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Abstract

Unsupervised feature selection is an important method to reduce dimensions of high dimensional data without labels,
which is benefit to avoid “curse of dimensionality” and improve the performance of subsequent machine learning
tasks, like clustering and retrieval. How to select the uncorrelated and discriminative features is the key problem of
unsupervised feature selection. Many proposed methods select features with strong discriminant and high redundancy,
or vice versa. However, they only satisfy one of these two criteria. Other existing methods choose the discriminative
features with low redundancy by constructing the graph matrix on the original feature space. Since the original feature
space usually contains redundancy and noise, it will degrade the performance of feature selection. In order to address
these issues, we first present a novel generalized regression model imposed by an uncorrelated constraint and the `2,1-
norm regularization. It can simultaneously select the uncorrelated and discriminative features as well as reduce the
variance of these data points belonging to the same neighborhood, which is help for the clustering task. Furthermore,
the local intrinsic structure of data is constructed on the reduced dimensional space by learning the similarity-induced
graph adaptively. Then the learnings of the graph structure and the indicator matrix based on the spectral analysis are
integrated into the generalized regression model. Finally, we develop an alternative iterative optimization algorithm
to solve the objective function. A series of experiments are carried out on nine real-world data sets to demonstrate the
effectiveness of the proposed method in comparison with other competing approaches.

Keywords: Unsupervised feature selection, Generalized regression model, Adaptive graph learning.

1. Introduction

Due to the rapid development of information and Internet technologies, the dimension of data is increased dramat-
ically in real applications, which will result in the curse of dimensionality and affect the performance of clustering,
classification and so on. Feature selection [1, 2], as an important dimensionality reduction method, can choose a
part of useful features from the original high-dimensional feature space and get rid of redundant and noisy features,
which has been widely applied in image classification [3], text clustering [4], gene selection [5], etc. In terms of
the availability of the class label information, feature selection approaches are classified into supervised [6, 7], semi-
supervised [8, 9], and unsupervised methods [10, 11]. In some real applications, it is usually hard to obtain the labels
of all samples. And manually labeling data is laborious and time consuming. Hence, unsupervised feature selection
is a more challenging problem since the lack of label information in reality.

In recent years, there have been many research studies on the unsupervised feature selection. These methods can
be divided into three categories: filter-based approaches [12, 13], wrapper-based approaches [14, 15] and embedded-
based approaches [16, 17]. Filter methods select the features by means of the corresponding scores computed by the
evaluation measures, which describe the capacity of preserving the intrinsic structure of the unlabeled data. Wrapper
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methods choose some subsets of features to input a learning algorithm until obtaining the satisfactory performance.
Embedded methods embody the unsupervised feature selection procedure into the specific learning task, like cluster-
ing and dimensional reduction. It can simultaneously learn the embedding subspace and features, as well as reduce
the computational cost in comparison with the wrapper methods. There have been many research on unsupervised
embedded feature selection methods [11, 18, 19]. In embedded-based feature selection procedure, selecting discrim-
inative features can distinguish different instances and choosing uncorrelated features can reduce the redundancy of
data. In addition, maintaining the local structure of data is benefit to improve the performance of subsequent tasks
including clustering, classification, etc. In supervised scenario, available labels of instances can provide the discrimi-
native information and serve to local structure learning directly. Since the lack of label information, the basic problem
of unsupervised feature selection is how to select the features with discrimination and uncorrelation and preserve the
local manifold geometry structure of data accurately. Hou et al. incorporated the learning of low dimensional em-
bedding structure to the spectral regression model for the selection of features [18]. In order to alleviate the adverse
effect of the noisy features and outliers, Shi et al. proposed a robust feature selection method named RSFS by learning
the cluster structure based on the robust graph embedding and robust spectral regression model simultaneously [20].
Based on non-negative spectral analysis, Li et al. proposed a joint framework for both the learning of discriminative
feature matrix and spectral clustering [21]. Yang et al. chose the discriminative features by minimizing the total
scatter matrix and maximizing the between class scatter matrix, as well as using `2,1-norm for the regularization of
the feature selection matrix [22]. The abovementioned methods only concentrate on the selection of discriminative
features which are the main role in the clustering or classification problems. However, these methods did not consider
the high correlation of selected features, which has an adverse effect on clustering/classification results. In order to
select the features with low redundancy, Zheng et al. presented a spectral feature selection method by using the sparse
multi-output regression model with the constraint of `2,1-norm [23]. Cai et al. investigated multiple local geometric
structures of data by means of the spectral clustering method and employed LASSO regression model and MCFS
score to choose the uncorrelated features [24]. Gu et al. presented a joint framework by combining both feature
selection and feature transformation, which is instructive to choose the uncorrelated features [25]. These studies focus
on selecting features with low redundancy, but neglect to construct the discriminative features. Besides, Li et al. pro-
posed a discriminative and uncorrelated feature selection method by employing the side information described in the
form of must-link and cannot-link constraints [26]. However, the aforementioned methods, regardless of these meth-
ods emphasizing on selecting discriminative features or uncorrelated features, the learning of local data geometric
structure based on graph is conducted on the original feature space. If the graph has been obtained from the original
high-dimensional data, it will keep unchanged in the following procedure of feature selection. Then the performance
of feature selection methods heavily depends on the preconstructed graph. [27, 28]. Hence, it is important to develop
the feature selection method to choose the discriminative and uncorrelated features with the adaptive construction of
graph. There are very few studies focus on this issue. Li et al. presented a generalized uncorrelated regression model
combining with adaptive graph construction to select the discriminative and uncorrelated features [29]. Nevertheless,
the graph-based local structure is constructed on the original feature space in [29]. Due to the original feature space
usually contains redundant and noisy data points, it will result in degraded performance of feature selection.

In order to deal with above-mentioned issues, this paper presents a novel unsupervised feature selection method
by integrating an adaptive local structure learning into a generalized regression model imposed by an uncorrelated
constraint for the selection of discriminative and uncorrelated features. Firstly, we propose a generalized uncorre-
lated regression model by forcing `2,1-norm regularization and a novel uncorrelated constraint, where the orthogonal
constraint is added to an extended scatter matrix. By this means, we can obtain the uncorrelated and discriminative
features and avoid the singularity case while using the common scatter matrix. Besides, the variance of these data
points belonging to the same neighborhood can be reduced. It is help for the clustering task, which is demonstrated
in the experimental study. Moreover, the similarity-induced graph matrix and the indicator matrix based on the spec-
tral analysis technique are integrated into the generalized regression model to adaptively learn the graph-based local
structure constructed on the reduced dimensional space. Then, we develop an alternative iterative optimization algo-
rithm to solve the objective function. Finally, comparative experiments are carried out on nine real-world data sets to
demonstrate the effectiveness of the proposed method.

To sum up, the main contribution of this paper is described as follows: (i) A generalized regression model coupled
with a novel uncorrelated constraint is presented to select the discriminative and uncorrelated features. It can prevent
the trivial solution of the model and improve the clustering performance in comparison with the models imposed by
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the common and previous extended uncorrelated constraints, respectively. (ii) The local geometric structure of data by
the construction of similarity-induced graph matrix is combined into the generalized regression model for the feature
selection and adaptive learning graph structure simultaneously. (iii) An efficient alternative optimization algorithm is
developed to solve the proposed model and the convergence and time complexity of the corresponding algorithm are
analyzed. Experimental results on real datasets show the performance of the proposed method is better than that of
other baseline unsupervised feature selection methods.

The rest of the paper is organized as follows. In Section 2, the notations used throughout the paper are introduced.
In Section 3, we present the proposed unsupervised feature selection method based on the generalized regression
model with adaptive graph. Section 4 introduces the detailed alternative optimization algorithm. The convergence of
the proposed algorithm is proved and the corresponding time complexity is analyzed in Section 5. Section 6 shows
the experimental results on benchmark datasets, and Section 7 concludes the paper.

2. Notations

In this section, we introduce the notations used throughout the paper. Let the boldface uppercase letter, boldface
lowercase letter and plain italic denote the matrix, vector and scalar, respectively. Given a matrix W ∈ Rr×t, wi j

denotes the (i, j)-th entry of W, w j stands for the j-th row of matrix W, and wi indicates the corresponding i-th
column of matrix W. Let Tr(W), WT and Rank(W) denote the trace of W, the transpose of W and the rank of W,

respectively. The Frobenius norm of matrix W is defined as ‖W‖F =

√∑
i j

∣∣∣wi j

∣∣∣2. The `2,1-norm is defined as ‖W‖2,1 =∑r
i=1

√∑t
j=1 w2

i j =
∑r

i=1

∥∥∥wi
∥∥∥

2, where
∥∥∥wi

∥∥∥
2 denotes the `2-norm of vector wi. Let H = I − (1/n)11T denote the center

matrix, where I is an identity matrix and 1 = [1, 1, . . . , 1]T ∈ Rn. Given a data matrix X = {x1, . . . , xn} ∈ Rd×n, where
d denotes the dimension of features and n indicates the number of samples, then the data matrix X can be centralized
by HX.

3. Adaptive graph-based generalized regression model for unsupervised feature selection

In this section, we present a generalized regression model equipping with a novel uncorrelated constraint to select
the discriminative and uncorrelated features in the context of unsupervised learning. Furthermore, to learn the local
geometric structure of data, an adaptive graph construction method and a graph regularization term based on the
spectral analysis are integrated into the generalized regression model.

3.1. Generalized regression model

Given a data matrix X = {x1, . . . , xn} ∈ Rd×n and the corresponding label matrix Y =
[
y1, . . . , yn

]T
∈ Rn×c, the

traditional regression model is formulated as follows:

min
W,b

∥∥∥XT W + 1bT − Y
∥∥∥2

F + λ‖W‖η, (1)

where W = [w1,w2, . . . ,wd] ∈ Rd×c is the projection matrix, b ∈ Rc×1 is the bias, ‖W‖η indicates the regularization
item and λ denotes the corresponding regularization parameter. When η is set to F-norm, this model is the classical
ridge regression model [30]. While η is set to `1-norm, it becomes the Lasso regression model [31]. These models
have been widely applied in machine learning tasks, including but not limited to classification, clustering and feature
selection [18, 32, 33]. However, these models cannot be applied directly in context of unsupervised learning where
the label matrix Y is unknown. To obtain the label Y in the unsupervised scenario, it can be viewed as a variable
to be optimized in model (1). But, it will result in a potential trial solution while W = 0, b = [1, 0, · · · , 0]T and
Y = [1, 0, · · · , 0]. In order to deal with this issue, previous studies utilized the embedding indicator matrix to replace
the unknown Y and then learned these parameters according to the supervised regression method [29, 37]. It can be
described as follows.

min
W,F,b

∥∥∥XT W + 1bT − F
∥∥∥2

F + λ‖W‖2,1

s.t. Rank(W) = c,FT F = I,
(2)
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where F =
[
f 1, f 2, . . . , f n

]T
∈ Rn×c is the indicator matrix embedded in the data space and W is the subspace. The

column full rank constraint is imposed on W to avoid the trivial solution and using `2,1-norm of W is to ensure the
row-sparsity for feature selection. Then

∥∥∥wi
∥∥∥

2 (i = {1, 2, · · · , d}) describes the importance of the i-th feature, which
can be employed to select the top t(1 ≤ t ≤ d) features. Besides, the orthogonal constraint of F can avoid the trivial
solution and remove the impact of scale effects. In this model, the F describes the cluster structure of data which can
provide the discriminant information. The first term in model (2) tries to learn a subspace which makes the projected
samples approach to the F as much as possible. Hence, this model can learn the discriminant features and the local
structure of data simultaneously. As mentioned above, reducing feature redundancy is another issue of great concern
to unsupervised feature selection. The traditional methods imposed the uncorrelated constraint WT RtW = I, where
Rt = XHXT denotes the total scatter matrix, to this model for the selection of uncorrelated features. However, the
traditional uncorrelated constraint exists the following problems. It lacks of flexibility and selects the features with
low redundancy will result in some discriminative features being lost, which has been verified in [26, 37, 29]. In
addition, when the number of samples is smaller than the feature size, the matrix Rt is singular. In order to cope with
these two issues, we present an extended uncorrelated constraint, which can avoid the abovementioned problems and
show the effectiveness in the next experimental procedure. The novel constraint is defined as follows:

WT R′tW = I, (3)

where R′t = Rt +λwDw +αsXLsXT , Ls = Ds−
(
ST + S

)
/2 is the Laplacian matrix of the similarity matrix S ∈ Rn×n, Ds

is the diagonal matrix with Ds(i, i) =
∑n

j=1
si j+s ji

2 , Dw ∈ Rd×d is defined as a diagonal matrix with Dw(i, i) = 1

2
√
‖wi‖

2
2+ε

,

and ε is a small constant to keep the denominator from disappearing. Incorporating the proposed constraint into the
regression model (2), the generalized uncorrelated model is presented as follows:

min
W,F,b

∥∥∥XT W + 1bT − F
∥∥∥2

F + λ‖W‖2,1

s.t. WT R′tW = I,FT F = I.
(4)

There are three terms of the proposed constraint. The first term WT RtW makes the scatter matrix of the projected
samples approach to an orthogonal matrix. Then the learned features are uncorrelated to a great extent. The second
term λwWT DwW appending to the first term can avoid the situation where the traditional scatter matrix is singular.
The third term αsWT XLsXT W is benefit to reduce the variance between these samples in the same neighborhood
under the graph structure. Especially, it can improve the performance of the clustering task, which will be shown in
the following experimental results. Hence, the proposed generalized regression model can select the discriminative
and uncorrelated features. Notice that when λw = 0 and αs = 0, the proposed model degenerates to the traditional
uncorrelated constraint-based model. And when αs = 0, it degenerates to the model presented by Li et al [29].

3.2. Adaptive graph learning for feature selection

As discussed above, the presented regression model performs manifold learning in Euclidean space and applies
the linear regression model to discover the low-dimensional structure. Since the manifold learning from the Euclidean
space could not effectively explore the local geometrical structure, which is benefit to feature selection, clustering
analysis, etc. [38, 39]. In order to discover the local geometrical structure, previous studies have discussed some
methods based on the spectral graph theory, where the local structure is characterized by the construction of nearest
neighbor graph [13, 19, 40]. The key point in constructing graph is the computation of the corresponding similarity
matrix, which is very important for unsupervised feature selection. However, in these methods, the similarity matrix
is computed on the original feature space. Due to the original feature space usually contains redundancy and noise,
it will degrade the performance of feature selection. Hence, in this section, we construct the similarity matrix in an
adaptive way to alleviate the negative impact of redundant and noisy features.

Let S = (si j)n×n ∈ Rn×n denote the similarity matrix, where si j indicates the similarity between the samples xi and
x j. The S can be determined by the k-nearest neighbor graph. Let x j be the k-nearest neighbors of xi. Then the edge
is connected with regards to xi and x j. And the weight of the edge is determined by the similarity si j, which can be
computed by different kernel functions, such as linear kernel, polynomial kernel and Gaussian kernel [13, 41, 42].
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However, the computation of the similarity matrix in this method is sensitive to noise and outliers existing in the data.
In the following, we present a novel construction of the similarity matrix with adaptive way, which is robust to noise
and outliers. A natural assumption in manifold learning is that if two data points are close, then they are also close to
each other in the embedding graph. Since there exists the redundancy and noisy features in the original data space,
this assumption can be revised that if two data points are close in the dimension reduction space, then they are also
close in the embedding graph. Based on this, the similarity matrix S can be constructed by the following problem:

min
S

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j

s.t. sii = 0, si j ≥ 0, 1T si = 1.

(5)

In the problem (5), the sparse constraint 1T si = 1 has been demonstrated that it can improve the robustness for the
noise and outliers in [45]. However, the problem (5) will have a trivial solution when there is only one data point in
the dimension reduction space with the smallest distance to xi having the value 1 and the other data points having the
value 0. According to [46], a prior is appended to model (5), which is described as follows.

min
S

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j + β

n∑
i=1

‖si‖
2
2

s.t. sii = 0, si j ≥ 0, 1T si = 1.

(6)

When only considering the second term in problem (6), the prior can be interpreted as the similarity value associated
with each data point to xi equals to 1

n .
Moreover, the other common assumption used in spectral graph analysis is that if two data points are close to each

other in the intrinsic graph of data, then the corresponding embedding labels will are close to each other [43, 44]. In
model (4), the embedding labels are represented as the indicator matrix F. Then we can add a graph regularization
term to problem (6), namely,

min
S,F

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j + β

n∑
i=1

‖si‖
2
2 + αTr(FT LsF)

s.t. sii = 0, si j ≥ 0, 1T si = 1,FT F = I,

(7)

where α is a regularization parameter. The model (7) can keep the abovementioned assumptions and adaptively
computes the similarity matrix along with the improvement of robustness.

Then, by incorporating the model (7) into the generalized regression model (4), we can obtain the unified model
with adaptive graph regularization for unsupervised feature selection, which is described as follows:

min
W,F,S,b

∥∥∥XT W + 1bT − F
∥∥∥2

F + λ‖W‖2,1 +
1
2
α(

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j + β

n∑
i=1

‖si‖
2
2 + Tr(FT LsF))

s.t. WT R′tW = I,FT F = I, sii = 0, si j ≥ 0, 1T si = 1.

(8)

As we can see, the proposed unified model can select the uncorrelated features under these constraints and adap-
tively learn the local geometrical structure, where the similarities between these data points are simultaneously pre-
served in the reduction dimensional space and the embedding graph structure. Moreover, it can keep the similar
objects in the local graph structure with the similar labels learned from the generalized regression model.

4. Optimization algorithm

In this section, we employ an alternative method to optimize these variables in problem (8), i.e., optimizing the
objective function with regards to one variable while fixing the other variables and repeating the procedure until
convergence.
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Since there is no constraint on b, it can be solved by the Karush-Kuhn-Tucker (KKT) conditions [49] where the
first-order derivate of the Lagrangian function w.r.t. the objective function in (8) equals to zero. Then the problem
(8) can be simplified. Concretely, let L(b) =

∥∥∥XT W + 1bT − F
∥∥∥2

F + R(W,S,F) denote the Lagrangian function of
problem (8) with respect to b, where R(W,S,F) stands for the terms independent of b and dependent of W, S and F.
Taking the paritial derivate of L(b) and setting it to zero, we can obtain the optimal solution of b as follows:

∂L(b)
∂b

= 0⇒ b =
1
n

(
FT −WTX

)
1. (9)

Substituting (9) into (8), then the problem (8) is rewritten as follows:

min
W,F,S

∥∥∥H(XT W − F)
∥∥∥2

F + λ‖W‖2,1 +
1
2
α(

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j + β

n∑
i=1

‖si‖
2
2 + Tr(FT LsF))

s.t. WT R
′

tW = I,FT F = I, sii = 0, si j ≥ 0, 1T si = 1,

(10)

where H = I − (1/n)11T is a symmetric centering matrix. In the following subsection, we introduce the alternating
iterative algorithm to solve the variables W, F and S.

4.1. Fix F and S, update W
When F and S are fixed, problem (10) can be rewritten as:

min
W

∥∥∥H(XT W − F)
∥∥∥2

F + λ‖W‖2,1 +
1
2
α

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j

s.t. WT R′tW = I.

(11)

Lemma 1. [29] limwi→wi
∗

∂‖W‖2,1
∂wi =

wi
∗

‖wi
∗‖2

= limwi→wi
∗,ε→0

∂Tr(WT DW)
∂wi , where D = diag

 1

2
√
‖w1‖

2
2+ε
, 1

2
√
‖w2‖

2
2+ε
, . . . , 1

2
√
‖wd‖

2
2+ε

 .
Since ∂‖W‖2,1

∂wi = wi

‖wi‖2
, it will result in the non-differentiable problem in (11). In order to prevent this, we can

transform problem (11) into the following equivalent form by utilizing Lemma 1:

min
W

∥∥∥H(XT W − F)
∥∥∥2

F + λTr(WT DwW) +
1
2
α

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j

s.t. WT R
′

tW = I.

(12)

By means of these two properties ‖A‖2F = Tr(AT A) and
∑n

i, j=1

∥∥∥zi − z j
∥∥∥2

2 si j = 2 Tr(ZT LsZ), we have

min
W

∥∥∥H(XT W − F)
∥∥∥2

F + λTr(WT DwW) +
1
2
α

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j

⇔min
W

Tr(WTXHXTW-2WTXHF + FTHF) +λTr(WTDwW) +αTr(WTXLsXTW)

⇔min
W

Tr(WT(XHXT + λDw + αXLsXT)W)-2 Tr(WTXHF)

⇔min
W

Tr(WTR′tW)−2 Tr(WTXHF)

⇔min
W
−2 Tr(WTXHF)

⇔max
W

Tr(WTXHF)
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Then problem (12) is equivalent to solve the following problem.

max
W

Tr(WTXHF) (13)

s.t. WT R′tW = I.

In order to solve problem (13), Huang et al. has shown the optimal solution A = UVT with regards to the problem
maxAAT =I Tr(ATB), where U and V are the left and right singular matrices of SVD decomposition on B [50]. Hence,
let A = (R′t)

1
2 W and B = (R′t)−

1
2 XHF, then we have the optimal solution of problem (12) W = (R′t)−

1
2 A. Since Dw

also depends on W, an iterative algorithm is developed as shown in Algorithm 1 to solve W in problem (11).

Algorithm 1: Algorithm to solve W in problem (11)
Input:

1. The coefficients λ and α;
2. The data matrix X and centering matrix H;
3. The indicator matrix F and Laplacian matrix Ls.

Output: The feature selection matrix W ∈ Rd×c.
1 Initialize : Dw = I ∈ Rd×d.
2 begin
3 while not convergent do
4 With current Dw, compute R′t = XHXT + λwDw + αsXLsXT ;
5 Calculate B = (R′t)−

1
2 XHF;

6 Solve the compact SVD decomposition on B such that B = U
∑

VT ;
7 Compute A = UVT ;
8 Update W← (R′t)−

1
2 A;

9 Update D = diag
(

1
2
√
‖w1‖22+ε

, 1
2
√
‖w2‖22+ε

, · · · , 1
2
√
‖wd‖22+ε

)
.

10 end
11 end

4.2. Fix W and S ,update F
When updating F with the fixed W and S, we need to solve the following problem:

min
F

∥∥∥H(XT W − F)
∥∥∥2

F +
1
2
αTr(FTLsF)

s.t. FT F = I.
(14)

By utilization of the property of matrix ‖A‖2F = Tr(AT A), we have

min
FT F=I

∥∥∥H(XT W − F)
∥∥∥2

F +
1
2
αTr(FTLsF)

⇔ min
FT F=I

Tr(WTXHXTW-2WTXHF + FTHF) +
1
2
αTr(FTLsF)

⇔ min
FT F=I

Tr(FTQF-2FTC), (15)

where Q = α
2 Ls + H, C = HXT W. Obviously, problem (15) is the standard quadratic problem on the Stiefel manifold

which can be solved by the generalized power iteration method proposed by Nie et al. [51]. Then the detailed algorithm
is developed to solve problem (14) in Algorithm 2.
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Algorithm 2: Algorithm to solve F in problem (14)
Input: The matrices Q and C defined in (15)
Output: The indicator matrix F ∈ Rn×c

1 Initialize :
2 (i) A random orthogonal matrix F ∈ Rn×c such that FT F = I;
3 (ii) Given a ν via power method [51] such that Q̃ = νI −Q ∈ Rn×n satisfying positive definite definiteness.
4 begin
5 while not convergent do
6 Update E← 2Q̃F + 2C;
7 Update F by solving the problem maxFFT =I Tr(FTE) according to the proposed method [50].
8 end
9 end

4.3. Fix W and F, update S
With the fixed W and F, problem (10) is transformed to solve

min
S

n∑
i, j=1

∥∥∥WT xi −WT x j

∥∥∥2
2 si j + β

n∑
i=1

‖si‖
2
2 + Tr(FT LsF)

s.t. sii = 0, si j ≥ 0, 1T si = 1.

(16)

By employing
∑n

i, j=1

∥∥∥zi − z j
∥∥∥2

2 si j = 2 Tr(ZT LsZ), problem (16) is equivalent to:

min
S

n∑
i, j=1

(
∥∥∥WT xi −WT x j

∥∥∥2
2 +

1
2

∥∥∥fi − f j
∥∥∥2

2)si j + β

n∑
i=1

‖si‖
2
2

s.t. sii = 0, si j ≥ 0, 1T si = 1.

(17)

It can be seen that the problem (17) is independent for different i. Then we can decouple problem (17) into the
following subproblem for each i.

min
si

n∑
j=1

(
∥∥∥WT xi −WT x j

∥∥∥2
2 +

1
2

∥∥∥fi − f j
∥∥∥2

2)si j + β ‖si‖
2
2

s.t. sii = 0, si j ≥ 0, 1T si = 1.

(18)

Let gi j =
∥∥∥WT xi −WT x j

∥∥∥2
2+ 1

2

∥∥∥fi − f j
∥∥∥2

2 and the corresponding i-th coloumn vector is denoted as gi. Then problem
(18) is rewritten as

min
si

n∑
j=1

gi jsi j + β ‖si‖
2
2

s.t. sii = 0, si j ≥ 0, 1T si = 1.

(19)

Actually, problem (19) is equivalent to solve the following problem, which differs by a constant term while W and
F are fixed.

min
si

1
2

∥∥∥∥∥si +
gi

2β

∥∥∥∥∥2

2

s.t. sii = 0, si j ≥ 0, 1T si = 1.
(20)

The data points are more similar to their neighbours than to other non-neighbours in practice. Hence, we prefer
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the model in (20) learning si with k nonzero values, where k is the number of neighbours. In what follows, we give
the detailed solution steps.

Let the scalar ψ and the vector ϕ ≥ 0 be the lagrangian multipliers for the constraints 1T si = 1 and si j ≥ 0 in
problem (20), respectively. The Lagrangian function of problem (20) is

L(si, ψ, ϕ) =
1
2

∥∥∥∥∥si +
gi

2β

∥∥∥∥∥2

2
− ψ(1T si − 1) − ϕT si. (21)

Taking the partial derivative of L w.r.t. si and setting it to zero, then

si +
gi

2β
− ψ1 − ϕ = 0. (22)

For the j-th entry of si in Eq.(22), we obtain the following equations for si j:

si j +
gi j

2β
− ψ − ϕ j = 0. (23)

By the utilization of KKT condition si jϕ j = 0, we have the solution of si j denoted as ŝi j:

ŝi j = (−
gi j

2β
+ ψ)+. (24)

Assuming gi1, . . . , gin are sorted in an ascending order. Since the equality constraints 1T si = 1, we can get

ψ =
1
k

+
1

2kβ

k∑
j=1

gi j. (25)

In order to obtain the si with the constraint of k non-zero entries, we prefer ŝik > 0 and ŝi,k+1 = 0. Then, we have

−gik

2β
+ ψ > 0 and

−gi,k+1

2β
+ ψ ≤ 0. (26)

According (25) and (26), we can get  β >
kgik−

∑k
j=1 gi j

2 ;

β ≤
kgi,k+1−

∑k
j=1 gi j

2 .
(27)

The optimal solution ŝi j having k nonzero entries can obtain when β is set as

β =
kgi,k+1 −

∑k
j gi j

2
. (28)

Then, we can obtain the final solution of si j shown as follows according to Eqs. (24), (25) and (28).

si j =


gi,k+1−gi j

kgi,k+1−
∑k

h=1 gih
j ≤ k;

0 j > k.
(29)

By optimizing each variable alternatively, the whole algorithm (AGUFS) to solve problem (8) is summarized in
Algorithm 3.

5. Discussions

In this section, we give the theoretical analysis of the convergence and computational complexity of the proposed
algorithm, respectively.
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Algorithm 3: AGUFS to solve problem (8)
Input:

1. The data matrix X ∈ Rd×n and the center matrix H;
2. The parameters α, β and λ;
3. The number of neighbours k.

Output: Selecting the top ranking t features according to the descending order of
∥∥∥wi

∥∥∥
2 (i = 1, 2, · · · , d).

1 Initialize :
2 (i) A random orthogonal matrix F ∈ Rn×c;
3 (ii) A random matrix W ∈ Rd×c;
4 (iii) The similarity matrix S ∈ Rn×n by means of Eq.(29)
5 begin
6 while not convergent do
7 Fix F and S,update W by Algorithm 1;
8 Fix W and S,update F by Algorithm 2;
9 Fix W and F,update S by Eq.(29).

10 end
11 end

5.1. Convergence analysis

5.1.1. Convergence analysis of Algorithm 1
In order to prove the convergence of Algorithm 1, we firstly introduce the following lemma.

Lemma 2. [52] For any two nonzero vectors a,b ∈ Rc, the following inequality holds:

‖a‖2 −
‖a‖22

2‖b‖2
≤ ‖b‖2 −

‖b‖22
2‖b‖2

. (30)

Based on the Lemma 2, we give the proof of the convergence of Algorithm 1 by the following theorem.

Theorem 5.1. For each iterative updating W to its optimal solution in problem (12), Algorithm 1 will decrease
problem (11) until convergence.

Proof. Let J(W(t),Dw(t)) denote the objective value of problem (12) in the t-th iteration. Since Algorithm 1 updates
W and D with the optimal solution in problem (12), it always holds

J(W(t+1),Dw(t)) ≤ J(W(t),Dw(t))

⇒
∥∥∥H(XT W(t+1) − F)

∥∥∥2
F + λTr(WT

(t+1)Dw(t)W)(t+1) +
1
2
α

n∑
i, j=1

∥∥∥WT
(t+1)xi −WT

(t+1)x j

∥∥∥2
2

si j

≤
∥∥∥H(XT W(t) − F)

∥∥∥2
F + λTr(WT

(t)Dw(t)W(t)) +
1
2
α

n∑
i, j=1

∥∥∥WT
(t)xi −WT

(t)x j

∥∥∥2
2

si j.

(31)

By means of Lemma 2, we have
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‖wi
(t+1)‖2 −

1
2‖wi

(t)‖2
‖wi

(t+1)‖
2
2 ≤ ‖w

i
(t)‖2 −

1
2‖wi

(t)‖2
‖wi

(t)‖
2
2

⇒

d∑
i=1

‖wi
(t+1)‖2 −

d∑
i=1

1
2‖wi

(t)‖2
‖wi

(t+1)‖
2
2 ≤

d∑
i=1

‖wi
(t)‖2 −

d∑
i=1

1
2‖wi

(t)‖2
‖wi

(t)‖
2
2

⇒‖W(t+1)‖2,1 − Tr(WT
(t+1)Dw(t)W(t+1)) ≤ ‖W(t)‖2,1 − Tr(WT

(t)Dw(t)W(t))

⇒λ‖W(t+1)‖2,1 − λTr(WT
(t+1)Dw(t)W(t+1)) ≤ λ‖W(t)‖2,1 − λTr(WT

(t)Dw(t)W(t))(λ > 0). (32)

Adding Eqs. (31) and (32), we can get

∥∥∥H(XT W(t+1) − F)
∥∥∥2

F + λ‖W(t+1)‖2,1 +
1
2
α

n∑
i, j=1

∥∥∥WT
(t+1)xi −WT

(t+1)x j

∥∥∥2
2

si j

≤
∥∥∥H(XT W(t) − F)

∥∥∥2
F + λ‖W(t)‖2,1 +

1
2
α

n∑
i, j=1

∥∥∥WT
(t)xi −WT

(t)x j

∥∥∥2
2

si j.

(33)

Then, we can see that the objective function value of problem (11) monotonically decreases by Algorithm 1 in
each iteration.

5.1.2. Convergence analysis of Algorithm 2
In a similar way, the convergence proof of Algorithm 2 is given as follows.

Theorem 5.2. Algorithm 2 decreases problem (14) by iteratively updating F with its optimal solution to problem
maxFFT =I Tr(FTR) until convergence, where R = 2Q̃F + 2C, Q̃ = νI −Q.

Proof. Let Y(F(t)) denote the objective function value of problem (15) in the t-th iteration. Because Algorithm 2
obtains the optimal solution of the problem maxFFT =I Tr(FTR), for the (t + 1)-th iteration, it is easy to see that

Tr(FT
(t+1)R(t)) ≥ Tr(FT

(t)R(t))

⇒Tr(FT
(t+1)Q̃F(t) + FT

(t+1)C) ≥ Tr(FT
(t)Q̃F(t) + FT

(t)C).
(34)

Since Q̃ is initialized as a real symmetric positive definite matrix in [51], we have Q̃ = ZT Z by Choleshy factor-
ization [53]. Then,

Tr(FT
(t+1)Z

T ZF(t) + FT
(t+1)C) ≥ Tr(FT

(t)Z
T ZF(t) + FT

(t)C). (35)

Furthermore, since
∥∥∥ZF(t+1) − ZF(t)

∥∥∥2
F ≥ 0, then we have

Tr(FT
(t+1)Z

T ZF(t+1)) + Tr(FT
(t)Z

T ZF(t)) − 2 Tr(FT
(t+1)Z

T ZF(t)) ≥ 0. (36)

By calculating 2 × (35) + (36), we obtain

2 Tr(FT
(t+1)C) + Tr(FT

(t+1)Q̃F(t+1)) ≥ 2 Tr(FT
(t)C) + Tr(FT

(t)Q̃F(t))

⇒2 Tr(FT
(t+1)C) − Tr(FT

(t+1)QF(t+1)) ≥ 2 Tr(FT
(t)C) − Tr(FT

(t)QF(t))

⇒Y(F(t+1)) ≥ Y(F(t)).

(37)

Hence, in each iteration, the objective function values of problem (15) decreased by Algorithm 2. Since problem
(14) is equivalent to problem (15), then the proof of Theorem 5.2 is completed.

In addition, it is easy to prove that the objective function of problem (17) is convex with regards to S. Hence, the
closed-form solution of S employing the augmented Lagrange multiplier method can converge to the globally optimal
solution. In summary, the proposed Algorithm AGUFS is converge.

11



5.2. Complexity analysis

In this section, we analyze the computational complexity of the proposed algorithm AGUFS which consists of
three parts. Specifically, while updating the feature selection matrix W by optimizing problem (13), the time com-
plexity is O(d3) in the Step 7 of Algorithm AGUFS. While computing the indicator matrix F by solving problem (15),
the time complexity is O(n2d) in the Step 8 of Algorithm AGUFS. While the update of the similarity matrix S by
optimizing problem (17), the corresponding time complexity is O(nkd) in the Step 9 of Algorithm AGUFS, where k is
the number of neighbours. To sum up, the time complexity of AGUFS is O(d3t + n2dt + nkdt), where t is the number
of iteration. Hence, the computational complexity is cubic with the number of features and square with the number of
samples. The main complexity is due to eigen-decomposition procedure, which also exists in other embedding-based
feature methods [18, 29, 40]. It will result in the badly scaled for the large-scale data. We will discuss this topic in
our future work.

6. Experiments

In this section, we conduct a series of experiments on nine benchmark data sets to demonstrate the effectiveness
of the proposed algorithm in comparison with other competing methods.

6.1. Experimental schemes

6.1.1. Datasets
Nine real-world datasets chosen from different fields are used to evaluate the performance of the proposed method.

It includes four face image datasets COIL201 [54], Umist1 [55], JAFFE1 [56] and WarpPIE10P1 [57], two biological
datasets Lung1 [58] and Lymphoma1 [59], two handwritten digit datasets USPS1 [60] and MFEA2 [61], and one sound
dataset Isolet1 [62]. The detailed statistics of these datasets are shown in Table 1.

Table 1: A detail description of datasets

No. Datasets Samples Features Classes

1 Lymphoma 96 4026 9

2 Lung 203 3312 5

3 warpPIE10P 210 2420 10

4 JAFFE 213 676 10

5 Umist 575 644 20

6 COIL20 1440 1024 20

7 Isolet 1560 617 26

8 MFEA 2000 216 10

9 USPS 9298 256 10

6.1.2. Baselines
In order to validate the effectiveness of the proposed method, comparisons are made with seven baseline methods

of unsupervised feature selection. These approaches are briefly introduced as follows:
URAFS [29]: Uncorrelated Regression with Adaptive graph for unsupervised Feature Selection (URAFS) employs

the generalized uncorrelated regression model to construct the adaptive graph for the selection of discriminative and
uncorrelated features.

1https://jundongl.github.io/scikit-feature
2http://archive.ics.uci.edu/ml/index.php
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NDFS [21]: Nonnegative Discriminative Feature Selection selects features by a joint framework integrating non-
negative spectral analysis and `2,1 -norm regularized regression model.

JELSR [18]: Joint Embedding Learning and Sparse Regression is a feature selection framework by the combina-
tion of the embedded learning and the sparse regression model.

UDFS [22]: Unsupervised Discriminate Feature Selection selects features via integrating the discriminative anal-
ysis and `2,1-norm minimization.

RSFS [20]: Robust Spectral Feature Selection is a robust spectral learning framework for unsupervised feature
selection, which combines the robust graph embedding and robust sparse spectral regression model.

MCFS [24]: Multi-Cluster Feature Selection (MCFS) which selects features by spectral analysis and the sparse
regression model.

LapScore [13]: Laplacian Score selects features according to the best capacity of preserving the locality structure.

6.1.3. Evaluation metrics
Two clustering metrics including clustering accuracy (ACC) and normalized mutual information (NMI) are em-

ployed to evaluate the performance of the abovementioned unsupervised feature selection methods.
Clustering accuracy (ACC) [63]: Let yi and ỹi denote the true label and clustering result of the i-th sample xi(i =

1, 2, · · · , n), respectively. Then ACC is defined as follows:

ACC =
1
n

n∑
i=1

δ
(
yi,map (ỹi)

)
, (38)

where δ(x, y) is the delta function satisfying δ(x, y) = 1 for x = y, otherwise δ(x, y) = 0, and map(·) is the permutation
mapping function which maps each cluster index to the best ground true label. It can be computed by using Kuhn-
Munkres algorithm[66].

Normalized mutual information (NMI) [64]: Let C be the set of ground truth labels and C′ denote the set of
obtained clusters. Then NMI is formulated as follows:

NMI
(
C,C′

)
=

MI (C,C′)
max (H(C),H (C′))

, (39)

where MI(C,C′) is the mutual information of C and C′, H(C) and H(C′) are the information entropies of C and C′,
respectively.

The larger the values of these two metrics are, the better performance is.

6.1.4. Comparison settings
In order to keep fair comparison with other baseline methods in the experiments, we use the same strategy to deter-

mine the optimal parameters for all methods. Namely, all parameters are tuned by searching the grid
{
10−3, 10−2, 10−1

1, 10, 102, 103
}
. And the number of nearest neighbors is searched in {5, 10, 15}. For the selected features using the

abovementioned unsupervised feature selection methods, we utilize K-Means clustering algorithm [65] to evaluate the
performance of all compared methods in terms of ACC and NMI. To avoid the occasionality, we repeatedly perform
K-Means clustering 30 times and record the means and standard deviations for all methods. In addition, the value k
in the K-Means clustering algorithm is set to the true number of classes for each dataset.

6.2. Comparisons over clustering performance

In this section, we compare the performance of different unsupervised feature selection methods by the clustering
results in terms of ACC and NMI. Tables 2 and 3 show the clustering results on top 60 features under nine benchmark
datasets. The bold values indicate the best performance among eight feature selection approaches. According to the
experimental results, the proposed method AGUFS is superior to other unsupervised feature selection approaches in
terms of ACC and NMI. Especially, the ACC of our method are at least 6% higher than that of the runner-up method
on the data sets WarPIE10P, JAFFE and MFEA. And the NMI of our method are around 5% better than that of the
runner-up method on the data sets WarPIE10P, Umist, Lung and MFEA.
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Furthermore, we perform clustering tasks under selecting different number of features. Figs. 1 and 2 show the
clustering results ACC and NMI with the increase of the number of features from 20 to 180, respectively. In Figs.
1 and 2, the x-coordinate pertains to the number of selected features and y-coordinate pertains to ACC and NMI,
respectively. From these two figures, we can find that our method outperforms other compared methods at most time.
In particular, the optimal ACC and NMI of the proposed method AGUFS are around 5% larger than that of the second
best method. Hence, these experimental results demonstrate the superiority of our method.

Table 2: Means and standard deviation of ACC for different unsupervised feature selection methods

Part A: Means

Data sets AGUFS URAFS NDFS JELSR UDFS RSFS MCFS LapScore

Lymphoma 0.5906 0.5528 0.4830 0.3778 0.5003 0.4670 0.5524 0.4701

Lung 0.7255 0.6300 0.5885 0.6501 0.6245 0.5365 0.6876 0.5220

WapPIE10P 0.4349 0.2570 0.2648 0.2597 0.3809 0.2794 0.2884 0.3327

JAFFE 0.8532 0.7772 0.7449 0.7556 0.7380 0.6775 0.7884 0.6651

Umist 0.5008 0.4598 0.4235 0.4715 0.4924 0.4402 0.4708 0.3998

COIL20 0.6596 0.6416 0.5670 0.6440 0.6024 0.5674 0.5637 0.5700

Isolet 0.5849 0.5836 0.5153 0.3979 0.4837 0.4969 0.5571 0.4643

MFEA 0.6860 0.6220 0.6290 0.6284 0.6260 0.6267 0.5685 0.6592

USPS 0.6667 0.6306 0.5842 0.5745 0.6122 0.5749 0.6398 0.3197

Part B: Standard deviations

Data sets AGUFS URAFS NDFS JELSR UDFS RSFS MCFS LapScore

Lymphoma 0.0275 0.0301 0.0386 0.0418 0.0291 0.0720 0.0718 0.0354

Lung 0.0734 0.0923 0.0599 0.0550 0.0698 0.0676 0.0853 0.0472

WapPIE10P 0.0311 0.0236 0.0163 0.0132 0.0175 0.0240 0.0323 0.0306

JAFFE 0.0617 0.0934 0.0399 0.0457 0.0339 0.0500 0.0735 0.0314

Umist 0.0258 0.0249 0.0231 0.0309 0.0198 0.0264 0.0243 0.0162

COIL20 0.0268 0.0221 0.0398 0.0224 0.0186 0.0493 0.0429 0.0106

Isolet 0.0239 0.0409 0.0405 0.0185 0.0125 0.0265 0.0366 0.0152

MFEA 0.0148 0.0290 0.0135 0.0179 0.0240 0.0534 0.0431 0.0076

USPS 0.0198 0.0339 0.0006 0.0046 0.0038 0.0268 0.0343 0.0014

6.3. Parameter sensitivity
In this subsection, we explore the parameter sensitivity of the proposed method AGUFS. Since the parameter β is

determined by the Eq. (28), we focus on the impact parameters of α and λ. The clustering metrics ACC and NMI are
utilized to evaluate the performance with the parameters α and λ searched in the grid

{
10−3, 10−2, 10−1, 1, 10, 102, 103

}
and the number of features varied in {20, 60, 100, 140, 180}. Due to the limited space, we give the experimental results
on three datasets Umist, COIL20 and JAFFE, as shown in Figs. 3 and 4 in terms of ACC and NMI, respectively. There
are the similar results on other data sets. From Figs. 3 and 4, we can observe that ACC and NMI fluctuate a little with
the varying α and λ. Namely, the proposed method AGUFS is not sensitive with regards to the parameters α and λ
over a wide range. Then we can easily choose the parameters when using this method in practice.

6.4. Convergence study
The proposed Algorithm AGUFS for solving the objective function is iterative. In Section 5.1, we have already

proven its convergence. In this subsection, we experimentally investigate the convergence speed of the proposed
algorithm.
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Table 3: Means and standard deviation of NMI for different unsupervised feature selection methods

Part A: Means

Data sets AGUFS URAFS NDFS JELSR UDFS RSFS MCFS LapScore

Lymphoma 0.6846 0.6502 0.5324 0.3801 0.6188 0.4798 0.5865 0.5286

Lung 0.6073 0.5034 0.4951 0.4970 0.4961 0.3644 0.5206 0.3844

WapPIE10P 0.4482 0.2573 0.2902 0.2704 0.3594 0.2497 0.2868 0.3157

JAFFE 0.8732 0.8182 0.7989 0.7715 0.7154 0.7296 0.8457 0.6961

Umist 0.7098 0.6681 0.6014 0.6654 0.6579 0.6198 0.6677 0.5900

COIL20 0.7601 0.7441 0.6936 0.7528 0.6989 0.7082 0.7130 0.6926

Isolet 0.7010 0.6881 0.6406 0.5307 0.6173 0.6241 0.6834 0.6271

MFEA 0.6679 0.6133 0.6106 0.6108 0.6414 0.6083 0.5796 0.6502

USPS 0.6212 0.5749 0.5557 0.5160 0.5525 0.5338 0.6114 0.3313

Part B: Standard deviations

Data sets AGUFS URAFS NDFS JELSR UDFS RSFS MCFS LapScore

Lymphoma 0.0168 0.0264 0.0303 0.0409 0.0254 0.0439 0.0559 0.0308

Lung 0.0478 0.0628 0.0455 0.0346 0.0227 0.0446 0.0457 0.0149

WapPIE10P 0.0391 0.0420 0.0206 0.0177 0.0187 0.0323 0.0378 0.0248

JAFFE 0.0394 0.0677 0.0297 0.0308 0.0241 0.0274 0.0441 0.0199

Umist 0.0198 0.0185 0.0166 0.0158 0.0146 0.0197 0.0226 0.0099

COIL20 0.0175 0.0129 0.0200 0.0119 0.0078 0.0256 0.0176 0.0078

Isolet 0.0116 0.0315 0.0350 0.0108 0.0100 0.0153 0.0166 0.0056

MFEA 0.0078 0.0165 0.0075 0.0085 0.0131 0.0284 0.0227 0.0175

USPS 0.0164 0.0251 0.0011 0.0055 0.0029 0.0084 0.0103 0.0005

Fig. 5 shows the convergence curves of the proposed algorithm AGUFS on three data sets Umist, COIL20 and
JAFFE. And the experimental results are similar on other data sets. In Fig. 5, the x-axis pertains to the iteration
number and the y-axis pertains to the value of the objective function. As we can see, the convergence speed of the
proposed algorithm is very fast, usually within 10 iterations. It further demonstrates the efficiency of the proposed
algorithm AGUFS.

7. Conclusion

In this paper, we presented a generalized regression model with adaptive graph learning for unsupervised feature
selection. To select the efficient features, the proposed method introduced a generalized regression model with an
uncorrelated constraint, which can choose the discriminative and uncorrelated features as well as reduce the variance
of these data points belonging to the same neighborhood under the graph structure. Meanwhile, the adaptive learning
of the similarity-induced graph and the spectral graph method-based learning of indicator matrix in local manifold are
integrated into a coherent model for unsupervised feature selection. An alternative iterative optimization algorithm
was presented to solve the objective function. The corresponding time complexity and convergence of the proposed
algorithm were discussed. Extensive experimental results on nine real-world data sets demonstrated the effectiveness
and superiority of the proposed AGUFS method in comparison with other seven baseline approaches. In the future
work, we will extend the proposed method to deal with the semi-supervised feature selection task, where integrating
the available label information into the low dimensional embedding structure. Moreover, we will further investigate
how to speed up our method while coping with the large-scale data.
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Figure 1: ACC results compared with competing methods under different number of selected features
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Figure 2: NMI results compared with competing methods under different number of selected features
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(a) Umist (b) COIL20 (c) JAFFE

(d) Umist (e) COIL20 (f) JAFFE

Figure 3: ACC with varying parameters α and λ
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Figure 4: NMI with varying parameters α and λ
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Figure 5: Convergence curves of AGUFS on Umist, COIL20 and JAFFE.
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