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Abstract

Zero-shot learning (ZSL) aims to recognize objects from unseen classes, where

the kernel problem is to transfer knowledge from seen classes to unseen classes

by establishing appropriate mappings between visual and semantic features.

The knowledge transfer in many existing works is limited mainly due to the

facts that (i) the widely used visual features are global ones but not totally

consistent with semantic attributes; (ii) only one mapping is learned in existing

works, which is not able to effectively model diverse visual-semantic relations;

(iii) the bias problem in the generalized ZSL (GZSL) could not be effectively

handled. In this paper, we propose two techniques to alleviate these limitations.

Firstly, we propose a Semantic-diversity transfer Network (SetNet) addressing

the first two limitations, where 1) a multiple-attention architecture and a diver-

sity regularizer are proposed to learn multiple local visual features that are more

consistent with semantic attributes and 2) a projector ensemble that geometri-

cally takes diverse local features as inputs is proposed to model visual-semantic

relations from diverse local perspectives. Secondly, we propose an inner dis-
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agreement based domain detection module (ID3M) for GZSL to alleviate the

third limitation, which picks out unseen-class data before class-level classifica-

tion. Due to the absence of unseen-class data in training stage, ID3M employs a

novel self-contained training scheme and detects out unseen-class data based on

a designed inner disagreement criterion. Experimental results on three public

datasets demonstrate that the proposed SetNet with the explored ID3M achieves

a significant improvement against 30 state-of-the-art methods.

Keywords: Zero-shot learning, Visual-semantic embedding,

Out-of-distribution detection

1. Introduction

Despite the great success of deep learning on object recognition, its supe-

riority heavily relies on the expensive labeling resources. Recently, zero-shot

learning (ZSL) has received much attention in the machine learning and com-

puter vision fields, which aims to recognize objects from those classes without

labeled samples (often named as unseen classes). To deal with the absence of

unseen-class labels, the semantic features (e.g. attributes and text descriptions)

which represent some semantic relations between seen and unseen classes are

used as side information in ZSL. The key to achieve ZSL is to transfer the learned

visual-semantic knowledge from seen to unseen classes by establishing appropri-

ate mappings between visual features (often extracted by a convolutional neural

network (CNN)) and semantic features.

According to the mapping direction, most existing ZSL methods could be

roughly divided into three categories: semantic-to-visual mapping methods, in-

termediate mapping methods, and visual-to-semantic mapping methods. The

semantic-to-visual mapping methods [1, 2, 3, 4, 5, 6, 7] either map individual se-

mantic features into individual visual prototypes via a regression model, or map

individual semantic features into many visual feature instances via a conditional

generative model, and then learn a classifier with the inferred unseen-class vi-

sual prototypes or visual features in the visual feature space. The intermediate
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mapping methods [8, 9, 10, 11, 12] map both the visual features and semantic

features into a common latent space and then learn a classifier in the latent

space. Despite their high performances, it is not easy for the two categories

of methods to integrate the feature mapping and the feature extractor in a

whole network which can be trained end-to-end. The visual-to-semantic map-

ping methods [13, 14, 15, 16, 17, 18, 19] employ a CNN to extract visual features

and map them into the semantic feature space by a mapping function on the top

of the CNN, and then classify them in the semantic feature space. Although

the performances of the visual-to-semantic methods are probably affected by

the hubness problem [1], a main advantage of these methods is that they could

naturally explore a new CNN architecture and jointly learn the feature extractor

and the feature mapping in an end-to-end manner, so that they could extract

more semantically consistent visual features.

One open problem in ZSL is the domain shift problem that the mapping func-

tion between visual and semantic features learned with data from a seen-class

domain has a limited transferability to an unseen-class domain. The limited

transferability is potentially caused by (i) the patterns of knowledge transfer

from a seen-class domain to an unseen-class one are generally diverse, for in-

stance, heads of different animals have different visual appearances, hence they

should have different mapping relationships with the same ‘head’ semantic at-

tribute. However, most existing methods learn only one mapping function that

is not able to sufficiently deal with such a diversity of knowledge transfer; (ii)

the annotated semantic attributes are fine-grained ones, e.g. head and hand at-

tributes, while the widely used visual features extracted by a pre-trained CNN

in existing works are generally global ones, which are not totally consistent with

semantic attributes; (iii) the recognition bias to the seen-class domain in the

generalized ZSL (GZSL) could not be effectively handled.

In this paper, we propose two techniques to alleviate the above limitations.

Firstly, we propose a semantic-diversity transfer network (SetNet) for ZSL to

alleviate the first two limitations (i) and (ii), where a multiple-attention archi-

tecture is employed to extract multiple local visual features that are encouraged
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to be semantically diverse via a diversity regularizer, and a visual-semantic

projector ensemble with population diversity is adopted to model the diverse

relations between local visual features and semantic features. Different projec-

tors in the ensemble geometrically take different local visual features as inputs

and employ different projection functions to model the visual-semantic rela-

tions, which has the advantage of transferring knowledge from different local

perspectives. Secondly, we propose an inner disagreement based domain de-

tection module (ID3M) for GZSL to alleviate the third limitation (iii), which

aims to detect out the unseen-class data before class-level classification. In

the proposed ID3M, due to the absence of real unseen-class data, a novel self-

contained training scheme which trains multiple sub-domain detection modules

(sub-DDMs) with virtual unseen-class data is explored and an inner disagree-

ment criterion is designed for differentiating seen and unseen class data with

these sub-DDMs.

By integrating SetNet with ID3M, a novel method is further proposed to

tackle the (G)ZSL problem, whose flowchart is shown in Figure 1. In the

flowchart, for ZSL, the inputs are directly processed by a SetNet for ZSL (i.e.

ZSL-SetNet). For GZSL, the inputs are firstly fed into ID3M to perform do-

main detection. If the inputs are from the unseen-class domain, they will be

processed by ZSL-SetNet, otherwise by a SetNet for GZSL (i.e. GZSL-SetNet).

In summary, our contributions are three-fold:

• We propose a semantic-diversity transfer network (SetNet) to consolidate

knowledge transfer from a seen-class domain to an unseen-class one. Set-

Net extracts diverse local visual features which are consistent with seman-

tic attributes via a multiple-attention module and a diversity regularizer,

and establishes a visual-semantic projector ensemble which models the

visual-semantic relations from diverse local perspectives.

• We propose an inner disagreement based domain detection module (ID3M)

to alleviate the bias problem in GZSL, which employs a novel self-contained

training scheme and detects out unseen-class data based on an inner dis-
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Figure 1: Flowchart of the proposed method.

agreement criterion.

• Extensive experimental results demonstrate that the proposed SetNet with

the explored ID3M can outperform 30 state-of-the-art methods with sig-

nificant improvements on three public datasets with two data splits.

2. Related work

2.1. Zero-shot learning

Lampert et al. [20] proposed a pioneering two-stage method for ZSL, where

a probabilistic classifier was used to predict attribute probabilities and then a

Bayesian classifier was used to classify the image based on the attribute prob-

abilities. To achieve end-to-end learning, Frome et al. [13] proposed a visual-

to-semantic embedding method where visual features extracted by a CNN were

projected into the semantic feature space by a linear function which was trained

by a compatibility loss. Based on this work, lots of methods have been proposed

to improve the visual-semantic mapping by adopting different loss functions or

different mapping functions [21, 22, 23, 24, 25, 26, 27, 28, 29]. For instance,

ALE [22] employed a bilinear compatibility function to embed the visual fea-

tures and semantic features. ESZSL [30] used a nonlinear neural network to map
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the visual features. LATEM [24] embedded the visual features with a piecewise

linear function which was trained by a ranking based objective function. To

alleviate the hubness problem [1] in the visual-to-semantic embedding methods,

some works [2, 31, 32, 33] proposed to learn a semantic-to-visual embedding,

where they mapped semantic features into visual features by a regression func-

tion. DEM [1] used a two-layer neural network to learn a discriminative visual

features space from the semantic feature space. EXEM [2] employed SVR to

predict the visual exemplar of each class from the corresponding semantic fea-

ture. All the aforementioned methods (named as the embedding based method)

focused on learning a discriminative embedding space to establish the mapping

between visual and semantic features. As another research direction, the gener-

ative methods [34, 35, 5, 6, 36, 37, 38] have received increasing attention recently

due to their superior performances in GZSL. All the generative methods used

a conditional generator to generate many unseen-class samples conditioned on

their corresponding semantic features and then trained a classifier using these

fake unseen-class samples with corresponding labels to classify real unseen-class

ones. Their differences mainly lie in the adopted generator and the way to reg-

ularize the generator. f-CLSWGAN [39] used a generative adversarial network

(GAN) to generate visual features and a pre-trained classifier was used to reg-

ularize the feature generation. DASCN [40] employed a dual GAN architecture

to train a visual feature generator and a semantic feature generator in a cycle

manner. CVAE [41] employed a conditional variational autoencoder (VAE) to

generate visual features. CADA-VAE [42] used two VAEs to map the visual

features and semantic features into the common latent space and generated

unseen-class latent features to train an unseen-class classifier. Since an arbi-

trary number of fake unseen-class samples could be generated by the generative

methods, the generative methods could effectively alleviate the bias problem

in the GZSL tasks, significantly improving the GZSL performance against the

embedding based methods. However, both the generative methods and the

embedding based methods generally suffer from the inconsistency between vi-

sual features and semantic features, since they employ global visual features
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extracted by a pre-trained CNN which lack of some local visual information

with fine-grained semantics . More recently, some works [43, 18, 15, 14, 44, 45]

aimed to improve the consistency between visual features and semantic fea-

tures by employing a fine-tuned CNN with novel architecture to extract more

discriminative and semantically consistent visual features, which we denote by

fine-tuned feature based methods.

2.2. Domain-aware generalized ZSL

In the generalized ZSL, most existing methods suffer from a recognition bias

towards the seen-class domain due to the fact that the testing unseen-class data

are out-of-distribution (OOD) data compared to the seen-class data. Recently,

OOD detection [46, 47, 48] has received much attention in deep learning commu-

nity. Inspired by the OOD detection, several works [49, 50, 51] have introduced

the OOD detection techniques to alleviate the bias problem. Socher et al. [49]

used a Gaussian mixture model to estimate the probability to be an outlier for

each input and detected out the outliers with a threshold. Mandal et al. [50]

used a conditional GAN to generate fake OOD data (i.e. fake unseen-class data)

and trained a classifier which makes high-entropy predictions on unseen-class

data to differentiate the seen and unseen class data. Min et al. [51] proposed

an adaptive margin second-order embedding model to minimize the entropies

of predictions on seen-class data and then differentiated the seen-class data and

unseen-class data according to their entropies. Besides, some other domain-

aware modules [52, 53, 54] were also proposed to tackle the bias problem. Chao

et al. [52] proposed a simple calibrated stacking technique which subtracts a con-

stant from the probabilities of seen classes. Liu et al. [53] proposed a calibration

network to reduce the confidences of the seen-class data on unseen classes. Atz-

mon et al. [54] computed the probabilities to be seen/unseen class for each input

instead of making a hard decision and combined the seen/unseen probabilities

with the class-level posterior probabilities to finally classify the input.
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3. Semantic-diversity transfer network

Before elaborating the proposed method, we first introduce the definition of

ZSL. Suppose a labeled seen-class dataset DS = {(xn, yn) | n = 1, 2, · · · , N}

and a semantic feature set E = {ey | y ∈ Y } is given in the training stage, where

xn ∈ RV is the n-th labeled visual feature, yn is the class label of xn, which

belongs to the seen-class label set Y s, N is the number of visual features in DS ,

and ey ∈ RS is the semantic feature of the class y in the total class label set Y ,

which not only includes the seen-class label set Y s, but also includes the unseen-

class label set Y u. Note that the unseen-class label set Y u is disjoint with the

seen-class label set Y s. In the testing stage, given a testing visual feature set

X, in the conventional ZSL setting, the task is to learn a mapping f : X → Y u

from the test set X to the unseen-class label set Y u. In the generalized ZSL

setting, the task is to learn a mapping f : X → Y from the test set X to the

total class label set Y .

In this section, we propose the semantic-diversity transfer network (SetNet)

whose architecture is shown in Figure 2. SetNet consists of three parts: a back-

bone for extracting general visual features, a diverse attentive feature learning

module for extracting semantically diverse local visual features and a visual-

semantic projector ensemble for modeling the diverse visual-semantic relations.

In the following, we describe the diverse attentive feature learning module and

the visual-semantic projector ensemble in detail. In addition, we present a com-

parison between SetNet and some related works.

3.1. Diverse attentive feature learning module

Here our goal is to extract multiple local visual features with semantic di-

versity. We achieve this goal by firstly extracting multiple local features via a

multiple-attention module and then enforcing some semantic diversity between

them via a diversity regularizer. Specifically, for a given input image x, it is

firstly fed into the CNN backbone F (·), generating the general feature maps M .

Then we compute K spatial attention maps {Ak | k = 1, 2, · · · ,K} via K con-

volutional attention modules {Gk(·) | k = 1, 2, · · · ,K}, each of which localizes
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Figure 2: Architecture of the proposed SetNet.

a semantically meaningful region. Lastly we obtain K attentive feature vectors

{mk ∈ RV | k = 1, 2, · · · ,K} by applying the K spatial attention maps to the

general feature maps via a spatial mapping P1(·) followed by an average pooling

P2(·). The above procedure is formulated as:

mk = P (F (x), Gk(F (x))) k = 1, 2, · · · ,K (1)

where P (·) is the concatenation of the P1(·) and the P2(·), which are both

parameter-free, while the parameters of F (·) and Gk(·) will be trained end-to-

end under the guidance of a classification metric presented in the next subsec-

tion. Note that the general feature maps M which are generated at the last

convolutional layer of the CNN backbone contain rich high-level visual informa-

tion about the inputs, most existing methods apply a global pooling operation

to the general feature maps to extract visual features, resulting in the loss of

visual information with fine-grained semantic meanings. Conversely, we extract

local visual features with semantic meanings by localizing some semantically

meaningful regions via the multiple-attention module. Hence, the visual fea-

tures learned by our method are more consistent with semantic attributes.

Only by the aforementioned multiple-attention operation, the learned local

visual features are not guaranteed to be diverse. To explicitly encourage the
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diversity, we propose a regularizer on these spatial attention maps for making

different spatial attention maps to focus on different spatial locations. Specifi-

cally, since the spatial attention map Ak is a softmax output, meaning that it is

a probabilistic distribution, we could measure the statistic divergence between

spatial attention maps by the Helliinger distance metric. To compute Helli-

inger distance, we firstly vectorize the spatial attention map Ak ∈ RH×W into

ak ∈ RT , T = H ∗W . We denote the t-th element in ak by atk, then compute

Helliinger distance between two vectorized spatial attention maps ai and aj by:

H2(ai, aj) = 1−
T∑
t=1

(
√
atia

t
j) (2)

where H2 is the square of Helliinger distance which is widely used as a proxy to

represent the Helliinger distance. Note that other statistical divergence metrics

(e.g. KL divergence) could also be used in this method, we simply use the

Helliinger distance due to its simplicity and symmetry. Then, we define the

diversity regularizer as the sum of square Helliinger distances between pairwise

vectorized spatial attention maps as follows:

Ldiv =

K∑
i=1

K∑
j=1,j 6=i

H2(ai, aj)

=

K∑
i=1

K∑
j=1,j 6=i

H2(V(Gi(F (x))),V(Gj(F (x))))

(3)

where V(·) is the vectorization operation, and the others are the same as Equa-

tion 1. The diversity regularizer Ldiv is used to measure the divergence between

spatial attention maps, i.e. the difference between spatial locations focused by

different spatial attention maps. Hence, we could maximize the diversity of local

visual features by maximizing the diversity regularizer.

3.2. Visual-semantic projector ensemble

Here our goal is to learn a visual-semantic projector ensemble to model the

relations between visual features and semantic features from diverse local per-

spectives. Suppose x is the input image and y is the class label of x. The seman-

tic feature of y is also known, denoted by ey ∈ Et, where Et ∈ RS×D is the testing
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semantic feature set which contains D class-level semantic features and each of

them is a S-dimensionality vector. In the above subsection, we have obtained K

semantically diverse local visual features {mk ∈ RV | k = 1, · · · ,K}. Here, we

project each visual feature mk into the semantic space via a visual-semantic pro-

jector Qk(·), obtaining the projected visual feature m̄k ∈ RS . Then, we employ

the dot-product metric to measure the similarities between the projected visual

feature m̄k and the set of testing semantic features Et. These similarities rep-

resent the consistency between a local visual feature and the semantic features.

Since we have K local visual features for each input image, i.e. K projected

visual features, we average the similarities between K projected visual features

and the semantic features to represent the overall consistency. Considering that

the local visual features are diverse and the projectors are different from each

other, the K projectors are able to establish a more diverse visual-semantic

mapping compared to the one-mapping methods. Lastly, a softmax function

followed by a cross-entropy loss function is used to train the projectors for mak-

ing the projected visual features be most similar to the semantic features of

their corresponding labels and less similar with the semantic features of other

classes. We formulate this as follows:

Lcls = C(S(
1

K

K∑
k=1

((Qk(mk)) · Et)), y) (4)

where S(·) is the softmax function and C(·) is the cross-entropy loss function.

Note that every semantic feature in Et is normalized into an unit sphere. Ac-

cording to Equation 4 and Equation 1, we reformulate the Lcls as follows:

Lcls =C(S(
1

K

K∑
k=1

((Qk(P (F (x), Gk(F (x))))) · Et)), y) (5)

Finally our overall objective function is:

Lall = Lcls + λLdiv (6)

where λ is a hyper-parameter to weight the diversity regularizer.

In the ZSL testing stage, given an arbitrary input image x, it will be pre-
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dicted as follows:

y∗ = arg max

K∑
k=1

(Qk(P (F (x), Gk(F (x))))) · EY u (7)

where EY u includes the semantic features of classes in the unseen-class label set

Y u and y∗ is the predicted class belonging to the unseen-class label set Y u.

3.3. Comparison to related works

We note that several works [18, 14, 15] also applied attention mechanism

to ZSL. However, we differ from them in three aspects. Firstly, we devise an

attention module with a different architecture from those in [18, 15, 14]. Li et

al. and Zhu et al. [18, 15] used a hard attention which crops out salient regions

from the image and extracted visual features by feeding the resized image re-

gions into CNN again, which needs more expensive computing resources. Xie

et al. [14] also used a soft attention but they learned the attention map with

average pooling while our method employs a learnable convolutional module for

integrating visual information across channels. Secondly, we propose a regular-

izer to explicitly enforce the semantic diversity of local visual features. Thirdly,

the learned local visual features are projected into semantic features via a pro-

jector ensemble where each projector takes a distinct local feature as input to

ensure knowledge transfer from different local perspectives.

4. Inner disagreement based domain detection for GZSL

In the GZSL task, the bias to the seen-class domain significantly impedes

the performance on the unseen-class domain. The cause of the bias problem

is that the testing unseen-class data are generally out-of-distribution (OOD)

data compared to the training seen-class data (i.e. in-distribution (ID) data).

Inspired by the OOD detection, we propose an inner disagreement based domain

detection module (ID3M) for GZSL. In the following, we detailedly describe the

proposed ID3M and its application in GZSL.
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4.1. ID3M

Here we introduce the inner disagreement based domain detection module

(ID3M) which picks out the unseen-class data before class-level classification in

GZSL. Since the unseen-class data are unavailable in the GZSL training stage,

direct OOD detection training is impracticable. To overcome this problem,

we propose a self-contained training scheme which trains multiple sub-domain

detection modules (sub-DDMs) with virtual OOD data. In the self-contained

training scheme, we split the seen classes into I subsets uniformly. Each time

we consider I − 1 subsets as the ID classes and the remaining one as the virtual

OOD classes, and train a sub-DDM using these ID classes and the virtual OOD

classes. According to the data split, we could train I different sub-DDMs. Each

sub-DDM is trained to make high-confidence predictions on its corresponding ID

class data and uniform-distribution predictions on its OOD class data. This is

implemented by minimizing cross-entropy loss on ID class data and minimizing

Kullback-Leibler (KL) divergence between the predictions on virtual OOD class

data and the uniform distribution as follows:

LDDM
i = E(x,y)∈DID

i
C(FD

i (x), y) + Ex̀∈DOOD
i

KL(FD
i (x̀)||Ui) (8)

where x and y are an image and the corresponding label from the i-th ID dataset

DID
i , x̀ is an image from the i-th virtual OOD dataset DOOD

i , FD
i (x) and FD

i (x̀)

are the predictions made by the i-th sub-DDM on x and x̀ respectively, and Ui

is an uniform distribution over the classes belonging to the i-th virtual OOD

class set.

After training, all the sub-DDMs tend to make high-confidence predictions

on their corresponding ID data and low-confidence predictions on their virtual

OOD data. At the same time, since all the sub-DDMs have not seen the real

unseen-class data, they are prone to make predictions with similar confidence

level on them. From the perspective of data, the seen-class data are ID data

for I−1
I sub-DDMs and virtual OOD data for 1

I sub-DDMs, while the unseen-

class data are OOD data for all the sub-DDMs, namely, the sub-DDMs have

evident disagreement on the seen-class data while relatively small disagreement
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on the unseen-class data. Hence, we define an inner disagreement criterion

to differentiate the seen and unseen class data. Specifically, for a given input x,

we first sort the confidence scores predicted by the I sub-DDMs on it by:

[ps1 , ps2 , · · · , psI ] = sort([p1, p2, · · · , pI ]) (9)

where pi = maxFD
i (x) − En(FD

i (x)) is the normalized confidence score pre-

dicted by the i-th sub-DDM on the input x and En(FD
i (x)) is the entropy of

the prediction FD
i (x), and psi is the i-th largest confidence score on x. Then,

we define the disagreement degree d as the confidence distance between the

mean of the Top I − 1 largest confidence scores and the smallest confidence

score:

d =
1

I − 1

I−1∑
t=1

pst − psI (10)

Lastly, we differentiate the seen and unseen class data based on the inner dis-

agreement criterion: if the disagreement degree d on the input is

smaller than θ, the input is regarded as an unseen-class data, other-

wise a seen-class data.

We note that some related works [49, 50, 51] also devised an OOD detection

module for GZSL, However, we differ from them in that we propose a different

method to perform OOD detection. Specifically, our OOD detector is based on

the inner disagreement between sub-DDMs which are trained via our proposed

self-contained training scheme, while existing works [49, 50, 51] trained single

network by maximizing the prediction confidence (or minimizing prediction en-

tropy) on the seen-class data.

4.2. Classification for GZSL

Combining the proposed ID3M with SetNet, the flowchart for GZSL is de-

signed as shown in Figure 1. ID3M firstly picks out the unseen-class data from

all the testing data and then the picked unseen-class data are predicted by a

SetNet for ZSL (i.e. ZSL-SetNet) according to Equation 7 while the remaining

14



Table 1: Statistics of AWA2, CUB and SUN. Number = the number of samples, Visual-Feat

= the visual feature dimensionality, Semantic-Feat = the semantic feature dimensionality, All

= the number of all classes, Seen = the number of seen classes, Unseen = the nubmer of

unseen classes.

Dataset Number Visual-Feat Semantic-Feat All PS SS

Seen Unseen Seen Unseen

AWA2 37,322 2048 85 50 40 10 40 10

CUB 11,788 2048 312 200 150 50 150 50

SUN 14,340 2048 102 717 645 72 645 72

data are predicted by a SetNet for GZSL (i.e. GZSL-SetNet) as follows:

y∗ = arg max

K∑
k=1

(Qk(P (F (x), Gk(F (x))))) · EY (11)

where EY includes the semantic features of classes in the total class label set

Y and y∗ is the predicted class in the total classes label set Y . The others are

the same as in Equation 7. Note that we employ a GZSL model to classify the

remaining data instead of a seen-class classifier due to the facts that 1) the GZSL

model usually has a considerably high performance on the seen classes, hence

using a GZSL model to classify the remaining data has a very small influence

on the seen-class accuracy; 2) limited by the accuracy of the OOD detector, the

remaining data inevitably includes some real unseen-class data, hence using a

GZSL model to classify the remaining data could probably improve the unseen-

class accuracy. As for the training of GZSL-SetNet, it is trained in the same

way with that of ZSL-SetNet (i.e. same loss function and training data), but

note that the parameters of GZSL-SetNet are not necessary to be same with

those of ZSL-SetNet.

5. Experimental results

5.1. Experimental setup

5.1.1. Datasets and evaluation protocol

The proposed method is evaluated on three commonly used datasets whose

original images are available for training, including AWA2 [55], CUB [56], SUN [57].
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Specifically, AWA2 is an animal dataset containing 37,322 images from 50

classes, with 85 attributes provided by experts to describe the semantic fea-

ture of each class. CUB is a fine-grained bird dataset which contains 11,788

images from 200 species. Each species is annotated by 312 attributes which are

usually used as the semantic feature. SUN is a fine-grained scene dataset which

includes 14,340 images belonging to 717 classes and each class is annotated by

102 semantic attributes. Note that the number of samples of each class in SUN

is relatively small, with 20 images per class. The statistics about the three

datasets are summarized at Table 1.

Seen/unseen data split has a huge influence on the (G)ZSL performance.

Proposed Split (PS) [55] and Standard Split (SS) are both available to the

above three datasets. Although SS does not strictly satisfy the ZSL setting due

to the fact that some unseen classes in SS actually have been seen by the com-

monly used ImageNet1000 pre-trained CNNs, it is still a widely used data split

to evaluate the ZSL performance. Hence, as done in many previous works, we

employ both PS and SS to evaluate the proposed method in the conventional

ZSL setting, and employ PS to evaluate the proposed method in the generalized

ZSL setting. Under both the PS and SS data split, {40, 150, 645} classes are

regarded as the seen classes in AWA2, CUB, and SUN respectively, while the re-

maining {10, 50, 72} classes are regarded as the unseen classes respectively. The

statistics about the two data splits are summarized at Table 1. Following the

existing methods, we evaluate the performance in the conventional ZSL setting

by average per-class Top-1 accuracy (ACC) on unseen classes. In the general-

ized ZSL setting, ACC of both seen classes and unseen classes are computed to

evaluate their performances. Besides, the harmonic mean H of the two ACC is

also computed to evaluate the overall performance by:

H =
2×ACCseen ×ACCunseen

ACCseen +ACCunseen
(12)

For the evaluation of ID3M, since the task of ID3M in GZSL is to pick out

unseen-class data from all the testing data and the unseen-class data are gen-

erally regarded as negative samples, we employ the True-Negative Rate (TNR)
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to evaluate performance when the False-Negative Rate (FNR) is set as a series

of values.

5.1.2. Implementation details and comparative methods

The ImageNet1000 pre-trained ResNet101 [58] is employed as the backbone

(i.e. F (·)) of SetNet. The K attention modules {Gk(·)}K1 are jointly imple-

mented by a two-layer convolutional module, whose input-channel number is

2048 and output-channel number is K, and the hidden-channel number is 1024

for all the three datasets. The spatial mapping and pooling operation P (·) is

parameter-free. Each visual-semantic projector Qk(·) in the projector ensemble

is implemented by a fully-connected layer whose input-unit number is 2048 and

output-unit number is the dimensionality of corresponding semantic features in

the three datasets. In ID3M, the ImageNet1000 pre-trained ResNet101 is also

employed as the backbone of the sub-DDMs. The pre-trained ResNet101 takes

224∗224 images as inputs. In the training stage, the inputs are preprocessed by

‘randomcrop’ and ‘randomflip’ operations. In the testing stage, only ‘centercrop’

operation is used for preprocessing. The SGD optimizer is employed to train all

the models. For the SetNet training, all the models are trained with 60 epoches

and the learning rates are set as {0.0005, 0.0005, 0.001} in AWA2, CUB and SUN

respectively. λ is simply set as 0.2 for all three datasets. The visual-semantic

projector ensemble size is selected from {1, 2, 4, 6, 8, 10}. For the ID3M training,

the models are trained by 50 epoches with learning rates as 0.0001 for all the

three datasets. I is simply set as 5 since it is a common divisor of the seen-class

numbers {40, 150, 645} of the three dataset. θ is set according to False-Negative

Rate which is selected from {0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19}. Note

that the unseen-class data are not needed in the process to set θ.

We compare the proposed methods with 30 state-of-the-art methods, includ-

ing 9 generative methods: GAZSL[59], CVAE [41], f-CLSWGAN [39], LiGAN [60],

SABR [3], ABP [61], LsrGAN [6], CADA-VAE [42], DASCN [40], 12 embedding

based methods: DEVISE [13], ALE [22], ESZSL [30], LATEM [24], SAE [62],

ReViSE [12], SSE[63], SYNC[9], DEM [1], MLSE [8], TCN [64], APNet [35],
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and 9 fine-tuned feature based methods: RN [65], QFSL [66], SCoRe [67], SP-

AEN [68], LDF [18], SGML [15], AREN [14], LFGAA [44], DAZLE [16].

Table 2: Comparative results (ACC) in the conventional ZSL setting on AWA2, CUB, and

SUN. Generative: generative methods; Embedding: embedding based methods; Fine-tuned:

fine-tuned feature based methods.

Method CUB AWA2 SUN

SS PS SS PS SS PS

Generative

CVAE[41] - 52.1 - 65.8 - 61.7

GAZSL[59] - 55.8 - 70.2 - 61.3

f-CLSWGAN[39] - 57.3 - - - 60.8

LiGAN[60] - 58.8 - - - 61.7

SABR[3] - 63.9 - 65.2 - 62.8

ABP[61] - 58.5 - 70.4 - 61.5

LsrGAN [6] - 60.3 - 66.4 - 62.5

Embedding

DEVISE[13] 53.2 52.0 68.6 59.7 57.5 56.5

ALE[22] 53.2 54.9 80.3 62.5 59.1 58.1

ESZSL[30] 55.1 53.9 75.6 58.6 57.3 54.5

SSE[63] 43.7 43.9 67.5 61.0 25.4 51.5

SYNC[9] 54.1 55.6 71.2 46.6 59.1 56.3

LATEM[24] 49.4 49.3 68.7 55.8 56.9 55.3

SAE[62] 33.4 33.3 80.7 54.1 42.4 40.3

DEM[1] 51.8 51.7 80.3 67.1 - 61.9

MLSE[8] - 64.2 - 67.8 - 62.8

TCN[64] - 59.5 - 71.2 - 61.5

APNet[35] - 57.7 - 68.0 - 62.3

Fine-tuned

RN[65] - 55.6 - 64.2 - -

QFSL[66] 58.5 58.8 72.6 63.5 58.9 56.2

SCoRe[67] 59.5 62.7 82.8 61.6 - -

SP-AEN[68] - 55.4 - - - 59.2

LDF[18] 67.1 67.5 83.4 65.5 - -

SGML[15] 70.5 71.0 83.5 68.8 - -

AREN[14] 70.7 71.8 86.7 67.9 61.7 60.6

LFGAA[44] 67.6 67.6 84.3 68.1 62.0 61.5

DAZLE[16] 67.8 65.9 - - - -

SetNet(Ours) 71.0 74.0 88.7 68.0 66.7 64.2
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5.2. Conventional ZSL results

In the ZSL setting, we first evaluate the proposed SetNet on the three

datasets with both PS and SS data split and then compare it with 27 existing

methods as shown in Table 2. The compared methods are roughly divided into

three categories: the generative methods which are based on visual feature gen-

eration, the embedding based methods which focus on learning a discriminative

embedding space given the semantic features and the visual features extracted

by a pre-trained CNN, and the fine-tuned feature based methods which aim to

learn more semantically consistent visual features via re-training a visual feature

extractor. Results are reported in Table 2 where the results of existing meth-

ods are cited from the original papers or public results [55]. From Table 2, we

can see that SetNet has achieved significant improvements against the existing

methods. Specifically, compared with the embedding based methods and the

generative methods, the improvements are evident, especially on CUB and SUN.

This demonstrates that the local visual features learned by SetNet are more con-

sistent with the semantic features than the global visual features used by the

comparative methods. In addition, SetNet outperforms all the fine-tuned fea-

ture based methods by a significant margin about 2.2% on CUB with PS, 2.0%

on AWA2 with SS, and 4.7% and 2.7% on SUN with SS and PS respectively.

These improvements demonstrate that the proposed visual-semantic projector

ensemble could learn a more effective visual-semantic mapping than the one-

mapping methods by modeling the visual-semantic relations from diverse local

perspectives.

5.3. Generalized ZSL results

In the GZSL setting, we present two evaluations on the three datasets with

PS data split. The first one performs GZSL task without ID3M while the second

one with ID3M. The performances are compared with 24 existing methods listed

in Table 3. In the first evaluation, SetNet achieves better performances than

most existing embedding based methods and fine-tuned feature based methods,

which demonstrates the effectiveness of the local feature learning and projector
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ensemble. However, it is obvious that SetNet suffers from recognition bias to

seen-class domain like all the embedding based methods and fine-tuned feature

based methods. Hence, we adopt the proposed ID3M in the second evaluation

to reduce this bias. The corresponding results in Table 3 show us lots of infor-

mation. Firstly, SetNet with ID3M achieves huge improvements, especially on

AWA2 and CUB with improvements about 30.3% and 14.2% respectively. This

is caused by the fact that ID3M achieves significantly excellent performances in

distinguishing seen-class/unseen-class data on AWA2 and CUB. Secondly, the

most recent state-of-the-art methods [14, 16] also adopt an external module to

reduce the bias. Compared with them, our method is able to achieve state-of-

the-art results on more datasets. For instance, our method has comparable per-

formance with DAZLE+CAL[16] on AWA2 while it outperforms DAZLE+CAL

by 8.7% and 2.8% on CUB and SUN respectively. Thirdly, on CUB and AWA2,

SetNet with ID3M also outperforms the generative methods which are famous

for their superior GZSL performance, while it has inferior performance on SUN.

This is because ID3M achieves a plain performance on SUN which has a large

number of classes (717 classes). Actually, the generative methods and the OOD-

detection based methods adopt two different strategies to alleviate the bias

problem in GZSL. The former reduces the bias by re-weighting the seen-class

samples and fake unseen-class samples in the overall loss function while the latter

achieves it by distinguishing seen-class/unseen-class samples before class-level

classification. The compared results show us that the OOD-detection based

methods are superior at handling the bias problem in the GZSL setting where

the class number is relatively small while the generative methods have superior

performances at the setting where the class number is relatively large. Finally,

it is noted that the seen-class ACC drops after adding the ID3M. This is because

ID3M could not discriminate seen-class samples from unseen-class samples with

a 100% accuracy. A subset of seen-class samples are inevitably misclassified

as ‘unseen-class samples’ and they would be definitely wrongly classified since

they are classified in the unseen-class space. Actually, there is a balance be-

tween seen-class and unseen-class accuracies. As noted in Table 3, the same
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problem exists at DAZLE+CAL and AREN+CS and the seen-class accuracy at

generative methods is also limited due to the increase of unseen-class accuracy.

Table 3: Comparative results in the generalized ZSL setting on AWA2, CUB, and SUN. U

= ACC of unseen classes, S = ACC of seen classes, H = Harmonic mean of unseen-class

ACC and seen-class ACC. Generative: generative methods; Embedding: embedding based

methods; Fine-tuned: fine-tuned feature based methods.

Method CUB AWA2 SUN

U S H U S H U S H

Generative

CVAE[41] - - 34.5 - - 51.2 - - 26.7

f-CLSWGAN[39] 43.7 57.7 49.7 - - - 42.6 36.6 39.4

LiGAN[60] - - - - - - 42.9 37.8 40.2

SABR[3] 55.0 58.7 56.8 30.3 93.9 46.9 50.7 35.1 41.5

ABP[61] 47.0 54.8 50.6 55.3 72.6 62.6 45.3 36.8 40.6

CADA-VAE[42] 51.6 53.5 52.4 55.8 75.0 63.9 47.2 35.7 40.6

DASCN[40] 45.9 59.0 51.6 - - - 42.4 38.5 40.3

LsrGAN[6] 48.1 59.1 53.0 - - - 44.8 37.7 40.9

Embedding

DEVISE[13] 23.8 53.0 32.8 17.1 74.7 27.8 16.9 27.4 20.9

ALE[22] 23.7 62.8 34.4 14.0 81.8 23.9 21.8 33.1 26.3

ESZSL[30] 12.6 63.8 21.0 5.9 77.8 11.0 11.0 27.9 15.8

LATEM[24] 15.2 57.3 24.0 11.5 77.3 20.0 14.7 28.8 19.5

SAE[62] 7.8 54.0 13.6 1.1 82.2 2.2 8.8 18.0 11.8

DEM[1] 19.6 57.9 29.2 30.5 86.4 45.1 20.5 34.3 25.6

ReViSE [12] 37.6 28.3 32.3 46.4 39.7 42.8 24.3 20.1 22.0

MLSE[8] 22.3 71.6 34.0 23.8 83.2 37.0 20.7 36.4 26.4

TCN[64] 52.6 52.0 52.3 61.2 65.8 63.4 31.2 37.3 34.0

APNet[35] 48.1 55.9 51.7 54.8 83.9 66.4 35.4 40.6 37.8

Fine-tuned

QFSL[66] 33.3 48.1 39.4 52.1 72.8 60.7 30.9 18.5 23.1

RN[65] 38.1 61.1 47.0 30.0 93.4 45.3 - - -

LFGAA[44] 36.2 80.9 50.0 27.0 93.4 41.9 18.5 40.0 25.3

AREN[14] 38.9 78.7 52.1 15.6 92.9 26.7 19.0 38.8 25.5

DAZLE[16] 42.0 65.3 51.1 25.7 82.5 39.2 21.7 31.9 25.8

AREN+CS[14] 63.2 69.0 66.0 54.7 79.1 64.7 40.3 32.3 35.9

DAZLE+CAL[16] 56.7 59.6 58.1 60.3 75.7 67.1 52.3 24.3 33.2

SetNet(Ours) 40.0 76.7 52.6 24.6 89.5 38.6 24.4 37.0 29.4

SetNet+ID3M(Ours) 64.3 69.4 66.8 61.8 77.9 68.9 37.7 34.5 36.0
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5.4. Performance of ID3M

We evaluate ID3M by performing OOD detection tasks on AWA2, CUB, and

SUN, with FNR selected from {0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19}. Since

OOD detection methods are usually not evaluated on AWA2, CUB, and SUN, we

compare the proposed ID3M with two state-of-the-art OOD detection methods:

MAX-SOFTMAX [46] and GAN-OD [50], whose codes are available. The com-

parative results are shown in Figure 3 where the results of MAX-SOFTMAX

and GAN-OD are obtained using the public codes. From Figure 3, we can

see that ID3M achieves significantly superior performances than GAN-OD and

MAX-SOFTMAX, especially on CUB and AWA2, which demonstrates the ef-

fectiveness of the self-contained training scheme and the inner disagreement

criterion. In addition, Figure 3 also shows us that performances of all the three

methods on AWA2 and CUB are significantly better than those on SUN. This

is because AWA2 and CUB have relatively small numbers of classes (50 and 200

classes respectively), while SUN is a fine-grained dataset with 717 classes and

only 20 samples per class. Finally, combining the results in Figure 3 with those

in Table 3, we conclude that an excellent OOD detector can largely improve the

GZSL performance, for instance, result from 38.6% to 68.9% on AWA2.

5.5. Results Analysis

5.5.1. Effect of projector ensemble size/attention number

Here we analyze the effect of ensemble size (i.e. attention number) on the

ZSL performance by training SetNet models with different number of visual-

semantic projectors. We conduct experiments in the conventional ZSL setting

on AWA2, CUB, and SUN with the PS data split. The results are reported on

Table 4, Table 4 shows that the projector ensemble can significantly improve

performances compared to single projector (size = 1) on all the three datasets.

In addition, the performances on all the datasets become insensitive to the

ensemble size when the size increases to a certain scale. This is because the

diversity of projector’s input, i.e. the local visual features will dominate the

22



0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
FNR

0.0

0.2

0.4

0.6

0.8

1.0
TN

R
AWA2+ID3M
AWA2+GAN-OD
AWA2+MAX-SOFTMAX
CUB+ID3M
CUB+GAN-OD
CUB+MAX-SOFTMAX
SUN+ID3M
SUN+GAN-OD
SUN+MAX-SOFTMAX

Figure 3: Comparative results (TNR) in the OOD detetion task on AWA2, CUB, and SUN

under a series of FNR.

Table 4: Comparative results (ACC) of ZSL-SetNet with different ensemble sizes on AWA2,

CUB, and SUN.

Ensemble Size 1 2 4 6 8 10

AWA2 64.7 66.6 65.3 66.5 68.0 67.4

CUB 68.9 69.0 72.4 72.6 74.0 73.4

SUN 60.0 60.8 62.2 63.3 64.2 63.8

performances when the projector number reaches a certain value considering

the image size is not large.

5.5.2. Effect of disagreement threshold on GZSL performance

We propose an inner disagreement based OOD detector (ID3M) for GZSL,

where the testing data are firstly classified into ‘seen class’ or ‘unseen class’

according to a set disagreement threshold and then the ‘seen-class’ and ‘unseen-

class’ data are classified by a GZSL-SetNet and a ZSL-SetNet respectively. Here

we investigate the effect of disagreement threshold (θ) on the GZSL perfor-

mances by performing GZSL tasks on AWA2, CUB, and SUN under the PS
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Figure 4: Results with different False-Negative Rates.

data split setting. θ is set according to the False-Negative Rate (FNR), which is

set as {0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19}. The results are shown in Fig-

ure 4. As seen from Figure 4, at the beginning, the GZSL performances increase

as the FNR increases accordingly. This is because when the FNR is larger, more

real unseen-class data would be classified as ‘unseen class’ by ID3M and then

classified by a specialized ZSL-SetNet, which means a higher unseen-class ACC.

Since the harmonic mean (H) of unseen-class ACC and seen-class ACC is mainly

influenced by the unseen-class ACC in GZSL, a higher unseen-class ACC results

in a higher H. However, exceedingly increasing FNR would make the GZSL per-

formances decrease since it leads to a largely reduced seen-class ACC. On the

whole, Figure 4 shows us that the GZSL performances are not very sensitive to

the disagreement threshold.
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Figure 5: Results with different weights of diversity regularizer.

5.5.3. Sensitiveness to weight of diversity regularizer

Here we test the sensitiveness of the ZSL performances to the weight of di-

versity regularizer (λ) by performing conventional ZSL tasks on AWA2, CUB,

and SUN under the PS data split setting with λ = {0, 0.01, 0.1, 0.2, 0.4, 0.8, 1.0}.

The results are shown in Figure 5, where we can see that diversity regulariza-

tion is beneficial to the ZSL performances and the ZSL performances are not

very sensitive to the weight of diversity regularier to a large extent on all the

three datasets. However, the ZSL performances would decrease if the weight

of diversity regularizer is too large or too small. This is because a quite large

λ would reduce the influence of the classification objective term on the overall

objective and a very small λ would ignore the effect of diversity regularizer,

both resulting in inferior ZSL performances.
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Figure 6: Visualization of semantically salient regions. At each row, the most-left image is

the original image, the four images at the right side show the semantically salient regions via

heat maps generated by spatial attentions.

5.6. Visualization

To show that the multiple-attention module in SetNet has learned semanti-

cally meaningful visual features, we visualize the attentive regions generated by

SetNet on unseen-class images from CUB. As shown in Figure 6, different parts

like heads, bodies, legs from different bird species are explicitly captured by the

multiple-attention module, demonstrating the ability of SetNet to learn local vi-

sual features which are consistent with semantic attributes. Besides, it is noted

that the region captured by A3 seems to have no explicit semantic meaning for

the shown images, this is potentially because the visual feature extracted from

this region is discriminative for all the images in the whole dataset.
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6. Conclusion and future works

In this paper, we propose a semantic-diversity transfer network (SetNet) and

an inner disagreement based domain detection module (ID3M) to tackle the

(G)ZSL problem. SetNet extracts multiple local visual features with semantic

diversity via a multiple-attention module and a diversity regularizer, and models

the diverse visual-semantic relations by establishing a visual-semantic projector

ensemble, facilitating the knowledge transfer from seen classes to unseen classes

from diverse local perspectives. ID3M is proposed to alleviate the bias problem

in GZSL, which employs a novel self-contained training scheme and detects out

unseen-class data based on an inner disagreement criterion. Extensive experi-

mental results show that the proposed method can outperform existing methods

with a significant improvement on three public datasets. It is noted from our

experimental results that our ID3M performs worse on SUN with a relatively

larger number of classes than on the other datasets with a relatively smaller

number of classes. In future, we will further investigate how to improve the

OOD detection performance on the datasets with a large number of classes.
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