

Obviously, the composite objective function leads to a 

possible multimodality problem, which is not effective enough 

to be solved with the traditional optimization approaches [20]. 

However, population-based optimization algorithms are 
promising alternatives. In this paper, we use particle swarm 

optimization (PSO) [27, 28] as an optimization vehicle. Fig. 2 

shows the flow of processing completed by the proposed 

scheme. 

IV. EXPERIMENTAL STUDIES 

A series of experiments involving a synthetic dataset and 
several publicly available datasets [29, 30] coming from the 

machine learning repository are reported. The objective of the 

experiments is to compare the reconstruction performance of 

the proposed method with the FCM method. All data are 

normalized to have zero mean and unit standard deviation.  

In the experiments, several different values of fuzzification 

coefficients and the number of clusters are considered. For each 

dataset the number of clusters is taken from 2 to 6, and the 

fuzzification coefficient m is taken from 1.1 to 5.1, with a step 

size of 0.5. For the proposed method, the initial fuzzification 
factor vector is set as , ,[ ]m m m, . The algorithms are repeated 

10 times and the means and standard deviations of the 

experimental results are presented. The algorithms terminate 

once the following termination condition has been met: 

( ) 5max 10−− U U                          (18) 

where U  is the partition matrix obtained at the previous 

iteration. 

In the proposed method, the PSO algorithm [31, 32] is used 

to optimize the fuzzification factor vector in the C-dimensional 

space, where the number of the particle is N, 

1 2[ , , ]i i i iCX X X X=  is the position vector of particle i, its 

velocity is 1 2[ , , ]i i i iCV V V V= , and its best position vector is 

1 2[ , , ]i i i iCP P P P= . 1 2[ , , ]g g g gCP P P P=  is the best position vector 

of all particles. Each particle velocity is updated in the 

following way: 

( ) ( )+1

1 1 2 2= +n n n n

i i i i g iV V c r P X c r P X− + −              (19) 

Then each particle position vector is updated by 
+1=n n n

i i iX X V+                               (20) 

In (19) and (20), 1c  and 1c  are cognitive weights, 1r  and 1r  are 

inertia weights drawn from [0, 1], and n  denotes evolutionary 

epochs [32].  

The steps of the algorithm are outlined as follows: 

1. Initialize the parameters of the algorithm, including the 

population size N, inertia weight, cognitive weight, social 

weight, pbest, gbest, etc [33]. 

2. Calculate the fitness of each particle according to (15-b). 

3. Calculate pbest for each particle and update gbest for the 
swarm. 

4: Update the velocity and the position of each particle 

according to (19) and (20); 

5: Repeat the above process (Step 2 to Step 4) until the 

termination condition has been reached. If the preconditions are 

met, then stop iteration, output the optimal solution. 

In the implementation of the PSO, the method is run for 

max 500t =  iterations with 75 particles; however, we allow the 

algorithm to be terminated if no changes in gbest [33] in max15%t  

consecutive iterations. The other parameters of PSO are listed 

below: inertia weight=0.8, cognitive weight=1.49445 and 

social weight=1.49445 which are by far the most commonly 

used values [34]. To estimate the effectiveness of the proposed 

approach, we use a 5-fold cross validation [4, 35], which is 

commonly used to estimate (and validate) the performance of 

granulation-degranulation models. 

 

Fig. 3. Synthetic dataset. 

A. Synthetic data 

First, we report the results of reconstruction performance for 

an illustrative 2-D synthetic dataset, with a number of 

individuals 450 and nine categories in detail. The geometry of 

the dataset is visualized in Fig. 3. The optimization of the 

reconstruction error and the corresponding fuzzification factor 

vector with PSO are plotted in Figs. 4 and 5, respectively. Figs. 

6 and 7 show the membership functions and their contour plots. 
It can be seen from Fig. 4 that the reconstruction error and the 

objective function decrease as the iterative process proceeds, 

which indicates that assigning an appropriate weight to each 

prototype can enhance the performance of the degranulation 

mechanism. In particular, the values of the starting position of 

two curves are obtained by using the FCM algorithm since we 

set the initial fuzzification factor vector as , ,[ ]m m m,  when 

using PSO. In addition, it also reflects that the objective 

function decreases with the reduction of reconstruction error. 
In the iterative process, the elements of the fuzzification 

factor vector become scatter and finally reach a steady-state. 
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Ultimately, the membership functions are optimized (the curves 

become smooth) with the fuzzification factor vector, as shown 

in Figs. 6 and 7. It can be seen from fig. 7 that with the proposed 

method, the fuzzy membership values around the prototypes 

are enlarged. In other words, the contributions of these data to 
the prototypes are enhanced, which also indirectly makes the 

other ones reduced.  

Then, in Figs. 8–10 we plot the results of the reconstruction 

errors (mean and standard deviation) of 5-fold cross validation 

with all the protocols [2] for the synthetic dataset and their 

corresponding fuzzification factors. Obviously, by assigning a 

reasonable fuzzification factor to each prototype, the 

reconstruction errors of the training set and the testing set are 

reduced. 

 
Fig. 4. Optimization of the reconstruction error with PSO. 

 
Fig. 5. The fuzzification factor vector with PSO. 

 

Fig. 6. Membership functions. 
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Fig. 7. Contour plots of membership functions. 

 

Fig. 8. Reconstruction errors of 5-fold cross validation with all 

the protocols for the synthetic dataset. 
Fig. 9. Fuzzification factor vector of the proposed algorithm for 

the synthetic dataset. 
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Fig. 10. Fuzzification factor of the FCM for the synthetic 

dataset. 

B. Publicly available data 

In this part, we report the results of reconstruction 

performance for eight publicly available datasets (see UCI 
machine learning repository for more details). The results of the 

reconstruction errors of 5-fold cross validation with all the 

protocols for the iris dataset and their corresponding 

fuzzification factors are plotted in Figs. 12–13. For the other 

publicly datasets we provide a list of the mean of the protocols 

which are summarized in Tables I–XII. It is noticeable that the 

reconstruction performance of all the datasets is improved with 

the use of the proposed approach, although the improvement of 

some datasets is not very significant. For several datasets the 

proposed scheme has significant advantages over the FCM 

algorithm, such as the iris, glass identification, statlog (heart) 

and connectionist bench datasets. For the wine and breast 
cancer datasets, the improvement is little, partially due to the 

dataset structure. In addition, as we have posted before, the 

FCM is a special case of the proposed approach. 

In other words, the fuzzification factor helps control the 

shape of the clusters (membership functions) and produce a 

balance between the membership grades close to 0 or 1 and 

those with intermediate values. Assigning different values to 

the fuzzification factor for each cluster increases the flexibility 

of the method (location of the prototypes); thus, the 

degranulation can be improved by optimizing the prototypes 

(assigning a reasonable fuzzy factor to each prototype). 
Furthermore, the degranulation (reconstruction error) is a 

function of the fuzzification factor as well as the number of 

clusters. As such it can serve as a suitable measure to choose 

the optimal values of these parameters. 

 
Fig. 11. Reconstruction errors of 5-fold cross validation with all 

the protocols for the iris dataset. 

 
Fig. 12. Values of the fuzzification factor vector of the 

proposed algorithm for the iris dataset. 



8 

 

arXiv, Preprint 2020 

 

 

 
Fig. 13. Fuzzification factor of the FCM for the iris dataset. 

Table I. Results of reconstruction error of the user dataset. 

Dataset User Knowledge Modeling 

C Methods FCM  Proposed method 

2 

Train 

0.0188 ± 0.0004 0.0186 ± 0.0004 

3 0.0170 ± 0.0004 0.0165 ± 0.0004 

4 0.0153 ± 0.0006 0.0152 ± 0.0005 

5 0.0143 ± 0.0002 0.0138 ± 0.0004 

6 0.0138 ± 0.0004 0.0131 ± 0.0003 

2 

Test 

0.0410 ± 0.0017 0.0410 ± 0.0017 

3 0.0374 ± 0.0028 0.0371 ± 0.0033 

4 0.0352 ± 0.0030 0.0351 ± 0.0025 

5 0.0349 ± 0.0022 0.0348 ± 0.0017 

6 0.0335 ± 0.0032 0.0333 ± 0.0033 

2 

Total 

0.0232 0.0231 

3 0.0211 0.0206 

4 0.0193 0.0192 

5 0.0184 0.0180 

6 0.0178 0.0172 

Mean 0.0200 0.0196 

2 

m & m 

1.20 [1.77, 1.76] 

3 2.10 [2.22, 1.95, 2.12] 

4 1.85 [1.177, 1.16, 1.17, 1.17] 

5 1.80 [2.44, 2.60, 2.89, 2.49, 2.84] 

6 1.80 [2.98, 2.51, 2.05, 2.605, 2.63, 2.38] 

Table II. Results of reconstruction error of the glass 

identification dataset. 

Dataset Glass Identification 

C Methods FCM  Proposed method 

2 

Train 

0.0172 ± 0.0008 0.0168 ± 0.0009 

3 0.0175 ± 0.0009 0.0157 ± 0.0009 

4 0.0155 ± 0.0009 0.0144 ± 0.0007 

5 0.0129 ± 0.0004 0.0123 ± 0.0002 

6 0.0123 ± 0.0005 0.0112 ± 0.0005 

2 

Test 

0.0417 ± 0.0083 0.0412 ± 0.0069 

3 0.0418 ± 0.0051 0.0375 ± 0.0052 

4 0.0391 ± 0.0052 0.0366 ± 0.0016 

5 0.0342 ± 0.0038 0.0341 ± 0.0046 

6 0.0323 ± 0.0030 0.0346 ± 0.0026 

2 

Total 

0.0221 0.0217 

3 0.0224 0.0200 

4 0.0202 0.0189 

5 0.0171 0.0166 

6 0.0163 0.0159 

Mean 0.0196 0.0186 

2 

m & m 

1.95 [1.13, 1.12] 

3 1.45 [3.22, 3.31, 2.92] 

4 1.45 [2.45, 1.86, 2.20, 2.11] 

5 2.45 [2.46, 1.89, 2.53, 2.42, 2.19] 

6 1.65 [1.48, 1.49, 1.43, 1.45, 1.50, 1.49] 

Table III. Results of reconstruction error of the statlog (heart) 

dataset. 

Dataset Statlog (Heart) 

C Methods FCM  Proposed method 

2 

Train 

0.0347 ± 0.0004 0.0345 ± 0.0004 

3 0.0326 ± 0.0005 0.0322 ± 0.0005 

4 0.0324 ± 0.0004 0.0320 ± 0.0004 

5 0.0321 ± 0.0004 0.0314 ± 0.0003 

6 0.0305 ± 0.0007 0.0289 ± 0.0010 

2 

Test 

0.0740 ± 0.0040 0.0741 ± 0.0025 

3 0.0706 ± 0.0028 0.0715 ± 0.0027 

4 0.0709 ± 0.0027 0.0709 ± 0.0027 

5 0.0706 ± 0.0032 0.0703 ± 0.0061 

6 0.0707 ± 0.0036 0.0702 ± 0.0055 

2 

Total 

0.0426 0.0425 

3 0.0402 0.0401 

4 0.0401 0.0397 

5 0.0398 0.0392 

6 0.0385 0.0372 

Mean 0.0402 0.0397 

2 

m & m 

1.60 [3.39, 3.45] 

3 1.90 [4.86, 4.82, 4.75] 

4 2.15 [3.64, 3.98, 4.14, 2.97] 

5 1.90 [3.49, 3.58, 3.05, 3.55, 3.07] 

6 1.80 [3.10,3.03, 3.27, 2.12, 3.04, 2.90] 

Table IV. Results of reconstruction error of the connectionist 

bench dataset. 

Dataset Connectionist Bench 

C Methods FCM  Proposed method 

2 

Train 

0.0569 ± 0.0011 0.0564 ± 0.0012 

3 0.0403 ± 0.0008 0.0389 ± 0.0007 

4 0.0391 ± 0.0006 0.0375 ± 0.0003 

5 0.0363 ± 0.0024 0.0345 ± 0.0024 

6 0.0335 ± 0.0015 0.0314 ± 0.0013 

2 

Test 

0.1227 ± 0.0063 0.1225 ± 0.0071 

3 0.0969 ± 0.0072 0.0975 ± 0.0054 

4 0.0964 ± 0.0041 0.0947 ± 0.0095 

5 0.0928 ± 0.0074 0.0914 ± 0.0085 

6 0.0908 ± 0.0081 0.0914 ± 0.0083 

2 

Total 

0.0701 0.0696 

3 0.0516 0.0506 

4 0.0506 0.0490 
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5 0.0476 0.0459 

6 0.0450 0.0434 

Mean 0.0530 0.0517 

2 

m & m 

1.20 [1.57, 1.46] 

3 2.10 [4.15, 4.26, 4.14] 

4 1.50 [2.96, 2.87, 2.95, 2.82] 

5 1.70 [2.52, 2.47, 2.55, 2.54, 2.66] 

6 1.75 [3.42, 3.267, 3.37, 3.14, 3.15, 3.43] 

Table IV. Results of reconstruction error of the wine dataset. 

Dataset Wine 

C Methods FCM  Proposed method 

2 

Train 

0.0233 ± 0.0003 0.0230 ± 0.0003 

3 0.0182 ± 0.0004 0.0181 ± 0.0004 

4 0.0175 ± 0.0004 0.0171 ± 0.0004 

5 0.0167 ± 0.0005 0.0162 ± 0.0004 

6 0.0159 ± 0.0004 0.0154 ± 0.0004 

2 

Test 

0.0515 ± 0.0048 0.0510 ± 0.0053 

3 0.0430 ± 0.0035 0.0432 ± 0.0062 

4 0.0429 ± 0.0034 0.0425 ± 0.0036 

5 0.0415 ± 0.0037 0.0416 ± 0.0031 

6 0.0406 ± 0.0034 0.0403 ± 0.0038 

2 

Total 

0.0290 0.0286 

3 0.0232 0.0232 

4 0.0226 0.0222 

5 0.0216 0.0213 

6 0.0209 0.0204 

Mean 0.0234 0.0231 

2 

m & m 

2.00 [1.12, 1.13] 

3 2.40 [1.12, 1.16, 1.12] 

4 1.70 [1.73, 1.58, 1.56, 1.52] 

5 1.25 [1.75, 1.76, 1.73, 1.82,1.77] 

6 1.45 [1.52, 1.43, 1.42, 1.66, 1.56, 1.58] 

Table V. Results of reconstruction error of the breast cancer 

dataset. 

Dataset Breast Cancer 

C Methods FCM  Proposed method 

2 

Train 

0.0337 ± 0.0001 0.0337 ± 0.0001 

3 0.0329 ± 0.0006 0.0328 ± 0.0006 

4 0.0265 ± 0.0005 0.0244 ± 0.0006 

5 0.0246 ± 0.0004 0.0234 ± 0.0001 

6 0.0236 ± 0.0005 0.0220 ± 0.0005 

2 

Test 

0.0704 ± 0.0002 0.0701 ± 0.0031 

3 0.0690 ± 0.0012 0.0707 ± 0.0010 

4 0.0592 ± 0.0030 0.0578 ± 0.0031 

5 0.0571 ± 0.0034 0.0562 ± 0.0022 

6 0.0528 ± 0.0042 0.0540 ± 0.0026 

2 

Total 

0.0410 0.0409 

3 0.0401 0.0404 

4 0.0330 0.0311 

5 0.0311 0.0300 

6 0.0294 0.0284 

Mean 0.0349 0.0342 

2 m & m 2.15 [2.83, 2.99] 

3 5.00 [4.59, 4.17, 4.49] 

4 2.30 [3.61, 3.97, 3.35, 3.35] 

5 3.50 [2.50, 2.01, 2.55, 2.18, 2.66] 

6 3.20 [1.72, 1.58, 1.82, 1.94, 1.74, 1.80] 

Table VI. Results of reconstruction error of the buddy move 

dataset. 

Dataset Buddy Move 

C Methods FCM  Proposed method 

2 

Train 

0.0187 ± 0.0002 0.0186 ± 0.0002 

3 0.0130 ± 0.0003 0.0129 ± 0.0003 

4 0.0124 ± 0.0005 0.0120 ± 0.0005 

5 0.0110 ± 0.0004 0.0105 ± 0.0003 

6 0.0100 ± 0.0004 0.0092 ± 0.0003 

2 

Test 

0.0383 ± 0.0017 0.0383 ± 0.0018 

3 0.0283 ± 0.0020 0.0292 ± 0.0021 

4 0.0274 ± 0.0021 0.0273 ± 0.0026 

5 0.0258 ± 0.0027 0.0253 ± 0.0028 

6 0.0222 ± 0.0009 0.0221 ± 0.0010 

2 

Total 

0.0226 0.0226 

3 0.0160 0.0162 

4 0.0154 0.0151 

5 0.0139 0.0134 

6 0.0124 0.0118 

Mean 0.0161 0.0158 

2 

m & m 

1.90 [1.83, 1.61] 

3 4.60 [3.81, 3.52, 4.21] 

4 3.90 [3.42, 3.61, 3.75, 3.50] 

5 3.30 [4.059, 3.95,3.83, 4.31,3.92] 

6 2.70 [2.83, 3.90, 3.99, 3.92, 3.65, 2.82] 

 

V. CONCLUSIONS 

In this study, we develop an enhanced scheme of the 

degranulation mechanism. During the design process, we 

define a vector of fuzzification factor to assign an appropriate 

fuzzification factor for each prototype. With the supervised 

learning mode of the granulation-degranulation, the PSO is 

used to optimize the entries of the vector of fuzzification factor 

to obtain optimal the prototypes and the partition matrix that 

ultimately enhance the performance of the degranulation 

mechanism. We carry out a comprehensive analysis and 

provide a series of experiments. Both of them demonstrate the 
effectiveness of the proposed scheme. To the best of our 

knowledge, this research scheme is exposed for the first time. 

We show that the algorithm can enhance the performance of the 

degranulation mechanism. Unfortunately, the proposed method 

involves the PSO optimization, leading to some additional 

computing overhead. 

The proposed models open a specific way for enhancing the 

performance of the degranulation mechanism and pose a more 

general problem concerning the reduction of computational 

complexity. Future work also includes the study of the deep 

relationship between the degranulation error and the 
classification rate. 
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