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Abstract

The goal of Knowledge Tracing (KT) is to estimate how well students have mastered a concept based on their historical
learning of related exercises. The benefit of knowledge tracing is that students’ learning plans can be better organised
and adjusted, and interventions can be made when necessary. With the recent rise of deep learning, Deep Knowledge
Tracing (DKT) has utilised Recurrent Neural Networks (RNNs) to accomplish this task with some success. Other works
have attempted to introduce Graph Neural Networks (GNNs) and redefine the task accordingly to achieve significant
improvements. However, these efforts suffer from at least one of the following drawbacks: 1) they pay too much
attention to details of the nodes rather than to high-level semantic information; 2) they struggle to effectively establish
spatial associations and complex structures of the nodes; and 3) they represent either concepts or exercises only, without
integrating them. Inspired by recent advances in self-supervised learning, we propose a Bi-Graph Contrastive Learning
based Knowledge Tracing (Bi-CLKT) to address these limitations. Specifically, we design a two-layer comparative
learning scheme based on an “exercise-to-exercise” (E2E) relational subgraph. It involves node-level contrastive
learning of subgraphs to obtain discriminative representations of exercises, and graph-level contrastive learning to
obtain discriminative representations of concepts. Moreover, we designed a joint contrastive loss to obtain better
representations and hence better prediction performance. Also, we explored two different variants, using RNN and
memory-augmented neural networks as the prediction layer for comparison to obtain better representations of exercises
and concepts respectively. Extensive experiments on four real-world datasets show that the proposed Bi-CLKT and its
variants outperform other baseline models.
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1. Introduction answer the next exercise relevant to a concept, given their
previous learning interactions. In recent years, KT tasks
have received significant attention in academic areas,
and many scholars have conducted research to propose
numerous methods that deal with this problem. Conven-
tional approaches in this domain are mainly divided into
the Bayesian Knowledge Tracing model using Hidden
Markov Models [1]] and Deep Knowledge Tracing using
Deep Neural Networks [2]] and its derivative methods
(314,15, 6].

Existing KT methods [7} 4l [2]] generally target the

With growing developments in online education plat-
forms, vast amounts of online learning data is available
to keep accurate and timely trace of students’ learning
status. To trace students’ mastery of specific knowledge
points or concepts, a fundamental task called Knowledge
Tracing (KT) has been proposed [[L], which uses a se-
ries of student interactions with exercises to predict their
mastery of the concepts corresponding to those exercises.
Specifically, Knowledge Tracing addresses the problem

of predicting whether students will be able to correctly
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concept to which the exercise belongs rather than dis-
tinguishing between the exercises themselves to build
predictive models. Such an approach assumes that the
ability of a student to solve the relevant exercise cor-
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rectly to a certain extent directly reflects that student’s
mastery of the concept. Therefore, prediction based on
concepts in such a way is a viable option, however, this
reduces the difficulty of the task itself, given the lim-
ited performance of the model. Generally, a KT task
comprises multiple concepts and a large number of ex-
ercises with an even larger number of situations where
a concept is associated with many exercises, and a pro-
portion of situations where an exercise may correspond
to multiple concepts. Traditional models can only deal
with the former, while for the latter, they often have to
resort to dividing these cross-concept exercises into mul-
tiple single-concept exercises. Such an approach, while
enhancing the feasibility of these models, nevertheless
interferes with the accuracy of the overall task.

Although these concept-based KT methods have been
somewhat successful, the characteristics of the exercises
themselves are often overlooked. This can lead to a re-
duction in the ultimate predictive accuracy of the model
and a failure to predict specific exercises. Even if two ex-
ercises have the same concept, the difference in their dif-
ficulty level may ultimately lead to a large difference in
the probability of them being answered correctly. There-
fore, some previous works [8} 9} [10, [11} [12} [13] have
attempted to use exercise features as a supplement to con-
cept input, achieving success to some extent. However,
due to the relatively large difference between the number
of exercises and the number of exercises students actu-
ally interact with, each student may only interact with
a very small fraction of the exercises, leading to prob-
lems of sparse data. Furthermore, for those exercises that
span concepts, simply adding features to the exercises
loses potential inter-exercise and inter-concept informa-
tion. Therefore, the use of higher-order information such
as “exercise-to-exercise” (E2E) and “concept-to-concept”
(C2C) is necessary to address these issues.

The idea of redefining the Knowledge Tracing prob-
lem in terms of graphs has recently gained significant
momentum due to the widespread deployment of GNNs
[14) (105 [15) 116, [17] and breakthroughs in addressing
the unpredictability of traditional approaches to cross-
concept exercises. Traditional KT usually takes sequen-
tial data as input in the form of concepts corresponding
to the input exercises and their responses. This leads to
a lack of information between exercises, and only the
relationship between exercises and concepts is available.
Recent research in graph theory has opened up the pos-
sibility of breaking this bottleneck. Unlike sequential
data, graph data can capture the higher order informa-
tion of “exercise-to-exercise” (E2E) and “concept-to-
concept” (C2C) very well due to the multivariate node
and edge structure of the graph itself. As a result, some

research [[14) [18]] has turned to redefining this task in
terms of graphs. However, these efforts face several
problems: 1) too much attention to the details of the
nodes rather than high-level semantic information; 2)
difficulty in effectively establishing spatial associations
and complex structures of the nodes; and 3) representing
only concepts or exercises without integrating them.

Due to the difficulty and inaccuracy of data labelling,
self-supervised learning has become increasingly popu-
lar, with great success in many areas such as computer
vision [19} 20, 21]] and natural language processing
[22,123]. The speciality of self-supervised learning is in
dealing with low quality or missing labels, which is a
requirement for supervised learning and uses the input
data itself for incremental layers as supervised labels
for the learning model. This can be as powerful as su-
pervised models with specifically labelled information
and eliminates the tedious labelling work required by
supervised models. Specifically, self-supervised learning
eliminates the need to label specific tasks which is the
biggest bottleneck in supervised learning. Especially for
large amounts of network data, obtaining high quality
labels at scale is often very expensive and time consum-
ing. Self-supervised learning has been shown to excel
in tasks with textual and image datasets, but is still in
its infancy for problems on the graphs such as retrieval,
recommendation, graph mining, and social network anal-
ysis.

In this paper, we address the problems encountered
by traditional GNN based KT models and propose a
self-supervised learning framework along with Bi-Graph
Contrastive Learning based Knowledge Tracing (Bi-
CLKT) model. Our model employs contrastive learning
with global-bilayer and local-bilayer structures, where
they apply graph-level and node-level GCNSs to extract
“exercise-to-exercise” (E2E) and “concept-to-concept”
(C2C) relational information, respectively. Finally, the
prediction on students’ performance is carried out by a
prediction layer based on a deep neural network.

Our approach has been fully validated using four
benchmark datasets. In terms of prediction performance,
our model and its variants outperformed traditional deep
learning-based methods, showing great potential for
knowledge-tracing prediction accuracy. Furthermore,
through a series of ablation studies, we have analysed
each module separately, making the model more inter-
pretable. Our proposed model also has some technical
innovations and improvements. Due to the specificity of
this task, which requires separate representation learning
for two related but independent entities, our two-layer
comparative learning structure fits well into this. Our
specific contributions are described as follows:



o To the best of our knowledge, we present the first
self-supervised learning based knowledge-tracing
framework. Through contrastive self-supervised
learning, we solve a number of problems encoun-
tered by traditional GNN-based knowledge-tracing
models leading to significant improvement in the
accuracy of the final prediction results.

e For Knowledge Tracing, we design a two-
layer contrastive learning framework, which per-
forms “exercise-to-exercise” (E2E) and “concept-to-
concept” (C2C) relational information at the global
and local levels respectively. The representation of
exercise is learned eventually and effectively com-
bined by a joint contrastive loss function. Such a
structure allows an exercise embedding to have both
exercise and concept structural information, which
has a positive effect on the final prediction task.

e We perform thorough experiments on four real-
world open datasets, and the results show that our
proposed framework and its variants all have a sig-
nificant improvement in predictive efficiency com-
pared to the individual baseline models. We also
perform ablations studies to analyse the validity of
each individual module, which greatly enhances the
model interpretability.

2. Related Work

2.1. Knowledge Tracing

There are two main approaches to using machine learn-
ing for Knowledge Tracing. The first one is the tradi-
tional machine learning KT approach represented by
Bayesian Knowledge Tracing (BKT) [1]]. BKT primarily
applies the Hidden Markov Model, which uses Bayesian
rules to update the state of each concept considered as
a binary variable. Several works have extended the ba-
sic BKT model and introduced additional variables such
as slip and guess probabilities [7], concept difficulty
[24] and student personalisation [25, 26| [13]]. On the
other hand, traditional machine learning KT models also
include factor analysis models such as item response
theory (IRT) [27] and performance factor analysis (PFA)
[281[16], which tend to focus on learning general param-
eters from historical data to make predictions.

With the development of Deep Neural Networks, the
literature has experienced advances in Deep Knowledge
Tracing methods that have proved to be more effective
in learning valid representations for large amounts of
data for more accurate predictions. For example, Deep
Knowledge Tracing (DKT) [2] uses recurrent neural

networks (RNNG5) to track students’ knowledge states and
became the first deep KT method to achieve excellent
results. Another example is the Dynamic Key-Value
Memory Network (DKVMN) [4] that builds a static
and dynamic matrix to store and update all concepts
and students’ learning states respectively. Xu et al. [29]
propose a pioneering deep matrix factorization method
for conceptual representation learning from multi-view
data. However, these classical models consider the most
basic concept features only, and the absence of exercise
features leads to unreliable final predictions.

Some deeper KT methods have since been proposed
that do take into account the features of the exercises
in their predictions. For example, Exercise-Enhanced
Recurrent Neural Network with attention mechanism
(EERNNA) [[6] uses information about the text of the
exercise to allow the embedding itself to contain the
features of the exercise, but in reality it is difficult to
collect such textual information, and doing so intro-
duces too much interference into the embedding itself.
Dynamic Student Classification on Memory Networks
(DSCMIN) [18] uses modelling of problem difficulty to
help distinguish between different problems under the
same concept. DHKT, on the other hand, augments DKT
by using relationships between problems and skills to ob-
tain a representation of the exercises. However, this does
not capture the relationships between exercises and con-
cepts due to the data sparsity issues. Due to the presence
of long-term dependencies in practice sequences, the
Sequence Key Value Memory Network (SKVMN) [[L1]
has improved the LSTM with good results in order to
improve the ability to capture such dependencies. Our
approach differs from these methods in that they build
the graph of exercise-influence relations from the origi-
nal “exercise-to-concept” (E2C) relations by certain as-
sumptions and use graph-level and node-level GCNss,
respectively, to extract the “exercise-to exercise” (E2E)
and “concept-to-concept” (C2C) relational information.
On the other hand, to reduce the interference of too much
detailed information, we use contrast learning model to
learn the concepts and exercises separately for represen-
tation.

2.2. Self-supervised Learning

Research on self-supervised learning can be broadly
divided into two branches: generative models and con-
trastive models. The main representative of the genera-
tive model is the automatic coding which is very popular.
The main approach on graph data is to learn the embed-
ding of nodes of the graph into a latent space through
GNN, and then reconstruct the structure and properties
of the original graph through the learned representations.



The representations of the nodes are adjusted by reducing
the size of the loss between the generated graph and the
original graph step by step. The learned representations
are then used to reconstruct the original diagram. These
representations encode the structural and attribute fea-
tures of the original graph. Contrastive learning, on the
other hand, uses augmentation methods to structurally
disrupt the input data, separating out the predicted ob-
jects and corresponding labels from their own structure
before learning the representations, and finally compar-
ing the loss functions to minimize the distance between
positive pairs and maximize the distance between neg-
ative pairs to achieve a structural grasp of the complete
graph. Pioneer methods along the direction of learning
graph representations of GCNs include Hu et al. [30]
and Kaveh et al. [31].

2.3. Contrastive Learning on Graphs

Contrastive learning is a type of self-supervised learn-
ing where the target label to be learned is generated from
source data itself. It brings similar representations closer
together and dissimilar ones further apart by comparison.
For graph data, traditional learning methods [32} 133} [34]
often overemphasise detailed information at the expense
of structural information. On the other hand, contrastive
learning compensates for this by nicely finding a balance
between local and global representation learning. Al-
though contrastive learning on graph data is still in its
infancy, it has been demonstrated by numerous models to
be powerful in its control of graph structural information.

3. Preliminary and Problem Statement

In this section, we define the task of Knowledge Trac-
ing in our setting. We first formally define the student
performance prediction problem, which represents the
level of student mastery of each concept by the accuracy
with which students interact with the exercises under
each concept. Next, we present the important definitions
used in our study.

3.1. Problem Definition

In the Knowledge Tracing task, we record the a partic-
ular student’s practice process as s € S, s = {Xy...X7} =
{(eo,ap), (e1,a1), ..., (er,ar)}, where |S| represents the
student, and |E| represents the specific exercise, e¢; € E
represents the exercise that student s does in its exercise
step ¢, and r, represents the correctness or otherwise of
the corresponding exercise. In general, r, equals 1 if the
student s answered the exercise e, correctly, otherwise

ry equals 0. To trace the mastery of a specific concept
¢ € C, we normally observe a sequence of a student’s
interactions e, € E and predict the result ., of the next
exercise e;,1. Finally, the probability of a student getting
any next exercise correct for a specific concept is taken
as the student’s mastery of that concept. The specific
definitions are as follows:

Problem 1 (Performance Prediction in KT). Give a se-
quence of interaction observations taken by a students
s€S s =1{X...X7} = {(eg, ap), (e1,a1), ..., (er,ar)} on
a specific concept ¢ € V., where X, = {e;, a;} for the
exercise e € V, being answered at the time stept € T
with whether or not the exercise was answered correctly
a; € {0, 1}. The objective of Knowledge Tracing task is
to predict the next interaction X;.

To solve this problem, we dig deeper into the
“exercise-to-exercise”(E2E) graph structure relationships
from the original “exercise-to-concept” sequence data.
The secondary “exercise-to-exercise”(E2E) relationships
extracted are used to construct an exercise influence
graph based on each of the different concepts. Then,
we obtained separate pre-representations of the exer-
cises and concepts by applying graph-level and node-
level GCNs on these exercise influence graphs. Finally,
we fuse them into a contrast learning-based Knowledge
Tracing graph to train these representations to achieve
optimal results under the Knowledge Tracing task.

The exercise-level influence graph is derived from stu-
dents’ transitions between exercises. It assumes that the
majority of students who get two different exercises cor-
rect at the same time will have a high degree of similarity
or correlation between the two exercises, and therefore
will have relatively high weights between them, and vice
versa. The creation of the exercise-level influence graph
not only ameliorates the existing models’ shortcoming
of not being able to distinguish between exercises under
the same concept, but also provides rich information on
the structure of the “exercise-to-exercise” graph.

(a) (b)
. “exercise-to-exercise”
“, 0-con ”
exercise-to-concept Exercise influence subgraph G,

Concept 1 Concept 2 “Concept 3© Concept 4

Figure 1: An example of creating an exercise influence sub-
graph from an exercise-to-concept relationship graph.



Definition 1. (Exercise-level influence graph) Given an
exercise set V, and an “exercise-to-exercise” interaction
set &,, an exercise influence sub-graph is a graph G, =
V., &E,) that takes the exercises in V. as the vertices
and the interactions in &, as the edges. The weighted
influence Q (i,j € N,i,j < m) of the edges of co-
ocurred exercises Vi and V/ is measured by

ij_ SV V) )
C R VLV

where Qgi is the co-correctness rate of exercises (Ve’ and
Vi among all the answered co-occurred exercises involv-
ing V.. f¢and f° denote the count of co-correctness
and co-occurrence respectively. Edge &, (”Vi , Vi) only
exists when Qij is larger than a certain threshold 7.

Example 1. As shown in Figure[I) we constructed an
example of an exercise influence subgraph by assuming
a high degree of similarity in the questions that a student
can answer correctly at the same time, in which the
properties of different exercises are reflected from node
to node. In turn, the properties of different concepts are
reflected between different subgraphs. They represent
“exercise-to-exercise” (E2E) and “concept-to-concept”
(C2C) relational information, respectively.

3.2. Representative Solutions Study

The vector sequence of Xy, ..., Xy as input to conven-
tional deep knowledge tracking is mapped to the output
vector sequence yy, ..., Yyr by computing a sequence of
’hidden’ states hy, ..., hy. This can be seen as a contin-
uous encoding of information about historical learning
performance to make predictions about the future, and
DKT makes the connection between input and output
via a simple recurrent neural network. The input (x;)
to the dynamic network is a representation of the stu-
dent’s historical behaviour, while the prediction (y,) is a
vector representing the probability of being correct for
each sample exercise. More details are defined by the
equations:

h, = tanh (W;,,.x; + Wy;h,_; +by,)

2
ye = o (Wysh, + by)

where the sigmoid and tanh functions o(-) are used as
activation functions, Wy, denotes the input weight ma-
trix, hy denotes the initial state, Wy, denotes the readout
weight matrix and Wy, denotes the cyclic weight matrix.

The deviations of the latent and readout cells are given
by bj, and by,.

Another classical approach is DKVMN, which out-
puts the probability of a response p (r; | g;) through a
discrete exercise label ¢,. The motion and response
tuples (g, ;) are then updated. Here, ¢, is a set with
Q distinct exercise labels and r; is the binary value of
whether the student got it right or not. DKVMN assumes
that the exercise is based on the set of potential concepts
{cl e, cN} with N. The key matrix M* (size N X dj)
is used to store these concepts of size N X di. Concept
states {s,l, sf, e sﬁv } are stored as students’ mastery of
each concept in the time-varying value matrix My (size
N x d,). Ultimately, DKVMN tracks student knowledge
by reading and writing to the value matrix using the rele-
vant weights computed from the input exercises and the
key matrix.

In the KT process, existing models often do not link
the different concepts well, which leads to the inability
of these models to make correct or complete predictions
when students encounter exercises on concepts that have
not been covered before or when an exercise involves
multiple concepts. We, therefore, fill this gap by using
the construction of exercise influence subgraphs, with
nodes connecting different exercises to each other and
subgraphs connecting different concepts to each other.

By building an exercise influence subgraph, we can
transform the original sequence data into graph struc-
tured data containing “exercise-to-exercise” (E2E) and
“concept-to-concept” (C2C) relational information. We
then learn these data into the corresponding embed-
ded representations by using node-level and graph-level
GCNs respectively, while learning the best architecture
by contrast to maximise the differentiation of these rep-
resentations so that the final representations contain both
information about the exercises and concepts, and their
differentiation from other concepts and exercises.

4. The Bi-Graph Contrastive Knowledge Tracing

Inspired by recent developments of contrastive learn-
ing in visual representation, an increasing scale of re-
search has shown that contrastive learning frameworks
perform well on graph-structured data as well. There-
fore, after various comparisons and studies, we propose a
Bi-graph Contrastive Knowledge Tracing representation
learning (Bi-CLKT) based on graph-level (global) and
node-level (local) GCNs. In the next section, we describe
Bi-CLKT in detail, first by briefly discuss a traditional
contrastive learning framework, and then more specifi-
cally by presenting our proposed Bi-graph contrastive
learning framework. Finally, we provide the theoretical
rationale behind our approach.



4.1. The Graph CL Paradigm

As shown in Figure 2, our proposed Bi-CLKT frame-
work extends the common graph CL paradigm. Com-
mon graph CL paradigms typically employ either global
features or local features to seek to maximise the con-
sistency of representations between the graph-level or
node-level of different views. Specifically, graph CL
paradigms first generate two graph views by performing
random graph augmentations on the original graph, such
as eliminating or adding edges, eliminating nodes, mask-
ing attributes, etc. For the global graphCL, these two
views are treated as a positive pair, while the other graphs
are treated as negative pairs. While for the local graphCL,
the nodes in these two views are found as a positive pair
and negative pairs. we then employ a contrastive loss
that forces the positive pair’s embeddings in the view are
consistent with each other, while trying to distance all
negative pairs from each other. Specifically, the graph
CL paradigm consists of four main components:

e Graph data augmentation. The given graph G is
augmented by eliminating or adding edges, elimi-
nating nodes, masking attributes, etc. to obtain two
related views Qi, gAj (i.e. augmented graphs), which
are treated as a positive pair in the global graph CL.
Whereas in the local graph CL, all positive pairs
and negative pairs exist in the both two views.

e GCN-based encoder. GCN-based encoders node-
level f, and graph-level g, for augmented graphs
Gi.G j to extract representation vectors f;.

e Projection head. A non-linear transformation /(-)
named projection head maps augmented repre-
sentations to another latent space where the con-
trastive loss is calculated. In graph contrastive learn-
ing, z;, z; is obtained by a Multi-Layer perceptron
(MLP).

o Joint contrastive loss function. The joint contrastive
loss function £(-) is defined as forcing the max-
imisation of the distance between the positive pair
Zi, zj and the negative pair in the two subgraphs re-
spectively. The final normalized temperature-scaled
cross entropy loss is used to calculate the loss of
the two contrastive learning modules.

4.2. The Bi-CLKT Framework

In general, common graph CL approaches usually
choose either global graph CL at the graph level or

local graph CL at the node level, which seek to learn
representations by maximising the consistency between
views from different perspectives. Normally, these ap-
proaches often have only one feature, global or local.
In the Bi-CLKT model, due to the specificity of the
KT task, we need to acquire both “exercise-to-exercise”
(E2E) and “concept-to-concept” (C2C) relational infor-
mation. These two relational features respectively have
the corresponding properties of being local and global.
Therefore, we propose to design a Bi-graph contrastive
learning framework with both local and globe features.

To match this two-layer framework, we use node-
level GCN to learn “exercise-to-exercise” (E2E) embed-
ding and graph-level GCN to learn “concept-to-concept”
(C2C) embedding, respectively. In the process of graph
data augmentation, we design separate graph augmen-
tation processes for each of these two layers of the con-
trastive learning framework. We mainly augment the
input graph by randomly removing edges and masking
node features in the graph. In addition, inspired by [35],
we introduce differences in the importance of different
nodes and edges by calculating the centrality of differ-
ent nodes through methods such as random walk and
PageRank, and those nodes and edges with lower im-
portance are prioritized for elimination during the graph
augmentation process.

4.2.1. Graph Data Augmentation

For the exercise level augmentation, we took two dif-
ferent approaches to augmenting the input graph, i.e.
randomly picking edges or points to be removed. For-
mally, we form a modified subset & and V, by randomly
selecting some nodes and edges from the original & and
V., in proportion to the probability of random selection
of _

Pelu,v) e & =1-pt,

3
PyiveV,)=1-p )

where p¢, and p¢ are the probabilities of eliminating
edges (#, v) and nodes v, and then & and (T/g} are the set
of edges and the set of shop points after graph augmenta-
tion. The p¢,, and pf reflect the importance of edges (u, v)
and nodes v, respectively. By doing so, this function en-
sures that the unimportant edges or points are eliminated
preferentially while ensuring that the important structure
of the graph is not compromised.

In concept-level graph augmentation, similar to the
increments at the exercise level, we need to compute
probabilities p, and p¢ to reflect the importance of the
corresponding edges (u, v) and nodes v. The difference
is that in concept-level graph augmentation, to better fit
the graph-level GCN, we use the PageRank algorithm to
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Figure 2: An overview of Bi-Graph Contrastive Knowledge Tracing framework.

combine p¢,, and p¢ to work out a composite probability

pif for the concept level. The specific calculation is
defined below as defined below

Sf - Sf

f . max i
p; = min *PfsPr 4)

S o f

smax #S

where we compute the maximum and average values
of S‘if and denote them by s{ = log w{ , s{,wx and mu§
respectively, and py is the probability of combining pf,,
and p?.

Finally, we generate two corrupted graph views él, G
by augmentation for the exercise and conceptual levels,
respectively. In Bi-CLKT, the probabilities of generat-
ing the two views are different, and to better target the
description of these two probabilities we denote them by
pr1 and pgo respectively.

4.2.2. Node-Level and Graph-Level Encoder
Direct use of the node features of the last layer of the
encoder K is the most direct way to obtain a node-level
representation 4, of node v, i.e. h, = xf,K). Where the use
of skip connections or skip knowledge to generate node-
level representations is do commonly used. However,
the method of connecting the node features of all layers
produces a node-level representation with a different
dimensionality than the node features. To avoid this
problem, we perform a linear transformation of the node
features of all layers before joining them together.
h, = CONCAT ([x(vk)]:_l)W, )
where the weight matrix that reduces the size of the £,
dimension is W € R(Zxde)xd

The key operation for computing the node-level rep-
resentation of a graph Ag,pn is the READOUT function,
of which summation and averaging are the most com-
monly used READOUT functions. For reasons of node
envelope invariance. We use a summation over all node
representations, i.e.

14
herapn = READOUT(H) = [Z h] ©6)

v=1

where o is the sigmoid function and |V| denotes the total
number of nodes in a given graph.

Due to the nature of Bi-CLKT’s two-layer structure,
we have used node-level and graph-level GCNs as en-
coders for the exercises and concepts respectively. The
specific structural form is as follows

GCi(X.A) = o (D2 AD2 X W)
f(X,A) = GC, (GCi(X, A),A)

@)

where the adjacency matrix is A = A + I and the de-
gree matrix is D = Y; A; and is the non-linear activation
function we use o ().

4.2.3. Projection Head

Furthermore, in Bi-CLKT we map the enhanced rep-
resentations to a uniform latent space via a non-linear
transformation called projection head g(-), where the
contrast loss is computed. In graphical contrast learning,
a multilayer perceptron (MLP) is applied to obtain these
mappings z;, Z;.

In terms of projection head, the case of considering
view generation in terms of mutual information is that a



good view generation should minimise the MI between
two views I (vq, ), provided that I (vi,y) = I (v2,y) =
I(x,y). Intuitively, the fact that the generated viewpoints
v; do not affect the information that determines the pre-
diction of the downstream task can guarantee the effec-
tiveness of contrast learning. Thus under this restriction,
divergence between viewpoints as it increases leads to
better learning results. From a flowform perspective, we
adopt the extension hypothesis and find that an increase
in data can induce continuity in the neighbourhood of
each instance.

4.3. Joint Contrastive Loss Function

To better learn the representations of exercises and
concepts, we used a joint contrastive loss function £(-).
This loss function forces the maximisation of the dis-
tance between positive pairs of previously learned map-
pings z;, z; and other negative pairs. With extensive com-
parisons, we found that normalised temperature scaled
cross-entropy loss (NT-Xent) was the most appropriate
loss model. In the node-level GCN training process, we
randomly draw N small batches of nodes on the prac-
tice influence graph under the same concept, and learn
these nodes by local contrast learning, where all 1-hop
neighbour points under its same view are used as his neg-
ative pairs, along with all 1- hop neighbours of the other
view, and the only positive pairs are the corresponding
points under both views. In the training process of the
graph-level GCN, we randomly draw N small batches of
exercise influence graphs, so that 2N augmented graphs
are generated as positive pairs, while all other graphs
are used as their negative pairs.The cosine similarity
function is denoted as

sim (Zn,h zn,j) = Z,Iizn,j/ ”Zn,i” ”Zn,j“ (8)

As for the objective function, the prevailing practice
is to use a standard binary cross-entropy loss between
positive and negative examples i.e. a noisy contrast type
objective. However, we have found by research that it
is detrimental to representation learning if positive and
negative examples are absolutely distinguished. This is
mainly due to the fact that these contextual subgraphs are
extracted from the same original graph and overlap each
other. Therefore, we used normalised temperature scaled
cross-entropy loss (NT-Xent) for model optimisation so
that positive and negative samples are well differentiated
to some extent, resulting in a high quality representation.
The NT-Xent of the n-th graph is defined as

exp (sim (zn,,-, Zn, j) /T )

£y = —log )

N .
Zn’:l,n'¢n exp (Slm (Zn»i’ Zn',j) /T)

where the temperature parameter is denoted by 7. These
last two correspond to the exercise and concept losses
being computed in all positive pairs, respectively.

5. Experimental Settings and Results

We performe extensive experiments on four real-world
datasets to evaluate the performance of our Bi-CLKT
model. We also compare it to several state-of-the-art
machine learning and deep learning Knowledge Tracing
models. To fully evaluate the performance of Bi-CLKT,
we conducted a large number of in-depth ablation ex-
periments, which validated the role of each module in
Bi-CLKT and enhanced the interpretability of the model.

To implement the baseline and Bi-CLKT models, we
used PyTorch and the Geometric Deep Learning ex-
tension library. Experiments were conducted on four
NVIDIA TITAN V GPUs. Bi-CLKT was used to learn
node representations in a self-supervised contrastive
learning fashion, and these representations were then
used to evaluate node-level and graph-level classifica-
tions. This was done by directly using these representa-
tions to train and test a simple linear (logistic regression)
classifier. In pre-processing, we perform line normali-
sation of and apply processing strategies. We normalise
the learned embeddings before feeding them into the lo-
gistic regression classifier. In training, we use the Adam
optimiser with an initial learning rate of 0.001 and the
subgraph size does not exceed 20. the dimensionality of
the node representation is 1024. the marginal value of
the loss function is 0.75.

5.1. Datasets

To evaluate our model, the experiments are conducted
on the following four widely-used datasets in KT and
the detailed statistics are shown in Table[l]

e ASSISTment ZOOqH is provided by the online tu-
torial website ASSISTment, which is widely used
to validate KT problems. Among other things, this
dataset comes with accurate labels, practice and con-
ceptual clarity. We have not modified this dataset
much except for filtering out corrupt samples.

e ASSISTment ZOIﬂ is similarly from the online
tutoring site ASSISTment, which further clarifies

lhttps://sites. google.com/site/assistmentsdata/home/assistment-
2009-2010-data

2https://sites. google.com/site/assistmentsdata/home/2015-
assistments-concept-builder-data



the data set ASSISTment collected in 2009 by col-
lapsing the number of concepts to exactly 100 and
introducing a larger number of students, but with a
slightly reduced average student interaction record.

e ASSISTment ChallengeE] (ASSISTment chall) is
collected for a data mining competition run by AS-
SISTments in 2017. It has a relatively rich average
number of records per student, and because it is
used for competition, the dataset as a whole has the
highest degree of completeness and normality of
the three datasets from ASSISTment.

e STATICS ZOIIE] differs from the previous three
datasets in that it is course-specific i.e. there is high
relevance in the data. This dataset contains 189,297
interactions between 333 students on 1223 concepts
making it the most intensive of all four datasets.

TableE] presents all the statistical data for the dataset,
where Ng, N. and Ng represent the number of students,
concepts and interactions respectively.

Table 1
STATISTICS FOR THE DATASETS.

Datasets Statistics
#Ng #N, #Ng
ASSISTment 2009 4,151 110 325,637
ASSISTment 2015 19,917 100 708,631
ASSISTment chall 686 102 942,816
STATICS 2011 333 1,223 189,297

5.2. Evaluation Methods

We compare our proposed Bi-CLKT with the follow-
ing baseline methods.

¢ Bayesian Knowledge Tracing [[1]] is a classical ma-
chine learning Knowledge Tracing model based on
the Hidden Markov Model, which uses Bayesian
rules to update the state of each concept, considered
to be a binary variable.

e Deep Knowledge Tracing [2] uses recurrent neu-
ral networks (RNNs) to track students’ knowledge
states and became the first deep KT method to
achieve excellent results.

3https://sites.google.com/view/assistmentsdatamining/dataset
“https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetld=507

e Dynamic Key-Value Memory Networks [4], in-
spired by memory-enhanced neural networks,
builds a static and dynamic matrix to store and
update all concepts and students’ learning states
respectively.

o SAKT [5] is the first self-attentive based Knowl-
edge Tracing model. It abandons the traditional
approach of using RNNs to model a student’s his-
torical interaction and instead makes predictions by
taking into account relevant exercises from his past
interactions. SAKT has been shown to be far more
efficient than the RNN-based KT model.

o EKT [36] is an extension to the Exercise-Enhanced
Recurrent Neural Network (EERNN) framework.
Compared to EERNN, EKT further introduces in-
formation about the knowledge concepts present in
each exercise.

e SAINT+ [37], the first Transformer-based Knowl-
edge Tracing model, is unique in that it introduces
exercise information as well as student response
information separately, while at the same time it
embeds two temporal features, elapsed time and
lag time, into the embedding of student response
information.

5.3. Experiment discussion

Table [2| compares the predictive performance of Bi-
CLKT and its variants with other mainstream baseline
methods for ML and DL. The Area Under the curve
(AUC) and Accuracy (ACC) are used as evaluation met-
rics.

The empirical performance is summarised in Table
[2] Overall, we can find that our proposed model shows
competitive performance on all datasets. Bi-CLKT con-
sistently outperforms all other baseline KT models by
a wide margin. The competitive performance validates
the superior performance of our proposed contrastive
learning model for the knowledge tracing task. While
existing baselines have achieved sufficiently high perfor-
mance, our approach Bi-CLKT still pushes this bound
forward. Furthermore, we note that Bi-CLKT competes
with models based on the latest deep learning methods
on all four datasets.

5.4. Overall Performance

Table 2] summarises the results of the AUC and ACC
comparisons for all baseline methods on the four datasets.
From the results, we observe that our Bi-CLKT model
achieves the best performance on all four datasets, AS-
SISTment 2009, ASSISTment 2015, ASSISTment Chall



Table 2

AREA UNDER THE CURVE (AUC) AND AccURACY (ACC) ON FOUR DATASETS. THE BEST PERFORMING RUNS PER METRIC PER DATASET ARE MARKED IN BOLDFACE.

\ ASSISTment 2009 \ ASSISTment 2015 \ ASSISTment Chall \ STATICS 2011

AUC ACC AUC ACC AUC ACC AUC  ACC
BKT [1]] 0.648 0.594 0.616 0.592 0.562 0.555 0.719  0.698
DKT [2] 0.74 0.708 0.701 0.68 0.691 0.712 0.815 0.723
DKVMN [4] | 0.739 0.618 0.705 0.68 0.689 0.614 0.814 0.722
SAKT [5] 0.735 0.679 0.721 0.647 0.701 0.657 0.803  0.797
EKT [36]] 0.754 0.702 0.737 0.754 0.72 0.727 0.842  0.819
SAINT+ [37] | 0.782 0.718 0.754 0.741 0.734 0.718 0.853  0.808
Bi-CLKT 0.857 0.802 0.765 0.757 0.775 0.764 0.865 0.835

and STATICS 2011, which validates the validity and
superiority of our model. Specifically, our proposed Bi-
CLKT model achieves at least 5% improvement than
the other baseline models. In the baseline models, deep
learning models consistently perform better than tradi-
tional machine learning models like BKT. This justifies
the current research trend towards deep learning methods.
We can also see that DKVMN performs slightly worse
than DKT on average, as building states for each concept
may lose information about the relationships between
concepts. Furthermore, SAKT performs worse than our
model, suggesting that there is a difference between ex-
ploiting higher-order concept-exercise relationships by
selecting the most relevant exercises and performing in-
teractions. Finally we can see that SAINT+, the best
performing of the baseline models, is the first model to
apply the transform modelling framework to the Knowl-
edge Tracing task, which reflects the good adaptation
of transform learning to this task. To further dissect
our model, we provide sufficient ablation studies on the
internal constructs of the model in the following sections.

5.5. Ablation Studies

To get insights into the effect of each module in Bi-
CLKT, we design several ablation studies. Specifically,
we further investigate the effectiveness of three important
components of our proposed model: (1) augmentation
methods; (2) dmbedding methods; (3) the predictive
layer. We set a total of nine comparative settings and
report the performances in Table [3]and Table

5.6. Effects of Augmentation methods

We observed that all three variants of Bi-CLKT with
different node centrality measures outperformed the ex-
isting KT baseline model on all datasets. We also note
that the augmentation with degree and PageRank cen-
trality are two powerful variants that achieve the best
or competitive performance on all datasets. Specifically,
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the augmented variant with PageRank centrality works
best on the ASSISTment 2009, ASSISTment Chall and
STATICS 2011 datasets, while only on ASSISTment
2015 does the augmented variant with Degree centrality
outperform PageRank. This shows that our final model
has good generalization and is not limited to a specific
choice of augmentation method for different datasets.

5.7. Effects of Different Embedding Methods

Since the two implicit relations “exercise-to-exercise”
(E2E) and concept-to-concept” (C2C) are constructed
separately in our Bi-CLKT model for the subgraphs. To
better verify the role of these two embeddings in the
model, we adopted the “exercise-to-exercise” (E2E) and
“concept-to-exercise” (C2C) subgraphs separately as the
attribute of each exercise and compared with their con-
catenation. From Table [ we can see that the results
obtained by concatenation are significantly better than
those obtained by using either embedding alone. More-
over, due to the difference in the prediction layer mech-
anism, C2C embedding is overall better than E2E em-
bedding in this variant of Bi-CLKT-M, especially on the
ASSISTment 2009 and ASSISTment 2015 datasets. In
contrast, in the DKT variant, the use of E2E embedding
alone gives better results, specifically on the ASSIST-
ment 2009 and STATICS 2011 datasets. In general, both
embeddings work well separately, and the best results
are obtained when they are combined.

5.8. Effects of Different Predictive Layers

To improve the performance of the models, we used
two distinct prediction mechanisms, Bi-CLKT-R and Bi-
CLKT-M, which apply Recurrent Neural Network and
Memory-augmented Neural Networks, respectively, in
the prediction layer. In particular, on the ASSIST09 and
STATICS 2011 datasets, our Bi-CLKT-R model achieves



Table 3
PREDICTIVE PERFORMANCE. THE BEST PERFORMING RUNS PER METRIC PER DATASET ARE MARKED IN BOLDFACE

Augmentation ASSISTment 2009 ASSISTment 2015  ASSISTment Chall  STATICS 2011

AUC ACC AUC ACC AUC ACC AUC  ACC

Uniform 0.864 0.786 0.748 0.749 0.77 0.753 0.852 0.815

Degree 0.869 0.795 0.765 0.757 0.773 0.764 0.858 0.821

PageRank 0.875 0.802 0.757 0.752 0.775 0.764 0.865 0.835
Table 4

THE ErrecT oF EMBEDDING PROPAGATION LLAYER. THE BEST PERFORMING RUNS PER METRIC PER DATASET ARE MARKED IN BOLDFACE

Variants Embedding ASSISTment 2009  ASSISTment 2015  ASSISTment Chall STATICS 2011
AUC ACC AUC ACC AUC ACC AUC  ACC

c2C 0.838 0.768 0.762 0.746 0.733 0.752 0.802  0.777

Bi-CLKT-M E2E 0.83 0.762 0.748 0.748 0.744 0.747 0.857 0.788
Concate 0.862 0.795 0.764 0.752 0.769 0.751 0.859 0.833

c2C 0.847 0.784 0.764 0.754 0.761 0.76 0.849 0.817

Bi-CLKT-R E2E 0.859 0.795 0.765 0.755 0.761 0.761 0.864 0.828
Concate 0.875 0.802 0.765 0.757 0.775 0.764 0.865 0.835

an AUC of over 0.85 and an ACC of over 0.8. Com-
pared with Bi-CLKT-M, there are some slight differ-
ences with this variant of Bi-CLKT-R, despite the fact
that this variant improves overall performance by at least
3% over all other baseline KT models. We can find that
in the ASSISTment 2015 dataset the two variants per-
form fairly close to each other, however, in the other
three datasets there is a gap of at least 2% between the
two variants. Therefore, in the final model selection we
chose Bi-CLKT-R as the predictive layer of the model
for best results.

6. Conclusion

We transformed the traditional Knowledge Tracing
problem into a graph form and proposed Bi-CLKT model
that exploits contrastive learning to learn from large
amounts of unlabelled data. Bi-CLKT consists of three
main parts: subgraph establishing, contrastive learning
and performance prediction. In the contrastive learning
part, we adopt two different contrastive learning frame-
works, local-local and global-global, for the “exercise-
to-exercise” (E2E) and “concept-to-concept” (C2C) im-
plicit relationships respectively. The final “exercise-to-
exercise” (E2E) and “concept-to-concept” (C2C) embed-
dings were obtained by node-level and graph-level GCN,
and are concatenated together as attributes for each ex-
ercise into the prediction layer. Our proposed approach
achieved significantly better performance compared to
previous state-of-the-art methods for Knowledge Tracing
tasks on multiple challenging datasets.
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