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a b s t r a c t

The importance of medical data and the crucial nature of the decisions that are based on such data, as
well as the large increase in its volume, has encouraged researchers to develop feature selection (FS)-
based approaches to identify the most relevant data for specific medical problems In this paper, two
intelligent wrapper FS approaches based on a new metaheuristic algorithm named the coronavirus
herd immunity optimizer (CHIO) were applied with and without the incorporation of a greedy
crossover (GC) operator strategy to enhance exploration of the search space by CHIO. The two proposed
approaches, CHIO and CHIO-GC, were evaluated using 23 medical benchmark datasets and a real-world
COVID-19 dataset. The experimental results indicated that CHIO-GC outperformed CHIO in terms of
search capability, as reflected in classification accuracy, selection size, F-measure, standard deviation
and convergence speed. The GC operator was able to enhance the balance between exploration and
exploitation of the CHIO in the search and correct suboptimal solutions for faster convergence. The
proposed CHIO-GC was also compared with two previous wrapper FS approaches, namely, binary moth
flame optimization with Lévy flight (LBMFO_V3) and the hyper learning binary dragonfly algorithm
(HLBDA), as well as four filter methods namely, Chi-square, Relief, correlation-based feature selection
and information gain. CHIO-GC surpassed LBMFO_V3 and the four filter methods with an accuracy
rate of 0.79 on 23 medical benchmark datasets. CHIO-GC also surpassed HLBDA with an accuracy
rate of 0.93 when applied to the COVID-19 dataset. These encouraging results were obtained by
striking a sufficient balance between the two search phases of CHIO-GC during the hunt for correct
solutions, which also increased the convergence rate. This was accomplished by integrating a greedy
crossover technique into the CHIO algorithm to remedy the inferior solutions found during premature
convergence and while locked into a local optimum search space.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

It is hard for a human to retrieve essential information from
he large volume of data stored and disseminated by numerous
ealth research centers around the world, which adversely affects
he capacity of medical staff to extract the necessary knowledge
rom medical data [1]. Moreover, given that the health and medi-
al care industry is one of the key industries that does not tolerate
ncorrect actions being taken as a result of inaccurate data pro-
essing, many artificial intelligence approaches have been used
o improve the consistency of medical information as these ap-
roaches are capable of handling the growing amount of data

∗ Corresponding author.
E-mail address: weshah@bau.edu.jo (M. Alweshah).
ttps://doi.org/10.1016/j.knosys.2021.107629
950-7051/© 2021 Elsevier B.V. All rights reserved.
in a highly efficient manner [2,3]. Through the use of artificial
intelligence, including machine learning, it is envisaged that it
will be possible to create healthcare applications that can perform
as well or better than human physicians in certain tasks [4,5].
Machine learning is able to link, analyze and present data in
a more intelligible manner, which then enables human medical
practitioners to make accurate decisions and take appropriate
action [6,7].

Information extracted by artificial intelligence techniques in-
volves the use of a conceptual relationship that expresses the data
in a new manner that is more understandable and meaningful
to the data owner, without making any assumptions about what
the knowledge within that data could be [8,9]. However, physical
examination is a crucial task, and failure for it can affect the safety
and efficiency of the overall treatment process [10,11]. There is a

https://doi.org/10.1016/j.knosys.2021.107629
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
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ot of data that a classifier must take into consideration, although
t is not related to the problem of the study and is not related to
t [12,13]. Therefore, the selection of appropriate data or features
o which to apply the classifier will increase the efficiency of the
esults produced by the classifier and at the same time reduce
he time consumed by the learning model, especially when the
olume of data is large [14,15]. Thus feature selection (FS) is
onsidered a critical process for enhancing the efficiency of a
earning algorithm [16].

The FS problem essentially involves finding a way to select
he lowest number of relevant features from the original dataset
hat often comprises a massive variety of features [17]. In a large
ataset; certain features are linked to the problem of interest
hile others are not. If all the features were chosen, this would
efinitely have an effect on the search results either in terms of
ime consumed or classification accuracy [18]. Thus, the objective
f the FS process is to reduce the dimension of the search space as
uch as possible, but not at the cost of accuracy [19]. Therefore,

he success of the selection task relies on two essential aspects:
ecreasing the number of features and increasing classification
ccuracy [20,21].
The FS process involves a generation process, evaluation phase,

eeting the termination criterion and completing a validation
rocedure [22]. These four stages can be achieved by applying a
S method, such as a filter, wrapper, embedded or hybrid method.
he wrapper method is distinct from the filter method in that
t employs a learning algorithm during the evaluation phase,
hereas the filter method evaluates specific features indepen-
ently of the classification process by using a certain standard
hreshold [23,24]. The embedded method is similar to the wrap-
er method as a classifier is used in the selection process in the
valuation step, but the use of the classifier in the embedded
ethod is comparatively less cost-effective than in the wrapper
ethod [25]. On the other hand, the hybrid method sequentially
mploys a filter and a wrapper method and hence the selection of
eatures involves two iterations. First, the filter is used to produce
subset of features and then the wrapper is used to pick features
rom a subset obtained from first step [26].

During the generation phase, a set of features is selected from
he full dataset to decide whether it matches the solution or
ot [27]. Basically, each feature is examined to create the best
ubset, either through a process of forward selection or backward
limination, which increases the degree of complexity by 2n [28].
o reduce the time it takes to generate feature subsets in this
hase, an optimization method is often used as a search strategy.
ptimization techniques are estimation processes and the results
btained by these techniques are either optimal or suboptimal.
ne of the well-known and widely used optimization methods is
he metaheuristic algorithm [29–32].

Metaheuristic algorithms are intelligent algorithms that are
ased on the concept of identifying a particular mathematical tool
ith the aim of optimizing a specific problem [33]. Improvements
re made by several frequent implementation attempts in order
o find the correct solution for a particular problem [34]. These
ntelligent algorithms utilize the knowledge gathered during the
earch to guide the search process, during which they iteratively
reate new solutions by integrating one or more good solutions,
nd they are often also combined with some kind of operator in
rder to prevent them becoming stuck in a local optimum [35].
hile metaheuristics try to find the optimal solution, they are

ypically imperfect mechanisms as they do cannot ensure that
he best global solution is found. Rather, they often produce
pproximate results [36].
Two types of search are performed by metaheuristic algo-

ithms to find an optimal solution: exploration and exploita-

ion [37]. In the exploration phase, the search traverses numerous

2

sites and different environments to explore and discover more
areas for high-quality solution. Population-based metaheuristic
algorithms are exploration-oriented [38,39]. On the other hand,
in the exploitation phase, existing resources are focused on a
particular search area. Single-based metaheuristic algorithms are
considered to be exploitation-oriented [40–42].

Numerous metaheuristics have been proposed and are widely
used to solve FS problems in different research domains. These
include the monarch butterfly optimization algorithm (MBO) [43–
45], chaotic dragonfly algorithm (CDA) [46], whale optimization
algorithm (WOA) [47], spotted hyena optimizer (SHO) [48], atom
search optimization (ASO) [49], chaotic interior search algorithm,
equilibrium optimizer algorithm (EOA) [50], and chaotic compet-
itive swarm optimization (CCSO) [51] among many others [52–
59].

In this study, a new metaheuristic algorithm named the coro-
navirus herd immunity optimizer (CHIO), which was developed
by Al-Betar et al. [60] in 2020, is implemented to solve FS prob-
lems in the medical diagnosis domain. The CHIO simulates herd
immunity, which is considered to be a means to combat a viral
pandemic. It was inspired by the coronavirus known as SARS-
CoV-2 or COVID-19 which caused a global pandemic during 2020.
The extent of the spread of coronavirus infection depends on
how infected individuals communicate directly with other com-
munity members and herd immunity can prevent other people
from acquiring the infection. In the current study, the CHIO is
implemented in two different ways to select the most effective
features in medical datasets. First, it is applied in its original
form. Then, the exploration capability of the CHIO is enhanced
by using a greedy crossover (GC) operator in an approach named
CHIO-GC. The two proposed approaches are applied in a wrapper
model using a K nearest neighbor (KNN) classifier, and evaluated
using 23 medical benchmark datasets, as well as a COVID-19
dataset as a case of a real-world problem dataset. In addition,
the performance of the two proposed approaches is compared
against other methods in the literature. The analysis revealed that
integrating a greedy crossover technique into the CHIO algorithm
produced results that were more accurate than those produced
using CHIO in its original form. This indicates that CHIO-GC has
the ability to remedy the inferior solutions found during prema-
ture convergence and while locked into a local optimum search
space.

The remainder of this paper is structured as follows: the
works most important to this study are presented in Section 2.
The suggested FS methods, CHIO, and CHIO-GC, are discussed in
Section 3, 4, and 5, respectively. The tests and the findings are
discussed in Section 6. Lastly, the conclusion and some possible
directions for study are discussed in Section 7.

2. Related work

Feature selection has been used in a wide range of prob-
lems, including image processing, sentiment analysis, intrusion
detection, and language identification as well as many other
domains [61–67]. However, one of the challenges that still needs
be overcome in respect of the use of FS process is its use in the
field of medical diagnosis, which is the focus of this research.
Therefore, in this section, the most recent work on the use of FS in
medical diagnosis will be reviewed. Several different approaches
have been proposed in this regard.

For instance, Li et al. [68] employed a hybrid approach for FS
in medical diagnoses using a genetic algorithm (GA) to produce
sustainable initial positions and a gray wolf optimization (GWO)
to modify the existing population positions in a discrete search
area. In experiments, the proposed approach was applied to dis-
ease diagnosis problems, and the results demonstrated that the
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uggested hybrid approach is superior in terms of classification
ccuracy as compared to the original GA and the GWO. On the
ther hand, Zuo et al. [69] suggested using a filter-based FS
ethod that explicitly uses the Menger curvature to rate all

he features in an electronic health records dataset. The results
howed that after reducing the number of features, high clas-
ification accuracy is achieved by this method as compared to
revious methods.
Anter and Ali [70] designed a hybrid FS solution that combines

he crow search optimization algorithm with chaos theory and
uzzy c-means (CFCSA). The suggested CFCSA uses the global
ptimization approach to prevent local minima trapping and
haos theory to resolve the lack of CSA convergence. Experiments
howed that the CFCSA outperforms in terms of mean fitness and
tandard deviation as compared to other methods such as bat
lgorithm and the binary crow search algorithm.
In another work, Wang and Chen [71] developed a hybrid

earning system that employs a WOA that blends chaotic and
ulti-swarm techniques to concurrently tackle parameter opti-
ization and FS, as well as to optimize the efficiency of a support
ector machine (SVM) to diagnose various diseases. However, the
esults indicated that the SVM generated by the proposed ap-
roach is actually inferior to other profitable SVM methods based
n the original WOA, particle swarm optimization (PSO), bacterial
oraging optimization and the GA in terms of both classification
ccuracy and selection size.
Furthermore, Rostami et al. [72] proposed a FS model that

ncorporates the idea of using node centrality and the PSO al-
orithm. The proposed scheme consists of three main processes.
n the first step, the initial features are visualized as a graphic
epresentation model. In the next step, the core features of all
he nodes in the graph are determined. Finally, the enhanced
SO-based search method is used to pick the final features Ex-
eriments were done on five medical datasets and the results
howed that the proposed approach improves on the reliability
nd efficacy of previous related approaches.
In research conducted by Verma et al. [73], a cost-sensitive

edical diagnostic is regarded as a FS problem, in which each test
rovides a feature that to be used in a prediction model. The aim
f their study was to identify FS methods that have the optimal
alance between accuracy and cost. To this end, the researchers
sed the ‘‘weak dominance’’ problem property to create online
lgorithms that define a collection of features in order to offer an
‘optimal’’ trade-off between the cost and accuracy of prediction
ithout including knowledge of the true features of the medi-
al state. The findings confirmed the efficiency of the proposed
ethod in respect of optimization problems generated by real-
orld datasets. Moreover, the FS process was also applied in [74]
n a skin disease dataset by different classification techniques.
he FS process in this approach enhances the dermatological
rediction accuracy.
Kuppuchamy and Mangayarkarasi [75] concentrated on using

uzzy entropy to assess the importance of the feature in the
iagnosis of breast cancer. In their study, a number of FS strate-
ies were implemented to obtain useful subsets of features. In
ddition, the radial base function network was used as a classifier.
he Wisconsin Breast Cancer dataset was used in the experiment
nd the findings showed that high classification accuracy was
chieved with reduced selection size. The Wisconsin Diagnostic
reast Cancer dataset was also utilized by Rahman and Mu-
iyandi [76] in their work on selecting effective features by using
FS technique. They used a 15-neuron neural network to classify
he cancer. The results showed a significant improvement of up to
9.4% in classification accuracy in comparison with other meth-
ds. Another FS technique was proposed by de Lima et al. [77].

he researchers’ technique was based on a twin-bound support

3

vector machine (FSTBSVM). The experiment revealed that the
proposed method is very effective and capable of delivering good
results with limited features as compared to using the original
datasets.

A metaheuristic algorithm was applied for FS in relation to
medical issues by Too and Mirjalili [78]. Specifically, the re-
searchers implemented a hyper-learning binary dragonfly algo-
rithm (HLBDA) in a wrapper FS approach to find optimum feature
subsets from over 21 datasets as well as a COVID-19 dataset. The
findings revealed the supremacy of HLBDA in terms of increasing
the classification accuracy and reducing the number of features
chosen in comparison with eight previous works.

On the other hand, Abu Khurmaa et al. [79] improved the moth
flame optimization (MFO) algorithm in two directions. In the first,
eight binary variants are generated using eight transition func-
tions. In the second, a Lévy flight operator is incorporated into the
MFO structure in association with the transition functions, and
named LBMFO-V3. It was shown that the suggested LBMFO V3
method is able to greatly outpace several well-known wrapper
methods in 83% of datasets. Also, the suggested methodology
surpasses other approaches in the literature approaches in 75%
of the datasets. Also, a comparison with the filter-based method-
ology indicated that the proposed LBMFO-V3 approach is superior
across 70% of the datasets.

From the above overview of related works, it can be seen
that many metaheuristic algorithms have been used to solve
FS problems in the medical diagnosis domain. The findings of
previous research studies have shown that these smart algo-
rithms can identify the best related features that can maximize
classification accuracy. The effectiveness of these algorithms is
attributed to the consistency of their random search mechanism
and to their ability to strike a balance between local and global
search processes.

In light of the above, in this study, two intelligent FS wrapper
strategies based on a new metaheuristic algorithm called CHIO
were applied with a greedy crossover operator strategy to en-
hance CHIO exploration for FS in the field of medical diagnosis.
A crossover strategy permits individuals to exchange genetic
information during the development of subsequent generations
of individuals. A greedy algorithm is a step-by-step method that
guarantees that the following step delivers the greatest possible
value on the way to a solution. It has been shown that optimiza-
tion problems can also be solved by using a greedy method [80].
This is because a greedy algorithm can eventually remove the
problem if better judgments can be made at any phase, and then
an optimal solution to the entire problem can be discovered.

3. Coronavirus herd immunity optimizer (CHIO)

The CHIO is a new metaheuristic algorithm that was proposed
by Al-Betar et al. in 2020 [60]. Similar to many other metaheuris-
tic algorithms, it mimics the behavior of a natural entity, in this
case taking its inspiration from a pathogenic coronavirus. The
CHIO imitates the process of achieving natural immunity in a herd
through the implementation of herd psychology, which is known
to be one of the methods of obtaining immunity from infectious
diseases.

In 2020, for the third time in as many decades, a pathogenic
coronavirus crossed species to infect the human population. The
virus, unofficially labeled 2019-nCoV, was first observed in
Wuhan, China, in people who had been exposed to seafood or
a wet market [81]. The swift response of the Chinese public
health and scientific community contributed to the recognition
of the related clinical disease and provided initial awareness of
the epidemiology of the infection [81]. Acquired immunity is
developed by a human getting a normal infection via a pathogen
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r by receiving an injection, often a vaccine. Herd immunity
tems from the effect of the extent of human immunity on the
arger herd [82]. It can be described as indirect immunity against
nfection that is given to susceptible persons when a reasonably
arge proportion of individuals in the population are resistant to
he infection [62].

Herd immunity relies upon the period a disease remains inside
n infected host and the pace at which the disease spreads.
he introduction of a single infected person into a group of
lready vulnerable individuals would result in the continuous
ndiscriminate spreading of a disease among any of those who
ere approached by the infected person before such infected

ndividuals died or recovered. The estimated number of indi-
iduals who become infected in such a vulnerable population
s the so-called simple reproduction number [83]. The disease
ould be spread to other susceptible contacts by the persons
ho had acquired the disease from the original infected person,
nd this mechanism would repeat itself until the disease infected
he whole population [84]. However, the presence of herd im-
unity could lead to the complete elimination of the disease

rom a society, and, as long as any member of the population has
mmunity to the disease, the potential of the disease to spread
ould decline. The decline in the rate of disease spread would
e dependent on the size of the immunized herd. Nevertheless,
ven if total herd immunity could not be achieved, the effects of
he disease could be mitigated by the presence of a ‘‘buffer’’ of
esistant individuals [85].

The idea of coronavirus herd immunity was mathematically
odeled by Al-Betar et al. to create a theoretical optimization
lgorithm named the CHIO. The model is based on the finding
way to best protect humanity against disease by converting

he bulk of the helpless non-infected population into a robust
opulation [60]. As a consequence, all the remaining vulnerable
ases would not be affected and the resistant population would
o longer transmit the disease. In the model, the population of
erd immunity individuals are classified into three categories:
usceptible, contaminated (or confirmed) and immunized (or re-
overed) persons [60,86]. A susceptible individual is a person who
s not born with or afflicted with the virus. However, a vulnerable
ndividual may be contaminated by interaction with infectious
ndividuals who have refused to comply with the recommended
ocial distancing or gap. An infected individual is a person who
an spread the virus to susceptible individuals who are in close
ontact with the psychological distancing factor. An immunized
ndividual is a person who is protected from infection and does
ot threaten untreated individuals. Therefore, this type of indi-
idual can help prevent the spreading of the virus to others and
hereby avert the triggering of a pandemic [64].

Fig. 1 provides an illustration of the population hierarchy in
he herd immunity scenario and the effect on acquiring immunity
n the above-described three categories of individuals in the
opulation.
It can be seen from Fig. 1 that herd immunity can be depicted

s a tree in which the infectious individual is at the base or root
nd the branches correspond to the other individuals contacted.
he right-hand portion of Fig. 1 shows that the virus cannot be
pread to contacted persons if the root individual is immunized.
The herd immunity strategy can be modeled as an optimiza-

ion algorithm that consists of six main phases [50]. Each of these
hases is discussed in turn below:

hase 1: Initialization
The CHIO parameters and the issue of optimization are ad-

ressed in this step. In respect of objective functionality, the
ptimization problem is formulated as shown in Eq. (1):

in f (x) x ∈ {Lb,Ub} (1)
4

where f(x) is the measured objective function (or immunity rate)
that is computed for the individual xi = (x1, x2, . . . , xn), where xi
s the gene indexed by i, and n represents the number of genes
n each individual. Notice that each gene’s value range is xi ∈
[lbi, ubi], where lbi is located. The highest and lowest boundaries
of gene xi are expressed by Lbi and Ubi. The CHIO algorithm
has four algorithmic parameters and two operational parameters.
The four algorithmic parameters are (1) C0, which is the number
f preliminary cases of infection initiated by one individual; (2)
IS, which is the size of the population; (3) Max_Itr, which is
he actual number of iterations; and (4) n, which represents the
roblem dimensionality.
In this stage, two major control parameters of the CHIO are

nitialized: (1) the basic reproduction rate (BRr), which regu-
ates the operators of the CHIO by propagating the coronavirus
mong the individuals, and (2) the maximum age of infected cases
Max_Age), which determines the classification of the infected
ases as either having recovered or died.

hase 2: Generate initial herd immunity population
The CHIO produces a set of cases (individuals) that is equal to

IS spontaneously (or heuristically). In the herd immunity popu-
ation (HIP), the generated cases are stored as a two-dimensional
atrix of size n × HIS as follows:

IP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x1n

x21
2
2 x2n

· · ·

· · ·

· · ·

HIS
1 xHIS2 xHISN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

in which each row j represents a case x j that is generated
basically. This includes xji = Lbi + (Ubi - Lbi) × U(0, 1), ∀i = 1, 2, . , .
n. The objective function (or immunity rate) is determined by us-
ing Eq. (1) for each situation. In addition, the HIS duration status
variable (S) for all HIP cases is initiated by either zero (susceptible
case) or one case (infected case). Note that the random initiation
of the number of ones in (S) is as many as C0.

Phase 3: Evolve coronavirus herd immunity
The evolution phase is the CHIO’s primary enhancement loop,

where gene xji in case xj, according to the proportion of the BRr,
either remains the same or changes according to the influence of
social distancing based on the following three rules for infected,
susceptible and immune cases:

xji(t+1)
−−−→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xji (t) r ≥ BRr

C
(
xji (t)

)
r <

1
3
× BRr (infected)

N
(
xji (t)

)
r <

2
3
× BRr (susceptible)

R
(
xji (t)

)
r < BRr (immune)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3)

where r produces a number generator between 0 and 1. The three
rules are described below:

1. Infected case
Under the spectrum of r ∈ [0, 1

3BRr] any social gap is caused
by the new gene value of xji (t + 1), which is determined by the
discrepancy between the present gene and a gene obtained from
a contaminated case xc , such as

xji (t + 1) = C(xji (t)) (4)

where

C
(
xj (t)

)
= xj (t)+ r × (xj (t)− xc (t)) (5)
i i i i
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Fig. 1. Population hierarchy in herd immunity scenario.
x
e

−

otice that the value xci (t) is arbitrarily selected on the basis of
a condition vector (S) from every contaminated case xc , so that c
= {i|S(i) = 1}.

2. Susceptible case
The new gene value of xji (t + 1) is influenced by any social gap

within the spectrum of r ∈ [ 13BRr,
2
3BRr], which is determined by

he discrepancy between the present gene and a gene extracted
rom a compromised case xm, such as
j
i (t + 1) = N(xji (t)) (6)

here(
xji (t)

)
= xji (t)+ r × (xji (t)− xmi (t)) (7)

Notice that the value xmi (t) is distributed from every resistant
case xm randomly, and that it is centered on a vector of status
(S) given that m = {i| S(i) = 0}.

3. Immune case
The new gene value of xji (t + 1) is influenced by any social gap

within the spectrum of r ∈ [ 23BRr, BRr], which is determined by
he discrepancy between the present gene and a gene extracted
rom a compromised case xv , such as

xji (t + 1) = R(xji (t)) (8)

here(
xji (t)

)
= xji (t)+ r × (xji (t)− xv

i (t)) (9)

Notice that the value xv
i (t) is distributed from every resistant case

xv randomly, and that it is centered on a vector of status (S) given
that f (xv

i ) = arg minj{k|S(k)=2} f (x
j
i).

Step 4: Update herd immunity population
The immunity rate f (xj (t + 1)) of each case xj (t + 1) gener-

ated is determined and the actual case xj (t) is replaced by the
obtained case xj t + 1 if the obtained case is stronger, such that
( )

5

f (xj (t + 1))< f (xj (t)). Also, the age vector Aj is increased by a
value of 1 if Sj = 1. For each event, the state vector (Sj) is modified
j based on the herd immune criterion that uses the following
quation:

Sj
→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 f
(
xj (t + 1)

)
<

f
(
(x)j (t + 1)

)
∆f (x)

∧ Sj = 0 ∧ is_corona(xj (t + 1))

2 f
(
xj (t + 1)

)
<

f
(
(x)j (t + 1)

)
∆f (x)

∧ Sj = 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(10)

where the binary value of is_corona (xj (t + 1)) is equal to 1
when the new value is a value from any infected case that has
been inherited by case xj (t + 1). Also, the ∆f (x) is the mean

significance of the immune population rates such as
∑HIS

xi
f (xi)

HIS .
Notice that the immunity levels of the individuals in the

population are altered depending on the social gap measured
earlier. If the newly produced individual immunity rate is better
than the population’s average immunity rate, this means that the
population is becoming more immune to the virus. If the recently
discovered population is sufficiently strong to be immune to the
virus, then the threshold of herd immunity has been reached.

Phase 5: Fatal cases
In this phase, if the immunity rate f (xj (t + 1)) of the current

infected case (Sj==1) cannot be strengthened as defined by the
Max_Age parameter (i.e., Aj >= Max_Age), then this case is consid-
ered dead. However, using xji (t + 1) = Lbi + (Ubi - Lbi) × U(0, 1),
∀i = 1, 2, . , n is then regenerated from scratch. In addition, Aj and
Sj are both set to 0. This phase may be beneficial in diversifying
the current population and thereby avoiding local optima.

Phase 6: Stop criterion
The CHIO algorithm repeats step 3 to step 5 until the termi-

nation criterion is reached, which normally depends on whether
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he maximum number of iterations is reached. In this case, the
opulation is dominated by the total number of susceptible and
mmunized cases. Also, the infected cases are passed.

All the above phases of the CHIO algorithm are illustrated as
flowchart in Fig. 2.
The pseudocode of the six CHIO phases is given below:

CHIO algorithm pseudocode
1. Step 1: Initialize the CHIO parameters (HIS, 2. Max_itr, and
Max_Age)
2. Step 2: Generate herd immunity population
3. xji= Lbi + (Ubi − Lbi) × U(0, 1), ∀i = 1, 2, . , n and ∀j = 1, 2, . ,
HIS
4. calculate the fitness of each search agent
5. set Sj=0 ∀j = 1, 2, . , HIS
6. set Aj=0 ∀j = 1, 2, . , HIS
7. Step 3: Herd immunity evolution
8. while (t ≤ Max_itr) do
9. for j = 1 to HIS do
10. is Corona(xj (t + 1) = false
11. for i = 1 to N do
12. if (r < 1/ 3 × BRr) then
13. xji (t + 1) = C(xji (t))
14. is Corona(xj (t + 1) = true
15. else if (r < 2/3 × BRr) then
16. xji (t + 1) = N(xji (t))
17. else if (r < BRr) then
18. xji (t + 1) = R(xji (t))
19. else
20. xji (t + 1) = xji (t)
21. end if
22. end for
23. Step 4: Update herd immunity population
24. if f (xj (t + 1)) < f (xj (t)) then
25. f (xj (t)) = f (xj (t + 1))
26. else
27. Aj = Aj + 1
28. end if

29. if f
(
xj (t + 1)

)
<

f
(
(x)j(t+1)

)
δf (x) Ŝj = 0̂is_corona(xj (t + 1) then

30. Sj=1, Aj=1
31. end if

32. If f
(
xj (t + 1)

)
<

f
(
(x)j(t+1)

)
δf (x) Ŝj = 1then

33. Sj=2, Aj=0
34. end if
35. Step 5: Fatality condition
36. if Aj >= M ax_Age and S==1 then
37. xji= Lbi + (Ubi − Lbi) × U(0, 1), ∀i = 1, 2, . , n
38. Aj=0
39. Sj=0
40. end if
41. end for
42. t = t + 1
43. end while

4. Greedy crossover (GC) operator

One of the essential search operators is the crossover op-
rator. The main purpose of using this operator is to generate
new promising optimal solution by merging current parent

olutions [87]. This is seen as an effective technique as the search
rocess will then theoretically lead to new exploration regions
6

where better solutions can be sought [88]. The crossover operator
takes two solutions and combines them in order to create a
new one that is distinct from the previous solutions because it
selects the best features of both solutions to form an optimal
solution. There are several forms of crossover operators, each
of which relies on a particular mechanism [89]. In this study, a
methodology based on a greedy approach proposed in [90] was
used to find the best solutions in the crossover phase. Here, it was
specifically implemented to enhance the exploration capability of
the CHIO.

A greedy algorithm is a step-by-step approach as it ensures
that the next step offers the maximum potential value on the
route to a solution [91]. A greedy algorithm can also be used to
solve optimization problems [80]. If better decisions can be made
in any step and an optimal solution to the whole problem can be
found, a greedy algorithm can ultimately eliminate the problem.

In this study, the application of a greedy strategy first involves
the random selection of two parent solutions SA and SB from
he population by CHIO, the first component of the offspring
SO) apoints the values between SA and SB by performing an
intersection process between the values, where SO = SA ∩SB.
Then, the remainder of the offspring is proceeded to a greedy
strategy based on the potential Px, which extends SO step by step
by assigning one element to it at each step until the offspring
includes precisely N elements. In the following, the process of
the greedy strategy is explained in more detail. Fig. 3 describes
the idea of the GC strategy used in this study.

Let N = {S1, S2, . . . , SN } be a set of elements, and let dXY be the
distance between them, where SX and SY (dXY = dYX ) elements
with dXY > 0 if X ̸= Y and dXY = 0 otherwise. Then, potential Px
can be calculated, taking into consideration the objective function
f in Eq. (13) in next section, as the following equation:

PX =
∑
SY∈S

dXY , Sx ∈ N (11)

In the first step, all the elements in SA are evaluated to define
the element with the highest potential relative to SO and move it
from SA\SO to SO. We then take into account the elements in SB\SO,
specify the element with the greatest potential in SB\SO and move
it to SO. Then, at each point of this greedy process, we consider the
elements in SA\SO and SB \SO in turn until SO reaches the size of
N. The offspring in SO is usually a relatively high-quality solution.

The features are swapped into the offspring in specific steps.
Let swap (Sx, SY) define a transfer that switches SX ∈ S and SY ∈ N
\S. Then, as swap (Sx, SY) is used the target variation [90], which
can be easily measured by:

Target Variation = f
(
S ′

)
− f (S) = PY − Px − dXY (12)

where S′= S \{Sx} ∪ {SY} while PY and Px are, respectively, the
potential of SY, Sx according to Eq. (15).

The population updating process determines whether to come
up with a solution for offspring, which is the crossover should
be a part of the population and, if not, the current population
solution will be substituted. Population management is a critical
issue because updating the population rule actually influences the
diversity of the population, which in turn affects the convergence
of the CHIO search. Algorithm 2 provides the pseudocode of the
GC operator.
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Fig. 2. Flowchart of CHIO algorithm.
Algorithm 2: Greedy crossover operator pseudocode
1.CHIO generalizes two parent solutions SA and SB
2.Greedy crossover: One offspring solution SO:
3. SO←SA∩SB/∗ Establish a partial solution first by retaining
mutual common features by SAandSB */
4. while |SO| < N do
5.Select from SA \SO the element u with the highest potential
with respect to SO
6.SO←SO∪{u}, SA←SA\{u}
7.if |SO | = N then
8.Return SO and Stop
9.end if
10.Select from SB \SO the element v with the highest potential
with respect to SO
11.SO← SO ∪ {v}, SB ← SB\{v}
12.end while
13.Return SO

5. CHIO-GC for the FS problem

The FS process is used to delete redundant, obsolete and mis-
eading features in order to obtain the best subset that represents
he best outcome, where every feature is relevant if the choice
7

depends on it, otherwise it is irrelevant. A feature is considered
to be redundant if it is heavily associated with other features. The
FS process is a binary optimization problem where solutions are
limited to binary values (0, 1). This implies that any optimization
strategy used to solve FS problems needs to be built in binary
form, such that solutions are represented as either 0 or 1 in
a one-dimensional vector. A feature that is selected is assigned
the value 1, otherwise 0. Fig. 4 gives an example of the binary
representation of selected features.

In this study, the wrapper FS approach is based on KNN, which
determines the accuracy rate of the proposed approaches, CHIO
and CHIO-GC, for the FS process in medical diagnosis. According
to related works, the KNN classifier has been found to have good
classification efficiency when applied to FS problems [4]. In this
study, the number of nearest neighbors (K) was five. The 5-NN
algorithm was used for the fitness assessment during the training
period with internal N-fold cross-validation, where the number
of folds was five; the average error rate in the classification pro-
cedure was determined for each fold of each equivalent particle.
The number of folds (N) and the number of nearest neighbors (K)
were chosen based on previous research.

The wrapper FS approach involved a generation, evaluation,
a termination criterion and validation phase. In the wrapper
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Fig. 3. Proposed greedy crossover operator.
Fig. 4. Binary representation of feature selection.
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pproach, the learning algorithm was used as a part of the eval-
ation phase. This approach created an interaction between the
earch subset and the classification algorithm. Therefore the KNN
lassifier was used twice, one time in the evaluation and one
ime in the validation phase. During the generation step, a subset
f features was chosen from the full dataset for the validation
rocess to decide whether or not it matched the solution. In this
hase, the exploration and exploitation capabilities of the CHIO
lgorithm were used to search for and generate a subset from a
iven dataset. To increase the exploration efficiency of the CHIO
o the maximum possible degree, a crossover operator was used
n a greedy manner to find the best solutions before CHIO moved
n to the exploitation part of the search process. Fig. 5 describes
he CHIO with GC for FS based on a wrapper approach using KNN.

The efficiency of the suggested approaches CHIO and CHIO-GC
ere assessed according to accuracy, recall, precision, F-measure
nd the number of features (selection size).
Classification accuracy is calculated by:

ccuracy =
TP+ TN

TP+ TN+ FP+ FN
(13)

here:
rue positives (TPs) are cases in which the model predicted true
nd the actual output was also true.
rue negatives (TNs) are cases in which the model predicted false
nd the actual output was false.
alse positives (FPs) are cases in which the model predicted true
nd the actual output was false.
alse negatives (FNs) are cases in which the model predicted false
nd the actual output was true.
recision describes how accurate the learning model is in terms
f how many of the cases that the model predicted as positive are
ctually positive. Precision is calculated by:

recision =
TP

TP+ FP
(14)

ecall represents how many of the actual positives the model
aptures by labeling them as positive (true positive). Recall is
 b

8

calculated by:

recall =
TP

TP+ FN
(15)

The F-measure expresses the balance between the ratio of recall
and precision; the closer it is the higher and close to the degree
of accuracy. The F-measure is calculated by:

F−measure = 2
( precision . recall)
precision+ recall

(16)

. Experimental results

This section describes the experimental setup and presents
he analysis of the results, as well as comparisons with previous
ethods in order to assess the performance of the proposed
ethod. The instability that has been generated depends on a
ariety of criteria, including the accuracy rate, the rate of conver-
ence and certain measurements of central inclination. In order
o conduct a fair scientific analysis, similar work environments
nd conditions were observed throughout the experiments. The
xperiments were carried out using an Intel R⃝ CoreTM i7-6006U
rocessor @ 2.00 GHz (four CPUs), ∼2.0 GHz with 8 GB of RAM.
he CHIO was introduced using Matlab R2016a. The datasets were
ivided into 70% for training and 30% for testing. The tests were
arried out over 30 runs for each dataset and 100 iterations were
sed in each run.

.1. Parameter settings

In the experiments, the input parameters were determined
y the results of some initial tests which enabled the proposed
ethod to produce better output. In order for the results of the
xperiment to be the same, the algorithm configurations were
dentical throughout. Table 1 provides the CHIO parameter values
hat were used in all the experiments.

As for the KNN classifier, the input was the nearest training
nstances in the feature space and the output was a class mem-
ership. The labeling method depended on the majority of votes
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Fig. 5. Proposed CHIO-GC approach.
able 1
arameter settings.
Parameter Value

HIS 30
Max_Age 100
BRr 0.01
Max_Itr 100
LB (lower bound) 0
UB (upper bound) 1

cast by the nearest K neighbors to the query. In the experiments,

the average error rate findings indicated the output uncertainty

of the KNN classifier when various values of K were used. The
minimal error rate was reached when K = 5.

9

6.2. Description of the datasets

The term medical data refers to health-related data that are
used to determine routine patient treatment or as part of a
diagnostic trial program. There are several categories of such data,
such as administrative data, claims data, patient disease data and
clinical trial data, among others. In this study, in order to be able
to generalize the results of the experiments, we used two types of
medical data: a number of medical benchmark datasets and one
real-world COVID-19 dataset.

6.2.1. Medical benchmark datasets
Twenty-three well-known benchmarked datasets of diverse

patient data were used in the experiments. They were down-
loaded from a range of data repositories such as UCI, KEEL, and
Kaggle, as well as other well-known websites for FS medical
able 2
haracteristics of the medical benchmark datasets.
Dataset Number

of features
Number
of instances

Number
of classes

Source of dataset

1 Diagnostic 30 569 2 UCI
2 Original 9 699 2 UCI
3 Prognostic 33 194 2 UCI
4 Coimbra 9 115 2 UCI
5 BreastEW 30 596 2 UCI
6 Retinopathy 19 1151 2 UCI
7 Dermatology 34 366 6 UCI
8 ILPD-Liver 10 583 2 UCI
9 Lymphography 18 148 4 UCI
10 Parkinsons 22 194 2 UCI
11 ParkinsonC 753 755 2 UCI
12 SPECT 22 267 2 KEEL
13 Cleveland 13 297 5 KEEL
14 HeartEW 13 270 2 KEEL
15 Hepatitis 18 79 2 KEEL
16 SAHear 9 461 2 KEEL
17 Spectfheart 43 266 2 KEEL
18 Thyroid0387 21 7200 3 KEEL
19 Heart 13 302 5 Kaggle
20 Pima-diabetes 9 768 2 Kaggle
21 Leukemia 7129 72 2 https://jundongl.github.io/scikit-feature/datasets.html
22 Colon 2000 62 2 https://jundongl.github.io/scikit-feature/datasets.html
23 Prostate_GE 5966 102 2 https://jundongl.github.io/scikit-feature/datasets.html

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
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able 3
eatures of the COVID-19 dataset.
Feature name Description

1 id Patient identifier
2 location Patient location (local address)
3 country Country of origin of the patient
4 gender Gender of the patient
5 age Age of the patient
6 sym_on Date the patient shows symptoms
7 hosp_vis Date the patient visits hospital
8 vis_wuhan The patient has visited Wuhan
9 from_wuhan The patient is from Wuhan
10 symptom1 A symptom presented by the patient
11 symptom2 A symptom presented by the patient
12 symptom3 A symptom presented by the patient
13 symptom4 A symptom presented by the patient
14 symptom5 A symptom presented by the patient
15 symptom6 A symptom presented by the patient

datasets. The characteristics of these datasets are detailed in
Table 2.

As can be seen from Table 2, the 23 datasets include many
ase studies on medical diagnosis and have different structures.
he power and reliability of the CHIO and CHIO-GC can be discov-
red by studying the improved optimizer on different problems
ith different characteristics. The datasets were divided into two
arts: 70% for training and 30% for testing. The tests were carried
ut over 30 runs for each dataset and 100 iterations were used in
ach run.

.2.2. COVID-19 dataset – a real-world dataset
In March 2020, the World Health Organization confirmed that

xtreme acute respiratory syndrome coronavirus 2 (SARS-CoV-
) or COVID-19, which had emerged in China in late 2019, had
eached pandemic status. At the time of writing it has resulted
n the death of millions of people worldwide. Artificial intel-
igence is increasingly being used in a range of technologies
or diagnosis, identification and prevention in the global fight
gainst COVID-19. Hence it seemed appropriate that the CHIO
nd CHIO-GC were applied to predict the health of COVID-19
atients. For this purpose, a real-world dataset on COVID-19
atients was obtained from https://github.com/AtharvaPeshkar/
ovid-19-Patient-Health-Analytics. The dataset consisted of 15
eatures, as listed in Table 3.

In this study, patient data containing missing values for both
‘death’’ and ‘‘recovery’’ were excluded from the key dataset. For
he experiments, the data were split evenly into two sets of
raining and testing data for the evaluation process.

. Results and discussion

In order to evaluate the efficacy of the proposed approaches,
HIO and CHIO-GC, seven outcomes were taken into account:
ccuracy, error rate, number of features chosen (selection size),
recision, recall, F-measure, boxplot and convergence speed.
First the CHIO and CHIO-GC were compared in terms of ac-

uracy rate and selection size. The results achieved by the two
pproaches when applied to each of the 23 datasets and the
OVID-19 dataset after 30 runs are provided in Table 4.
As can be seen from Table 4, CHIO-GC achieved higher ac-

uracy in all datasets. This suggests that the CHIO is capable
f generating more reliable results if its search mechanism is
odified. It can also be seen from the table that the CHIO-GC
pproach was able to reduce the gap between the min and max
ccuracy values of the CHIO within 30 runs. In all datasets, the
ccuracy result was not less than that of the basic CHIO and, at the
ame time, the maximal values were part of the recommended
HIO-GC approach.
10
As for the FS size, the CHIO-GC demonstrated an advantage
over the CHIO in terms of the number of features selected in
17 out of the 24 datasets, namely, Diagnostic, Original, Prognos-
tic, Coimbra, BreastEW, ILPD-Liver, Lymphography, Parkinsons,
ParkinsonC, SPECT, SAHear, Thyroid0387, Heart, Leukemia, Colon,
Prostate_GE and COVID-19. These results demonstrate the power
of the modification in the CHIO-GC to improve the exploration
capability of the CHIO to find the best primitive solutions.

The precision, recall and F-measure values of the two ap-
proaches were also evaluated in order to further test the results
and the extent of the classifier’s ability to provide reliable, cor-
related and result values are equivalent in all sequences for each
dataset. Precision represents the ratio of positive IDs that were
actually right, while recall reflects the ratio of true positive IDs
that were correctly detected, and the F-measure denotes the
equilibrium between the recall and precision ratios. The precision,
recall and F-measure values were determined by Eqs. (14), (15),
and (16), respectively. The degree to which the efficiency of the
CHIO and CHIO-GC approaches is adapted and concentrated in all
of the datasets used in the experiment is shown in Table 5.

As shown in Table 5, all the F-measure values were higher
than the accuracy values shown in Table 4 in all datasets except
BreastEW and HeartEW. A large amount of real negatives, which
in most technical situations are not relied upon, could have made
a significant contribution to the results of the accuracy test. Even
though FNs and FPs usually have market costs (quantifiable and
non-quantifiable), the F-measure may be a better assessment to
use where equilibrium between accuracy and recall is sought and
the distribution of classes is inconsistent.

Precision, recall, and the F-measure give a more precise assess-
ment of a classifier’s behavior because they can be used to obtain
a more in-depth judgment of the classifier’s ability to find the cor-
rect results in learning than by assessing its performance based
on accuracy alone. When the consequences of false positives
are significant, precision becomes a useful assessment metric,
whereas when the cost of false negatives is significant, recall
can provide further insight into the results. Also, the F-measure
is useful for understanding the tradeoff between accuracy and
coverage when categorizing positive cases because it provides a
more accurate estimate of wrongly categorized instances than the
accuracy metric. The F-measure provides an overall assessment of
a model’s reliability that mixes precision and recall, in the same
way as addition and multiplication can mix two components
to produce a different result entirely. Hence, a strong F1 score
indicates the presence of a small sample size of false positives
and false negatives, thus false alarms do not affect the results.

In addition, the T-test was used to compare the efficiency of
the CHIO and CHIO-GC approaches. Using these proposed ap-
proaches, which rely on the precision of the results specific to
each dataset, the findings statistics are carried out. By conducting
a T-test, with a 95% spectrum of significance (alpha = 0.05) on the
p-values obtained and the classification accuracy the, different
corresponding statistics are shown in Table 6.

As can be seen from Table 6, the efficiency of the CHIO-GC is
slightly higher than that of the original CHIO, where most of the
P-values for the 24 datasets are less than 0.0001. These findings
show that the use of the CHIO-GC is effective for the solution of
FS problems.

A boxplot is a charting technique for displaying a five-number
summary. The interquartile range denotes the location of the
data’s middle part. The first quartile (the 25% mark) and third
quartile (the 75% mark) are located at the respective ends of the
box. The chart’s lowest point is on the far left, while its maximum
is on the far right. The median is indicated by a vertical bar in
the center of the box. A boxplot indicates how closely grouped
the data are and whether they are symmetrical. It also exposes

https://github.com/AtharvaPeshkar/Covid-19-Patient-Health-Analytics
https://github.com/AtharvaPeshkar/Covid-19-Patient-Health-Analytics
https://github.com/AtharvaPeshkar/Covid-19-Patient-Health-Analytics
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able 4
ccuracy and feature selection size results for CHIO and CHIO-GC.
Dataset Average accuracy Max accuracy Min accuracy Selection size

CHIO CHIO-GC CHIO CHIO-GC CHIO CHIO-GC CHIO CHIO-GC

1 Diagnostic 0.8540 0.9033 0.91 0.96 0.79 0.84 14.4000 13.3700
2 Original 0.9233 0.9710 0.96 0.99 0.85 0.94 6.2000 5.1040
3 Prognostic 0.5293 0.6716 0.62 0.77 0.47 0.60 16.2212 14.6202
4 Coimbra 0.8006 0.8896 0.87 0.91 0.70 0.86 4.6667 3.6007
5 BreastEW 0.8993 0.9400 0.94 0.97 0.85 0.89 15.8333 13.7303
6 Retinopathy 0.4660 0.6436 0.61 0.69 0.38 0.60 7.4667 7.2647
7 Dermatology 0.6690 0.8006 0.73 0.87 0.55 0.70 18.5000 18.4900
8 ILPD-Liver 0.6423 0.7716 0.69 0.79 0.60 0.72 4.1098 4.0000
9 Lymphography 0.7606 0.8343 0.82 0.91 0.69 0.79 10.1667 10.0622
10 Parkinsons 0.6690 0.7903 0.73 0.85 0.55 0.75 9.8333 9.7383
11 ParkinsonC 0.6856 0.8400 0.79 0.88 0.58 0.78 366.7333 365.8322
12 SPECT 0.6073 0.6960 0.68 0.88 0.55 0.60 9.7000 9.6050
13 Cleveland 0.4896 0.5966 0.58 0.64 0.44 0.55 6.7667 6.8097
14 HeartEW 0.8540 0.9116 0.91 0.94 0.79 0.87 6.4000 7.0105
15 Hepatitis 0.6690 0.7903 0.73 0.85 0.55 0.75 8.2000 8.2011
16 GCHear 0.6420 0.7036 0.70 0.73 0.59 0.68 4.5333 3.1551
17 Spectfheart 0.6716 0.7303 0.77 0.79 0.60 0.68 20.9333 21.0030
18 Thyroid0387 0.8986 0.9603 0.96 0.98 0.82 0.92 10.0314 8.0116
19 Heart 0.7316 0.8126 0.79 0.87 0.64 0.77 8.1000 6.1505
20 Pima-diabetes 0.7153 0.7956 0.86 0.87 0.61 0.68 5.4667 6.8387
21 Leukemia 0.9876 0.9900 1.0000 1.0000 0.91 0.93 3597.4427 3560.5107
22 Colon 0.6203 0.7176 0.70 0.82 0.55 0.60 1011.4927 1000.0067
23 Prostate_GE 0.4750 0.6010 0.59 0.64 0.39 0.55 3045.7317 2979.4116

COVID-19 dataset 0.9135 0.9370 0.9482 0.9770 0.8402 0.8818 4.1100 3.0500
Table 5
Precision, recall and F-measure results for CHIO and CHIO-GC.
Dataset Precision Recall F-Measure

CHIO CHIO-GC CHIO CHIO-GC CHIO CHIO-GC

1 Diagnostic 0.913978 0.954436 0.850000 0.954436 0.880829 0.954436
2 Original 0.945455 0.973568 0.945455 0.977876 0.945455 0.975717
3 Prognostic 0.689655 0.821333 0.714286 0.800000 0.701754 0.810526
4 Coimbra 0.825581 0.944444 0.855422 0.876289 0.840237 0.909091
5 BreastEW 0.893617 0.921875 0.840000 0.983333 0.865979 0.951613
6 Retinopathy 0.615385 0.676471 0.592593 0.718750 0.603774 0.696970
7 Dermatology 0.768571 0.925000 0.770774 0.787234 0.769671 0.850575
8 ILPD-Liver 0.750000 0.843854 0.677419 0.814103 0.711864 0.828711
9 Lymphography 0.790576 0.858586 0.848315 0.904255 0.818428 0.880829
10 Parkinsons 0.720000 0.860000 0.720000 0.924731 0.720000 0.891192
11 ParkinsonC 0.783784 0.900000 0.814607 0.964286 0.798898 0.931034
12 SPECT 0.666667 0.789041 0.615385 0.822857 0.640000 0.805594
13 Cleveland 0.578947 0.625000 0.687500 0.689655 0.628571 0.655738
14 HeartEW 0.889552 0.925969 0.892216 0.956311 0.890882 0.940896
15 Hepatitis 0.768675 0.829268 0.848404 0.855346 0.806574 0.842105
16 GCHear 0.604651 0.780488 0.896552 0.822857 0.722222 0.801113
17 Spectfheart 0.805797 0.808451 0.761644 0.803922 0.783099 0.806180
18 Thyroid0387 0.878505 0.983051 0.959184 0.974790 0.917073 0.978903
19 Heart 0.774026 0.858586 0.851429 0.885417 0.810884 0.871795
20 Pima-diabetes 0.769863 0.793689 0.831361 0.893443 0.799431 0.840617
21 Leukemia 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
22 Colon 0.555556 0.814016 0.740741 0.825137 0.634921 0.819539
23 Prostate_GE 0.555556 0.617647 0.689655 0.777778 0.615385 0.688525

COVID-19 dataset 0.912938 0.991736 0.907452 0.937500 0.910187 0.963855
the existence and coordinates of any outliers. Fig. 6 shows the
boxplots that describe the distribution of the performance of
CHIO and CHIO-GC when applied to the 24 datasets over 30 runs.

Note from Fig. 6 that the greedy approach was able to reduce
he gap between the minimum and maximum accuracy values of
he CHIO algorithm, and bring them closer to the value of the
ean. Also, the minimum and maximum values of the CHIO-
C were higher than that of the basic algorithm. This is a clear
ndication of the ability of the CHIO-GC approach to improve the
alance between exploration and exploitation of the CHIO search
o produce accurate results.

Fig. 7 shows how the GC strategy was able to reduce the gap
etween the maximum and minimum accuracy values, and thus
aximize accuracy. The accuracy values of the CHIO-GC approach
ere never worse than the CHIO values in all datasets, The results
11
in the figure were arrived at by averaging the values of CHIO and
CHIO-GC over the 30 runs for all datasets.

It is well known that a stable and rapid rate of convergence
will lead to better solutions. Thus, in order to further test the effi-
ciency of the CHIO and CHIO-GC, the convergence speed behavior
curves of the two approaches were obtained by applying them to
each of the 24 datasets over 30 different iterations. In general, any
metaheuristic algorithm may take a large number of iterations to
reach the optimum point. Therefore, it is important to employ
methods that have a convergence rate that is as fast as possible.
An algorithm’s rate of convergence is usually measured by the
number of iterations and by the number of function evaluations
that are needed to obtain an acceptable solution.

The results in Fig. 8 indicate that the CHIO-GC was able to
boost the global search of the original CHIO and thus improve
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Table 6
T-test results for CHIO and CHIO-GC.
Dataset Method Mean Std. deviation Std. error mean P-Value

1 Diagnostic CHIO 0.8540 0.02673 0.00488 00.00CHIO-GC 0.9033 0.04046 0.00739

2 Original CHIO 0.9233 0.02523 0.00461 00.00CHIO-GC 0.9710 0.01062 0.00194

3 Prognostic CHIO 0.5293 0.04638 0.00847 00.00CHIO-GC 0.6716 0.04442 0.00811

4 Coimbra CHIO 0.8006 0.04548 0.00830 00.00CHIO-GC 0.8896 0.00999 0.00182

5 BreastEW CHIO 0.8993 0.02100 0.00383 00.00CHIO-GC 0.9400 0.01912 0.00349

6 Retinopathy CHIO 0.4660 0.06106 0.01115 00.00CHIO-GC 0.6436 0.02553 0.00466

7 Dermatology CHIO 0.6690 0.04088 0.00746 00.00CHIO-GC 0.8006 0.04548 0.00830

8 ILPD-Liver CHIO 0.6423 0.02609 0.00476 00.00CHIO-GC 0.7716 0.01744 0.00318

9 Lymphography CHIO 0.7606 0.03483 0.00636 00.00CHIO-GC 0.8343 0.02661 0.00486

10 Parkinsons CHIO 0.6690 0.04088 0.00746 00.00CHIO-GC 0.7903 0.01903 0.00347

11 ParkinsonC CHIO 0.6856 0.06611 0.01207 00.00CHIO-GC 0.8400 0.02197 0.00401

12 SPECT CHIO 0.6073 0.02840 0.00518 00.00CHIO-GC 0.6960 0.06667 0.01217

13 Cleveland CHIO 0.4896 0.04173 0.00762 00.00CHIO-GC 0.5966 0.02496 0.00456

14 HeartEW CHIO 0.8540 0.02673 0.00488 00.00CHIO-GC 0.9116 0.01783 0.00325

15 Hepatitis CHIO 0.6690 0.04088 0.00746 00.00

CHIO-GC 0.7903 0.01903 0.00347 00.00

16 SAHear CHIO 0.6420 0.03089 0.00564 00.00CHIO-GC 0.7036 0.01066 0.00195

17 Spectfheart CHIO 0.6716 0.04442 0.00811 00.00CHIO-GC 0.7303 0.03178 0.00580

18 Thyroid0387 CHIO 0.8986 0.04455 0.00813 00.00CHIO-GC 0.9603 0.01474 0.00269

19 Heart CHIO 0.7316 0.04009 0.00732 00.00CHIO-GC 0.8126 0.02612 0.00477

20 Pima-diabetes CHIO 0.7153 0.05557 0.01015 00.00CHIO-GC 0.7956 0.03757 0.00686

21 Leukemia CHIO 0.9876 0.01736 0.00317 00.00CHIO-GC 0.9900 0.01017 0.00186

22 Colon CHIO 0.6203 0.03634 0.00663 00.00CHIO-GC 0.7176 0.05380 0.00982

23 Prostate_GE CHIO 0.4750 0.06329 0.01155 00.00CHIO-GC 0.6010 0.02537 0.00463

24 COVID-19 dataset CHIO 0.9135 0.02523 0.00461 00.00CHIO-GC 0.9370 0.01912 0.00349
classification accuracy at a higher convergence speed compared
to the CHIO. As can also be seen from Fig. 8, the CHIO-GC did
not need to go beyond the 13th iteration to boost the solution in
all datasets, except for the Danmini doorbell dataset. This finding
confirms that the CHIO-GC has the potential to increase the speed
of convergence.

7.1. Comparison with previous methods

The above results indicated that the CHIO-GC performed better
han the original CHIO. In order to further assess the reliabil-
ty of the CHIO-GC, and its ability to produce a high degree
f classification accuracy while at the same time minimizing
he number of attributes, it was compared with six methods in
12
the literature. First, the CHIO-GC was compared with LBMFO-
V3 [79] by using the 23 medical benchmark datasets. Then, it
was compared against HLBDA [78] using the COVID-19 dataset.
Finally, its performance was compared with that of four filter
methods, namely, Chi-square, Relief, correlation-based feature
selection (CFS) and information gain (IG).

7.1.1. Comparison with LBMFO-V3
The CHIO-GC was compared with LBMFO-V3 in terms of aver-

age classification accuracy and number of selected features using
the 23 medical benchmark datasets. Table 7 shows the results of
this comparison.
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Fig. 6. Boxplots of CHIO and CHIO-GC for all datasets.
13
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Fig. 7. Average of min and max accuracy of CHIO and CHIO-GC for all datasets.
Table 7
Comparison of CHIO-GC and LBMFO-V3.
Dataset Average accuracy Selection size

CHIO-GC LBMFO-V3 CHIO-GC LBMFO-V3

1 Diagnostic 0.9033 0.9100 13.3700 13.9991
2 Original 0.9710 0.9683 5.1040 5.5000
3 Prognostic 0.6716 0.5851 14.6202 15.0126
4 Coimbra 0.8896 0.9312 3.6007 3.5103
5 BreastEW 0.9400 0.9398 13.7303 13.9714
6 Retinopathy 0.6436 0.5380 7.2647 6.9002
7 Dermatology 0.8006 0.8442 18.4900 18.3541
8 ILPD-Liver 0.7716 0.7143 4.0000 4.0000
9 Lymphography 0.8343 0.8002 10.0622 9.7520
10 Parkinsons 0.7903 0.7689 9.7383 10.3584
11 ParkinsonC 0.8400 0.8190 365.8322 369.1070
12 SPECT 0.6960 0.6576 9.6050 10.7832
13 Cleveland 0.5966 0.5333 6.8097 6.6899
14 HeartEW 0.9116 0.9388 7.0105 6.3100
15 Hepatitis 0.7903 0.7500 8.2011 8.3569
16 SAHear 0.7036 0.6992 3.1551 3.2222
17 Spectfheart 0.7303 0.7013 21.0030 20.4598
18 Thyroid0387 0.9603 0.9776 8.0116 8.4563
19 Heart 0.8126 0.7603 6.1505 6.2752
20 Pima-diabetes 0.7956 0.8065 6.8387 6.7612
21 Leukemia 0.9900 1.0000 3560.5107 3570.7137
22 Colon 0.7176 0.6667 1000.0067 991.5551
23 Prostate_GE 0.6010 0.5056 2979.4116 2984.7153

COVID-19 dataset 0.798321739 0.774604348 351.4142087 351.9462565
Table 7 shows that the CHIO-GC outperformed LBMFO-V3 in
erms of classification accuracy in 16 datasets, namely, Origi-
al, Prognostic, BreastEW, Retinopathy, ILPD-Liver, Lymphogra-
hy, Parkinsons, ParkinsonC, SPECT, Cleveland, Hepatitis, SAHear,
pectfheart, Heart, Colon and Prostate_GE. The CHIO-GC approach
ad an overall accuracy of 0.7983 in all datasets, as compared to
BMFO-V3, which achieved 0.7746.
Moreover, the CHIO-GC also performed better than LBMFO-V3

n terms of selection size in 13 datasets, namely, Diagnostic, Orig-
nal, Prognostic, BreastEW, Parkinsons, ParkinsonC, SPECT, Hep-
titis, SAHear, Thyroid0387, Heart, Leukemia and Prostate_GE.
he two approaches achieved the same result in one dataset,
amely, ILPD-Liver. The CHIO-GC approach generated an overall
election size of 351.4142 features in all datasets, and it overcame
he LBMFO-V3, which got 351.9462 features. Fig. 9 graphically
llustrates the average accuracy and selection size achieved by
HIO-GC and LBMFO-V3 in all 23 datasets.

.1.2. Comparison with HLBDA
The CHIO-GC was compared with the HLBDA in terms of

lassification accuracy and number of selected features using the
14
COVID-19 dataset. In terms of classification accuracy the CHIO-GC
had an 0.9370 average accuracy rate over 30 runs as compared
to 0.9221 obtained by the HLBDA. On the other hand, the HLBDA
generated an average of three features in all runs, whereas the
CHIO-GC obtained a rate of four features. The features that were
selected most frequently by the CHIO-GC across the 30 runs were
location, country, age and symptom2. Fig. 10 shows the average
accuracy and selection size results for the CHIO-GC and HLBDA
using COVID-19 dataset.

7.1.3. Comparison with filter methods
The classification accuracy results of the CHIO-GC, which is a

wrapper-based approach, were also compared against those of
four general filter-based approaches, namely, Chi-square, relief,
CFS and IG. These four filter methods offer a high assurance of the
intensity values of the datasets. Although wrapper models require
that the predictor is optimized as part of the selection phase,
filter models focus on the general characteristics of the training
data to choose features that are independent of some predictor.
The filters used in this part of the analysis were accessed from
the WEKA data mining program [92]. Table 8 shows the average
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Fig. 8. Convergence speed of CHIO and CHIO-GC.
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Fig. 9. Average accuracy and selection size of CHIO-GC and LBMFO-V3.
Fig. 10. Average accuracy and selection size of CHIO-GC and HLBDA.
Table 8
Average accuracy of CHIO-GC and filter methods.
Dataset CHIO-GC Chi-square Relief CFS IG

1 Diagnostic 0.9033 0.5714 0.9585 0.9533 0.9349
2 Original 0.9710 0.9091 0.6426 0.6860 0.6759
3 Prognostic 0.6716 0.5910 0.7727 0.7576 0.7577
4 Coimbra 0.8896 0.3846 0.6672 0.5763 0.5578
5 BreastEW 0.9400 0.9365 0.8160 0.8029 0.8128
6 Retinopathy 0.6436 0.6349 0.5036 0.4783 0.5393
7 Dermatology 0.8006 0.7250 0.7248 0.4732 0.4021
8 ILPD-Liver 0.7716 0.7106 0.5119 0.5223 0.5264
9 Lymphography 0.8343 0.8824 0.5886 0.5533 0.5204
10 Parkinsons 0.7903 0.7581 0.7588 0.7360 0.7150
11 ParkinsonC 0.8400 0.6593 0.6590 0.6487 0.6376
12 SPECT 0.6960 0.9667 0.5651 0.5508 0.5460
13 Cleveland 0.5966 0.3940 0.1181 0.0398 0.0826
14 HeartEW 0.9116 0.9334 0.6153 0.5757 0.6202
15 Hepatitis 0.7903 0.7778 0.5538 0.5857 0.6417
16 SAHear 0.7036 0.6471 0.5024 0.5115 0.5227
17 Spectfheart 0.7303 0.7000 0.6079 0.6279 0.5551
18 Thyroid0387 0.9603 1.0000 0.6379 0.6955 0.9773
19 Heart 0.8126 0.5333 0.6317 0.5575 0.6114
20 Pima-diabetes 0.7956 0.6905 0.5147 0.5426 0.5264
21 Leukemia 0.9900 0.7120 0.6883 0.6759 0.6410
22 Colon 0.7176 0.5850 0.5641 0.5116 0.5097
23 Prostate_GE 0.6010 0.5042 0.5033 0.4786 0.4421

Average 0.7983 0.7046 0.6133 0.5887 0.5981

accuracy achieved by the CHIO-GC wrapper approach and by
the four filter methods after applying them 30 times to the 23
medical benchmark datasets.

It can be observed from Table 8 that the CHIO-GC exceeded
G in all datasets. It also exceeded CFS and Relief in all datasets
xcept Diagnostic and Prognostic, respectively. On the other hand,
hi-square performed better than the three other filter meth-
ds, and surpassed the results produced by the CHIO-GC in
our datasets, namely, Lymphography, SPECT, HeartEW and Thy-
oid0387. However, overall, the CHIO-GC defeated all the filter
ethods in 17 datasets with an accuracy rate of 0.7983. Fig. 11
hows the accuracy rate of the CHIO-GC and the four filter
ethods.
16
7.2. Discussion

The results produced by the original CHIO indicate that the
algorithm has a suitable balance between exploration and ex-
ploitation in its search mechanism. This balance is one of the
most important strengths of metaheuristic algorithms as it helps
them to find the best solutions during the search process. In
the CHIO-GC approach, the exploration capability of the CHIO
was modified by applying a greedy crossover operator to select
the initial features with the aim of maximizing the solution.
This modification contributed to an enhancement of the balance
between exploration and exploitation. The stronger balance that
was achieved also enabled the CHIO-GC to accelerate the rate of
convergence during its search for the best solutions. The selec-
tion of the most appropriate features ensures that the identified
solutions converge to the maximum. Thus exploration by means
of randomization facilitates the search of the solution space from
a local point of view and at the same time increases the variety
of solutions.

The success of the proposed CHIO-GC approach in achieving a
good balance between exploration and exploitation was demon-
strated in the experiments in several ways. First, the CHIO-GC
outperformed the CHIO in all 24 datasets in terms of classification
accuracy, as shown in Table 4. Furthermore, the superiority of
the CHIO-GC was also observed in the maximum and minimum
accuracy it was able to achieve in each run, as shown in Table 4,
Figs. 6 and 7. The CHIO-GC was able to minimize the gap between
the maximum and the minimum accuracy and make them con-
verge. Also, the convergence speed results showed the power of
modify the exploration search which is made up of two criteria,
the number of iteration needed to get the optimal solution and
the initial started point of solution. So, As shown in Fig. 8, the
CHIO-GC was better than the CHIO in terms of convergence speed
as it had a good initial starting point and it did not need more
than 30 iterations to obtain the optimal solution in most datasets.

Moreover, the CHIO-GC outperformed LBMFO-V3 in 16
datasets and HLBDA in the COVID-19 dataset in terms of both
classification accuracy and selection size. Hence the inclusion of
GC in the CHIO approach was proved to be beneficial in cor-

recting the suboptimal solutions that were reached at premature
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Fig. 11. Accuracy rate of CHIO-GC and filter approaches.
onvergence and when trapped in a suboptimal search space.
urthermore, the CHIO-GC demonstrated its superiority when
pplied to large datasets such as ParkinsonC, Leukemia, Colon
nd Prostate_GE. Therefore, the proposed the CHIO-GC approach
an be relied upon to solve FS problems if the problem becomes
arger.

. Conclusion

The FS problem is among the most critical issues facing re-
earchers in many fields including medical diagnosis. In recent
ears, metaheuristics have been commonly used for FS to try to
inimize the number of features required to achieve sufficiently

eliable results, with the goal of increasing reliability and enhanc-
ng performance. In this study, a new metaheuristic named the
oronavirus herd immunity optimizer (CHIO) was implemented
o solve FS problems in medical diagnosis.

The CHIO was applied as a basic algorithm and as a modified
lgorithm using greedy crossover (CHIO-GC) to enhance explo-
ation. Two types of dataset were used to assess the proposed
pproaches: 23 medical benchmark datasets and a real-world
OVID-19 dataset. The evaluation of the two approaches was con-
ucted in respect of several criteria, including classification accu-
acy, number of selected features, error rate, precision, recall, F-
easure, boxplot, convergence speed and T-test. All the obtained

esults indicated that the CHIO-GC enhanced the exploration
apability of the original CHIO.
In comparison experiments, the CHIO-GC outperformed two

S wrapper approaches, LBMFO-V3 and the HLBDA. The CHIO-
C surpassed LBMFO-V3 in 16 out of the 23 medical benchmark
atasets with an accuracy rate of 0.79 and selection size rate
f 351 features. It also outdid the HLBDA when applied to the
OVID-19 dataset, with a classification accuracy of 0.93. Further-
ore, the wrapper-based CHIO-GC surpassed four filter methods,
amely, Chi-square, Relief, CFS and IG.
It is considered that these promising results were achieved

hrough the strong balance between the two search phases of the
HIO-GC during the discovery of the right solutions, which also
ccelerated the convergence rate. This was achieved by incorpo-
ating a greedy crossover method into the CHIO algorithm to cor-
ect the suboptimal solution reached on premature convergence
nd when trapped in a local optimum search space.
In future work, researchers may wish to consider hybridizing

he CHIO with another single-based metaheuristic algorithm such
s simulated annealing to try to enhance its exploitation (local)
17
search capability, or applying it in another FS field such as intru-
sion detection or image segmentation. Furthermore, many other
computational intelligence algorithms can be used to solve med-
ical diagnosis problems, such as monarch butterfly optimization
(MBO), the earthworm optimization algorithm (EWA), elephant
herding optimization (EHO), the moth search (MS) algorithm,
the slime mold algorithm (SMA), and Harris hawks optimization
(HHO).
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