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Abstract:

Named entity recognition (NER) of chemicals and drugs is a critical domain of

information extraction in biochemical research. NER provides support for text mining

in biochemical reactions, including entity relation extraction, attribute extraction, and

metabolic response relationship extraction. However, the existence of complex naming

characteristics in the biomedical field, such as polysemy and special characters, make

the NER task very challenging. Here, we propose a hybrid deep learning approach to

improve the recognition accuracy of NER. Specifically, our approach applies the

Bidirectional Encoder Representations from Transformers (BERT) model to extract the

underlying features of the text, learns a representation of the context of the text through

Bi-directional Long Short-Term Memory (BILSTM), and incorporates the multi-head

attention (MHATT) mechanism to extract chapter-level features. In this approach, the

MHATT mechanism aims to improve the recognition accuracy of abbreviations to

efficiently deal with the problem of inconsistency in full-text labels. Moreover,

conditional random field (CRF) is used to label sequence tags because this probabilistic

method does not need strict independence assumptions and can accommodate arbitrary

context information. The experimental evaluation on a publicly-available dataset shows

that the proposed hybrid approach achieves the best recognition performance; in

particular, it substantially improves performance in recognizing abbreviations,

polysemes, and low-frequency entities, compared with the state-of-the-art approaches.

For instance, compared with the recognition accuracies for low-frequency entities

produced by the BILSTM-CRF algorithm, those produced by the hybrid approach on

two entity datasets (MULTIPLE and IDENTIFIER) have been increased by 80% and

21.69%, respectively.

Keywords: Named entity recognition; Deep learning; Bi-directional Long Short-Term

Memory (BILSTM); Conditional random field (CRF); Bidirectional Encoder

Representations from Transformers (BERT); Multi-head attention (MHATT)
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1. Introduction

In recent years, artificial intelligence has helped increase the interactions among

theoretical chemistry, computational chemistry, and synthetic chemistry. Deep neural

networks have been recently used to analyze the rationality of chemical synthesis and

find a large number of reverse synthetic routes in a short amount of time [1]. These

computational tools make reaction analysis faster than manual approaches and allow

efficient predictions of reactions of possible reagent combinations. There is no doubt

that artificial intelligence, particularly deep learning, is revolutionizing our

understanding of chemistry [2, 3].

Despite the advances, in the field of chemical drugs, there are still several

important scientific activities and processes for the extraction of information that are

done manually, taking plenty of experts’ time. A number of these activities could be

efficiently managed using Natural Language Processing (NLP) and other artificial

intelligence tools [4, 5, 6]. As an example, the need for an intelligent tool that can

automatically extract materials and chemical entities from the literature in the

chemistry-related fields, is vital and urgent. The necessity of such tools provides the

motivation to explore the Named Entity Recognition (NER) technology [7].

NER refers to the identification of entities that have a specific meaning in the text,

including names, names of places, and proper nouns [8, 9]. It was first presented as a

concept and motivated as a research area at the Message Understanding Conference

(MUC-6) in 1995 [10]. NLP, as an important tool in information extraction, helps the

process of subsequent relationship extraction, event extraction, and disambiguation. To

deal with NER, several methods including methods based on rules and dictionaries,

statistical methods, and hybrid approaches have been used. Methods based on rules and

dictionaries usually perform better when the task of recognition is in a specific corpus,

such as the Dl-cotrain algorithm using decision tables proposed by Kwak et. al. [11].

However, rule-based methods are limited in their ability of effectively carrying out

recognition tasks, since they rely on many complex rules. Moreover, they are

context-sensitive, and require expert knowledge in specific fields and substantial efforts

in maintaining rules and dictionaries. To overcome these drawbacks, the Hidden

Markov Hodel (HMM), the maximum entropy model (MaxEnt), the Conditional

Random Field (CRF), and classical machine learning methods such as the support

vector machines [12] have gradually replaced the aforementioned traditional methods.

The NER approaches based on machine learning models, consist of tasks that can

be divided into pure artificial features, supervised tasks, semi-supervised tasks, and

unsupervised tasks. Although traditional statistical methods based on artificial features

have shown improvements in the field of data security, they suffer from deficiencies

such as being computationally expensive, requiring large overheads for recognition, or

poor generalizability. Supervised machine learning methods, such as the HMM named

entity classifier, is based on a word similarity smoothing technique [13], and is

characterized by high recognition accuracy. However, training data for these models are

manually labeled, which tends to be a laborious task. Moreover, they need large training

data, and this can be particularly problematic when the available data are scarce.
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Similarly, semi-supervised and unsupervised techniques need very large amounts of

training data. However, they have been very effective when dealing with low-frequency

data. For example, Julian Brooke presented an NER system targeted specifically at

fiction uses unlabeled data to obtain results [14], however, the approach clearly takes

advantage of specific properties of (English) literature. The initial rule-based

segmentation, for instance, depends on reliable capitalization of names, which is often

not present in social media, or in most non-European languages. What is more, this

approach cannot be successfully applied in cases where texts are relatively short.

With advances in deep learning and the large availability of computational

resources, methods based on deep learning have demonstrated obvious advantages over

traditional methods in NLP, and they have gradually become mainstream in the field of

NER. They not only address some of the shortcomings of supervised machine learning

methods (too computationally-intensive and time-consuming), but they also alleviate

issues such as the lack of generalizability and large recognition workload commonly

seen in machine learning methods based on artificial features.

NEC Labs America pioneered the idea of using deep learning for NLP [15].

Collobert et al. utilized embedding and multi-layer one-dimensional convolution

structures for four typical NLP problems such as part-of-speech tagging. They used a

combination of Convolutional Neural Networks (CNN) and CRF to achieve

groundbreaking results in the optimization of the CONLL2003 corpus in the field of

universal named entity recognition [16]. Subsequently, with the advent of long

short-term memory (LSTM) and Bidirectional Long Short-Term Memory (BILSTM)

based on Recurrent Neural Network (RNN), the performance for NLP has gradually

improved. The BILSTM-CRF model designed achieved an approximate F-value of 89%

in the corpus [17]. Furthermore, the F-value of the CNN-LSTM model established by

Chiu et al. exceeded 90% [18]. In 2016, Ma et al. proposed a method for end-to-end

sequence tagging by BILSTM-CNNs-CRF, which led to the F-value of 91.21% for the

CONLL2003 corpus [17].

Despite deep learning methods obtaining excellent performance in a generic NER,

the performance of NER technologies in some specific fields such as chemistry, biology,

finance, and so forth is still far from the ideal. Therefore, NER-related tasks in some

fields need significantly more attention, as extracting biochemical entity information

from text databases or scientific literature can assist interdisciplinary researchers in the

field of biochemistry [19, 20].

There are two main difficulties in the identification of named entities in the field of

biochemistry in comparison with generic NER. First, there has not yet been a unified

naming methodology. There exist multiple expression methods for the same entity in

addition to complicated and irregular naming issues including differences in English

abbreviations, special characters, and so forth. Second, the number and types of

biochemical entities are huge, and they are growing rapidly. At the moment, the number

of new synthetic drugs is increasing exponentially, and new drugs are constantly being

produced.

To deal with the challenges of NER in the field of biochemistry, Leaman et al.

developed the tmChem system, which achieves an F-value of 87.395% on the
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CHEMDNER dataset [21]. In another work, Zheng used an attention-based recognition

method to increase the F-value to 90.77% via an attention mechanism to extract a

chapter’s features, which ensures the consistency of labels [16]. However, the word2vec

word vector from Zheng’s method does not solve the problem of polysemy, which

reduces the overall accuracy of recognition. In addition, the training of deep learning

model usually requires a large number of manually labeled data, which can be a huge

task in the fields of biology and medicine.

In order to cope with the above challenges of named entity recognition in

biochemistry, this paper proposes a hybrid model (BERT-BILSTM-MHATT-CRF,

BBMC) which mainly combines four approaches: Bidirectional Encoder

Representations from Transformers (BERT), Bi-directional Long Short-Term Memory

(BILSTM), Multi-Head Attention (MHATT), and Conditional Random Field (CRF).

The main contributions of this paper are summarized as follows: (1) The above four key

approaches are well integrated to address different challenging aspects of NER and the

performance of this hybrid deep learning model is validated on a public-available

dataset. (2) To learn high-level abstract information and address polysemy, the

frequently-used word2vec model which produces word vector is replaced by a better

representation model (BERT). (3) The multi-head attention mechanism in cognitive

neuroscience is innovatively integrated to the BILSTM model to extract chapter-level

features. (4) To improve the recognition rate, the softmax results of deep learning are

connected to the CRF layer to make use of the dependency between tags.

The rest of the paper is organized as follows. Section 2 presents the BBMC model

architecture and its four key modules: (1) BERT which has a large number of semantic

features and part-of-speech features, (2) BILSTM which can predict the relationship

between text sequences and tags, (3) MHATT that can extract information from multiple

aspects of sentences, and (4) CRF which can predict the relationship between tags

(because BERT can only predict the relationship between text sequence and label). The

experimental datasets and setup of experiments are presented in Section 3. Section 4

demonstrates performance evaluation of the proposed hybrid model and comparison

with existing approaches on the CHEMDNER dataset. The final section concludes our

research efforts.

2. The hybrid BBMC model for biochemical named entity recognition

2.1. Architecture

The architecture of the proposed BBMC model is shown in Figure 1. The model

consists of four parts: the BERT module, the BILSTM module, the MHATT module

and the CRF module. The BERT module is first used to process the input data to obtain

the underlying features of the input text, such as part-of-speech and characters, and

primary sentence features. Next, the hidden layer of BILSTM stores two values that

include forward and backward calculations. In this way, the target word can use the

information at both the beginning and the end of the training process. Then, we apply
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the attention module to ensure that it can extract information of interest at the level of

sentences. This module can address the problem of inconsistency, identify abbreviations

and full-text labels (to a certain extent), and reduce the difficulty in training the model.

Finally, the CRF layer decodes the output of the previous module into an optimal

sequence and outputs the annotation information. The functions and underlying

principles of each module are described in subsequent sections.

Figure 1. An overview of the BBMC model.

2.2. The BERT module

Currently, pre-training models are preferred in typical NLP tasks. The most

prevalent one is word2vec, which was developed in an open source project by Google

[22]. The maximum dictionary size of the word2vec’s pre-training model can be in the

millions, and the maximum dataset size of word2vec’s pre-training model can reach 100

million. Once trained, via word embedding, the similarity between words can be

measured, which is empirically efficient for most tasks. However, word2vec, as a static

pre-training model, cannot address the problem of polysemy. There are two main

strategies to apply pre-training models to NLP tasks. The first strategy is to use

feature-based language models, such as Embeddings from Language Models (ELMO)

[3]. The ELMO model introduces a contextual dynamic adjustment of word vectors to



7

address the polysemy problem. However, the BILSTM structural feature extraction

capability used is weaker than the Transformer we propose. The second strategy is to

use the fine-tuning language model, such as the Generative Pre-trained Transformer

(GPT) [23]. This is a type of Transformer-based language model that can be adapted to

multiple NLP tasks. It works by employing a pre-training language model for various

tasks with very few (if any) changes to the model structure. However, it only uses a

one-way language model, which limits its use in specific applications.

The BERT model that can perform multi-task learning based on a two-way deep

network Transformer [24] is proposed. This model has created many advances in NLP

and proved to be a good complement to the abovementioned models, alleviating their

shortcomings. There are mainly two new component models proposed in BERT, the

Masked Language Model (MLM) and Next Sentence Prediction (NSP). The MLM

randomly masks 15% of the words at each iteration, and the goal of the model is to

predict these words given their context. Using transformer encoder with a strong

extraction ability and using bidirectional training form, the MLM is ideally suitable for

long sequence text named entity recognition tasks. The function of NSP is to understand

relationships between sentences, and its specific role is to replace the sentence order of

the corpus randomly, then predict the probability of the next sentence based on the

previous sentence, and then continue to cycle training to get the results. In the training

process, the loss functions of MLM and NSP are added to learn at the same time.

In this work, we adopt Google’s open-source BERT pre-training model. The model

input is a single sentence �≔��1,…,��� . BERT consists of three different layers,

namely the Token layer, the Segment layer and the Position layer. The summed values

of these layers are used as input to Transformer. The Token layer produces the word

vector embedding associated with the word. The Segment layer distinguishes which

sentence the word belongs to while the Position layer distinguishes the position of the

word in the sequence. This process is represented in Figure 2.

Figure 2. The structure of the Transformer.

After the processing provided by multiple Transformer modules, the BERT model

is used to extract the features of the input sequence. Compared to the BILSTM, BERT
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processes the sequence step by step. Multiple transformer modules run in parallel to

raise the speed of decoding and has strong capabilities for feature extraction.

The BERT model is excellent at feature extraction. It has been empirically verified

that the fine-tuned BERT model has similar accuracy to the popular BILSTM-CRF

model in NER task of chemicals and drugs. The main difference is that the latter can

extract specific characteristics within a problem. However, the costs associated with the

latter model is extremely high, such as a large amount of training time and high-level

training difficulty. For these reasons, we combine the advantages of both models by

adopting the BERT model instead of the traditional word2vec, and adopting a strategy

of applying the BISLTM layer onto the BERT model.

2.3. The BILSTM module

The input text can be processed by the BERT module to directly output the

corresponding recognition results according to the sentence probability vector. However,

this method can yield relatively poor outcomes. A more effective approach is to only

use the output of BERT as a representation of deep features such as part-of-speech,

semantics, and primary sentence-level features. This output is then used as an input to

the LSTM model to further extract context information.

LSTM, as a special case of RNN, is a cyclic RNN with long-term memory [25, 26].

Its network structure consists of one or more units with forgetting and memory

functions, which overcomes the problem of traditional RNN gradient dispersion. This

enables the network to retain the previous information selectively [27, 28]. In the case

of biochemical named entity recognition, there are many cases where multiple words

constitute an entity. With LSTM, the characteristics of long-distance dependence can be

learned, thereby the ability of the model to identify long-sequence entities can be

improved.

Let us denote the output sequence of the BERT model as 	≔�	1,…,	�� . The
corresponding LSTM diagram is shown in Figure 3.

Figure 3．The internal structure of a LSTM/memory cell.
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The LSTM has two transmission states: the cell state 
� and the hidden state ℎ� .
In comparison, the general RNN only has the single delivery state ℎ� . How the LSTM

works can be formulated as follows,


� � σ ��.�	�,ℎ��1� (1)


� � σ ��.�	�,ℎ��1� (2)


� � σ ���.�	�,ℎ��1� (3)


� � 
�⨀
��1 � 
�⨀Z (4)

ℎ� � 
�⨀ tanh �
�� (5)

where 
, 
�, 
� and 
� represent the i-th input unit status, input gate, forgetting gate,

and output gate, respectively. ��, �� and �0 represent the �-th input gate, forgetting

gate, and output gate weight matrix, respectively. Moreover, ℎ� represents the i -th
hidden layer state, ⨀ represents Hadamard Product of matrix multiplication and " is

the sigmoid function.

From the above equations, one can note that the hidden state ℎ� of the LSTM only

acquires information in the forward direction. We denote this using ℎ#⃗ � . BILSTM

consists of LSTM modules for forward and reverse directions [7]. Compared with the

unidirectional LSTM model, including the bidirectional output [ℎ�##⃗ ,ℎ�⃖ ## ] can better capture

the two-way semantic dependence. Most current mainstream models use the advantages

of BILSTM in the extraction of context information for feature extraction. In the

domain of biochemically named entities, long sequence named entities are prevalent,

however they are not well recognized using the BERT model. For this reason, we

supplement the feature extraction of the BERT model and subsequently apply the

BILSTM module to extract context information.

2.4. The Multi-Head Attention module

At the present, BILSTM is still the mainstream model of NER, which can

memorize long text sequence features in theory. However, due to its gradient diffusion



10

phenomenon, the application effect of BILSTM model needs to be improved [29]. In

order to address this defect, attention mechanisms have been introduced into the field of

computer vision [30]. The mechanisms can further enhance the memory ability and

feature extraction ability of the BILSTM model for long sequence text, to a certain

extent. They can also be used to address full-text label inconsistency and abbreviation

recognition, and reduce the difficulty of model training.

As mentioned previously, in biochemical NER, there are a large number of

abbreviated entities and long sequence named entities. For abbreviated entities, most

authors use relevant abbreviations in articles after the first description of the relevant

entities. Such articles usually have detailed descriptions of entities in earlier sections,

and ordinary models can correctly identify corresponding entities based on, for example,

context specific information. In other cases, the author uses abbreviations without

introductions. Therefore, it is difficult for a conventional model to determine the correct

entity label by contextual features. This may result in inconsistency in the labels of the

entity throughout the entire article.

For long phrase NER, there are also many long-named entities (such as cyclic

guanosine monophosphate) which exist in longer sentences. Such entities require

stronger model processing capabilities including long sequence feature extraction. One

possible solution is the current mainstream BILSTM-CRF model, where the CRF layer

is labelled according to the features extracted by BILSTM. However, the model uses

sentences as the basic processing unit and does not consider the features of the entire

text. Moreover, in the processing of longer sequence texts, LSTM has been proven to

have a feature extraction capability that is weaker than the model of attention

mechanisms such as Transformer. Therefore, we adopt attention mechanisms to

improve recognition accuracy.

As mentioned above, the BILSTM only focuses on modelling continuous context

dependencies and ignores discrete context patterns. Though, discrete context correlation

plays an important role in sequence labelling tasks. In general, for a given word, its

label depends not only on its own semantic information and neighbouring context, but

also on individual word information in the same sequence. This will greatly affect the

accuracy of labelling. The study by Tan et al. proved that the self-attention mechanism

can efficiently improve the performance on some NLP tasks, such as NER and POSl

[31].

The Google mind team used the attention mechanism to classify images based on

the RNN model [32]. Since then, the attention mechanism has been increasingly used in

the field of computer vision. The Google machine translation team applied a large

number of self-attention mechanisms to learn text representation and yielded excellent

results[29].

Inspired by these recent advances, we apply the Multi-Head Attention mechanism

to obtain relevant chapter-level features in biochemical NER from multiple angles and

levels. By inputting the hidden layer output of the three settings of BILSTM, the

information vector processed by the attention module is added by a certain weight to

overcome the above disadvantages.
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The Attention function takes a query and a set of key-value mappings as inputs, and

outputs a weighted sum of values. The weight assigned to each value is calculated by

the compatibility function of query and the corresponding key. The basis of the

Multi-Head Attention used in this paper is the Scaled Dot-Product Attention mechanism,

which uses the dot product to calculate the similarity between the query and each

key[24]. The formula is given by

&'(�'��� ),*,+ � ,��'-./� )*	

01
�+ (6)

where ), * and + represent matrix representations of query, key and value, respectively.

The dot product is used to obtain the weight coefficient of the value corresponding to

each key. Weights represent the importance of information and determine which values

should be adjusted. The role of 01 is to control the dot product of Q and K, which is

not so large as to avoid the problem of gradient disappearance after the processing by

softmax. The process is shown in Figure 4.

Figure 4. Structure of the Multi-Head Attention module.

Considering the necessity of extracting information from different representation

subspaces at different positions, splicing many different Scaled Dot-Product Attentions

result in a Multi-Head Attention. The specific process is to linearly project ℎ times of

the queries ), keys * and values + respectively.

ℎ(.0� � &'(�'��� )��
),*��

1,+��
2 (7)

345'�6(.0 ),*,+ � 
��7.'�ℎ(.0�,…,ℎ(.0ℎ� (8)
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where ��
)
, ��

* and ��
+ represent the corresponding weight matrices of ), * and +,

and the Concat function concatenates the results.

In summary, the distinguishing feature of the multi-head attention mechanism from

the traditional attention mechanism is that it allows the model to learn relevant

information in different representation subspaces. This feature can be well adapted to

the recognition of the same entity in different contexts, especially the recognition of

polysemy and abbreviations. Therefore, this paper integrates the Multi-Head attention

mechanism into the model to improve the consistency of its full-text label recognition.

2.5. The CRF module

The current literature regards the NER as a sequence labelling task. We apply the

Inside-Outside-Beginning (IOB) mechanism to mark the corpus. The structure of the

annotation is shown in Table 1.

Table 1. The Structure of IOB.

Entity tag Start tag Intermediate tag End tag

TRIVIAL B-TRIVIAL I-TRIVIAL E-TRIVIAL

FAMILY B-FAMILY I-FAMILY E-FAMILY

… … … …

NON-ENTITY O O O

Labels are not independent of each other, therefore, a key step is still to deal with

the relationship between tags after obtaining the labelled dataset. One possibility is the

CRF model, which is a conditional probability model that can be used to label ordered

data. This model can handle the mutual constraint relationship between tags and solve

the problem of sequence labelling effectively. Therefore, we apply the CRF model to

processing the output of the Multi-head Attention module. The Viterbi algorithm is used

to prediction and seeking the globally optimal annotation sequence[33].

We denote the sentence sequence as /≔�/1,…,/�� . After the processing via the

above module, we obtain a � ×- matrix 8, where � is the number of input words and

- is the number of label types. The entry 8�9 is the probability of the label � of the

word 9 occurring in the sentence. We denote :≔�:1,…:�,…:��as a tag sequence, thus

the model computes the corresponding score:

;7�<(�/,:� �
��1

�
8�,:� �

��1

��1
&:��1:�== (9)
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where &�9 is the transition probability from :� to :9. We then apply softmax to obtain

the normalized probability

8 : / � exp �,7�<( /,: �
:‚ exp �,7�<(�/,:‚��∑ (10)

For model training, the following maximized log likelihood function is used:

5�C8 :/ / � ,7�<( /,:/ � log �
:‚

exp �,7�<(�/,:‚��= � (11)

Finally, the model uses the Viterbi algorithm as follows to solve the optimal path in

the prediction process.

:∗ � arg -./:‚ ,7�<(�/,:‚� (12)

3. Experimental setup

3.1. Dataset

The dataset that we use is the CHEMDNER corpus, provided by the BioCreative

project (https://biocreative.bioinformatics.udel.edu/news/biocreative-iii/), which is a

community-driven project for the evaluation of NLP tasks in the biological domain [19].

It contains 84,435 manually labelled chemical entities. The details of the data setting are

shown in Table 2.

Table 2. Main entity categories and their numbers in the dataset.

Category Training

setting

Development

setting

Test

setting

Entire

corpus

Abstracts 3,500 3,500 3,000 10,000

Abstracts with CEM 2,916 2,907 2,478 8,301

Nr.journals 193 188 188 203

Nr.chemicals 8,520 8,677 7,563 19,805

Nr.Mentions 29,478 29,526 25,351 84,355

TRIVIAL 8,832 8,970 7,808 25,610

SYSTEMATIC 6,656 6,816 5,666 19,138

ABBREVIATION 4,538 4,521 4059 13,118

FORMULA 4,448 4,137 3,443 12,028

FAMILY 4,090 4,223 3,622 11,935

IDENTIFIER 672 639 513 1,824

MULTIPLE 202 188 199 589

NO CLASS 40 32 41 113



14

It can be seen that the proportions of different types of entities in the text are

different, and some entities appear less frequently in the dataset, therefore we call them

as low-frequency entities. The recognition accuracy of a low-frequency entity is

relatively poor because the number of samples is small and most of them are special

entities.

3.2. Parameter settings

Although the BERT model can be fine-tuned, its optimization performance is

limited. This hybrid model integrates BILSTM, MHATT and CRF; therefore, the

hyperparameters need to be optimised. The model hyperparameters are presented in

Table 3. Among them, the weight attenuation coefficient (weight_decay) is used to

prevent over-fitting. The purpose of gradient cropping coefficient (clip) is to prevent

gradient explosion.

Table 3. The hyperparameters and their values used in the BBMC model.

Parameters Description Value

lr Initial learning rate 0.001

dropout Loss rate 0.5

embedding_dim Embedded layer dimension 768

enc_hidden_dim Coding layer dimension 256

lstm_dim Single layer LSTM dimension 128

key_dim The size of * in the Attention module 64

val_dim The size of + in the Attention module 64

num_heads The size of I in the Attention module 3

weight_decay Weight attenuation coefficient 0.01

clip Gradient cropping 5

3.4. Performance comparison

To evaluate the performance of the BBMC model, we compare its performance

with that of five state-of-the-art models: BILSTM-CRF (BC), BERT-BILSTM-CRF

(BBC), ELMO-BILSTM-CRF (EBC), BILSTM-MULATT-CRF (BMC), and

ELMO-BILSTM-MULATT-CRF (EBMC).

The bi-directional structure of BC can obtain the sequence information of context,

therefore, it is widely used in tasks such as named entity recognition [34]. BERT in

BBC can pre-train dynamic word vector which can express different semantics in

different contexts [24]. ELMO in EBC, as a deep contextual word representation, can

model complex features of words [35]. Attention mechanism is added to BC model to

avoid complex feature engineering in traditional work [34]. The purpose of MULATT’s

long attention mechanism in BMC is to replenish the key information of sequence from

multiple aspects [29].

It is noted that BC, BBC, and EBC do not use the attention mechanism; BC and

BMC use the GloVe word vector while BBC and EBMC use the ELMO pre-training
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model; EBC and BBMC use the BERT pre-training model. To ensure the fairness, the

hyper parameters of all models are consistent.

In order to evaluate the model performance, the accuracy, recall and F-score are

used as the evaluation metrics.

4. Experimental results and discussion

4.1. Abbreviations and polysemy labels

In order to explain the inconsistency of full-text labelling and polysemy labelling

mentioned above, this paper analyses different models for identifying special entities.

Due to the space limitation, we illustrate with only two examples, as shown in Table 4.

Table 4. Performance comparison of different entity identification methods (Left:

effects recognized by the proposed BBMC model. Right: Effects recognized by

BILSTM -CRF)

Model BBMC BILSTM-CRF

Abbreviation

The fabrication of patterned

microstructures in

poly(dimethylsiloxane) (PDMS) is a

prerequisite for soft lithography .

Herein , curvilinear surface relief

microstructures in PDMS are

fabricated through a simple three -

stage approach combining

microcontact printing ( CP ) , selective

surface wetting / dewetting and replica

molding ( REM ) . First , using an

original PDMS stamp (first -

generation stamp) with linear relief

features , ……Finally , based on a

REM process , the PEG -dot array on

gold substrate is used to fabricate a

second - generation PDMS stamp with

microcavity array , and the second -

generation PDMS stamp is used to

generate third - generation PDMS

stamp with microbump array .

The fabrication of patterned

microstructures in

poly(dimethylsiloxane)(PDMS) is a

prerequisite for soft lithography . Herein ,

curvilinear surface relief microstructures in

PDMS are fabricated through a simple

three - stage approach combining

microcontact printing ( CP ) , selective

surface wetting / dewetting and replica

molding ( REM ) . First , using an original

PDMS stamp (first - generation stamp)

with linear relief features , ……Finally ,

based on a REM process , the PEG -dot

array on gold substrate is used to fabricate

a second - generation PDMS stamp with

microcavity array , and the second -

generation PDMS stamp is used to

generate third - generation PDMS stamp

with microbump array .
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Polysemy

Silver was found to be only active in

form of free silver ions ( FSI ) .

……

High glucose insulin and free fatty

acid concentrations synergistically

enhance perilipin 3 expression and

lipid accumulation in macrophages .

Silver was found to be only active in form

of free silver ions ( FSI ) .

……

High glucose insulin and free fatty acid

concentrations synergistically enhance

perilipin 3 expression and lipid

accumulation in macrophages .

Table 4 mainly marks the identification of two individual words: PDMS and free.

The PDMS is an abbreviation of patterned microstructures in poly (dimethylsiloxane).

The words in bold and underlined in Table 4, meaning to be correctly identified as

entities. Table 4 shows that the BBMC model recognizes both the full name and the

abbreviation. In contrast, the BILSTM -CRF model only correctly identifies the full

name. The reason is that BBMC model introduces an attention mechanism to extract

chapter-level information, which ensures the label consistency of the full text. The

individual word Free is a polysemous word. For example, in the phrase of free silver

ions, the free word is not an entity and is used to modify the entity silver ions. The

phrase of free fatty acid, as a fixed phrase, can be identified by the BBMC model. In

other words, the BBMC model can recognize polysemous words in different situations.

However, the BILSTM-CRF model is relatively ineffective in recognizing polysemous

words due to lack of the representation ability of sentence features. This also proves that

the BERT model can better adjust the word vector representation according to the

context compared to pre-training models such as GloVe [36].

4.2. Visual analysis of the BERT model

Instead of using the traditional word vector as the input, the BERT model uses the

attention-based transformer structure. This section reports the analysis results about the

attention distribution of BERT in NER. For better demonstration, this paper selects

“systematic has been used for thousands of years, although systematic is clearly toxic to

most mammalian organ systems” as an input text and three experimental examples are

shown in Figures 5(a)-(c). At the top of the figure, the user can select one or more

attention heads that are represented by the coloured squares. The word systematic in the

picture is the entity to be recognized. It can be seen in Figure 5(a) that the second

“systematic” on the right pays more attention to “systematic” and “although” in front of

it and “is” behind it. From Figure 5(b), the first “systematic” on the right has a high

degree of attention to the “has”, “years” and “systematic”. Therefore, the subsequent

model can determine the annotation type of the word by the part-of-speech and the

relationship between the words before and after. Moreover, the attention mechanism of

cross sentence can also effectively improve the adaptability of subsequent models to

long sentences. In Figure 5(c), the word “although”, as a conjunction, focuses on the

separators, that is, the relationship between sentences. This special effect is very

important for NLP tasks, but for NER tasks, it results in active weakening of focusing

on such words. To sum up, the BERT model has a stronger tendency of attention to
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meaningful entities to be recognized, while weakening the attention of unimportant

words enhances the training efficiency and accuracy of the model.

(a) (b) (c)

Figure 5. Examples of attention-head views produced from BBMC. (a) and (b)

demonstrate different attention-head views of the word “systematic” in different

positions, and (c) depicts attention-head view for the conjunction of “although”.

Self-attention is represented as lines connecting the tokens that are showing solicitude

for (left) with the tokens being attended to (right). Colours sign the appropriate attention

head(s), while line weight mirrors the attention level.

4.3. Low-frequency and high-frequency entity recognition

Low-frequency word entity recognition is more challenging than high-frequency

word entity recognition. Figure 6 shows the numbers of seven different entity datasets

(MULTIPLE, IDENTIFIER, FAMILY, FORMULA, ABBREVIATION,

SYSTEMATIC, and TRIVIAL; see Section 3.1 for more details of the entity datasets)

and the recognition accuracies (represented by F-value) for these entities by six different

models (BC, BBC, EBC, BMC, EBMC, BBMC, as shown in Table 5).
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Figure 6. The numbers of seven different categories of entities (Figure 6(a)) and the

recognition accuracies (represented by F-value) for seven entity categories achieved by

six different models (Figure 6(b)). BC: BILSTM-CRF, BBC: BERT-BILSTM-CRF,

EBC: ELMO-BILSTM-CRF, BMC: BILSTM-MULATT-CRF, EBMC:

ELMO-BILSTM-MULATT-CRF, and BBMC: BERT-BILSTM-MULATT-CRF.

Figure 6 demonstrates that the six models achieve higher accuracies in recognising

high-frequency words (such as SYSTEMTIC and TRIVIAL datasets). However, there is

still room for improving the recognition accuracy in the case of low-frequency words

(such as MULTIPLE and IDENTIFIER datasets). The performance of BBMC and BBC

shows improvements in the accuracy of recognizing low-frequency entities. This

suggests the large-scale pre-training retention of the BERT model is able to supplement

scarce training data. BBMC outperforms the other five models in identifying

low-frequency entities. For example, compared with the recognition accuracies for

low-frequency entities produced by BC in MULTIPLE and IDENTIFIER datasets,

those produced by BBMC are increased by 80% and 21.69%, respectively. Overall, for

low-frequency, middle-frequency (entities in FAMILY, FORMULA, and

ABBREVIATION datasets), and high-frequency words, BBMC nearly achieves the best

recognition performance.

4.4. Performance comparison with existing models

Three key findings can be drawn from the results in Table 5. Firstly, BMC, EBMC,

and BBMC can achieve better performance by using the attention mechanism. This

demonstrates that the attention mechanism can eliminate data noise and combine

chapter-level information to improve recognition accuracy. Secondly, a model can

achieve a higher F-value by adding BERT or ELMO than the models adding GloVe.

This demonstrates that dynamic adjustment of word vectors can improve the accuracy

of polysemy recognition. Thirdly, a model which uses BERT will yield slight

improvement over a model which uses ELMO. This is mainly due to the fact that the
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Transformer used by BERT is more powerful than the BILSTM feature extraction used

by ELMO.

Table 5. Model performance comparison.

Abbreviation Model P (%) R (%) F (%)

BC BILSTM-CRF 91.31 87.73 89.48

BBC BERT-BILSTM-CRF 89.9 88.6 89.2

EBC ELMO-BILSTM-CRF 89.2 88.9 89.04

BMC BILSTM-MULATT-CRF 91.4 90.15 90.77

EBMC ELMO-BILSTM-MULATT-CRF 90.9 89.05 89.96

BBMC BERT-BILSTM-MULATT-CRF 91.8 89.9 90.84

The evaluation results show that the proposed hybrid model outperform existing

models in the literature. The outstanding performance is achieved due to the following

reasons. First, the BERT model is introduced in this paper as a component/module,

compared to the traditional use of the word2vec and GloVe, is capable of adjusting the

vector of the target word according to the context, to some extent, and account for word

polysemy. The Transformer is introduced in relation to the word vector, which provides

strong feature extraction capabilities. At the same time, the features retained by the

large-scale pre-training model improve the recognition rate of entities in categories

which suffer from data scarcity. Second, we use Multi-Head Attention in addition to

BILSTM to process specific information. The use of chapter-level information reduces

the occurrence of inconsistency in full-text entity tags. This also improves the

recognition ability of the model for long sequence sentences. Third, in order to avoid

the final use of softmax to calculate the labelling results, we apply the CRF layer. The

use of dependencies between tags improves the recognition rate.

5. Conclusion

We propose a new hybrid deep-learning model for NER in biochemistry. The

model is underpinned by innovatively integrating BERT, BILSTM, MHATT, and CRF

organically. Through experiments and comparative analyses, we have shown that the

new model has outstanding performance in identifying abbreviations, polysemous

words, both low-frequency and high-frequency words, as well as ensuring the

consistency of full-text labels. This paper confirms the effectiveness of the multi-head

attention mechanism in the field of natural language processing to improve the

performance of models. At the same time, this paper further verifies that Transformer’s

ability to extract features is better than BILSTM, and Transformer has lower training

difficulty. Therefore, our future work will further make greater use of the Transformer

instead of BILSTM, in order to verify the advantages and stability of Transformer

compared to BILSTM through different types of text and application fields, with the

aim of achieving higher recognition accuracy.

In addition, we have noticed in our research that when further performing the task

of relationship extraction, the accuracy difference of NER is further enhanced in the

extracted results. This means that the error of the model may further propagate, and
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hence expand in downstream tasks. To this end, the joint training of the model and

relationship extraction in this paper will effectively reduce the propagation error.
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