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Abstract

The excellent performance of representation learning of autoencoders have attracted
considerable interest in various applications. However, the structure and multi-local
collaborative relationships of unlabeled data are ignored in their encoding procedure
that limits the capability of feature extraction. This paper presents a Multi-local Col-
laborative AutoEncoder (MC-AE), which consists of novel multi-local collaborative
representation RBM (mcrRBM) and multi-local collaborative representation GRBM
(mcrGRBM) models. Here, the Locality Sensitive Hashing (LSH) method is used to
divide the input data into multi-local cross blocks which contains multi-local collab-
orative relationships of the unlabeled data and features since the similar multi-local
instances and features of the input data are divided into the same block. In mcrRBM
and mcrGRBM models, the structure and multi-local collaborative relationships of un-
labeled data are integrated into their encoding procedure. Then, the local hidden fea-
tures converges on the center of each local collaborative block. Under the collaborative
joint influence of each local block, the proposed MC-AE has powerful capability of
representation learning for unsupervised clustering. However, our MC-AE model per-
haps perform training process for a long time on the large-scale and high-dimensional
datasets because more local collaborative blocks are integrate into it. Five most related

deep models are compared with our MC-AE. The experimental results show that the
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proposed MC-AE has more excellent capabilities of collaborative representation and
generalization than the contrastive deep models.
Keywords: Restricted Boltzmann machine, autoencoder, deep collaborative

representation, feature learning, unsupervised clustering.

1. Introduction

Autoencoders have shown promising capability of representation learning and at-
tracted considerable interest in various applications (e.g., classifications [1], dictionary
learning [2] and clustering [3]). Although autoencoders are capable of learning com-
plex mappings, how to capture meaningful structure of the latent feature is a long-term
challenge in deep learning. Various other deep learning methods have been successful
applied in practical applications (e.g., multi-context socially-aware navigation [4]).

There are various excellent autoencoders have been proposed [1, 2, 5]. Wang et al.
[1] presented a within-class scatter information constraint-based autoencoder (WSI-
AE), which minimizes the within-class scatter and the reconstruction error. The WSI-
AE reduces the meaningless encoded features of classical AEs and enhances the feature
discriminability. For convolutional dictionary learning problems, Tolooshams et al. [2]
established a link between autoencoder and dictionary learning and proposed a con-
strained recurrent sparse autoencoder (CRsAE) model. For domain adaptation, Yang
et al. [5] developed a dual-representation autoencoder (DRAE), which has capability
to learn dual-domain-invariant representations. The DRAE has three leaning phases:
1) learn global representation of all target and source data; 2) extract local represen-
tations of instances; 3) construct dual representations by aligning the local and global
representations with different weights. For semi-supervised learning, Smieja et al. [6]
presented a semi-supervised Gaussian Mixture Autoencoder (SeGMA), which has the
capability to learn a joint probability distribution between the data and their classes.
In the latent space, a mixture of Gaussians is chosen as a target distribution. To pro-
duce better data samples and use the class-bassed discriminating features, Karatsiolis
and Schizas [7] proposed a generative denoising autoencoder model, which is sampled

with a Markov chain Monte Carlo process.



More recently, some autoencoders based on generative adversarial model have been
presented. Ge et al. [3] developed a dual adversarial autoencoder (Dual-AAE) model,
which simultaneously maximizes the mutual information and likelihood function to
extract classification and structure information. To learn interpretable latent represen-
tations for undirected graphs, Kipf and Welling [8] developed the Variational Graph
AutoEncoder (VGAE), a probabilistic generative model for unsupervised graph rep-
resentation learning on graph-structured data. Because of its excellent representation
learning capability, it is getting more and more attention for deep clustering [9] on the
image data and classification [10] on the medical data.

Restricted Boltzmann Machines (RBMs) and relevant autoencoders have been proved
to be provided with the capability of representation learning [11, 12, 13, 14, 15, 16, 17,
18, 19, 20]. In our previous work [17], we also proposed a powerful variant of GRBM
called pcGRBM for semi-supervised representation learning. The pairwise constraints
are used to guiding the encoding procedure. In many practical applications of ma-
chine learning, the labels are scarce. Hence, we proposed a multi-clustering integration
RBM (MIRBM) in [18] and developed an unsupervised feature learning architecture
with MIRBM. The experiments proved that our semi-supervised pcGRBM and unsu-
pervised MIRBM have excellent capability of representation learning. However, the
structure and collaborative relationships of unlabeled data have been ignored in their
encoding procedure of the shallow models.

In this paper, we focus on a novel Multi-local Collaborative AutoEncoder (MC-AE)
to capture hidden features and learn collaborative representation. In the structure of the
MC-AE, there are two novel variants of RBM: multi-local collaborative representation
RBM (mcrRBM) and multi-local collaborative representation GRBM (mcrGRBM).
First, the unlabeled input data of mcrRBM and mcrGRBM models are divided into
multi-local cross blocks by the Locality Sensitive Hashing (LSH) [21] method in the
dimensions of instances and features simultaneously. Then, the similar local instances
and features of the input data are divided into the same block. Hence, these blocks
contains multi-local collaborative relationships of the unlabeled data and feature. Fur-
thermore, the local hidden features converge on the center of each local collaborative

block in the encoding procedures of the mcrRBM and mcrGRBM models. Under the



collaborative joint influence of each local block, the proposed MC-AE has powerful
capability of representation learning for unsupervised clustering.

This is the first work to capture hidden features and learn collaborative represen-
tation in autoencoder from the structure perspective of unlabeled data with multi-local

collaborative relationship. The contributions can be summarized as follows:

* One novel variant of RBM called multi-local collaborative representation RBM
(mcrRBM) and another novel variant of GRBM called multi-local collaborative
representation GRBM (mcrGRBM) are proposed by fusing the structure of unla-
beled data with multi-local collaborative relationship to capture hidden features

and learn collaborative representation in their encoding procedures.

¢ A novel Multi-local Collaborative AutoEncoder (MC-AE) based on mcrRBM
and mcrGRBM are developed. For modeling real-valued data, one architec-
ture of the MC-AE is composed of a mcrGRBM and two mcrRBMs which have
Gaussian linear visible units and binary hidden layer units. For modeling binary
data, another architecture of the MC-AE is composed of with three mcrRBMs

which have binary visible and hidden units.

¢ The experiments demonstrate that the proposed MC-AE has powerful capability
of collaborative representation than five contrastive models on real-valued and
binary datasets. Furthermore, the hidden collaborative features of the MC-AE

show generalization ability for different clustering algorithms.

The remaining of the paper is organized as follows. The related works are introduced
in Section II. The theoretical background is described in Section III. The Multi-local
Collaborative AutoEncoder (MC-AE) is developed in Section IV. The experimental
framework is illustrated in Section V. The experimental results and discussions are

shown in Section VI. Finally, our contributions are summarized in Section VII.



2. Related Work

Collaborative representation learning originates the influential sparse representation-
based classification (SRC) [22]. It has attracted much attentions in collaborative filter-
ing [23, 24].

Various deep networks based on classical RBM and variants are developed in prac-
tical applications [25, 26, 27] . There are some most relevant work: 1) deep autoen-
coder (DAE) [11]; 2) feature selection algorithm for Deep Boltzmann Machines (Deep-
FS) [28]; 3) collaborative deep learning (CDL) [29]; 4) full GraphRBM-based DBN
(fGraphDBN) [30].

The DAE [11] as a classic unsupervised deep model consists of a stack of traditional
RBMs for representation learning of binary data. It is also used to model real-valued
data by replacing binary visible layer units with Gaussian linear visible units. Deep
Boltzmann Machines (DBMs) [31, 32, 33] have reasonable structures to learn complex
relationships between features. Taherkhani et al. [28] presented a Deep-FS model,
which has powerful capability of removing irrelevant features from raw data to explore
the underlying representations. Reducing irrelevant features is an important strategy
to prevent negative impact in the encoding procedure. Under considering the local
manifold structure of the data, Chen et al. [30] developed a graph regularized RBM
(GraphRBM) to learn hidden features. To obtain superior expressive power of deep
model, an fGraphDBN model was developed using a stack of GraphRBM. However,
none of them have collaborative representation capabilities. By adding a collabora-
tive strategy, Wang et al. [29] proposed a popular hierarchical Bayesian model, CDL,
which jointly performs collaborative filtering and deep representation learning. In this
paper, the structure and multi-local collaborative relationships of unlabeled data are
fused into the encoding procedure of the proposed MC-AE. To prove the effectiveness

of our models, we compare them with these most related works in the experiments.



3. Theoretical Background

3.1. Restricted Boltzmann Machine

For classic RBMs [12], its architecture is a shallow two-layer structure, which con-
sists of a binary visible and hidden layer. The RBM is an energy based model and the
energy function of it is defined by:

E(v,h) = — Z a;v; — Z bjh; — Zvihjwij, €))
i€visibles j€hiddens i,
where v and h are the visible and hidden layer vectors, respectively, v; and h; are the
binary visible and hidden units, respectively, w;; is the symmetric connection weight
between them, a; and b; are the biases of visible and hidden units, respectively.

Given a visible vector v, the binary state h; is equal to 1 with probability
p(hy = 1v) = o(b; + Y viwi)), )

where o(z) = which is a logistic sigmoid function.

1
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Similarly, given a hidden vector h, an unbiased sample of the binary state v; is

equal to 1 with probability
p(’l}i = ].‘h) = a(ai + Z hjwij). (3)
J

It is difficult to get an unbiased sample of an average of the model distribution <
vihj >moder because of low computing efficiency. Hinton proposed a faster learning
algorithm by Contrastive Divergence (CD) [13], [34] method. Then the update rules of

parameters is given by:

sz] = 5(< vihj >data — < vihj >’I“ECO7L)7 €))
Aa; = 5(< Vi >data — < U4 >recon)7 (5)
Abj = 5(< hj >data — < hj >7‘econ)7 (6)

where € is a learning rate, < - >g4,4, 1S an average of the data distribution and <

- >recon 18 an average under the distribution of reconstructed units.



3.2. Gaussian Linear Visible Units

For modeling real-valued data, the binary visible units are replaced by Gaussian

linear visible units. The energy function becomes:

E(v,n)= Y (%‘2—02%) - 3 b

i€visibles 4 j€Ehiddens
Vi
_ E “hiwg;
o, J 7
2,)

where o; is the standard deviation of the Gaussian noise for visible unit . It is difficult

@)

to use CD method to learn the variance of the noise. In practice, we normalise the
original data to have unit variance and zero mean. So, the reconstructed result of a

Gaussian linear visible unit is equal to the input from hidden binary units plus the bias.

3.3. Locality Sensitive Hashing

The Locality Sensitive Hashing (LSH) [21] exploits the probability that two similar
samples likely collide by mapping with a weak hash function. In fact, the probability of
the collision is proportional to their similarity. One classic hash function is the Minwise
Independent Permutation (Minhash) [35] which defines the probability of collision is
proportional to the Jaccard similarity of two hashed objects. The Jaccard similarity

varies from 0 to 1. The value of it is 1 means that the two hashed objects are equal.

4. Multi-local Collaborative AutoEncoder

In this section, we firstly present the key basics of unsupervised Multi-local Col-
laborative AutoEncoder (MC-AE) that is the mcrRBM and mcrGRBM models (novel
variants of RBM and GRBM). Then, we show the inference, learning algorithm and
complexity analysis of the mcrRBM model. Finally, we propose two MC-AE deep
architectures based on the mcrRBM and mcrGRBM models for modeling real-valued

and binary data, respectively.

4.1. The mcrRBM and mcrGRBM Models

In this section, we present the key basics of the MC-AE deep architecture that is the
mcrRBM (see Fig.1) and mcrGRBM models (see Fig.2). Here, we use the LSH [21]
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Figure 1: Multi-local collaborative representatin RBM (mcrRBM)

method to divide the input data into multi-local cross blocks with the perspective of
instances and features simultaneously. Furthermore, the similar multi-local instances
and features of the input data are divided into the same block. Then, we expect the
hidden layer feature units of each block converges on the block center as much as pos-
sible in the encoding procedure of mcrRBM and mcrGRBM models. By this way, the
correlations between the instances and features (multi-local collaborative relations) are
fused in the hidden layer features. Due to the same mapping relations from the visi-
ble lay units to hidden layer units (sigmoid transformation) between the mcrRBM and

mcrGRBM models, we only present the mcrRBM model and its inference and learning

algorithm.
Let D = {vy,va, -+ ,vn} be an original data set with N vectors and M fea-
tures of each vector. The visible layer vector vy = (Vs1, Vs, , Usiy 5 Usn)s (8 =

1,2,--- ,M,and s =1,2,---, N). The hidden layer vector hy = (hs1, hs2,- - , hsj,
Jhsy), (7=1,2,--- ,M',and s = 1,2,--- , N). The reconstructed visible layer

vector vi" = (v S), g;), o g:),--- ,vi&) (i=1,2,--- ,M,ands =1,2,--- ,N).
The reconstructed hidden layer vector h{” = (hgl), hg’z S hgg), e 7h(;1\21) (j =
1,2,---,M’,and s = 1,2,--- , N). The matrix (vIvl -..v%)T is partitioned into

K row clusters by LSH and each cluster has a serial number set of vectors Ry, (k =
1,2, ,Kand Ry URy - URg = {1,2,---, N}). Simultaneously, the matrix is

partitioned into L column clusters by LSH and each cluster has a serial number set of
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Figure 2: Multi-local collaborative representatin GRBM (mcrGRBM)

vectors £, (1 =1,2,--- ;Land ¢ Uly--- ULk = {1,2,--- ,M}). So, the matrix is
divided into K x L blocks.
Based on the expectations of our collaborative representation method and the train-

ing objective of classic RBM, our novel objective function takes the form:

G(v,0) =

K L
_ 7Zlog p(v;;0) + K L) lzz Zd(hstaukl) 8
X k=1 1=1 seRy tel,; ( )
zzzzmmJ

k=1 1=1 seRy tel,

where § = {a, b, W} are the model parameters, 7 is an adjusting parameter, d(hs;, wk;)
and d(hg), ug)) are the Bregman divergences [36] distances, which are defined as:
d(hst,ug;) = (hst — ug)? and d(hg U T)) (hg; u,(:l))Q, respectively. uy; and
u,(d) are the centers of block (R, ¢;) in hidden layer and reconstructed hidden layer,

respectively. They take the form:

> 3 ha > Al
- SERy, tEL 47 — SER tel )
Relle] R[] £1]

We expect all units close to their center of each local collaborative block in the repre-

sentation learning process.



4.2. The Inference
In this subsection, we use the gradient descent algorithm to obtain the update rules
of the parameters of the mcrRBM model. The detailed inference is shown as follows.

Suppose that

Caata = ZZZZ ot — u)?, (10)

k=11=1 seRy tey,

ZZZZ & —ui)?. (1)

k=11=1 seRy tel;
Using the introduced variables Cgqtq and Checon, the objective function have an-

other concise equivalent form:

G(v,0) =
(12)

_ ﬂ p(vi;0) (1 B 77)
N VZ IOg + K x L (Cdata + C’recon)-

The following crucial problem is that how to solve this multi-objective optimiza-
tion problem. For the average log-likelihood 7; " log” (%) the CD method was pre-
sented to approximately follow the gradient of tw70 divergences CD,, = KL(po||poo) —
KL(pn||po) to avoid enormous difficulties of the log-likelihood gradient computing.
Normally, we run the Markov chain from the data distribution py to p; (one step) in
CD learning. So, the following key task is how to obtain the approximative gradient of
Caata + Crecon-

Suppose that Jyare = st — Ukis Jrecon = hi? — “5:1)» then

Z Zhst M

sER 0
Jdata = hst — W == U( Z Vsm Wmt + bst)
m=1
M (13)
Z Z U( Z Vs Wmt +bst)
. seER, tel; m=1
R[]
and
o S EM
T sedt, telfy
Jrecon = g — W Z v Wt + bét )
m=1 (14)

Z Z ( Z U(T)wmter(T))

seER tel; m=1
R |42 7

10



where o is a sigmoid function.

When t = j € /¢, the partial derivative of J,+, is given by:

*( % vsmwmj+bsj)

0Jdata ¢ m=1 VUsi
T M
awlj |:1 + _( E Usnlwmj+bsj):|2
e m=1
M
*( > Us7nwmj+bsj)
e m=1 Vgi
vy > (15)
sERL |:1+e(mX_:l'Us7erm,_7’+bs_7'):|
| R
>, (1= hgj)hsjvsi
SER

=(1- s'hs' s
( h]) 35U |§Rk|

Obviously, if £ # j, then %’Jial;" =0.
Similarly, if t = j € £, the partial derivative of J,.cco, is given by:
(r)yp (r), (r)
> (L—=hy)hy v,
S R (16)
| R |

8‘]7’(3(1077,

_ (r)yz,(r) (1)
awij - (1 - hsj )hS] Usiw —

As for model parameter b, if t = j, the partial derivative takes the forms:

>, (1= hsj)hs;

8Jdata sERy
Codate (1 — gy —
8bj ( J) J |§Rk‘ (]7)
(r)yp(r)
O eoom Z (1 - hsj )hsj

_ (1 . h(r))h(” . sERy

sj

ob; * R |

It is obvious that model parameter a is independent of Jj,:q and Jyecon. SO, wWe
can obtain that a‘g‘iT“f“ = 0 and 6‘]5% = 0. Then, the partial derivative of the Cy4tq
in terms of w;; takes the form:
ac. K 2 Jr
dat sER
23" 5 (- ) |0 b
ij k

Ow;j k=1 seRy, (18)
Z (1 - hsj)hsjvsi
_ SERY
R | ]

11



And the partial derivative of the Cj.ccon, in terms of w;; takes the form:

sJ
W o3 5 (g - e [0
ij k=1seRy k (19)
> (1 =nin{u
_ SER
| Ry
Similarly, the partial derivative of the Cq:, in terms of b; is given by:
> hs;
aC’da a eEER
0323 (g e )0 o
k=1 seRy (20)
> (- hsj)hsj
_ sER
R
And the partial derivative of the Cy¢cor, in terms of b; is given by:
5]
Crecon —9 Z Z (r) sER ) (1 . hg;))hgg)
k=1 s€Ry [ R @1
> (1= h{)h
_ SER
R

Combined with the CD learning with 1 step Gibbs sampling, the update rule of the

proposed model parameter W takes the forms:

WY =

1.7 (T) + 7’5(< Uih >data — < Uihj >recon)

Z hsj
SERE
K % L {Z Z - IR | )l(l — hsj)hsivsi

k=1 seRy
EE:R (1 - hsj)hsjvsi ) % hg;) (22)
sefy T sEIy
- 1 DD Y (EES
Rl e %

> (1= ARG
1 — RO, (1) sERk
[( s ) sj Vg4 |mk| )

where ¢ is learning rate, the average < v;h; >gatq and < v;hj >pecon are computed

using the sample data and reconstructed data, respectively.
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For the parameters of the biases a and b, the update rules of them take the forms:

az(-TH) = aET) +1e(< Vi >data — < Vi >recon), (23)
and
by“) = by) +n2(< hy >data — < hj >recon)
21 ) & 5"
- SEI
kSl V4 RSN N VS T Y
+ K x L {Z Z (hs] R )[( hsj)hs;
k=1 seR;
> (I =hghsy  x > hey) (24)
se¥y r sely
+ S
IR R IPVLL A

(yp () _ 5€R
1—h,')h,, .
[( sj ) sj |§Rk| ‘| }

4.3. The Algorithm

Algorithm 1 Learning algorithm of mcrRBM with 1 step Gibbs sampling

Input: D: input data sets;
B: training batch sets;
e: learning rate;

(R, £;): matrix blocks of D, k € [1, K] and [ € [1, L];

Output: 6: model parameters of mcrRBM.

Initialize: a, b and W.
while 7 not exceeding maximum iteration do
for all training batch B do
Encoder: sample the states of hidden units by
p(hj =1|v) = o(bj + > viws;).
Decoder: sample the reconstructzed states of visible units using
p(vi = 1|h) = o(a; + >_ hjws;).
for all ;. do ’

13



for all /; do

Compute the partial derivative agj}%f“ using Eq. (18).

Compute the partial derivative a%z}% using Eq. (19).

i

Compute the partial derivative B%‘iT‘%“ using Eq. (20).

Compute the partial derivative ‘9%% using Eq. (21).

J

end for
end for
Update parameter W using Eq. (22).
Update parameter a using Eq. (23).
Update parameter b using Eq. (24).
end for
T=T1+1
end while

return a, b and W.

In the reconstruction process of mcrGRBM model, a linear reconstruction method
replaces the nolinear reconstruction method of mcrRBM model. The steps of the learn-
ing algorithms of our mcrRBM and mcrGRBM models are almost the same, except the

reconstruction process. So, we omit the learning algorithm of mcrGRBM model.

4.4. Complexity Analysis

In this subsection, we analyze the time complexity of above learning algorithm.
Supposing that the input data sets D is divided into 7'B training batch. Then the time

complexities of the encoder and decoder steps are O(7'B) in each iteration. When par-

9Crecon acda
6wij ’ 81)]

tial derivatives agl‘;j;a, te and acgg;on are calculated, they take O(TB x
(K x L)) in each iteration. The complexities of update parameters W, a and b are
O(TB) in each iteration. Supposing that the maximum iteration is /7. Then, the
time complexity of the mcrRBM learning algorithm with 1 Step Gibbs sampling is

O(IT xTB x (K x L)).

14



4.5. The MC-AE Deep Architecture

A novel Multi-local Collaborative AutoEncoder (MC-AE) architecture is devel-
oped with one visible layer and three hidden layer (see Fig. 3). To learn collaborative
representation of two types input data (binary and real-valued), the visible layer units
can be designed as binary and linear units, respectively. In other words, one archi-
tecture of MC-AE for modeling binary data consists of three mcrRBM. And another
architecture of MC-AE for modeling real-valued data consists of one mcrGRBM and
two mcrRBMs. In the encoding procedure, the first multi-local collaborative blocks
(MCB 1) comes from raw data by LSH method. Then, local collaborative relationships
of the unlabeled data and feature force the local hidden features to converge on the
center of each local collaborative block. The second multi-local collaborative blocks
(MCB 2) is generated by LSH method from the first hidden layer. Similarly, they are
fused into the second hidden layer, and so forth. The next experiments confirm the col-
laborative joint influence of each local block to improve the capability of representation

learning of the proposed MC-AE.

5. Experimental Framework

This section introduces the experimental datasets used in the current work, the ex-

perimental settings and the evaluation metrics.

5.1. Datasets

To explore the collaborative representation capability of the proposed MC-AE for
real-valued data, we do experiments on ten image datasets from MSRA-MM 2.0 [37].
The summaries of them are listed from No. 1 to No. 10 in Table 1. All of them
have same class, but different instances and features. The datasets of banner, beret,
bugatti and building have 892 features, but the vista, vistawallpaper, water, wing and
worldmap have 899 features. To explore the collaborative representation capability of

our MC-AE for binary data further, we do experiments on ten UCI datasets ' The

Thttp://archive.ics.uci.edu/ml/index.php
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Figure 3: Multi-local Collaborative AutoEncoder (MC-AE). One architecture of MC-AE (Linear visible
layer and binary hidden layer) consists of one mcrGRBM and two mcrRBMs for modeling real-valued data.
Another architecture of MC-AE (visible and hidden layer units are both binary) consists of three mcrRBMs

for modeling binary data.

summaries of them are listed from No. 11 to No. 20 in Table 1. They have different

classes, instances and features.

5.2. Experimental Settings

To validate the capability of collaborative representation of the proposed MC-AE,
we compare it with the DAE [11], Deep-FS [28], f{GraphDBN [30] and VGAE [8],
which have not collaborative representation strategy. Furthermore, we compare our
MC-AE with CDL [29] model, which has collaborative representation strategy. For
modeling real-valued data, the MC-AE architecture consists of three binary hidden
layer and one linear visible layer in Fig. 3. The transformation functions of all hidden

layers between encoding and decoding are sigmoid functions. But, the transformation

16



Table 1: Experimental datasets

No. Dataset classes Instances features
1 banner 3 860 892
2 beret 3 876 892
3 bugatti 3 882 892
4 building 3 911 892
5 vista 3 799 899
6 vistawallpaper 3 799 899
7 voituretuning 3 879 899
8 water 3 922 899
9 wing 3 856 899
10 worldmap 3 935 899
11 balance 3 625 4
12 biodegradation 2 1055 41
13 car 4 1728 6
14 Climate Model 2 540 18
15 dermatology 6 366 34
16 Haberman Survival 2 306 3
17 Kdd (1999 partial data ) 3 1280 41
18 Ozone Level Detection 2 2534 72
19 parkinsons 2 195 22
20 secom 2 1567 590

functions of encoding and decoding between visible layer and the first hidden layer
are sigmoid and linear functions, respectively. For modeling binary data, the MC-AE
architecture consists of three binary hidden layers and one binary visible layer in Fig.
3. In other words, all transformation functions are both sigmoid function.

To compare the generalization capabilities of our MC-AE for representation learn-
ing, two different unsupervised clustering algorithms: K-means [38] and Spectral Clus-
tering (SC) [39] are applied to clustering task with the representation of the deepest
hidden layers of all contrastive deep models. The clustering algorithms based on the
DAE, Deep-FS, fGraphDBN, CDL, VGAE and our MC-AE models using K-means are
called DAE+KM, Deep-FS+KM, fGraphDBN+KM, CDL+KM, VGAE+KM and MC-
AE+KM, respectively. Similarly, the clustering algorithms based on the DAE, Deep-
FS, fGraphDBN, CDL, VGAE and the proposed MC-AE models using SC are called
DAE+SC, Deep-FS+SC, {GraphDBN+SC, CDL+SC, VGAE+SC and MC-AE+SC, re-

spectively.

17



In two frameworks of the proposed MC-AE, the dimensionality of each hidden and
visible layer is same as the raw data. The learning rate and 7 of our MC-AE are set
to 0.001 and 0.1, respectively. The parameters of other contrastive models adopt the
values suggested in their papers.

Our MC-AE+KM and MC-AE+SC methods are implemented in Matlab 2016 (a).
All contrastive methods have run on a Server with Core 19 CPU and 64 GB RAM.

5.3. Evaluation Metrics

In this paper, three classical clustering evaluation metrics: clustering accuracy
(ACC) [40], Jaccard index (Jac) [21] and Fowlkes-Mallows index (FMI) [41] are uti-
lized to evaluate the performance of the proposed MC-AE model. Furthermore, the
Friedman Aligned Ranks test statistic [42] is used to report significant differences of

all contrastive algorithms. The ACC evaluation metric takes the form:

6(s;, map(r;
_ Gftmano o
accuracy = )
n

where map(r;) maps label r; of each cluster to the equivalent label and n is the total
number of instances. If x = y , then 6(z, y) equals to 1 . Otherwise, it is zero. The Jac
evaluation metric is defined by:

~_|[AnB|
Jac = AUB|

where A and B are finite sample sets and 0 < J(A, B) < 1. The FMI evaluation

(26)

metric is given by:

TP TP
FMI = 27
\/TP—i—FPXTP—i—FN’ )

where T'P is the number of true positives, ' P is the number of false positives and and
F'N is the number of false negatives.
The Friedman Aligned Ranks test statistic [42] takes the form:
(ng —1)( Z ??j — ngni(ngng +1)%/4)

T = . (28)
nand(nand + 1)(2nand + 1)/6 - Z ?1'2./”@
=1

where ;. and 7 ; are the ranks total of the jth algorithm and ith data set, respectively,

nq and ng are the numbers of algorithm and data set, respectively. For n, — 1 degrees
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of freedom, the test statistic 7" is compared for significance with a chi-square distribu-

tion.

6. Reults and Discussion

For fairness of comparisons, our MC-AE+KM algorithms based on the proposed
MC-AE model are compared with DAE+KM, Deep-FS+KM, fGraphDBN+KM, CDL+KM
and VGAE+KM, respectively. Similarly, our MC-AE+SC algorithms based on the pro-
posed MC-AE model are compared with DAE+SC, Deep-FS+SC, fGraphDBN+SC,
CDL+SC and VGAEA+SC, respectively. Moreover, the results (ACC, Jac and FMI) of
K-means and SC algorithms on original real-valued datasets and UCI datasets are listed

in Table 10 and Table 11 for comparisons, respectively.

6.1. Representation Learning for clustering on Real-valued Datasets

6.1.1. Accuracy

Table 2 shows the results of the ACC (mean=+std) of each contrastive algorithm
on each dataset and the average ACC (ACC) of each algorithm is listed in the last
column. The MC-AE+KM algorithm based on the proposed MC-AE shows the best
performance on the banner, beret, building, vista, voituretuning and wing datasets. The
ACC of them are 0.9372, 0.6895, 0.7164, 0.6308, 0.6394 and 0.6192, respectively. The
MC-AE+SC algorithm based on the proposed MC-AE shows the best performance
on the bugatti, vistawallpaper, water and woldmap datasets. The ACC of them are
0.7007, 0.6320, 0.5705 and 0.7134, respectively. The average ACC of MC-AE+KM
and MC-AE+SC algorithms are 0.6335 and 0.6500, respectively. They show the best
performance in the corresponding comparative grouping.

An intuitive comparison of the overall performance (average ACC) is shown in
Fig. 5 (left one). From Table 2 and Fig. 5, we can draw the conclusion that the
proposed MC-AE shows the better performance than other deep models (DAE, Deep-
FS, fGraphDBN, CDL and VGAE) in terms of the ACC metric.
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6.1.2. Jaccard Index

Table 4 shows the results of the Jac of each contrastive algorithm on each dataset
and the average Jac (Jac) of each algorithm is listed in the last column. The MC-
AE+KM algorithm based on the proposed MC-AE shows the best performance on the
banner, beret, building, vista, voituretuning and wing datasets. The Jac of them are
0.8820, 0.5348, 0.5574, 0.4738, 0.4760 and 0.4714, respectively. The MC-AE+SC
algorithm based on the proposed MC-AE shows the best performance on the bugatti,
vistawallpaper, water and woldmap datasets. The Jac of them are 0.5420, 0.4736,
0.4351 and 0.5602, respectively. The average Jac of MC-AE+KM and MC-AE+SC
algorithms are 0.4771 and 0.5311, respectively. They also show most excellent perfor-
mance in the corresponding comparative grouping.

The intuitive comparison of overall performance (average Jac) is shown in Fig. 5
(middle one). Therefore, we can draw the conclusion that the proposed MC-AE shows
the best performance among all contrastive deep models in terms of the Jac metric from

Table 4 and Fig.5.

6.1.3. Fowlkes and Mallows Index

Table 5 shows the results of the FMI of each contrastive algorithm on each dataset
and the average FMI (F' M) of each algorithm is listed in the last column. The MC-
AE+KM algorithm based on the proposed MC-AE shows the best performance on the
banner, beret, building, vista, voituretuning and wing datasets. The FMI of them are
0.9392, 0.7313, 0.7466, 0.6870, 0.6899 and 0.6866, respectively. The MC-AE+SC
algorithm based on the proposed MC-AE shows the best performance on the bugatti,
vistawallpaper, water and woldmap datasets. The FMI of them are 0.7279, 0.6865,
0.6585 and 0.7460, respectively. The average FMI of MC-AE+KM and MC-AE+SC
algorithms are 0.6542 and 0.7172, respectively. They show the best performance in the
corresponding comparative grouping.

An intuitive comparison of average FMI is shown in Fig. 5 (right one). In terms of
the FMI metric, we also can draw the conclusion that the proposed MC-AE shows the
better performance than DAE, Deep-FS, fGraphDBN, CDL and VGAE deep models
from Fig. 5 and Table 5.
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6.1.4. The Friedman Aligned Ranks Test Statistic

Table 3 shows the ranks (in the parentheses) and average ranks of all contrastive al-
gorithms. The smaller rank means the better performance of the algorithm on the cor-
responding dataset. The average ranks of MC-AE+SC and MC-AE+KM algorithms
based on our MC-AE are 15.7 and 16.8, respectively. However, the average ranks
of DAE+KM, Deep-FS+KM, fGraphDBN+KM, CDL+KM and VGAE+KM are 95.2,
74.9, 71.45, 77.25 and 76.7, respectively. And the ranks of DAE+SC, Deep-FS+SC,
fGraphDBN+SC, CDL4+SC and VGAE+SC are 110.9, 53.9, 65.9, 37.8 and 29.5, re-
spectively. Clearly, MC-AE+SC and MC-AE+KM algorithms show the best perfor-
mance in the corresponding comparative grouping. By means of the Friedman Aligned
test statistic, 7=7.7217 is the chi-square distribution with 11 degrees of freedom. The
p-value is 0.00000457 which is computed by x?(11) distribution for one tailed test and
the two-tailed probability is 0.00000913. Then, the null hypothesis is rejected at a high
level significance. The p-values are far less than 0.05, so the experimental results of

algorithms are different.

6.1.5. Friedman + Post-hoc Nemenyi Tests

The results of Friedman test + post-hoc Nemenyi test [43] are shown in Fig. 4
among all contrastive methods on real-valued datasets. It is obvious that the test val-
ues of MC-AE+KM based on our MC-AE model versus DAE+KM, Deep-FS+KM,
fGraphDBN+KM, CDL+KM and VGAE+KM are less than significance level (5%).
Hence, there are striking differences between MC-AE+KM and five related contrastive
methods (DAE+KM, Deep-FS+KM, fGraphDBN+KM, CDL+KM and VGAE+KM).
In Fig. 4, most of the test values between our MC-AE+SC and five related contrastive
methods (DAE+SC Deep-FS+SC, {GraphDBN+SC, CDL+SC and VGAE+SC) are less
than 5% significance level expect for the results of MC-AE+SC versus CDL+SC and
VGAE+SC methods. So, although the MC-AE+SC method based on MC-AE model
has better performance than CDL+SC and VGAE+SC methods, there are no significant
difference between MC-AE+SC and them.
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using average ACC, Jac and FMI metrics on the real-valued datasets.
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6.2. Representation Learning for Clustering on UCI Datasets

6.2.1. Accuracy

Table 6 shows the results of the ACC (mean=std) of each contrastive algorithm
on each UCI dataset and the average ACC (ACC) of each algorithm is listed in the
last column. The MC-AE+KM algorithm based on the proposed MC-AE shows the
best performance on the balance, biodegradation, dermatology, Kdd, OLD, parkinsons
and secom datasets. The ACC of them are 0.6224, 0.6673, 0.4754, 0.9877, 0.9369,
0.8051 and 0.9336, respectively. The MC-AE+SC algorithm based on the proposed
MC-AE shows the best performance on the car and HabermanSurvial datasets. The
ACC of them are 0.6985 and 0.7255. The average ACC of MC-AE+KM and MC-
AE+SC algorithms are 0.7049 and 0.7108, respectively. They show the most excellent
performance in the corresponding comparative grouping.

An intuitive comparison of the overall performance (average ACC) is shown in
Fig. 7 (left one). From Table 6 and Fig. 7, we can draw the conclusion that the
proposed MC-AE shows the better performance than other deep models (DAE, Deep-
FS, fGraphDBN, CDL and VGAE) in terms of the ACC metric.

6.2.2. Jaccard Index

Table 8 shows the results of the Jac of each contrastive algorithm on each dataset
and the average Jac (Jac) of each algorithm is listed in the last column. The MC-
AE+KM algorithm based on the proposed MC-AE shows the best performance on the
dermatology, Kdd, OLD and secom datasets. The Jac of them are 0.3555, 0.9806,
0.8816 and 0.7634, respectively. The MC-AE+SC algorithm based on the proposed
MC-AE shows the best performance on the balance, biodegradation, car and parkinsons
datasets. The Jac of them are 0.4285, 0.5525, 0.5408 and 0.6319, respectively. For
the ClimateMode and HabermanSurvival datasets, the fGraphDBN+SC and DAE+KM
algorithms show the best performance, respectively. Nevertheless the MC-AE+KM and
MC-AE+SC algorithms show the best performance in the corresponding comparative
grouping. The average Jac of them are 0.5137 and 0.5602, respectively.

The intuitive comparison of overall performance (average Jac) is shown in Fig. 7

(middle one). Therefore, we can draw the conclusion that the proposed MC-AE shows
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the best performance among all contrastive deep models in terms of the Jac metric from

Table 8 and Fig. 7.

6.2.3. Fowlkes and Mallows Index

Table 9 shows the results of the FMI of each contrastive algorithm on each UCI
dataset and the average FMI (F M I) of each algorithm is listed in the last column. The
MC-AE+KM algorithm based on the proposed MC-AE shows the best performance
on the dermatology, Kdd, OLD and secom datasets. The FMI of them are 0.5249,
0.9853, 0.9390 and 0.8658, respectively. The MC-AE+SC algorithm based on the pro-
posed MC-AE shows the best performance on the balance, biodegradation, car and
parkinsons datasets. The FMI of them are 0.6533, 0.7429, 0.7346 and 0.7938, respec-
tively. For the ClimateMode and HabermanSurvival datasets, the f{GraphDBN+SC and
DAE+KM algorithms show the best performance, respectively. Nevertheless, the MC-
AE+KM and MC-AE+SC algorithms show the best performance in the corresponding
comparative grouping. The average FMI of them are 0.6498 and 0.7315, respectively.

An intuitive comparison of average FMI is shown in Fig. 7 (right one). In terms of
the FMI metric, we also can draw the conclusion that the proposed MC-AE shows the
better performance than DAE, Deep-FS, fGraphDBN, CDL and VGAE deep models
from Fig. 7 and Table 9.

6.2.4. The Friedman Aligned Ranks Test Statistic

Table 7 shows the ranks (in the parentheses) and average ranks of all contrastive al-
gorithms. The smaller rank means the better performance of the algorithm on the cor-
responding dataset. The average ranks of MC-AE+SC and MC-AE+KM algorithms
based on our MC-AE are 29.8.7 and 35.5, respectively. However, the average ranks
of DAE+KM, Deep-FS+KM, fGraphDBN+KM, CDL+KM and VGAE+KM are 71.7,
84.5, 74.75, 78.1 and 78.4, respectively. And the ranks of DAE+SC, Deep-FS+SC,
fGraphDBN+SC, CDL+SC and VGAE+SC are 47.8, 49.7, 60.45, 59.7 and 54.6, re-
spectively. Clearly, MC-AE+SC and MC-AE+KM algorithms show the most excellent
performance in the corresponding comparative grouping. By means of the Friedman

Aligned test statistic, 7=7.2492 is the chi-square distribution with 11 degrees of free-
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dom. The p-value is 0.00000823 which is computed by x?(11) distribution for one
tailed test and two-tailed probability is 0.00001646. Then, the null hypothesis is re-
jected at a high level significance. The p-values are far less than 0.05, so the experi-

mental results of algorithms are different.

6.2.5. Friedman + Post-hoc Nemenyi Tests

The results of Friedman test + post-hoc Nemenyi test [43] are shown in Fig. 6
among all contrastive methods on UCI datasets. It is obvious that the test values of MC-
AE+KM based on our MC-AE model versus DAE+KM, Deep-FS+KM, fGraphDBN+KM,
CDL+KM and VGAE+KM are less than 0.05. Hence, there are striking differences be-
tween MC-AE+KM and five related contrastive methods (DAE+KM, Deep-FS+KM,
fGraphDBN+KM, CDL+KM and VGAE+KM). In Fig. 6, the test values between our
MC-AE+SC and five related contrastive methods (DAE+SC Deep-FS+SC, f{GraphDBN+SC,
CDL4+SC and VGAE+SC) are 0.4865, 0.2108, 0.0852, 0.1224, 0.4422, respectively.
Although the MC-AE+SC method based on our MC-AE model has better performance
than five related contrastive methods, there are no significant difference between MC-

AE+SC and them.

6.3. Computational Efforts

The results of computational efforts (CPU time) of our MC-AE+KM and MC-
AE+SC methods on real-valued datasets and UCI datasets are listed in Table 12 and
Table 13, respectively. The CPU times of MC-AE+KM algorithm consists of the train-
ing time of MC-AE model and clustering time of K-means algorithm. Similarly, the
CPU times of MC-AE+SC algorithm consists of the training time of MC-AE model
and clustering time of SC algorithm. It is obvious that the training time of MC-AE
model occupies the most CPU times of MC-AE+KM and MC-AE+SC algorithms, es-
pecially on the high-dimensional datasets. The result was not unexpected because the
more local collaborative blocks participate in training process of our MC-AE model on

the high-dimensional datasets.
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7. Conclusions

In this study, we developed a new Multi-local Collaborative AutoEncoder architec-
ture, MC-AE, which is based on the proposed novel mcrRBM and mcrGRBM shallow
models. The structure and multi-local collaborative relationships of unlabeled data are
integrated into the encoding procedure of our MC-AE that force the multi-local hidden
features to converge on the their centers of each local collaborative block. The pro-
posed MC-AE is evaluated on ten real-valued datasets and ten UCI datasets with linear
and binary visible layer units, respectively. Through extensive experiments, our MC-
AE has consistently outperformed the existing related deep models. Furthermore, the
proposed architecture showed more excellent generalization capability for different un-
supervised clustering algorithms. In the future work, it is necessary to study multi-local
collaborative representation learning for semi-supervised clustering, classification and

computer vision.
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Table 10: results of the K-means and SC algorithms on ten real-valued datasets.

ACC Jac FMI
Dataset K-means SC K-means SC K-means SC
banner 0.4667+0.0192  0.371340.0158 0.3535 0.3251 0.5702 0.5470
beret 0.4482+0.0111  0.389340.0060 0.3031 0.2631 0.4746 0.4282
bugatti 0.4240+0.0346  0.3813+0.0114 0.2760 0.2643 0.4423 0.4302
building 0.5799+£0.0026  0.472440.0023 0.3582 0.2917 0.5385 0.4661
vista 0.4698+0.0026  0.469310.0185 0.2840 0.2802 0.4479 0.4436
vistawallpaper ~ 0.478140.0118  0.4610+0.0158 0.2896 0.2807 0.4545 0.4442
voituretuning 0.4407+0.0112  0.356140.0039 0.2867 0.2444 0.4469 0.3990
water 0.4071£0.0014  0.425540.0006 0.2385 0.2411 0.3883 0.3920
wing 0.4677+0.0039  0.392940.0208 0.2800 0.2481 0.4398 0.4035
worldmap 0.4595+£0.0127  0.387240.0047 0.3014 0.2760 0.4710 0.4456
Average 0.4642 0.4106 0.2971 0.2715 0.4674 0.4399
Table 11: The results of the K-means and SC algorithms on ten UCI datasets.
ACC Jac FMI
Dataset K-means SC K-means SC K-means SC
balance 0.5221+0.0544 0.5173+£0.0406 0.3747 0.2727 0.5492 0.4321
biodegradation 0.5886+0.0000 0.6253+0.0005 0.4179 0.5174 0.5906 0.7046
car 0.4282+0.0412 0.4088+0.0724 0.2864 0.2716 0.4736 0.4573
ClimateModel 0.5383+0.0312 0.7827+0.0011 0.4578 0.6464 0.6495 0.7869
dermatology 0.2942+0.0274 0.3087£0.0047 0.1488 0.1370 0.2594 0.2412
HabermanSurvival ~ 0.5131£0.0113 0.5218+0.0019 0.3776 0.3787 0.5509 0.5520
Kdd 0.6622+ 0.0005  0.6845+0.0004 0.5644 0.5725 0.7490 0.7684
OLD 0.9017+0.0000 0.9056+£0.0001 0.8215 0.8253 0.9023 0.9031
parkinsons 0.5436+0.0000 0.5795+0.0000 0.4152 0.4134 0.5872 0.5861
secom 0.75714£0.0004 0.5110+0.0075 0.6157 0.4667 0.7688 0.6616
Average 0.5749 0.5845 0.4480 0.4502 0.6080 0.6111
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Table 12: The CPU times (second) of the MC-AE+KM and MC-AE+SC algorithms on ten real-valued
datasets. The CPU times of MC-AE+KM algorithm consists of the training time of MC-AE model and
clustering time of K-means algorithm. The CPU times of MC-AE+SC algorithm consists of the training

time of MC-AE model and clustering time of SC algorithm.

Dataset K-means SC MC-AE MC-AE+KM  MC-AE+SC
banner 2.4688 1.5938 7216.2500 7218.7188 7217.8438
beret 2.0156 1.8594 7215.3750 7217.3906 7217.2344
bugatti 2.8438 2.2500 7154.9531 7157.7969 7157.2031
building 3.4688 1.4063 7481.1875 7484.6563 7482.5938
vista 2.1875 1.2656 6745.1563 6747.3438 6746.4219
vistawallpaper 2.1875 1.4688 6718.3281 6720.5156 6719.7969
voituretuning 2.0625 2.0781 7235.9219 7237.9844 7238.0000
water 3.0313 1.5469 7807.7969 7810.8281 7809.3438
wing 2.3438 1.4844 7052.0000 7054.3438 7053.4844
worldmap 2.1250 1.8750 7804.4063 7806.5313 7806.2813

Table 13: The CPU times (second) of the MC-AE+KM and MC-AE+SC algorithms on ten UCI datasets.
The CPU times of MC-AE+KM algorithm consists of the training time of MC-AE model and clustering time
of K-means algorithm. The CPU times of MC-AE+SC algorithm consists of the training time of MC-AE

model and clustering time of SC algorithm.

Dataset K-means SC MC-AE MC-AE+KM MC-AE+SC

balance 0.0469 0.5156 6.1719 6.2188 6.6875
biodegradation 0.3594 0.5313 47.7500 48.1094 48.2813
car 0.3125 2.0156 17.7969 18.1094 19.8125
ClimateModel 0.3750 0.8438 11.0625 11.4375 11.9063
dermatology 0.2344 0.6094 12.4844 12.7188 13.0938
HabermanSurvival 0.0321 0.3594 7.6250 7.6571 7.9844
Kdd 0.0625 0.0469 2.4688 2.5313 2.5156

OLD 1.2031 4.6875 213.8750 215.0781 218.5625
parkinsons 0.6094 0.7813 51.3750 51.9844 52.1563

secom 2.6406 2.8438 6417.4219 6420.0625 6420.2656
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