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Highlights
GAPORE: Boolean network inference using a genetic algorithm with novel polynomial represen-
tation and encoding scheme
Xiang Liu,Yan Wang,Ning Shi,Zhicheng Ji,Shan He

• A novel genetic algorithm incorporating local search is introduced to infer Boolean networks accurately.
• An efficient symbolic polynomial representation is proposed to represent the unknown Boolean functions.
• A novel encoding scheme is developed to encode the Boolean functions flexibly.
• An l2-norm regularization is designed to reduce the over-fit problem in Boolean network inference.
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ABSTRACT
Inferring Boolean networks is crucial for modeling and analyzing gene regulatory networks from a
systematic perspective. However, the state-of-the-art algorithms cannot accurately infer the topology
and dynamics of Boolean networks due to the lack of an efficient approach to representing the un-
known Boolean functions and the over-fit problem caused by the noise in time-series data. To address
these problems, we propose a novel inference algorithm using a genetic algorithm with novel poly-
nomial representation and encoding scheme (GAPORE) to reconstruct large-scale Boolean networks
accurately. First of all, a novel symbolic polynomial representation method is introduced to efficiently
represent the unknown Boolean functions of the candidate Boolean network as the symbolic polyno-
mial dynamical equations. Then, a novel encoding scheme is developed to flexibly encode the sym-
bolic polynomial dynamical equations by varying the effective lengths of the chromosomes. To reduce
the over-fit problem, the l2-norm regularization is designed into the fitness evaluation in view of the
network sparsity. In addition, the local search strategy is embedded into the hybrid genetic algorithm
framework to strengthen the search capability. Extensive experiments demonstrate that GAPORE can
infer the large-scale Boolean networks more accurately than state-of-the-art algorithms from the noisy
time-series data.

1. Introduction
A gene regulatory network is composed of interactions

among the genes and proteins in living cells and reflects the
relationship of these genes or proteins [26, 33]. Gene regula-
tory networks play an increasingly crucial role in uncovering
and analyzing the underlying regulatory mechanism of bio-
logical organisms from a systematic view [14, 43, 33, 36].
There are many approaches to reconstruct gene regulatory
networks by using time-series data from experimental ob-
servation, such as fuzzy cognitive maps [37, 38], Bayesian
networks[24], Boolean networks [4, 39]. Due to the periodic
characteristic and the efficiency to describe signal transduc-
tion, Boolean networks have been widely utilized to demon-
strate and analyze gene regulatory networks [18].

A growing number of data-driven algorithms have been
proposed to infer Boolean functions in the form of logical
operators. Among these algorithms, Best-Fit [20] exhaus-
tively searches all the candidate Boolean functions and is
vulnerable to the over-fit problemwhen dealingwith the noisy
time-series data. MIBNI [3] employs themutual information
theory to reconstruct every Boolean function with a fixed in-
degree. Nevertheless, it can only infer a conjunction or dis-
junctionBoolean functions and cannot infer complexBoolean
functions. MAGANI [25] utilizes an improved genetic algo-
rithm (GA) to search the candidate Boolean functions. How-
ever, the inference performance of these algorithms is far
from satisfactory when applied to some complex Boolean
functions. One of the main reasons is that Boolean functions
in the form of logical operators may be redundant and indef-
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inite [39]. In view of this problem, ATEN [39] introduces
a recursive feature reconstruction and elimination (RFRE)
procedure to obtain a minimum Boolean function by elimi-
nating the redundant term. Despite these solid achievements,
state-of-the-art algorithms could not performwell when they
are applied to large-scale Boolean network inference.

To overcome the difficulty of representation, researchers
have developedmany algebraic expression approaches to rep-
resentingBoolean functions efficiently. A state spacemethod
[6, 7, 30] uses the state-transition matrix based on the semi-
tensor product (STP) to express the Boolean functions. How-
ever, this approach suffers from the curse of dimensionality
since the dimension of the state-transition matrix grows ex-
ponentially with the number of nodes [45]. The Zhegalkin
polynomial identification method is proposed by [8, 9] to
represent and identify the unknown Boolean functions. Nev-
ertheless, there are strict rules for the feasible combinations
of all the Zhegalkin coefficients [9], which hinders the spread
and application. Jarrah et al. [17] introduce an efficient
transformation theory that transforms the logical operators
into a polynomial representation. Based on the transforma-
tion theory proposed by [17], we design a novel symbolic
polynomial representation method to represent the unknown
Boolean functions as the symbolic Boolean polynomial dy-
namical equations.

As analyzed in [40], there are
(

22KN!
(N−K)!

)N
candidate

solutions for an unknown Boolean network with N nodes
and the maximum in-degree K . Therefore, it is a challeng-
ing task to accurately reconstruct the Boolean network from
the noisy time-series data. It is well known that genetic
algorithms with variable-length chromosomes have an ad-
vantage in solving graph optimization problems [34]. Ab-
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baspour et al. use the GAwith variable-length chromosomes
to solve the tour planning problems [2]. Lee designs a GA
with variable-length chromosomes for the robot to discover
a feasible path without intersecting any obstacles [22]. Li et
al. provide a deep insight into the variable-length multiob-
jective optimization problems [23]. Viswambaran et al. em-
ploy a GAwith variable-length chromosomes to evolve deep
recurrent neural networks (DRNNs) by using the variable-
length encoding strategy to represent DRNNs of different
depths [42]. The common characteristic of these graphs is
that their feasible structures consist of an unfixed or unknown
number of nodes or layers. Intrinsically, the Boolean net-
work to be inferred is a directed graph that is suitable to
be optimized by a genetic algorithm with variable-length
chromosomes. Inspired by this, we design a novel encod-
ing scheme to flexibly encode the Boolean functions of the
nodes with different in-degrees.

Moreover, local search (LS) belongs to a category of
meta-heuristic algorithmswhich are very effective on a range
of combinational optimization problems [41, 35, 10]. Con-
sidering the complexity of the network inference, we incor-
porate the local search into the genetic algorithm framework
to improve the inference performance.

In practice, many inference algorithms suffer from the
over-fit problem since the time-series data are noisy, which
means that the in-degrees of the nodes inferred by existing
algorithms tend to be larger than the real in-degrees of the
nodes. A well known method to restrain the over-fit problem
is to design a l2-norm regularization with respect to the re-
gression parameters [11, 5, 27, 19, 44]. Taking the sparsity
of networks [40, 43] into account, we design the l2-normregularization to the in-degree for the sake of overcoming
the over-fit problem. The main contributions of this study
can be summarized as follows:
(1) A novel inference algorithm GAPORE is introduced to

better infer large-scale Boolean networks. By incorpo-
rating the local search strategy into the genetic algo-
rithm, GAPORE is capable to effectively explore and
exploit the search space.

(2) To overcome the inefficiency of logical operation repre-
sentation, a novel symbolic polynomial representation
method is proposed to efficiently represent the unknown
or undetermined Boolean functions.

(3) Inspired by the variable-length encoding scheme, a novel
dominant bit encoding scheme is developed to encode
the unknown Boolean functions of the nodes with flexi-
ble in-degrees, which enables the flexibility of solutions
and maintains the ease of implementation.

(4) By designing the l2-norm regularization to the in-degree
of each node, GAPORE effectively handles the over-fit
problem and achieves the best performance in compari-
son to other algorithms for inferring large-scale Boolean
networks.

2. Preliminaries
This section illustrates the related concepts of Boolean

networks and the polynomial representation of the determin-
istic Boolean functions based on the transformation theory
proposed by [17, 21].
2.1. Boolean network

ABoolean networkG (V , F ) is a discrete-time non-linear
dynamical system, which consists of a set of nodes V =
{

x1, x2,⋯ , xn,⋯ , xN
} and a set of Boolean functions F =

{

f1, f2,⋯ , fn,⋯ , fN
}. In a Boolean network, each node

has only a state ( 0 or 1 ) at a time point, where 0 represents
the state of the node is off (not expressed) and 1 denotes the
state of the node is on (expressed). The model of a Boolean
network is shown as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1 (t + 1) = f1
(

x11 (t) , x12 (t) ,⋯ , x1K1 (t)
)

⋮

xn (t + 1) = fn
(

xn1 (t) , xn2 (t) ,⋯ , xnKn (t)
)

⋮

xN (t + 1) = fN
(

xN1 (t) , xN2 (t) ,⋯ , xNKN
(t)
)

(1)

where fn denotes a Boolean function. xn(t + 1) is the stateof the target node xn at time point t + 1. xnKn (t) is the stateof the regulatory node xnKn at time point t. In addition,Kn is
the in-degree of the node xn, denoting the number of regula-
tory nodes of the target node xn. We define K = max

{

Kn
}

(n = 1,⋯ , N) as the maximum in-degree of the Boolean
network.

The state of the Boolean network at time point t is repre-
sented as xT (t) = [

x1 (t) , x2 (t) ,⋯ , xN (t)
]. The Boolean

network evolves dynamically from one state x (t) to the next
state x (t + 1), governed by the set of Boolean functions.
With the advances in high-throughputmicroarray techniques,
more time-series data can be observed and denoted as D =
[x(1),⋯ ,x(�)] ∈ ℝn×�, where � is the number of time points.
In addition, the Boolean network has a periodic characteris-
tic called attractor, which corresponds to functional cellular
states. Intrinsically, the attractors are the steady states of the
Boolean network, and the concept of attractors is defined [1]
as follows.
Definition 1. For the Boolean network (1), the sequence of
states x(t),x(t+ 1),⋯ ,x(t+ T − 1) is defined as a periodic
attractor if they satisfy x(t + T ) = x(t), x(t + i) ≠ x(t),
i ∈ [1, T − 1]. The period of the attractor is T .

As shown in Fig. 1, we take a small Boolean network
with three nodes as a simple example to intuitively illustrate
the related concepts mentioned above, including the avail-
able time-series data, the network topology, the state tran-
sitions or dynamics, and the set of Boolean functions. In
addition, the Boolean network has an attractor (101→ 101)
with T = 1 and an attractor (110 → 100 → 001 → 110)
with T = 3.
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Figure 1: A simple example for a Boolean network with three
nodes. In (a), there are two time-series D1, D2. (b) displays
the network topology. (c) demonstrates the state transitions.
(d) shows the Boolean functions using logical operators, where
operator ⊕ denotes the logical operator XOR.

2.2. Data-driven Boolean network inference
Thewide application of high-throughputmicroarray tech-

niques facilitates time-series measurements of genes, which
provides adequate time-series data for Boolean network re-
construction. The data-driven inference is to find the can-
didate Boolean network whose state transitions are the most
consistent with the time-series data. The Boolean network
inferred from the time-series data is assumed as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂1 (t + 1) = f̂1
(

x̂11 (t) , x̂12 (t) ,⋯ , x̂1K1 (t)
)

⋮

x̂n (t + 1) = f̂n
(

x̂n1 (t) , x̂n2 (t) ,⋯ , x̂nKn (t)
)

⋮

x̂N (t + 1) = f̂N
(

x̂N1 (t) , x̂N2 (t) ,⋯ , x̂NKN
(t)
)

(2)

where x̂n(t+1) corresponds to the inferred state of the targetnode xn at time point t+ 1 and x̂n1 (t), x̂n2 (t), ⋅ ⋅ ⋅, x̂nKn (t) are
the inferred states of the regulators at time point t. f̂n is theinferred Boolean function of xn.

As analyzed in [40], each node xn has N!
(N−K)! possi-

ble ordered regulators, and the number of possible networks
is
(

22KN!
(N−K)!

)N
in terms of an unknown Boolean network

with N nodes and the maximum in-degree K . Thus, it is
challenging to infer large-scale Boolean networks accurately
from the time-series data.
2.3. The transformation for logical operators

It is inefficient to use logical operators to represent the
Boolean functions because the logical expression tends to
be redundant and hard to be parameterized [7, 39]. For in-
stance, the Boolean function y = (¬a∧b∧c)∨(¬a∧b∧¬c)∨
(a∧¬b∧¬c)∨(a∧¬b∧c) is equivalent to y = (¬a∧b)∨(a∧¬b),
which implies the variable c is redundant. Moreover, it is dif-
ficult to deal with the logical operation because the logical
operators have different precedence. Thus, it is necessary

to transform the logical relationships into the equivalent al-
gebraic form to avoid the redundancy of logical operation
representation. The transformation theory is proposed by
[17, 21] to represent the deterministic Boolean function as
a specific Boolean polynomial dynamical equation. Specif-
ically, the transformation theory includes two steps as fol-
lows:

I. Replace the logical operations with the combination of
addition and multiplication according to Eq.(3).

⎧

⎪

⎨

⎪

⎩

x ∧ y ∶= xy
x ∨ y ∶= x + y + xy
¬x ∶= x + 1

(3)

II. Divide the obtained expression by 2 and then take the
remainder.

where x and y are the Boolean variables, the symbols ∧, ∨,
and ¬ represent the logical operators AND,OR, and NOT re-
spectively. In this way, the logical operation expression can
be equivalently transformed into a Boolean polynomial ex-
pression. It is worth noting that all coefficients of the mono-
mials are binary because of Step II. For simplicity, we omit
Step II in the following formula.

3. The proposed inference algorithm
To accurately infer the Boolean network, we propose a

novel hybrid genetic algorithm calledGAPORE,which com-
bines the improved genetic algorithm and the local search
strategy. When themaximum in-degreeK is determined, the
search space of a Boolean network withN nodes is approxi-
mately proportional toO(NKN ) and is computationally pro-
hibitive to be computed by brute force search [40]. Thus, it is
necessary to adopt the decomposition strategy for inferring
large-scale Boolean networks. Based on the divide and con-
quer strategy, GAPORE separately infers the Boolean func-
tion of each target node xn and finally combines the Boolean
functions of all target nodes as the Boolean network. Fig. 2
gives an overview of inferring the Boolean function of a tar-
get node xn. For each target node xn, we first propose the
dominant bit encoding scheme (DBES) based on the sym-
bolic polynomial representation to initialize the population.
Next, we evaluate each chromosome of the population by a
fitness function. Then, we select the chromosomes with bet-
ter fitness values as two parts: the parent chromosomes P
and the elite group Q. We conduct the GA operators on P
to generate offspring and the LS operators on Q to exploit
the neighborhoods of these elites. Repeat this process until
the maximum number of iterations is reached and output the
best inferred Boolean function of xn. Finally, the Boolean
network is obtained by combining all the N Boolean func-
tions. The complete framework for inferring the Boolean
functions of all nodes in the Boolean network is summarized
as Algorithm 1.
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Time Series

States

States

States

Dominant Bit Encoding 

with 

the symbolic Boolean 

polynomial representation 

Start
Select parent 

chromosomes

    and 

the elites 

GA operators 

on 

LS operators 

on   

g < G？

Yes

No

Output the inferred function of

Fitness evaluation

Figure 2: Overview of inferring the Boolean function of a target node xn by the proposed algorithm.

3.1. A novel symbolic polynomial representation
Based on the transformation theory proposed by [17, 21],

a deterministic Boolean function can be represented in the
form of the Boolean polynomial dynamical equation. How-
ever, there is still lack of an effective approach to represent-
ing an unknown or undetermined Boolean function in the
algebraic form. Therefore, it is significant to design a sym-
bolic polynomial representation approach for the unknown
Boolean function.

Consider a target node xn in an unknown or undeter-
mined Boolean network with N nodes and the maximum
in-degree K with the regulatory nodes

{

xn1 ,⋯ , xnK
}

. Be-
cause the in-degreeKn of each target node varies and the co-efficients of the Boolean polynomial dynamical system are
unknown, it is necessary to design a uniform symbolic ex-
pression to deal with these uncertainties.

Obviously, any Boolean polynomial dynamical equation
xn(t+ 1) = f

(

xn1 (t), xn2 (t),⋯ , xnK (t)
)

consists of at most
2K monomials and each monomial can be represented by
a basic monomial xb1n1xb2n2⋯ xbKnK where the binary bi is thepower of xni (i ∈ {1,⋯ , K}). For instance, if K = 5, a
monomial xn1 (t)xn2 (t)xn5 (t) can be represented using the ba-
sic monomial xb1n1 (t)xb2n2 (t)xb3n3 (t)xb4n4 (t)xb5n5 (t) by letting b1 =
1, b2 = 1, b3 = 0, b4 = 0, b5 = 1, respectively.Considering that a Boolean polynomial dynamical equa-
tion consists of at most 2K monomials, it is significant to
represent which monomials appear in the Boolean polyno-
mial dynamical equation. Intuitively, an effective method is
to assign a unique binary coefficient to each monomial. If
the binary coefficient is 1, the corresponding monomial ap-
pears in the equation; otherwise, if the binary coefficient is
0, the corresponding monomial does not appear in the equa-
tion. Thus, we design a binary matrix to assign a unique

binary coefficient ai to each monomial (determined by a set
of bK , bK−1,⋯ , b1) as follows:

Ψ =

bK b(K−1) ⋯ b4 b3 b2 b1
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

a0 0 0 ⋯ 0 0 0 0
a1 0 0 ⋯ 0 0 0 1
a2 0 0 ⋯ 0 0 1 0
a3 0 0 ⋯ 0 0 1 1
a4 0 0 ⋯ 0 1 0 0
a5 0 0 ⋯ 0 1 0 1
a6 0 0 ⋯ 0 1 1 0
a7 0 0 ⋯ 0 1 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
a2K−2 1 1 ⋯ 1 1 1 0
a2K−1 1 1 ⋯ 1 1 1 1

(4)

whereK is the maximum in-degree of the Boolean network.
In this way, we establish the one-to-one correspondence be-
tween the binary coefficients and the monomials. Hence, the
Boolean polynomial dynamical equation can be described by
the monomials and their coefficients as follows:

xn(t + 1) = f
(

xn1 (t), xn2 (t),⋯ , xnK (t)
)

= a0 + a1xn1 (t) + a2xn2 (t) + a3xn1 (t)xn2 (t) + a4xn3 (t)
+a5xn1 (t)xn3 (t) + a6xn2 (t)xn3 (t) + a7xn1 (t)xn2 (t)xn3 (t)
+⋯ + a2K−1xn1 (t)xn2 (t)⋯ xnK (t)

=
2K−1
∑

i=0
aix

b1
n1 (t)x

b2
n2 (t)⋯ xbKnK (t) (5)

where {a0, a1,⋯ , a2K−1
} are all the binary coefficients, and

xb1n1 (t)x
b2
n2 (t)⋯ xbKnK (t) is the basic monomial for the symbolic

Boolean polynomial dynamical equation. And the subscript
Xiang Liu et al.: Preprint submitted to Elsevier Page 4 of 15
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i of ai is a decimal number converted from the corresponding
binary number (bK , bK−1,⋯ , b1) in the binarymatrixΨ, i.e.,
(i)10 = (bK , bK−1,⋯ , b1)2. For instance, the corresponding
(bK , bK−1,⋯ , b1) of the 7tℎ row in the binary matrix Ψ is
(0, 0,⋯ 0, 1, 1, 1). According to Eq.(5), the corresponding
monomial is x1n1 (t)x1n2 (t)x1n3 (t)x0n4 (t)⋯ x0nK (t) and a7 will beassigned to the monomial xn1 (t)xn2 (t)xn3 (t) as the unique bi-nary coefficient.
Remark 1. The symbolic polynomial representationmethod
provides a novel algebraic tool to efficiently represent the
unknown Boolean functions. From Eq.(5), there are 2K un-
known coefficients ai.Since that each coefficient is binary
and the in-degree is K , there exists 22K possible Boolean
rules. Meanwhile, each node has N!

(N−K)! candidate ordered
regulatory nodes. Consequently, the number of the Boolean

polynomial dynamical equations is 22KN!
(N−K)! that coincides

with the number of the possible Boolean functions in the
form of logical operators [40]. In other words, this sym-
bolic polynomial representation method can provide a com-
plete solution space of Boolean functions, which is different
from other algorithms such as MIBNI [3].

3.1.1. Boolean rules
Interestingly, the symbolic polynomial representation ap-

proach has a series of definite coefficient combinations to
describe the Boolean rules, corresponding to the logical op-
erators. In this subsection, we deduce the coefficient com-
binations corresponding to the logical operators such asOR,
AND, XOR.
Theorem 1. Suppose that xn(t + 1) = xn1 (t) ⊕ xn2 (t) is
a Boolean function with the Boolean rule XOR. Based on
Eq.(3), it can be transformed into a symbolic polynomial dy-
namical equation as follows:

xn(t + 1) = xn1 (t) + xn2 (t) (6)
Therefore, the coefficients of the polynomial equation satisfy
a0 = 0, a1 = 1, a2 = 1, ai = 0 (i ∈

{

3, 4,⋯ , 2K−1
}

).

Proof 1. Considering the Idempotent Law, the Boolean vari-
able x satisfies x2 = x. Since that any even number can
be divisible by 2, the even monomial in the equation can be
omitted according to Step II of the transformation theory.

xn(t + 1) = xn1 (t)⊕ xn2 (t)

= (¬xn1 (t) ∧ xn2 (t)) ∨ (xn1 (t) ∧ ¬xn2 (t))

= (1 + xn1 (t))xn2 (t) + (xn1 (t)(1 + xn2 (t)))

+ (1 + xn1 (t))xn2 (t) ⋅ xn1 (t)(1 + xn2 (t))

= xn1 (t) + xn2 (t) + 2xn1 (t)xn2 (t) + xn1 (t)xn2 (t)

+ x2n1 (t)xn2 (t) + xn1 (t)x
2
n2
(t) + x2n1 (t)x

2
n2
(t)

= xn1 (t) + xn2 (t) + 6xn1 (t)xn2 (t)

= xn1 (t) + xn2 (t)

The proof is complete.

Similarly, the other definite coefficient combinations of
the Boolean rules can be obtained by transforming the corre-
sponding logical operators according to Eq.(3) of the trans-
formation theory [17]. If the Boolean network has the max-
imum in-degree K = 5, then the coefficient combination
Ai = (a0, a1, a2, a3,⋯ , a28, a29, a30, a31) can be deduced to
represent a concrete Boolean rule. Empirically, ten com-
mon Boolean rulesA1, A2,⋯ , A10 are deduced. As summa-
rized in Eq.(7), the coefficient combination A1 correspondsto the logical operator NOT, A2 is equivalent to the logical
operator NAND, A3 corresponds to the logical operator OR,
A4 reflects the logical operator XOR, and A5 corresponds
to the logical operator XNOR. In terms of A6, it describesan extended XOR, which can be expressed as: xn(t + 1) =
[xn1 (t) ∧ ¬xn2 (t)] ∨ [¬xn1 (t) ∧ xn2 (t) ∧ xn3 (t)]. With re-
spect to A7, it describes a Boolean rule that xn(t + 1) =
[¬xn1 (t)∧¬xn2 (t)∧¬xn3 (t)]. With respect toA8, it describesa Boolean rules that xn(t + 1) = xn1 (t) ∧ [xn2 (t) ∨ xn3 (t)].The coefficient combination A9 describes a Boolean rules
that xn(t + 1) = xn1 (t) ∧ xn2 (t) ∧ [xn3 (t) ∨ xn4 (t)]. With re-
spect to A10, it describes a Boolean rules that xn(t + 1) =
¬xn1 (t) ∧ xn2 (t) ∧ [xn3 (t) ∨ xn4 (t)].

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A1 = (1100 0000 0000 0000 0000 0000 0000 0000 1)
A2 = (1010 0000 0000 0000 0000 0000 0000 0000 2)
A3 = (0111 0000 0000 0000 0000 0000 0000 0000 2)
A4 = (0110 0000 0000 0000 0000 0000 0000 0000 2)
A5 = (1110 0000 0000 0000 0000 0000 0000 0000 2)
A6 = (0101 0011 0000 0000 0000 0000 0000 0000 3)
A7 = (1111 1111 0000 0000 0000 0000 0000 0000 3)
A8 = (0001 0101 0000 0000 0000 0000 0000 0000 3)
A9 = (0000 0001 0001 0001 0000 0000 0000 0000 4)
A10 = (0000 0011 0011 0011 0000 0000 0000 0000 4)

(7)
Considering there are various logical operators with dif-

ferent precedence, it is difficult to encode a number of com-
plex Boolean rules in the form of logical operators. In con-
trast, the symbolic polynomial representation approach can
efficiently describe any complex Boolean rules by using dif-
ferent coefficient combinationswhich is easier to be encoded.
Hence, it is efficient to design a novel encoding scheme based
on the symbolic Boolean polynomial representation.
3.2. Dominant Bit Encoding Scheme

Inspired by the variable-length encoding scheme applied
in the graph optimization problems with unknown structures
[34, 13, 16], we attempt to design a novel flexible encoding
scheme for the candidate Boolean functions with different
in-degrees. Meanwhile, we are enlightened by the simplicity
and ease of implementation of GAs with fixed-length chro-
mosomes. Consequently, we introduce a dominant bit en-
coding scheme by designing the in-degree Kn as the domi-
nant bit to vary the effective length of the chromosomes and
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Figure 3: The dominant bit encoding scheme. The in-degree
Kn of a target node xn is designed as the dominant bit. (b) is
an example of the encoding for the candidate function of xn in
a BN with N = 100, K = 5, Kn = 3. Due to the dominant bit
Kn = 3, the number of effective regulators is 3 (xn1 = 78, xn2 =
34, xn3 = 59), and the number of effective coefficients is 8 bits.

keeping the total lengths of chromosomes the same.
As seen from Fig.3, a chromosome is composed of three

fragments, including a set of regulatorsΩ =
{

xnK ,⋯ , xn1
}

,
a set of coefficients Φ =

{

a0, a1,⋯ , a2K−1
} and the in-

degreeKn. The effective length of each chromosome is flexi-
ble and determined by the dominant bitKn, shown as the two
blue parts! =

{

xnKn ,⋯ , xn1
}

and� = {

a0, a1,⋯ , a2Kn−1
}

in Fig.3 (a). The effective length of the chromosome is dim =
Kn + 2Kn + 1, which tends to be smaller than the dimension
of the search space Dim = K + 2K + 1 due to the network
sparsity. Moreover, the size of the search space is 22KN!

(N−K)!according to the principle of permutation and combination.
Based on the symbolic polynomial representation, the dom-
inant bit encoding scheme allows the flexibility of solutions
and maintains the ease of implementation by varying the ef-
fective length instead of the total length of the chromosome.
3.3. Fitness Evaluation

To evaluate the fitness of the chromosomes, we propose
a fitness function with the l2-norm regularization to the in-
degree Kn. Firstly, we decode the chromosome as a candi-
date Boolean function by identifying the corresponding reg-
ulators and coefficients according to their positions in the
chromosome. Then, we infer the state transitions by using
the candidate Boolean function with the time-series data. Fi-
nally, we compare the inferred state transitions and the corre-
sponding values in the time-series data. Taking the network
sparsity into consideration, we modify the fitness function
by adding the l2-norm regularization of the in-degreeKn forthe sake of handling the over-fit problem.
3.3.1. Inconsistency Evaluation

It is necessary to evaluate the inferred Boolean function
of a target node. To this end, the inconsistency should be
defined to quantify the difference between the inferred state
transitions x̂n(t) (t ∈ {2,⋯ , �}) of the target node xn and the

time-series data. Intuitively, if the inferred Boolean function
is correct, then the state transitions of the target node will fit
the time-series data, and the difference between them tends
to be zero. On this basis, the inconsistency evaluation is de-
signed as follows:

Ejn =
�
∑

t=2

(

x̂n(t) − xn(t)
)2 (8)

where � is the length (i.e., the number of time points) of the
time-series dataDj . x̂n(t) and xn(t) are the inferred state andthe true value in the time-series data at time point t, respec-
tively.
3.3.2. l2-norm Regularization

Since the time series data are noisy, many inference al-
gorithms are susceptible to the over-fit problem that the in-
ferred in-degree is larger than the real in-degree. According
to related literature [15, 11, 5, 27, 19, 44], one of the pop-
ular method to avoid the over-fit problem is l2-norm regu-
larization. As analyzed in [40], the probability that a node
has the in-degree decreases as the value of the in-degree in-
creases, following a power-law distribution. Specifically, a
large number of nodes have only a few regulatory nodes. In
other words, the Boolean network is sparse network. Taking
the sparsity of networks into account, we modify the fitness
function by designing a l2-norm regularization term to the
in-degree Kn as follows:

Ef =
1

d × �

d
∑

i=1

�
∑

t=2

(

x̂n(t) − xn(t)
)2+ �

2 × (d × �)
(Kn)2 (9)

where d is the number of time-seriesDi and eachDi contains
� time points.
3.4. Selection

The selectionmechanism aims to choose the parent chro-
mosomes with good fitness values from the current popula-
tion for later variation to generate offspring. We adopt the
binary tournament selection strategy owing to its high effi-
ciency and easy implementation. Each time, two chromo-
somes are randomly selected from the population for com-
petition and the fittest one wins and is selected for variation.
We repeat this process until the population size is reached.
3.5. Crossover

A single-point crossover is employed in the proposed al-
gorithm. Firstly, we randomly generate a number r ranging
from 0 to 1. The crossover probability is preset as pc. If
r < pc, we utilize the single-point crossover on the two par-
ents. The crossover point c is chosen randomly. Suppose
there are two chromosomes Pi and Pj , where the itℎ chro-
mosome Pi = [vi,1,⋯ , vi,c ,⋯ , vi,K+2K+1], the jtℎ chromo-
some Pj = [vj,1,⋯ , vj,c ,⋯ , vj,K+2K+1]. The two offspring
P ′i and P ′j can be obtained as follows:

P ′i = [vi,1,⋯ , vi,c , vj,c+1,⋯ , vj,K+2K+1],

P ′j = [vj,1,⋯ , vj,c , vi,c+1,⋯ , vi,K+2K+1].
(10)
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3.6. Mutation
The mutation operator is executed with the probability

pm on each chromosome Pi = [vi,1,⋯ , vi,j ,⋯ , vi,K+2K+1].As shown in Fig. 3, the chromosome consists of three frag-
ments: the regulators, the binary coefficients, and the in-
degree. The first step is to determine the mutation point by
randomly generate an integer j ∈ [1, K + 2K + 1]. The sec-
ond step is to randomly generate a new value for the variable
vi,j to be mutated. Since that the variables in different frag-
ments have different range of values, a new variable v′i,j isgenerated as follows:

v′i,j =

⎧

⎪

⎨

⎪

⎩

randi(1, N), 1 < j < K,

1 − vi,j , K + 1 ⩽ j ⩽ K + 2K ,

randi(1, K), j = K + 2K + 1.

(11)

where randi(1, N) is the function to randomly generate an
integer ranging from 1 to N . Finally, a new chromosome
P ′i = [vi,1,⋯ , v′i,j ,⋯ , vi,K+2K+1] is obtained by Eq.(11).
3.7. Local search with Boolean rules

Local search has proven to be a successful tool for vari-
ous graph optimization problems [10, 41, 35]. The underly-
ing idea is that better chromosomes can be found within the
neighborhood of the current chromosome.

Considering a chromosomeQi. The neighborhoodH(Qi)is the set of all chromosomes that can be obtained by con-
ducting a given kind of modification on Qi. In this paper,
the modification is specified by the local search operators
including the swap operator Ls, the mutation operator Lm,and the replacement operator Lr. The swap operator tries toselect two regulators and exchange their position in the frag-
ment Ω =

{

xnK ,⋯ , xn1
}

. We observe that xn1 is the most
possible regulators during the evolution. As a result, the
swapped regulators are only selected from

{

xnK ,⋯ , xn2
}

without xn1 for the purpose of reducing the burden of com-
putation. For instance, if a chromosome is shown as Qi =
[xn5 , xn4 , xn3 , xn2 , xn1 , a0,⋯ , a31, Kni ], the neighbor-
hood obtained by the swap operator can be represented as

Ls =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[xn5 , xn4 , xn2 , xn3 , xn1 , a0,⋯ , a31, Kni ],

[xn5 , xn2 , xn3 , xn4 , xn1 , a0,⋯ , a31, Kni ],

[xn5 , xn3 , xn4 , xn2 , xn1 , a0,⋯ , a31, Kni ],

[xn4 , xn5 , xn3 , xn2 , xn1 , a0,⋯ , a31, Kni ],

[xn3 , xn4 , xn5 , xn2 , xn1 , a0,⋯ , a31, Kni ],

[xn2 , xn4 , xn3 , xn5 , xn1 , a0,⋯ , a31, Kni ].

(12)

The mutation operator aims to mutate one of the regu-
lators xnj (j ∈ [1, 5]) by letting x′nj = randi(1, xnj ) where
randi(1, xnj ) is the function to randomly generate an integer
ranging from 1 to xnj . The neighborhood obtained by the

mutation operator includes

Lm =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[xn5 , xn4 , xn3 , x
′
n2
, xn1 , a0,⋯ , a31, Kni ],

[xn5 , xn4 , x
′
n3
, xn2 , xn1 , a0,⋯ , a31, Kni ],

[xn5 , x
′
n4
, xn3 , xn2 , xn1 , a0,⋯ , a31, Kni ],

[x′n5 , xn4 , xn3 , xn2 , xn1 , a0,⋯ , a31, Kni ].

(13)

As mentioned above, there are a set of Boolean rules
summarized as the set of coefficient combinations in Eq. (7).
To make use of the coefficients corresponding to the certain
Boolean rules, we employ the replacement operatorLr to re-place the coefficient fragment � = {

a0, a1,⋯ , a2Kn−1
} and

the in-degree Kn of the chromosome Qi with the coefficient
combinations Ab (b = 1,⋯ , 10).

With respect to the chromosomeQi, We change the reg-
ulatory nodes by Ls and Lm and replace the coefficient frag-
ment byLr to generate a set of neighborhoodsH(Qi). Then,we evaluate the fitness of each neighbor chromosome byEq.(9).
Finally, the current solutionQi is updated by the best neigh-bor chromosome inH(Qi).

4. Experiments and Results
To validate the inference performance, we utilize ATEN,

Best-Fit, MIBNI, and GAPORE to infer both the topology
and the dynamics of ten benchmark networks, including five
artificial Boolean networks and five real-world gene regula-
tory networks. For each experiment, ATEN and GAPORE
take the average over 10 runs since that both of them are
heuristic algorithms.

It is necessary to employ related measures to evaluate the
performance of these algorithms on inferring both the topol-
ogy and the dynamics. In the context of Boolean network, if
a target node xn has a regulatory node xnj , then there exists
an interaction (or edge) starting from the regulatory node xnjto the target node xn. The topology of the Boolean network
consists of all the interactions from every regulatory nodes
to the target nodes. In terms of the performance on infer-
ring the network topology, we adopt a set of classic metrics
[28], namely Accuracy, Recall, Precision, FPR, as well as
F-score. The topology metrics is provided as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(14)

Recall = TP
TP + FN

(15)

Precision = TP
TP + FP

(16)

FPR = FP
FP + TN

(17)
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Algorithm 1: The pseudo-code of GAPORE
input : The time-series data Dj containing � time points, j = 1, 2,⋯ , d,

the number of nodesN , the maximum in-degree K .
output: The inferred Boolean network

1 Preset the maximum iteration G, the population size S, the elite size E, the number of Boolean rules B ;
2 for n← 1 toN do
3 P ← Initialize population using the dominant bit encoding scheme with the symbolic Boolean polynomial

representation;
4 foreach chromosome Pi in P do
5 Decode the chromosome as a Boolean function;
6 Obtain the state transitions of xn by inputting the time-series data into the Boolean function;
7 Evaluate the fitness of Pi using Eq. (9) ;
8 end
9 g=0;

10 while g < G do
11 g = g + 1 ;
12 Q← select the best E chromosomes from P according to the fitness as an elite group;
13 P ′

← select S chromosomes from P as parents by tournament selection;
14 P ′

← crossover on each two parent chromosomes in P ′ by Eq.(10);
15 P ′′

← mutate each chromosome in P ′ by Eq.(11) ;
16 foreach chromosome Qi in Q do
17 H(Qi)← Generate the neighborhoods using the local search operators Ls, Lm, and Lr on Qi ;
18 foreach chromosome Qi inH(Qi) do
19 Decode the chromosome as a Boolean function;
20 Obtain the state transitions of xn by inputting the time-series data into the Boolean function;
21 Evaluate the fitness of Pi using Eq. (9) ;
22 end
23 Q′

i ← Replace Qi with the best one fromH(Qi) ;
24 end
25 P ← P ′′ ∪ Q′ ;
26 foreach chromosome Pi in P do
27 Decode the chromosome as a Boolean function;
28 Obtain the state transitions of xn by inputting the time-series data into the Boolean function;
29 Evaluate the fitness of Pi using Eq. (9) ;
30 end
31 end
32 Output the optimal Boolean function of xn;
33 end
34 Combine all theN Boolean functions as the Boolean network;

F−score = 2TP
2TP + FP + FN

(18)

where TP (true positive) and FP (false positive) represent
the number of the correctly and incorrectly inferred interac-
tions, respectively. FN (false negative) denotes the number
of interactions that are absent in the inferred Boolean net-
work but exist in the real Boolean network. TN (true neg-
ative) indicates the number of absent interactions in the in-
ferred Boolean network which also does not exist in the real
Boolean network. Among the five metrics, F-score is a com-
prehensive and crucial metric since that it trades off the two
metrics: Precision and Recall.

As shown in Table 1, the information of the benchmark
networks includes the number of nodes, the real in-degree
Kreal, the number of attractorsNattr, and the time-series data
(d × �). For each of the network, each time-series Di (i =
1,⋯ , d) contains � time points. For the sake of validating
the robustness against noise, the noise is introduced into the
time-series data by randomly flipping the state of each node
with the probability of � (� ∈ {0%, 1%, 5%}). The five arti-
ficial Boolean networks are generated by BoolNet [31], with
50 nodes, 100 nodes, 120 nodes, 150 nodes, and 200 nodes,
respectively. In addition, we utilize five real-world gene reg-
ulatory networks, including the idealized protein interaction
network, the cAMP network [12], the Th-lymphocyte (or
Th-cell) differentiation network [30], the Boolean network
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Table 1
The parameters of the employed Boolean network models

Name Nodes Kreal Time-series (d × �) Nattr

Protein 6 2 10 × 10 3
cAMP 8 2 10 × 10 3
Th-cell 12 3 10 × 10 3
SSGLL 29 4 10 × 10 8
Drosophila 60 4 10 × 20 6

BN 50 50 4 10 × 20 30
BN 100 100 5 10 × 20 8
BN 120 100 5 10 × 20 10
BN 150 150 5 10 × 20 21
BN 200 200 5 10 × 30 24

Table 2
The parameter settings of GAPORE

Parameter Meaning Value

G the maximum number of iterations 200
S population size 300
E the number of selected elites 10
pc the probability of crossover 0.75
pm the probability of mutation 0.7
� the l2-norm regularization parameter 1.0
B the number of Boolean rules 10

of survival signaling in large granular lymphocyte leukemia
(SSGLL) [45], and the well-studied Drosophila segment po-
larity gene regulatory network [30]. To give an intuitive im-
pression about the Boolean networks, two real-world gene
regulatory networks are displayed below.

Fig. 4 shows the network topology of SSGLL andEq.(19)
is the Boolean functions of SSGLL. The Boolean network
model of the Drosophila segment polarity gene regulatory
network is widely considered as a single parasegment pri-
mordium of four identical cells, which has 15×4 = 60 nodes.
In other words, the whole network is an interconnected net-
work of four identical sub-networks. For the sake of saving
space, Fig.5 demonstrates the intra-cellular regulatory inter-
actions within a cell (i.e., cell 2) of the whole network and
the inter-cellular regulatory interactions with cell 1 and cell
3. Nodes 16-30 inside the green dashed rectangle are in the
cell 2. Nodes 3, 6, 7 are in the adjacent cell 1, and Nodes
33, 36, 37 are in the adjacent cell 3. Eq. (20) provides the
Boolean functions for the cell 2.

For fair comparison, the parameter settings and tuning
methods of the compared algorithms comply with the orig-
inally relative papers. All the four algorithms set the max-
imum in-degree as K = 5 due to the sparsity of networks
[40]. In Table 2, the parameters of GAPORE are designed
with the empirical values according to related standard ge-
netic algorithms. Among these parameters, the l2-norm reg-
ularization parameter � plays a key role in overcoming the
over-fit problem and improving the performance ofGAPORE.
Hence, it is necessary to comprehensively analyze the influ-
ence of � on GAPORE, which is given in Section 4.1.
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Figure 4: The network model of survival signaling in large
granular lymphocyte leukemia with 29 nodes.
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x1(t + 1) = x1(t)
x2(t + 1) = x1(t)
x3(t + 1) = x2(t)
x4(t + 1) = x1(t)
x5(t + 1) = x1(t)
x6(t + 1) = x4(t)
x7(t + 1) = x5(t) ∨ x6(t)
x8(t + 1) = [x6(t) ∧ (x3(t) ∨ x5(t))] ∧ x14(t)
x9(t + 1) = x9(t)
x10(t + 1) = x9(t)
x11(t + 1) = x10(t)
x12(t + 1) = ¬[x4(t) ∨ x11(t)]
x13(t + 1) = ¬[x4(t) ∨ x11(t)]
x14(t + 1) = x11(t)
x15(t + 1) = x11(t) ∨ x16(t)
x16(t + 1) = x15(t)
x17(t + 1) = x15(t)
x18(t + 1) = ¬x17(t) ∨ [¬x1(t) ∧ ¬x11(t)]
x19(t + 1) = x18(t)
x20(t + 1) = ¬x1(t) ∧ x19(t)
x21(t + 1) = x20(t)
x22(t + 1) = x1(t)
x23(t + 1) = x2(t)
x24(t + 1) = x4(t)
x25(t + 1) = x12(t)
x26(t + 1) = x14(t)
x27(t + 1) = x14(t)
x28(t + 1) = x14(t)
x29(t + 1) = x11(t)

(19)
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Figure 5: Part of the topology of the Drosophila segment
polarity gene network. The edges (i.e., interactions) with →
or ⊣ endpoints denote the activation or inhibition from the
regulatory nodes to the target nodes, respectively.
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x16(t + 1) = x16(t)
x17(t + 1) = [x29(t) ∧ x16(t) ∧ ¬x30(t)]
∨ [x17(t) ∧ (x29(t) ∨ x16(t))] ∧ ¬x30(t)
x18(t + 1) = x17(t)
x19(t + 1) = ¬x16(t) ∧ [x3(t) ∨ x33(t)]
x20(t + 1) = x19(t)
x21(t + 1) = ¬x30(t) ∧ x20(t)
x22(t + 1) = x21(t)
x23(t + 1) = ¬x30(t) ∧ ¬x20(t) ∧ x29(t)
x24(t + 1) = x23(t) ∨ [x24(t) ∧ ¬x7(t) ∧ ¬x37(t)]
x25(t + 1) = [x7(t) ∨ x37(t)] ∧ x24(t)
x26(t + 1) = ¬x24(t) ∨ [x7(t) ∨ x37(t)]
x27(t + 1) = ¬x20(t)
x28(t + 1) = x27(t)
x29(t + 1) = x28(t) ∧ [x26(t) ∨ x6(t) ∨ x36(t)]
x30(t + 1) = ¬x26(t) ∧ ¬x6(t) ∧ ¬x36(t) ∧ x28(t)

(20)

4.1. Approach validation and the regularization
parameter selection

In order to validate the efficiency of the symbolic Boolean
polynomial representation, the Drosophila segment polar-
ity gene regulatory network is employed to compare the in-
ference performance of three genetic algorithm-based net-
work inference methods including MAGANI [25], GABP,
and GAPORE. Among these genetic algorithms, MAGANI
adopts the logical operation representation to express the un-
known Boolean functions [25]. Both GABP and GAPORE
utilize the symbolic Boolean polynomial representation to
express the unknown Boolean functions. In addition, GABP
only uses the genetic algorithm while GAPORE incorpo-
rates the local search strategy into the framework of the ge-
netic algorithm. For fair comparison, the parameter settings

and tuning methods of MAGANI comply with the originally
relative paper. The maximum number of iterations for all al-
gorithms is set as 200 and the population size is 300. Each al-
gorithm runs ten times inferring the Drosophila segment po-
larity gene regulatory network under 0%, 1%, and 5% noise.
The mean convergence curves obtained from ten runs are
plotted in Fig. 6, where the black curves represent the results
ofMAGANI, the blue curves depict the results of GABP, and
the pink curves illustrate the results of GAPORE. As shown
in Fig. 6, MAGANI exists the premature convergence and
tends to fall into a local optimum. This is because MAG-
ANI with logical operation representation cannot represent
or search the complex Boolean functions containing vari-
ous logical operators with different precedence, such as the
Boolean function of x17. In contrast, GABP has better searchcapability since the symbolic polynomial representation can
efficiently represent any complex Boolean rule by a coef-
ficient combination. In addition, GAPORE shows evident
superiority over GABP in terms of the convergence curves,
which implies that the incorporation of the local search strat-
egy can evidently promote the inference performance. Over-
all, the search capability can be improved using the polyno-
mial representation of Boolean functions and incorporating
the local search strategy into the genetic algorithm frame-
work.

When it comes to selecting a proper regularization pa-
rameter �, we apply GAPORE with different values of �
to inferring the artificial Boolean network with 100 nodes.
Specifically, We change � from 0 to 2 in the step of 0.2 in
order to investigate the influence of � on the performance of
inferring the network topology. Fig. 7 shows the influence
of the regularization parameter � on the results with respect
toRecall, Precision, andF-score. It is notable that GAPORE
with � = 0 achieves the highest values of Recall regardless
of the noise ratio. With the increase of �, the value of Recall
gradually decreases. Meanwhile, the values of Precision in-
crease sharply as � increases from 0 to 0.8 and then reach a
stable level when � ranges from 1.2 to 2.0. This is due to the
fact that GAPORE introduces the l2-norm regularization to
avoid the over-fit problem by restraining the in-degreeKn ofa target node, which implies fewer regulatory nodes are re-
called. Statistics on all the topologymetrics are given in Ta-
ble 3. Overall, the metric Accuracy remains stable when the
� increases from 0 to 2. Thus, we do not present the results
with respect to Accuracy in the following experiments. Un-
der 1% noise, FPR decreases from 0.016 (at � = 0) to 0.002
(at � = 1). The trend ofFPR under 5% noise is similar to that
of FPR under 1% noise. This phenomenon reflects that the
regularization parameter � can effectively reduce the num-
ber of false regulatory nodes. Obviously, the comprehensive
performance analysis indicates that the value of � should be
limited within a reasonable region. The proper value of the
regularization parameter � ranges from 0.8 to 1.2.

In conclusion, it is effective and efficient for GAPORE to
adopt the symbolic Boolean polynomial representation ap-
proach and design a proper l2-norm regularization term, for
the purpose of improving the inference performance.
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Figure 6: The convergence curves of MAGANI, GABP, and GAPORE on inferring the Drosophila segment polarity gene regulatory
network under 0% noise, 1% noise, 5% noise, respectively.
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Figure 7: The influence of � on the Recall, Precision, and F-score performance of GAPORE inferring the Boolean network with
100 nodes under the noise ratio NR= 0%, 1%, and 5%, respectively.

Table 3
The influence of � on the performance of GAPORE inferring the Boolean network with 100 nodes under different noise ratios.

Noise Evaluation �
0 0.4 0.8 1.0 1.2 1.6 2.0

Accuracy 0.995 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.995 ± 0.001 0.995 ± 0.001
Recall 0.903 ± 0.012 0.889 ± 0.020 0.860 ± 0.029 0.844 ± 0.019 0.838 ± 0.025 0.801 ± 0.016 0.776 ± 0.023

0% Precision 0.730 ± 0.033 0.829 ± 0.036 0.838 ± 0.031 0.841 ± 0.021 0.831 ± 0.029 0.824 ± 0.022 0.825 ± 0.032
FPR 0.004 ± 0.001 0.002 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000
F-score 0.807 ± 0.021 0.858 ± 0.026 0.849 ± 0.025 0.843 ± 0.014 0.834 ± 0.023 0.812 ± 0.017 0.799 ± 0.027
Accuracy 0.983 ± 0.001 0.994 ± 0.001 0.995 ± 0.000 0.996 ± 0.000 0.996 ± 0.001 0.995 ± 0.001 0.995 ± 0.001
Recall 0.902 ± 0.022 0.873 ± 0.024 0.835 ± 0.015 0.849 ± 0.015 0.837 ± 0.029 0.796 ± 0.025 0.774 ± 0.031

1% Precision 0.407 ± 0.011 0.712 ± 0.027 0.797 ± 0.017 0.810 ± 0.014 0.818 ± 0.030 0.817 ± 0.022 0.807 ± 0.033
FPR 0.016 ± 0.001 0.004 ± 0.001 0.003 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000
F-score 0.568 ± 0.013 0.784 ± 0.022 0.815 ± 0.008 0.829 ± 0.011 0.827 ± 0.026 0.806 ± 0.023 0.790 ± 0.034
Accuracy 0.977 ± 0.001 0.986 ± 0.001 0.991 ± 0.001 0.992 ± 0.000 0.992 ± 0.000 0.993 ± 0.001 0.993 ± 0.001
Recall 0.841 ± 0.030 0.816 ± 0.031 0.756 ± 0.022 0.747 ± 0.027 0.749 ± 0.025 0.711 ± 0.015 0.695 ± 0.021

5% Precision 0.318 ± 0.011 0.446 ± 0.023 0.585 ± 0.028 0.619 ± 0.011 0.639 ± 0.018 0.671 ± 0.025 0.687 ± 0.016
FPR 0.021 ± 0.001 0.013 ± 0.001 0.006 ± 0.001 0.006 ± 0.000 0.005 ± 0.000 0.004 ± 0.000 0.004 ± 0.000
F-score 0.462 ± 0.016 0.577 ± 0.026 0.659 ± 0.020 0.677 ± 0.014 0.690 ± 0.017 0.690 ± 0.018 0.691 ± 0.015
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4.2. Performance of inferring real-world gene
regulatory networks

Table 4 demonstrates the performance of the four algo-
rithms on inferring the real-world gene regulatory networks
using the average and standard deviation values. Remark-
ably, GAPORE can infer the correct topology of the ide-
alized protein interaction network under 1% noise. When
the noise ratio increases to 5%, GAPORE can still infer the
topology with Recall=1 and F-score=0.941. Interestingly,
MIBNI can recall all the correct regulatory nodes and obtain
the same results in terms of the fourmetrics under 1% and 5%
noise. This is becauseMIBNI sets the fixed in-degreeK = 5
for each node while the idealized protein interaction network
is a very small network containing only 6 nodes. In terms of
the cAMP network and the Th-cell network, GAPORE also
outperforms the other three algorithms, which illustrates that
GAPORE can achieve the best performance with a very high
Precision when inferring the small real-world gene regula-
tory networks.

When it comes to inferring the SSGLL and Drosophila
networks, theF-score results ofMIBNI andBest-Fit decrease
evidently as the network scale increases to N = 29 and
N = 60, respectively. Since that the number of the possible
Boolean functions of a node is

(

22KN!
(N−K)!

)

, the search space
for the candidate functions of a node increases to 6.1 × 1016
and 2.8 × 1018, respectively. Thus, it is challenging to infer
the whole Boolean network comprised of the Boolean func-
tions of all nodes. In comparison to MIBNI and Best-Fit,
ATEN still maintains better performance in terms ofF-score.
It is obvious that GAPORE outperforms ATEN almost on
every metric except the Recall under 1% noise. Moreover,
the Precision of GAPORE is noticeably higher than that of
ATEN, which implies GAPORE is capable of handling the
over-fit problem caused by the noise in time-series data.

Overall, GAPORE exhibits overwhelming superiorities
over the other algorithms with respect to Precision, FPR,
and F-score under both 1% and 5% noise. In terms of the
metric Recall, GAPORE also outperforms the other algo-
rithms in 7 out of 10 cases. As a result, it can be concluded
that GAPORE has a significant advantage in inferring the
topology of real-world networks over the state-of-the-art al-
gorithms from the noisy time-series data.
4.3. Performance of inferring artificial Boolean

networks
Table 5 shows the results of inferring artificial Boolean

networks with different network scales, where the symbol ‘-’
means that the results are not obtainedwithin thewall time of
five days. It is obvious that GAPORE can easily outperform
the other three algorithms in terms of inferring the topology
of large-scale Boolean networks from noisy time-series data.

In terms of the network BN 50 in Table 5, GAPORE is
capable of inferring the most precise topology among the
four algorithms under 1% noise. Although the noise ratio
rises to 5%, GAPORE still keeps the best performance among
these algorithms, which indicates GAPORE is robust against

noise. MIBNI has the lowest Precision results because it
can only infer the fixed number of regulatory nodes for ev-
ery target node. The Recall results of Best-Fit are higher
than that of ATEN while the Precision results of Best-Fit
are much lower than that of ATEN. This is because Best-Fit
uses the exhaustive search strategy and is more susceptible
to the over-fit problem than ATEN.

When it comes to inferring the network BN 100, ATEN
achieves Precision=0.652 under 1% noise which is better
than that of MIBNI and Best-Fit. As can be observed from
Table 3, the Precision of GAPORE under 1% noise increases
from 0.407 (<0.652 ofATEN) to 0.810 (>0.652 ofATEN) as
the regularization parameter � increases from 0 to 1. From
Table 5, ATEN achieves Precision=0.498 under 5% noise.
Similarly, the Precision of GAPORE under 5% noise grows
from 0.318 (<0.498 of ATEN) to 0.619 (>0.498 of ATEN)
as the regularization parameter � increases from 0 to 1. The
phenomena illustrate that GAPORE can effectively improve
the inference performance by adopting the l2-norm regular-
ization to address the over-fit problem.

Obviously, the size of search space increases sharplywith
the number of nodes in the Boolean network [40]. Specif-
ically, the number of the candidate Boolean functions for a
node increases from 3.8 × 1019 to 1.3 × 1021 with respect to
the artificial Boolean network with N = 100 and 200, re-
spectively. Thus, it is a huge challenge to infer large-scale
Boolean networks from the noisy time-series data. As an
exhaustive search algorithm, Best-Fit cannot infer the topol-
ogy of the Boolean networkwith 200 nodes under 1% and 5%
noisewithin thewall time of five days. FromTable 5,MIBNI
maintains the lowest Precision and F-score results on infer-
ring these large-scale networks since that MIBNI sets the
fixed in-degree for all nodes. Meanwhile, ATEN outper-
forms MIBNI in terms of the metrics Precision and F-score
regardless of the network scale. This is because ATEN uti-
lizes the And/Or tree ensemble method to enable the diver-
sity of candidate solutions [39]. Although the search space
increases dramatically as the network scale grows, GAPORE
still outperforms the other algorithms on inferring the topol-
ogy of the artificial network under both 1% and 5% noise.
Remarkably, GAPORE achieves the highest Precision re-
sults and the lowest FPR results when inferring all the ar-
tificial Boolean networks, which implies that GAPORE is
capable of inferring the Boolean functions precisely. One of
the main reasons is that GAPORE introduces the dominant
bit encoding scheme to enable the flexibility and diversity of
solutions.

Notably, it is worth mentioning that GAPORE outper-
forms the other algorithms with respect to F-score when in-
ferring every artificial network under both 1% and 5% noise,
which indicates that GAPORE can maintain the balance of
two metrics Recall and Precision by introducing the l2-normregularization to reduce the over-fit problem. In conclusion,
GAPORE has the capability of inferring large-scale Boolean
networks accurately.
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Table 4
Performance on four real-world gene regulatory networks, respectively.

Networks Algorithm Noise 1% Noise 5%
Recall Precision FPR F-score Recall Precision FPR F-score

ATEN 0.853 ± 0.010 0.851 ± 0.011 0.063 ± 0.005 0.852 ± 0.009 0.889 ± 0.013 0.782 ± 0.012 0.092 ± 0.006 0.832 ± 0.012
Protein MIBNI 1 0.444 0.357 0.615 1 0.444 0.357 0.615

Best-Fit 0.875 0.875 0.037 0.875 1 0.727 0.107 0.842
GAPORE 1 ± 0.000 1 ± 0.000 0.000 ± 0.000 1 ± 0.000 1 ± 0.000 0.889 ± 0.000 0.036 ± 0.000 0.941 ± 0.000
ATEN 0.909 ± 0.012 0.714 ± 0.003 0.075 ± 0.001 0.800 ± 0.004 0.727 ± 0.021 0.571 ± 0.016 0.113 ± 0.001 0.640 ± 0.011

cAMP MIBNI 0.909 0.417 0.264 0.571 0.818 0.375 0.283 0.514
Best-Fit 0.728 0.571 0.113 0.640 0.909 0.476 0.208 0.625
GAPORE 0.909 ± 0.000 1 ± 0.000 0 ± 0.000 0.952 ± 0.000 1 ± 0.000 0.839 ± 0.021 0.040 ± 0.007 0.912 ± 0.013
ATEN 0.955 ± 0.009 0.750 ± 0.008 0.057 ± 0.002 0.840 ± 0.010 0.864 ± 0.009 0.655 ± 0.012 0.082 ± 0.003 0.745 ± 0.011

Th-cell MIBNI 0.636 0.389 0.180 0.483 0.591 0.361 0.189 0.448
Best-Fit 1 0.786 0.049 0.880 0.909 0.606 0.106 0.727
GAPORE 0.977 ± 0.024 0.977 ± 0.024 0.004 ± 0.004 0.977 ± 0.024 0.807 ± 0.032 1 ± 0.000 0.000 ± 0.000 0.893 ± 0.021
ATEN 0.821 ± 0.011 0.516 ± 0.009 0.037 ± 0.005 0.634 ± 0.013 0.744 ± 0.009 0.439 ± 0.011 0.046 ± 0.003 0.553 ± 0.010

SSGLL MIBNI 0.718 0.193 0.146 0.304 0.667 0.179 0.148 0.283
Best-Fit 0.795 0.456 0.046 0.579 0.769 0.349 0.069 0.496
GAPORE 0.746 ± 0.031 0.857 ± 0.032 0.006 ± 0.002 0.798 ± 0.029 0.801 ± 0.017 0.787 ± 0.014 0.010 ± 0.000 0.794 ± 0.011
ATEN 0.628 ± 0.011 0.706 ± 0.009 0.012 ± 0.004 0.665 ± 0.009 0.490 ± 0.011 0.521 ± 0.013 0.023 ± 0.002 0.505 ± 0.007

Drosophila MIBNI 0.438 0.210 0.068 0.284 0.320 0.153 0.074 0.207
Best-Fit 0.683 0.498 0.045 0.576 0.564 0.327 0.059 0.414
GAPORE 0.618 ± 0.035 0.824 ± 0.029 0.006 ± 0.001 0.706 ± 0.030 0.514 ± 0.032 0.644 ± 0.015 0.012 ± 0.002 0.572 ± 0.021

Table 5
Performance on artificial Boolean networks with 50 nodes, 100 nodes, 150 nodes, 200 nodes, respectively.

Networks Algorithm Noise 1% Noise 5%
Recall Precision FPR F-score Recall Precision FPR Fscore

ATEN 0.884 ± 0.017 0.443 ± 0.015 0.029 ± 0.002 0.590 ± 0.016 0.925 ± 0.020 0.375 ± 0.017 0.038 ± 0.002 0.534 ± 0.014
BN 50 MIBNI 0.803 0.196 0.082 0.315 0.771 0.188 0.083 0.303

Best-Fit 0.902 0.251 0.067 0.393 0.934 0.230 0.078 0.369
GAPORE 0.917 ± 0.013 0.879 ± 0.015 0.003 ± 0.001 0.897 ± 0.010 0.802 ± 0.027 0.719 ± 0.023 0.007 ± 0.002 0.758 ± 0.019
ATEN 0.891 ± 0.012 0.652 ± 0.016 0.006 ± 0.001 0.753 ± 0.019 0.883 ± 0.021 0.498 ± 0.016 0.012 ± 0.001 0.637 ± 0.011

BN 100 MIBNI 0.846 0.198 0.041 0.321 0.837 0.196 0.041 0.318
Best-Fit 0.891 0.309 0.026 0.459 0.844 0.279 0.028 0.419
GAPORE 0.849 ± 0.015 0.810 ± 0.014 0.002 ± 0.000 0.829 ± 0.011 0.747 ± 0.027 0.619 ± 0.011 0.006 ± 0.000 0.677 ± 0.014
ATEN 0.930 ± 0.006 0.572 ± 0.008 0.007 ± 0.001 0.708 ± 0.014 0.895 ± 0.009 0.403 ± 0.014 0.013 ± 0.001 0.556 ± 0.012

BN 120 MIBNI 0.818 0.195 0.033 0.315 0.811 0.193 0.034 0.312
Best-Fit 0.916 0.248 0.028 0.390 0.832 0.198 0.034 0.320
GAPORE 0.838 ± 0.011 0.780 ± 0.024 0.002 ± 0.000 0.807 ± 0.018 0.716 ± 0.019 0.633 ± 0.020 0.004 ± 0.000 0.672 ± 0.014
ATEN 0.953 ± 0.004 0.536 ± 0.008 0.006 ± 0.000 0.686 ± 0.012 0.925 ± 0.007 0.384 ± 0.009 0.012 ± 0.001 0.543 ± 0.011

BN 150 MIBNI 0.553 0.198 0.018 0.292 0.542 0.194 0.018 0.286
Best-Fit 0.883 0.229 0.024 0.364 0.905 0.216 0.026 0.349
GAPORE 0.809 ± 0.020 0.799 ± 0.014 0.002 ± 0.000 0.804 ± 0.015 0.720 ± 0.012 0.597 ± 0.020 0.004 ± 0.000 0.653 ± 0.016
ATEN 0.664 ± 0.016 0.382 ± 0.012 0.006 ± 0.000 0.485 ± 0.013 0.617 ± 0.013 0.329 ± 0.023 0.008 ± 0.000 0.429 ± 0.017

BN 200 MIBNI 0.824 0.196 0.020 0.317 0.802 0.191 0.020 0.309
Best-Fit − − − − − − − −
GAPORE 0.782 ± 0.0268 0.755 ± 0.018 0.001 ± 0.000 0.768 ± 0.021 0.678 ± 0.023 0.559 ± 0.009 0.003 ± 0.000 0.613 ± 0.011

4.4. Performance on predicting the dynamics of
networks

It is of significance to predict the dynamics of Boolean
networks. As a discrete-time non-linear dynamical system,
the Boolean network has several attractors that reflect its pe-
riodic behavior. In the context of biological systems, attrac-
tors characterize cellular phenotypes and give an insight into
functional cellular states such as proliferation and apoptosis
differentiation [32]. As a result, it is reasonable to evalu-
ate the dynamics by comparing the number of the attractors
retrieved by the algorithms [39].

Table 6 presents the number of attractors that can be pre-
dicted by the four inference algorithms. MIBNI is not capa-
ble of finding any attractors since MIBNI can infer only con-
junctive or disjunctive Boolean functions [39]. The number

of attractors Nattr for each benchmark network is list in Ta-
ble 1. In terms of the real-world gene regulatory networks,
ATEN retrieves more attractors than Best-Fit. Meanwhile,
GAPORE outperforms the other algorithms in terms of re-
trieving the attractors under 1% noise. Especially, GAPORE
obtains all the three attractors of the protein interaction net-
work, the cAMP network, and the Th-cell network, respec-
tively. When the noise ratio increases to 5%, GAPORE still
retrieves the most attractors of the real-world gene regula-
tory networks. With regard to the artificial network BN 50,
BN 100, BN 120, and BN 150, GAPORE achieves more
attractors than both ATEN and Best-Fit under 1% and 5%
noise, which implies that GAPORE can better predict the
dynamics of these artificial networks than ATEN and Best-
Fit. Notably, GAPORE retrieves all the attractors of BN 100
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Table 6
The number of attractors retrieved by the four algorithms under 1% noise and 5% noise.

Noise Algorithm real-world networks artificial networks
Protein cAMP Th-cell SSGLL Drosophila BN 50 BN 100 BN 120 BN 150 BN 200

ATEN 2 3 3 4 4 16 7 8 5 9
MIBNI 0 0 0 0 0 0 0 0 0 0

1% Best-Fit 2 2 3 2 2 7 4 4 0 0
GAPORE 3 3 3 6 5 24 8 10 13 19
ATEN 1 2 1 1 4 8 5 3 2 6
MIBNI 0 0 0 0 0 0 0 0 0 0

5% Best-Fit 1 1 1 1 1 5 2 2 0 0
GAPORE 2 3 2 6 4 13 7 9 8 14

and BN 120 under 1% noise. When it comes to BN 150 and
BN 200, only ATEN and GAPORE can still retrieve the at-
tractors under 1% and 5% noise. In comparison to ATEN,
GAPORE retrieves more attractors of BN 150 and BN 200
under 1% and 5% noise. Overall, it is obvious that GAPORE
retrieves the most number of attractors with respect to both
the real-world gene regulatory networks and the large-scale
artificial Boolean networks. In conclusion, GAPORE out-
performs the other algorithms in terms of predicting the dy-
namics of Boolean networks.

5. Conclusion
As a powerful and efficient model for gene regulatory

networks, Boolean network inference has attracted many re-
searchers’ attention. However, it is still challenging to infer
large-scale Boolean networks due to the noisy time-series
data and lack of an efficient approach to representing un-
known Boolean functions. To deal with large search space
in many real-world Boolean network inference problems, we
propose a novel inference algorithm called GAPORE to pre-
cisely infer the large-scale Boolean networks.

GAPORE is a hybrid evolutionary algorithm incorporat-
ing the local search into the genetic algorithm framework to
enhance the search capability. Firstly, a symbolic polyno-
mial representation method is proposed to efficiently repre-
sent the unknown Boolean function as the symbolic polyno-
mial dynamical equation, which can describe any complex
Boolean rules by only using the polynomial coefficient com-
binations. Secondly, the dominant bit encoding scheme is
introduced to flexibly encode the symbolic polynomial dy-
namical equation, which both enables the flexibility of solu-
tions and maintains the ease of implementation by varying
the effective length instead of the total length of the chro-
mosome. In addition, GAPORE successfully reduces the
over-fit problem and shows overwhelming inference perfor-
mance by introducing the l2-norm regularization term and
selecting a proper regularization parameter. Both the real-
world gene regulatory networks and the artificial Boolean
networks have been utilized to validate the performance of
our proposed algorithm. Compared with the state-of-the-art
algorithms, GAPORE is capable of inferring both the topol-
ogy and the dynamics of the large-scale Boolean network

accurately from the noisy time-series data.
Recently, probabilistic Boolean networks (PBNs) have

been increasingly popular in that it enables more flexibility
of model selection [29]. The PBN allows a random selection
of Boolean functions for a target gene with a specific proba-
bility, which has shown promise in many areas. In the future,
it is meaningful for us to extend GAPORE to the inference
of PBNs.
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