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ABSTRACT

This paper introduces a natural language understanding (NLU) framework for argumentative dialogue
systems in the information-seeking and opinion building domain. The proposed framework consists
of two sub-models, namely intent classifier and argument similarity. Intent classifier model stack
BiLSTM with attention mechanism on top of pre-trained BERT model and fine-tune the model
for recognizing the user intent, whereas argument similarity model employs BERT+BiLSTM for
identifying system arguments the user refers to in his or her natural language utterances. Our model
is evaluated in an argumentative dialogue system that engages the user to inform him-/herself about
a controversial topic by exploring pro and con arguments and build his/her opinion towards the
topic. In order to evaluate the proposed approach, we collect user utterances for the interaction
with the respective system labeling intent and referenced argument in an extensive online study.
The data collection includes multiple topics and two different user types (native English speakers
from the UK and non-native English speakers from China). Additionally, we evaluate the proposed
intent classifier and argument similarity models separately on the publicly available Banking77
and STS benchmark datasets. The evaluation indicates a clear advantage of the utilized techniques
over baseline approaches on several datasets, as well as the robustness of the proposed approach
against new topics and different language proficiency as well as the cultural background of the user.
Furthermore, results show that our intent classifier model outperforms DIET, DistillBERT, and BERT
fine-tuned models in few-shot setups (i.e., with 10, 20, or 30 labeled examples per intent) and full
data setup.

Keywords Natural Language Understanding · Text Classification · Sentence Similarity · BERT · Argumentative
Dialogue System
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1 Introduction

The vast amount of often contradicting information in online sources has raised the need for technologies and applications
that assist humans in processing and evaluating them. While recent developments in the field of argument mining [1]
provided the tools to automatically retrieve and structure such information from various sources, the resulting data
structures are still large and not necessarily intuitive to humans. Argumentative dialogue systems and conversational
agents on the other hand can process these structures [2, 3] and provide a natural and intuitive interface to the data.
However, the capabilities of such systems are limited by their ability to understand and process user responses to the
presented arguments, especially if they are presented by means of natural language.

Within this work we introduce a natural language understanding (NLU) approach for the information seeking and
opinion building scenario discussed above that extracts the required information from the user input:

a) Direct user commands to the system (for example end discussion, provide more information)
b) System arguments referenced in the user utterance,
c) User sentiment on the referenced system arguments.

In order to do so, we first recognize the general user intent, i.e. the type of utterance or speech act. In a second step, we
use semantic similarity measures to identify the argument that the utterance refers to (if this is required).

Natural language understanding in the argumentation domain in general is quite challenging [4] which can be attributed
to the complexity of the domain and the comparatively small amount of conversational training data [5]. Consequently,
NLU components in argumentative systems often suffer from small and/or domain-specific training data that hinders
the generalization capability.

One main challenge is to design an NLU component that works in low-data scenarios where only several examples
are available per system-specific intent (i.e., so-called few-shot learning setups). Recently language models, such
as Bidirectional Encoder Representations from Transformers (BERT ) [6] trained on large-scale unlabeled corpora
have achieved state-of-the-art performance on natural language processing tasks after fine-tuning. These large-scale
pre-trained language models generate contextualized word embeddings and also encodes transferable linguistic features
such as parts of speech and syntactic chunks [7].

Considering the benefits of the pre-trained language models, we have utilized the BERT model for the herein discussed
NLU approach. More precisely, we have fine-tuned BERT for two NLU tasks, namely intent classification and argument
similarity. The proposed intent classifier model stack Bidirectional-LSTM (BiLSTM) with an attention mechanism
on top of pre-trained BERT model and fine-tune the whole model. However, fine-tuning BERT on a small dataset
may result in overfitting which leads to performance degradation. Therefore, the proposed intent classifier combines
sentence representation from the argument similarity model with the representation of BERT+ BiLSTM to improve
intent classification performance on a small dataset and few-shot setups. To detect the argument that the user refers to
his/her utterance from the set of provided arguments, we use the argument similarity model. The argument similarity
model fine-tunes the BERT model on a large supervised semantic textual similarity (STS) [8] benchmark dataset for
textual similarity task. Furthermore, the argument similarity model combines contextualized word features from the
BERT layer and word features with common sense knowledge obtained from training BiLSTM on top of ConceptNet
Numberbatch [9] to produce high-quality sentence representations which can be compared using cosine similarity.
We test the presented approach in the argumentative dialogue system BEA (’building engaging argumentation’) [10]
that assists the user in building an opinion on a specific topic by providing incremental information and tracking the
preference of the user towards it. In order to train and evaluate the proposed model, we collect user utterances labeled
with intent and referenced arguments for the interaction with the BEA system for three different topics in an extensive
user study. The participants of study were asked to provide user utterances occurring in the interaction with BEA. The
data collected from online study form our User Study dataset. Section 4 discusses data collection for the User Study
dataset. Apart from testing our model in the BEA system, we evaluate the proposed intent classifier and argument
similarity models on the publicly available Banking77 and STS benchmark datasets. The results are used to evaluate
our approach in four different categories:

a) We compare intent classifier and argument similarity models separately to baseline approaches on the User
Study, Banking77, and STS benchmark datasets to test the robustness of the proposed model on different
domains.

b) We look at a few-shot intent classification scenario where only 10, 20, or 30 training examples for each intent
are sampled from full training data to test model performance in absence of sizeable training data.

c) We train and evaluate the complete pipeline (intent classifier and argument similarity) on separate topics of the
User Study dataset to assess the robustness of the model against topic changes.
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d) We collect a separate test data set from non-native speakers with a different cultural background (Chinese
students) in order to test the robustness of the proposed model against different levels of language proficiency
and cultural diversity.

The experimental results show a clear advantage of our proposed approach over the baselines for the intent classification
and argument similarity tasks on different datasets. Moreover, the outcomes indicate a high and stable performance of
the model for data from topics unseen during training and different language proficiency.

The remainder of this paper is as follows: Section 2 introduces related work from the field of natural language processing
and argumentative dialogue systems. The proposed NLU framework is discussed in Section 3 together with the utilized
dialogue system. In Section 4, we report the collection of training and evaluation data. Section 5 discusses the
experimental setup and training setting. The results analysis, impact of hyper-parameters, and ablation study are covered
in Section 6, followed by a discussion of our findings and a conclusion in Section 7.

2 Related Work

This section covers related work from two separate research fields. We start by giving an overview over natural
language processing approaches that deal with intent classification and textual similarity. Subsequently, we provide an
overview over existing argumentative dialogue systems and emphasize the respective approach for recognizing user
input.

2.1 Intent Classification and Textual Similarity

Previous works on intent classification use deep learning models such as convolutional neural networks [11, 12] and
recurrent neural networks [13, 14] to encode a sentence into a fixed-sized vector representation. A classifier is then
applied on top of this representation to classify user intent. Joint modeling of intent classification and slot filling
improved performance of intent detection [15, 16]. Furthermore, Goo et al. [17] proposed a slot-gated mechanism that
leverages the intent context vector for modeling slot-intent relationships to improve semantic frame results. On the
contrary, Bunk et al. [18] proposed DIET (Dual Intent and Entity Transformer) model, which obtains dense features from
pre-trained word embedding models such as BERT [6], ConveRT [19], and combine these with sparse word features.
These features are then used by a 2-layer transformer for detecting user intent. In this connection, Casanueva et al. [20]
proposed dual sentence encoders and employed pre-trained Universal Sentence Encoder (USE) [21] and Conversational
Representations from Transformers (ConveRT) [19] for predicting user intent. Furthermore, Minaee et al. [22] provides
a detailed survey of the pre-trained models for text classification. The survey presents a quantitative analysis of deep
learning models performance on text classification benchmarks. Ali et al. [23, 24] introduced network embedding on
weighted probabilistic models for producing personalized paper recommendations. Recently, attention based deep
neural models [25, 26, 27] produce state-of-the-art results on sentiment and emotions intensities classification tasks.

For the textual similarity task, Skip-Thoughts [28] model was proposed which extends the word2vec [29] skip-gram
approach from the word-level to sentence-level. The Skip-Thoughts model employs encoder-decoder architecture
to learn vector representation of the sentences. Similarly, FastSent [30] was proposed which replaced the RNN
encoder with word embedding summation of the skip-thoughts model. In contrast, InferSent [31] model utilizes
supervised data of the Stanford Natural Language Inference (SNLI) dataset to train a siamese BiLSTM network with
max-pooling over the output. The InferSent model outperforms unsupervised methods like Skip-Thoughts. The
Universal Sentence Encoder (USE) [21] model extends the InferSent model by training transformer architecture and
augmenting unsupervised learning with supervised training objectives.

In parallel, pre-trained models such as ELMo [32], GPT [33], BERT [6], XLNet [34], ERNIE [35], and MT-DNN
[36] trained on large unsupervised corpora, shown significant improvement for intent classification, semantic textual
similarity, and various natural language understanding tasks [37]. Such pre-trained models allow the downstream
task model to be fine-tuned without training from scratch. Furthermore, fine-tuning of pre-trained models produced
state-of-the-art results for text classification [38, 39] and textual similarity [40, 41]. Inspired by the recent works, we
have employed these pre-trained models for the natural language understanding of the arguments.

2.2 Argumentative Dialogue Systems

A variety of different argumentative dialogue systems have been introduced in the past years. In [42] a dialogue system
to enable a computer to engage its users in debate on a controversial issue was introduced. In [10] the BEA system is
proposed which is an argumentative dialogue system that helps a user to form his or her opinion on a certain topic by
providing arguments in a spoken dialogue. Rach et al. [2] proposed EVA System to discuss controversial topics with
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Figure 1: Architecture of a spoken argumentative dialogue system.

the users. Hunter [43] discusses formal models of dialogues involving arguments and counterarguments of user models,
and strategies for automated persuasion systems (APS). Ma et al. [44] provides a review of empathetic dialogue systems
that respond to users in an empathetic way.

On the other hand, argumentative systems that include natural language input like the IBM Debater2 are mainly focused
on the exchange of arguments in competitive setups like debates, discussions or persuasion [5, 45, 46, 47]. For instance,
Rosenfeld and Kraus [48] proposed a methodology for persuading people through argumentative dialogues to invoke
an attitude and behavior change. In contrast, we look at a cooperative setup and focus explicitly on the exchange of
information and opinions about the arguments presented by the system rather than a recognition of user arguments.

3 Natural Language Understanding Framework

As shown in Fig. 1, the architecture of a spoken human-computer dialogue system is composed of a chain of five
modules: speech recognition, natural language understanding, dialogue manager, natural language generation and
speech synthesis. In the following, we will focus on the second module, the Natural Language Understanding. It
processes text from the lexical and syntactic levels, converting it into dialogue action at the discourse level. Therefore
in general an intent recognition takes place and potential additional information is analyzed. In our setup, the identified
user intents are referred to as speech acts, which are determined by the used dialogue model. In order to understand and
process the user utterance correctly, what the user wants (intent classification) and which argument the user refers to
(argument similarity) have to be identified. Thus, the herein presented NLU framework consists of two components,
an intent classifier model and an argument similarity model. The user intent might consist of direct commands to
the system (like “End the conversation") but can also include expressed opinions, sentiments, or preferences towards
arguments presented by the system. Given a successful recognition of the user intent, the referred content of the latter
has to be identified. This is accomplished by comparing the user utterance to the known arguments by the means of
semantic similarity measures. Further details of both NLU models, as well as the dialogue system utilized throughout
this work are given in the following sections.

3.1 BEA: An Application Scenario

To test the herein described NLU framework we make use of the argumentative dialogue system BEA [10] as an
application scenario. BEA incrementally presents arguments on a controversial topic, allows users to express preferences
towards and between these arguments and utilizes the responses to model and monitor the user opinion in view of the
discussed topic throughout the interaction. The goal of BEA is to engage the users into an intuitive and natural dialogue
allowing them to explore different arguments with diverging stances and various subtopics. In contrast to competitive
systems BEA does not pursue a persuasive approach but tries to provide pro and con aspects on a controversial topic to
help the user to build a balanced opinion.
In order to navigate through a large amount of arguments and divide the discussed information in reasonable and
logically consistent parts, the system utilizes an argument structure based on the argument annotation scheme introduced
by Stab et al. [49]. This scheme was originally introduced for annotating argumentative discourse structures and
relations in persuasive essays and meets our purpose to offer the user a fair chance to decide unprejudiced which side
(pro/con) to prefer or reject. According to Stab et al. an argument consists of several argument components (major
claim, claim and premise) and two relations (support and attack) between them. Usually a single major claim formulates

2https://www.research.ibm.com/artificial-intelligence/project-debater/
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Table 1: Available speech acts and their corresponding user and system action.
Speech Act User Action System Action
stance Request for the current overall stance of the

user.
WBAGs are used to calculate and returns cur-
rent user stance on the overall topic.

exit Request to end the interaction with the sys-
tem.

System terminates interaction with compli-
mentary closing.

level-up Request to return to the previous argument
(parent).

Changes the current state and switches to the
corresponding parent node (one level up).

why(argument) Request for further information on an argu-
ment.

Provides information about the current argu-
ment by introducing all of its child nodes.

prefer(argument) States preference towards the referenced ar-
gument over all its siblings.

Calculates new stance according to the pref-
erence model and updates tree.

reject(argument) Rejects an argument. The argument and all its corresponding child
nodes are rejected, thus, a new stance is cal-
culated according to the preference model
and the tree is updated.

the overall topic of the debate, representing the root node in the tree graph structure. Likewise to Aicher et al. [10] in
the following we use sample debate from the Debatabase of the idebate.org3 website with the major claim "Marriage is
an outdated institution”.
Claims are allegations which formulate a certain opinion targeting the major claim but still need to be justified by
further arguments, premises respectively. Hence, a claim (parent node) is either supported or attacked by at least one
other premise (child node). For the remainder of this work, we refer to a single node, i.e., an argument component in
the structure as argument.
We only focus on non-cyclic graphs, meaning that each premise only targets one other component, leading to a strictly
hierarchical structure. Furthermore, the annotation scheme distinguishes two directed relations a premise can have
towards a claim (support and attack). Between sibling nodes there exists no explicit relation.
Due to the generality of the annotation scheme, the system is not restricted to certain data and generally every argument
structure that can be mapped into the applied scheme can be processed by the system.
In the interaction, BEA introduces sibling arguments related to the same parent argument in the tree simultaneously. In
particular all available argument components attacking or supporting the parent node are introduced. Thus, the user is
able to express preferences4 between the siblings or navigate to another sub-structure depending on his/her interest. If a
user expresses a preference, it is crucial the system can identify the user intent and the sibling which is preferred. This
expressed preference is incorporated into a calculation that determines the user’s overall opinion on the topic of the
discussion and is updated in real-time during the interaction.

The interaction is divided in turns such that each user action (’move’) is followed by a system response and vice versa.
The six different user moves the user is able to choose from and the corresponding system actions are shown in Table 1.
These moves are equivalent to the intents that have to be recognized by the NLU. Before starting the interaction with
BEA, these moves are explained in an instruction for the users on how to use BEA.
Three moves (prefer, reject, and why) refer to a specific argument and require the NLU to identify this argument.
Whereas prefer, reject allow the user to express his or her opinion towards the argument, the why move can be used to
ask the system for further information on the argument. Thus, the selected argument the why move refers to, becomes
the parent node and its attacking and supporting children are displayed. Since BEA introduces only siblings related to
one parent node at the same time, the list of siblings serves as the list of possible reference arguments for the NLU.

In addition to that, the user is able to request the calculated opinion (weight) on an argument (stance)5. To calculate the
user stance the system uses the preference statements and determines the respective stance by utilizing weighted bipolar
argumentation graphs (wBAGs) [50]. In order not to go beyond the scope of this work, for the detailed description of
the calculation of preference weights and strengths we refer to Aicher et al. [10]. They describe the iterative propagating
through the tree structure and update after every preference statement. The user can navigate through the tree, by using

3https://idebate.org/debatabase (last accessed 16 September 2021).
Material reproduced from www.iedebate.org with the permission of the International Debating Education Association. Copyright
© 2005 International Debate Education Association. All Rights Reserved.

4For ease of reading, ’preferences’ here denotes both a negative (rejecting) and positive (approving/preferring) attitude towards
an argument.

5In case a user has no opinion on the major claim but on certain subtopics, he or she can determine her stance upon the major
claim.
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the why move to descend and the level up move to ascend. The latter takes him/her back to the previous argument. The
conversation with BEA can be terminated by the user at any time by performing the exit move.
The natural language generation of the system is based on the original textual representation of the argument components.
As discussed in [10] the annotated sentences were slightly modified to form a stand-alone utterance which serves as a
template for the respective system response. Additionally, a list of natural language representations for each type of
move was defined. During the generation of the utterances, the explicit formulation and introductory phrase is chosen
from this list randomly. E.g. regarding the why move the relation (support or attack) of the presented children is clearly
stressed by specific formulations, such as This claim is supported by the argument that... and A contrary indication is
the fact that....
In the following, an exemplary dialogue is shown to demonstrate the targeted user system interaction. In claim6

"Marriage undermines same-sex couples and single parent families as legitimate ways of raising children.", which is
addressed by the user with a why move.

System: "This claim is supported by the argument that marriage is seen as the best way to raise children (C1). Another
argument in favor is the existence of marriage is essentially saying that same-sex couples and single parents
are less able of raising children than heterosexual couples (C2). A contrary indication is the fact that the idea
that the existence of marriage undermines other methods of raising children is ridiculous (C3)."

User: "I do not believe that this is the best way to raise children."

System: "It is interesting that you rejected this claim (C1)."

In order to realize this dialogue the system has to fulfill two tasks. First, the intent of the user has to be identified
(rejection) and second, it has to determine which of the three claims the user wants to reject ("marriage is seen as
the best way to raise children"). Therefore, the intent classification model addresses the first problem, introduced in
Subsection 3.2. The second part represents the argument similarity model described in Subsection 3.3. Both taken
together form the complete system pipeline.

3.2 Intent Classifier Model

The architecture of the proposed intent classifier model is depicted in Fig. 2. The model consists of two main components
namely: BERT Transformer Encoder and BiLSTM classifier. Further details of these components are given in the
following subsections.

3.2.1 BERT Transformer Encoder

The BERT consists of several Transformer [51] encoder layers. Each transformer encoder has a multi-head self-attention
mechanism and a fully-connected neural network with residual connections. For every word in the user utterance, each
head of the self-attention layer computes query, key, and value vectors. The outputs of these heads are concatenated and
passed through a linear layer to create a weighted representation of each word.

The BERT model computes user utterance representation as follows: The user utterance is given as input to Word-
Piece [52] tokenizer, which splits the utterance into a list of tokens and then combines token, position, and segment
embeddings for producing a fixed-length vector. Moreover, the special classification [CLS] token is added at the start
of each utterance. Similarly, special [SEP] token is inserted at the end of each sentence as a final token. The BERT
encoder then computes the user utterance representations i.e. hidden states for each token xt as shown in equation 1.

Hn
t = BERT (x[CLS], x1, .., xt, x[SEP ]) (1)

where Hn
t = (hn[CLS], h

n
1 , .., h

n
t , h

n
[SEP ]), n denotes number of BERT encoder layer, and ht is the contextual represen-

tation of token t. The final hidden state, HN
t (N = 12) of each token is passed to a task-specific LSTM layer.

3.2.2 Bidirectional-LSTM on BERT

The Long short-term memory (LSTM) [53] is a powerful architecture capable of capturing long-range dependencies
via time-connection feedback. Our proposed model stacks a Bidirectional-LSTM (BiLSTM) on top of the final BERT
encoder layer. The forward LSTM and a backward LSTM of BiLSTM read in the final hidden states of all the words

6For the sake of simplicity we define this argument as the major claim of this subdialogue.
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Figure 2: An illustration of argument similarity and intent classifier model. Argument similarity model generates
sentence representations Sa, Sb by applying inner attention on BERT encoder and BiLSTM encoder, respectively.
These representations are added together and pass through a fully-connected layer. Intent classifier model obtains
sentence representation u by applying inner attention on BERT+BiLSTM encoder. The final representation is produced
by concatenating sentence representation u and s and passing through a fully-connected layer.

HN
t (N = 12), produced by BERT in two opposite directions and generates output sequences

−→
ht and

←−
ht . The two

outputs are then concatenated to access both past and future context for a given word as given in equation 2.

−→
ht =

−−−−→
LSTM(HN

1 , ...,H
N
t )

←−
ht =

←−−−−
LSTM(HN

1 , ...,H
N
t )

ht = [
−→
ht ,
←−
ht ]

(2)

where ht is the representation of the given word obtained by concatenating the forward hidden state
−→
ht and backward

hidden state
←−
ht .

3.2.3 Inner-Attention

To encode the variable-length sentence into a fixed-sized vector representation, we employ an attention mechanism.
The attention mechanism is used to give more focus on the important information of the sentence. The attention
mechanism is applied to the whole hidden states H = (h1, h2, ..., ht) of BiLSTM to generate vector representation of

7
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the sentence. As suggested in [54], we use multiple attention views to focus on a different part of the sentence. The
attention mechanism is defined as follows:

uw =W2(tanh(W1H
ᵀ + b1) + b2

α = softmax(uw)

u = Hαᵀ
(3)

where W1 ∈ Rdw×2d and W2 ∈ Rr×dw are the trainable weight metrics; b1 ∈ Rdw and b2 ∈ Rr are the trainable bias,
here r is the number of attention heads, d represents the number of hidden units of LSTM, dw is the size of vector
parameters we can set arbitrarily. The size of H is RT×2d and the attention matrix α size is RT×2d.

The softmax function is applied along the second dimension of its input, which ensures computed weights sum up to 1.
We then compute the weighted average of context vectors r by multiplying the attention matrix α and LSTM hidden
states H to generate the sentence representation u. The final representation u along with sentence representation s
obtained from the argument similarity model is given as input to a fully connected layer for predicting the corresponding
user intent (speech act).

ŷ = softmax(W [u, s] + b) (4)

where softmax(zi) = ezi∑
k ezk , W ∈ Rd×|I| and b ∈ R|I| are the weights and bias of the fully connected layer

respectively, s is the sentence representation as defined in Eq 8, and I denotes the user intent vocabulary. Furthermore,
the model minimizes the cross-entropy loss between true user intent and predicted user intent ŷ.

L = −
l∑

i=1

yilog(ŷi) (5)

where i is the number of intents while yi is actual user intent and ŷi is predicted user intent.

3.3 Argument Similarity Model

The argument similarity model operates on the contextual word features obtained from the BERT model and word
features with common sense knowledge obtained from training BiLSTM on top of ConceptNet Numberbatch [9]. At a
high level, our model consists of two parts: BERT Encoder and BiLSTM.

In the first part, each word of the sentence is passed through BERT encoder layers and output vectors are given as input
to the inner-attention layer. Attention mechanism provides summation vectors which are dotted with BERT output
vectors to generate a sentence vector. This yields

Ha = BERT (x[CLS], x1, .., xt, x[SEP ])

uwa =Wa2tanh(Wa1Ha + ba1) + ba2
αa = softmax(uwa)

Sa = Haα
ᵀ
a

(6)

where Wa1 ∈ Rdw×d and Wa2 ∈ Rr×dw are the weight metrics; ba1 ∈ Rdw and ba2 ∈ Rr are the bias, where r is the
number of attention heads, d represents the size of BERT output vectors. We compute weighted average of context
vectors r by multiplying the attention matrix αa and BERT output vectorsHa to generate the sentence representations1a.

In the second part, each sentence is passed through the ConceptNet Numberbatch embedding layer to obtain a semantic
vector for each word. ConceptNet Numberbatch embedding combines embeddings from word2vec [55], GloVe [56],
and structured knowledge from ConceptNet [57], which provide common sense knowledge along with surrounding
word context.These word embeddings are given as an input to the BiLSTM layer for modeling the temporal relationship

8
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between word embeddings. Then, the model utilizes an attention mechanism on the hidden states of BiLSTM to
generate a vector representation of the sentence.

−→
Hb =

−−−−→
LSTM(x1, .., xt)

←−
Hb =

←−−−−
LSTM(x1, .., xt)

Hb = [
−→
Hb,
←−
Hb]

uwb =Wb2tanh(Wb1Hb + bb1) + bb2
αb = softmax(uwb)

Sb = Hbα
ᵀ
b

(7)

whereHb represents all hidden states of BiLSTM;Wb1 ∈ Rdw×2d andWb2 ∈ Rr×dw are the weight metrics; bb1 ∈ Rdw

and bb2 ∈ Rr are the bias, d represents the number of hidden units of LSTM, r is the number of attention heads. The
weighted sum of hidden states based on attention score weights αb are used to generate final representation sb. The
outputs of two components are added together and passed through the fully-connected layer to generate final sentence
embedding as shown in Fig. 2 and given in equation 8.

s =W (sa + sb) + b (8)

where W and b are the weight matrix and bias for a fully-connected layer.

In order to produce semantically meaningful sentence embeddings, we train the argument similarity model on the
STS benchmark dataset. The model takes sentence-pair (s1, s2) as input. For sentence s1, the model computes two
vector representations. The first vector representation sa is obtained from the BERT encoder part as given in equation 6.
The second vector representation sb is generated by a BiLSTM encoder as shown in equation 7. The two vector
representations are added together and pass through a fully connected layer to produce final representation of the
sentence. Similarly for sentence s2, the model calculates sentence embedding with the BERT encoder part and BiLSTM
part. The sentence embeddings generated by each part are added together and passed through a fully connected layer.
Finally, the embeddings of s1, s2 are compared using cosine similarity. The model minimizes the mean squared error
between the predicted cosine similarity score and the labeled similarity score. We choose the STS dataset for training
the model as it fits best for the argument similarity task of determining the similarity between two sentences. At
inference time, the model generates vector representations for user utterance and possible arguments. Cosine distance
between these vectors is then calculated and the closest argument vector to a user utterance vector is identified as a
reference argument.

4 Data Collection

In order to evaluate our NLU framework, we collected natural language utterances labeled with intent and (if needed)
reference argument in an online survey. To this end, participants were asked to paraphrase possible (pre-defined) user
utterances occurring in the interaction with BEA. After emphasizing to formulate all answers in their own words
and showing four examples, the survey was conducted by showing three random arguments to the participants and
asking them to reformulate different requests for each speech act. In the case of prefer, reject, and why it was clearly
specified which argument the subjects should refer to. To reduce a potential bias the formulation of the instruction was
altered for each speech act and participant. For instance, an instruction was: “Please formulate that you agree with
the argument, that ’nuclear weapons had become a source of extreme risk’7". To ensure the quality and validate the
answers, copy-pasting and skipping answers were not allowed. Furthermore, we required at least five words in each
response, which referred to an argument. To make sure that all participants were paying attention to the instructions, a
control question was added which asked the user to precisely repeat a sentence. The data collection was divided into
two parts with separate user groups: In the first part, we conducted an anonymous survey via clickworker8 with 200
native English speakers from the UK to collect data for training and testing. In the second part, the group of participants
consisted of 15 Chinese Master and Ph.D. students, to test whether there is a measurable effect if the interaction is
conducted with non-native speakers. As we aim to evaluate our framework especially with regard to cross-domain
applicability, we generated samples on three different topics. Two out of three arguments were taken from an annotated
debate on the topic "Marriage is an outdated institution” from the Debatabase of the idebate.org9 website [58]. The

7Copyright IBM 2014. Released under CC-BY-SA.
8https://marketplace.clickworker.com (last accessed 06 May 2020)
9https://idebate.org/debatabase (last accessed 09 January 2018)
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Table 2: Train and test examples statistics for each speech act of user study dataset.

Speech Act Train Test
(UK)

Test
(China)

Exit 72 73 16
Level-up 72 73 16
Stance 71 74 15
Why 189 203 32
Prefer 79 305 33
Reject 110 304 31

other remaining argument was sampled from the IBM corpus on claim and evidence detection [59] for one of the two
topics All nations have a right to nuclear weapons and The sale of violent video games to minors. The data collection
resulted in 1616 valid user responses for the first group and 143 responses from the second group.

5 Experimental Setup

In this section, we define the experimental setup for evaluating the proposed NLU approach. We evaluate the proposed
model with respect to four different categories: The first one evaluates intent classification and argument similarity
models separately against suitable baselines on different dataset described below:

User-Study: In Section 4, we have discussed the data collection of the User Study dataset. For the experiments, we
divided the dataset into train and test sets. We train the intent classifier model on the two topics i.e., All nations have a
right to nuclear weapons and The sale of violent video games to minors. The model is then evaluated on a large test
set concerned with marriage is an outdated institution. We adopt this train and test data split to get an estimate of the
model’s robustness against topic changes. The statistics of train and test samples for each speech act are given in table 2
and table 3 provides a sample example of each speech act.

BANKING77: The dataset of Coope et al. [60], dubbed BANKING77, is composed of 13,083 customer service
queries annotated with 77 intents. The dataset is divided into train and test sets. The test set contains 3080 examples
and the full training set contains 10003 examples.

STS benchmark (STSb): The STS benchmark [8] dataset is a popular dataset for training and evaluating textual
similarity task. It comprises 8628 sentence pairs from three categories: captions, news, and forums. The dataset is
divided into train-set (5749), valid-set (1500), and test-set(1379). We train the argument similarity model on the STSb
training set and evaluate its performance on the user study dataset and STSb test dataset by computing cosine-similarity
between the sentence embeddings. Furthermore, the user study test dataset comprises 2028 sentence pairs for 501 user
utterances. For the user study dataset at prediction time, the model generates vector representations for user utterance
and possible arguments. Cosine distance between these vectors is then calculated and the closest argument vector to a
user utterance vector is identified as a reference argument.

In the second evaluation category, we look at a few-shot intent classification scenario where only 10, 20, or 30 training
examples are sampled for each intent from full training data to get an estimate of the model’s performance when
small training data is available. It is noteworthy that our argument similarity model is trained on STSb and doesn’t
require task-specific training data whereas the intent classifier model needs task-specific training data to learn the
required system-specific intents. Due to this reason, we check few-shot setups for the intent classification task where
few task-specific training data is available.

In the third evaluation category, we train and evaluate the complete pipeline (intent classifier and argument similarity)
on separate topics of the user study dataset to assess the robustness of the model against topic changes.

The fourth evaluation category compares the results achieved with utterances from native speakers against results
achieved with utterances from non-native speakers with a different cultural background to get an estimate of the model’s
sensitivity towards language proficiency.
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Table 3: Example utterances with annotated labels from user study dataset.
Utterance Label
What is my stance right now? stance move
I would like to finish. exit move
Please return to the previous argument. level up move
Please tell me more why marriage promotes better way to raise child. why move
I think marriage is good way to raise children prefer move
I reject argument about marriage is an unreasonable expectation reject move

5.1 Training Setup

For the intent classification, we employ the Bert-Base model10 with 12 Transformer layers, 768 hidden states, and 12
self-attention heads. The size of the hidden units in uni-direction LSTM is 512, inner-attention hidden layer dw is set to
600, and the number of attention head r is 5. Furthermore, we use Adam optimizer with default values of β1 = 0.9
and β2 = 0.99, and a learning rate of 1e − 4 and 2e − 5 for training the BiLSTM and fine-tuning the whole model
respectively. Each update is computed through a batch size of 8 or 16 training examples and the number of epochs
per batch are 32, 25, 16, and 8 epochs for 10-shot, 20-shot, 30-shot, and full-data settings, respectively. We apply
the dropout as a regularization technique for our model to avoid over-fitting. We apply dropout after output of each
BiLSTM layer and output of each sub-layer BERT encoder layers. We set the dropout rate as 0.1 for all dropout layers.

We employ the transformers [61] library to train our intent model.

For training argument similarity, we used Adam optimizer with a learning rate of 2e− 5 and a batch size of 16 training
samples. Furthermore, the model uses the pre-computed 300-dimensional word embeddings ConceptNet Numberbatch.
The number of hidden units in uni-direction LSTM is 512 and the number of attention heads is 5. The model is trained
for 8 epochs.

The evaluation metric used for intent classification is the accuracy metric. For the argument similarity task on the
user study dataset, the model performance is measured by the accuracy of identifying user reference arguments. As
suggested in [62], we use Spearman correlation for the semantic textual similarity (STS) task. The Spearman’s rank
correlation is computed between the cosine-similarity of sentence embeddings and gold labels for the STS dataset.

5.2 Sequential Training

The proposed approach consists of two sub-models namely: intent classification and argument similarity. We trained
these models in a sequential manner. We first train the argument similarity model on the STS benchmark dataset. The
detailed training steps are presented in algorithm 1. After training the argument similarity model, its weights are fixed.
The sentence representation obtained from the argument similarity model is then given as an input to a fully connected
layer of intent classifier model. The proposed approach then trains the intent classifier model; its training is divided into
two stages. In the first stage, we freeze the BERT encoder parameters and only train the task-specific BiLSTM and
fully connected layer for four epochs. In the second stage, we unfreeze all BERT encoder parameters and fine-tune all
parameters of BERT encoder as well as BiLSTM, and fully connected layer in an end-to-end manner. We adopt this
training strategy to train the model with different learning rates for different epochs that helps the model to retrain the
pre-trained knowledge of the BERT and avoid catastrophic forgetting of this knowledge during fine-tuning [38, 63].
Detailed training steps are presented in algorithm 2.

6 Evaluation and Results

6.1 Evaluation – Intent classification

We compare the performance of the proposed intent classifier model against the following baseline methods.

10https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip
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Algorithm 1: Training procedure of argument similarity model

Input: Training data D = {xn, yn}Nn=1
1 Load pre-trained BERT model parameters θ1
2 Load pre-trained ConceptNet Embedding
3 Initialize BiLSTM parameters θ2
4 for each epoch do
5 Sample mini-batch (x, y) ⊂ D
6 Construct argument similarity model with Eq 8
7 Train argument similarity model with a learning rate of 2e− 5
8 Update parameters θ1, θ2

Output: Model parameters

Algorithm 2: Training procedure of intent classifier model

Input: Training data D = {xn, yn}Nn=1
1 Load pre-train BERT parameters θ3
2 Initialize BiLSTM parameters θ4
3 Freeze parameters θ3
4 for each epoch do
5 Sample mini-batch (x, y) ⊂ D
6 Construct intent classifier model with Eq 4
7 Train intent classifier model with a learning rate of 1e− 4
8 Update parameters θ4
9 Unfreeze parameters θ3

10 for each epoch do
11 Sample mini-batch (x, y) ⊂ D
12 Load trained intent classifier model
13 Continue train intent classifier model with a learning rate of 2e− 5
14 Update parameters θ3, θ4

Output: Model parameters

1. Embedding Classifier: The embedding intent classifier model from Rasa11 NLU inspired by StarSpace [64],
counts distinct words of the training data and provides these word token counts as input features to the intent
classifier. We trained this model using the Rasa framework for 300 epochs.

2. Logistic Regression with BERT (LR + BERT): The model extracts features from the pre-trained Bert model.
The BERT model processes the user utterances and the final hidden state of the [CLS] token of each utterance
is passed as features to the logistic regression model. The model then trains logistic regression parameters on
these extracted features to predict the user intent. It is noteworthy that parameters of BERT remained fixed
during training in this model.

3. Dual Intent and Entity Transformer (DIET) Classifier: The DIET [18] model is multi-task architecture for
intent classification and entity recognition. The model obtains dense features from pre-trained word embedding
models. These features are then used by a 2 layer transformer with relative position attention. The BERT-base
model is employed for producing dense features. The model is trained using the Rasa framework for 100
epochs.

4. BERT Classifier: In the pre-trained BERT model [6], we add a fully-connected layer on top of the last encoder
layer [CLS] token for classifying user intent. The model is fine-tuned for 8 epochs with a batch size of 16 and
a learning rate of 2e− 5.

5. DistilBERT Classifier: The DistilBERT model [65] utilizes knowledge distillation during pre-training to
reduce the size of the BERT model. We added one fully-connected layer on top of the final encoder [CLS]
token for predicting user intent. The model is fine-tuned using Adam optimizer with a learning rate of 2e− 5
and a batch size of 16 for 8 epochs.

11https://rasa.com/
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Table 4: Intent classifier performance comparison on Users Study and Banking77 datasets with the different number of
training examples i.e., 10-shot (10 training examples per intent), 30-shot (30 training examples per intent), and full
training data. For few-shot setups, models were trained with 5 random selection of 10-20-30 examples. Performance is
reported in mean accuracy scores × 100 ± standard deviation.

User Study Banking77
Model 10-shot 20-shot 30-shot Full 10-shot 20-shot 30-shot Full
Embedding 59.6±1.8 65.1±2.1 69.1±1.3 73.1 57.9±1.2 71.5±0.7 74.7±0.4 86.2
LR+BERT 56.4±1.6 67.8±1.4 74.9±1.2 76.3 56.1±1.1 68.4±0.6 75.3±0.3 86.9
DIET 54.6±2.5 68.8±2.6 75.8±1.7 82.3 55.6±1.3 76.3±0.8 82.6±0.3 90.3
DistilBERT 68.3±2.2 79.6±2.7 83.5±2.4 88.2 76.2±1.8 84.6±0.5 87.6±0.3 92.9
BERT Classifier 70.5±2.4 81.8±1.8 84.8±2.9 89.3 80.1±2.1 86.3±0.7 88.5±0.3 93.2
RoBERTa Classifier 65.1±3.5 80.2±1.2 84.0±2.5 89.3 74.3±2.2 86.1±1.4 88.4±0.9 93.2
BERT+BiLSTM +ArgSim 73.4±2.3 84.6±1.7 86.6±2.6 89.7 81.8±1.9 87.4±0.8 90.1±0.3 93.9

6. RoBERTa Classifier: The RoBERTa model [66] optimizes the BERT pre-training approach by employing
dynamic masking, large mini-batches, and a larger byte-level byte-pair encoding (BPE) for training the robust
model. The fully connected layer is applied on top of [CLS] token of the final encoder layer for predicting
user intent. The model is fine-tuned with Adam optimizer using a learning rate of 2e− 5 and a batch size of
16 for 8 epochs.

Intent classification results are presented in Table 4 (statistically significant with p < 0.05 under t-test). The results
demonstrate that the embedding classifier performs poorly in 30-shot and full data against all baseline approaches
because it utilizes merely the word counts and does not consider pre-trained language model information. In contrast,
LR + BERT model obtained better results than the embedding classifier, because it extracts features from the pre-trained
language model for predicting user intent. Furthermore, the DIET classifier employed 2 Transformer encoder layers to
learn the contextualized sentence representation and outperformed the former models. The only case where the DIET
classifier performs poorly than the embedding classifier is the 10-shot case. The reason behind this is the lack of training
data as the pre-trained language model employed by the DIET model requires more training data to generalize well.
Besides, DistilBERT, BERT, and RoBERTa models achieved superior results than the DIET classifier, because these
models employ 6, 12, and 12 Transformer encoder layers respectively, as compared to 2 Transformer encoder layers
used by the DIET classifier, therefore, these models provide better and robust utterance representation. We observe the
marginal differences in the performance of the BERT and RoBERTa classifiers. Furthermore, the RoBERTa classifier
performs better than DistilBERT in most cases. The only setup where DistilBERT performs better than the RoBERTa
is a 10-shot setup. This indicates that RoBERTa requires a large amount of data to generalize well. Nevertheless,
our proposed model outperforms all baseline methods and performance increases by approximately 16%, 13%, and
7% better accuracy score compared to embedding classifier, LR + BERT, and DIET classifier, respectively on the
full data setup of the user study dataset. Furthermore, the improvement over embedding classifier, LR + BERT, and
DIET classifier are 7.7%, 7%, and 3.7% on the full data setup of Banking77 dataset. This is because the proposed
BERT+BiLSTM+ArgSim model fine-tuned the BERT model to obtain contextual utterance representation for predicting
user intent. Additionally, we observe that stacking BiLSTM on top of the BERT model and concatenating sentence
representation from the argument similarity model provides better results than stacking just a single fully-connected
layer.

From Fig. 3 and Fig. 4, we can observe that in the few-shot scenario i.e., 10-shot, 20-shot, and 30-shot; our BERT
+ BiLSTM+ArgSim model performance gains are more prominent over baselines models. The improvement gains
of our model over the state-of-the-arts DistilBERT, RoBERTa, and BERT classifier models are almost 5%, 8%, and
3% for the user study dataset and 6%, 7.5%, and 1.7% for the Banking77 dataset in a 10-shot setup (10 samples per
intent). Similarly, we see the proposed model outperforms all model in the 20-shot and 30-shot setup on both datasets.
Overall, our model has a clear advantage over other methods in all setups, and more prominently in few-shot setups.
Furthermore, the proposed model is statistically significant as compared to Embedding, LR+BERT, DIET, DistilBERT,
RoBERTa, and BERT models with p-value of 1e− 05, 2e− 05, 0.0019, 0.023, 0.044, and 0.049 respectively, on user
study dataset.

6.2 Evaluation – Argument Similarity

We evaluate the performance of the proposed argument similarity model for identifying the reference argument task
and also validate our model performance for the common semantic textual similarity task. We perform experiments on
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Figure 3: Performance comparison of the intent clas-
sifier on the User study dataset with respect to the
number of training examples per intent.
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Figure 4: Performance comparison of the intent clas-
sifier on the Banking77 dataset with respect to the
number of training examples per intent.

user study and semantic textual similarity benchmark dataset. We compared the results against the following baseline
methods.

1. Average of glove embeddings;
2. Average of ConceptNet Numberbatch embeddings;
3. Mean of last layer tokens representations of BERT;
4. InferSent model [31] is trained on a natural language inference dataset using the siamese BiLSTM network

structure with max-pooling over the output.
5. Universal Sentence Encoder [21] is a strong sentence-level embedding model trained using transformer

architecture and multiple objectives.
6. Sentence-BERT model [40] a state-of-the-art sentence embedding model is trained using a siamese network

structure over BERT. We fine-tune SBERT base and large models with a learning rate of 2e− 5 using Adam
optimizer on the STSB dataset. The mean pooling strategy is employed to mean output vectors of the last layer
of BERT for producing a fixed-sized sentence embedding.

7. Sentence-RoBERTa model [40] SRoBERTa fine-tunes the RoBERTa pre-trained model to produce robust
sentence embeddings which can be compared using cosine similarity. We fine-tune the RoBERTa network on
the STSB dataset with Adam optimizer using a learning rate of 2e− 5. We report experiments using the mean
pooling strategy.

8. Sentence-XLM-Align model fine-tunes cross-lingual language models word alignment (XLM-Align) pre-
trained model [67] to generate useful sentence embeddings. We fine-tune the pre-trained XLM-Align model on
the STSB dataset using Adam optimizer with a learning rate of 2e− 5. The mean pooling strategy is applied
to produce fixed-sized sentence embeddings.

Table 5 presents the results corresponding to the argument similarity task. The results generated by our model
outperform InferSent, SXLM-Align, and SBERT by achieving approximately 4%, 2%, and 2% better accuracy on the
user study dataset, respectively. The SXLM-Align model produces worse results than SBERT and SRoBERTa on both
the user study dataset and STSB dataset. On the other hand, the SRoBERTa model performs slightly better than the
SBERT model on both datasets. Also, USE performs better than InferSent and SBERT on the user study dataset, as
it is pre-trained on question answering data in addition to NLI data, which is related to the classification task. Our
model performance matches the performance of the state-of-the-art USE model on the user study dataset. Furthermore,
the mean of last layer tokens representations of BERT embeddings, average glove embeddings, and an average of
ConceptNetNumberbatch embeddings perform poorly on the STSB dataset. However, for the user study dataset, these
methods produced better results than the supervised InferSent model trained using the siamese structure on NLI data.
The reason behind this is that for identifying the reference argument task, we calculate the cosine-similarity between
candidate arguments and current utterance, and the closest argument to the current utterance embedding is selected as
a reference argument. This allows two-sentence embeddings to have high and low similarity on certain dimensions
and still correctly identify a reference argument. In contrast, the STS task is a regression task, which estimates the
similarities between two-sentence embeddings by cosine-similarity and treats all dimensions equally. This indicates
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Table 5: Argument similarity model performance comparison on User Study and STS datasets. SBERT-STSb-base,
SBERT-STSb-large, and ArgSim models are trained on the STS-B dataset. Performance on user study is reported in the
accuracy scores × 100. and performance on STS is reported in SPEARMAN × 100.

Model User Study STSB
Accuracy SPEARMAN

Avg. GloVe 93.2 61.5
Avg. ConceptNet 94.0 65.1
Avg. BERT 93.2 47.2
InferSent - Glove 90.2 75.8
USE 95.2 78.2
SBERT-STSb-base 94.0 84.6
SBERT-STSb-large 94.0 84.4
SRoBERTa-STSb-base 94.4 84.8
SXLM-Align-STSb-base 93.8 80.5
ArgSim (Ours work) 95.2 85.1

Table 6: Complete pipeline performance of the proposed framework on native speakers and Non-native speakers
datasets.

Model Intent F1 Sim Acc. Overall Acc.
Native Speakers 89.8 95.2 87.7
Non-native Speakers 88.8 89.7 87.3

average word embeddings are infeasible for the STS task. Nonetheless, our model trained on the STS benchmark
yields better sentence representation for argument similarity task and STS task as it combines contextualized word
representation with common sense knowledge obtained from ConceptNet Numberbatch embeddings.

6.3 Evaluation- Complete Pipeline

We evaluate the performance of the complete pipeline consisting of intent classification and argument similarity modules
for native English speakers and non-native English speakers. The performance of intent classification and argument
similarity module is measured in F1 score and accuracy, respectively. The complete pipeline performance is measured
in an accuracy matrix. The overall accuracy of the complete pipeline is the percentage of utterances where the pipeline
correctly predicts both intents and presented arguments. The model is trained on the native speakers dataset and
evaluated on native and non-native speakers test-set. The statistics of train and test samples are given in table 2. The
results are shown in table 6. We can observe from the results that both intent classifier and argument similarity models
perform better on the native speaker dataset. The respective improvements are around 1% and 5% for intent classifier
and argument similarity models. However, we do not observe a significant difference in accuracy between native
speakers and non-native speakers on the complete pipeline. Overall, this proves that the proposed framework is robust
to the different language proficiency of the users.

6.4 Impact of hyper-parameters

The learning rate, batch size, and hidden size are the most important hyper-parameters of the proposed model.
The model performance is analyzed concerning these parameters. We employ the random search [68] strategy for
finding hyper-parameters randomly from a specified subset of hyper-parameters. We choose the learning rate from
[0.001, 0.0001, 1e− 5, 2e− 5, 5e− 5]. In Fig. 5 we can see that the learning rate has a significant impact on model
performance for both intent classification and argument similarity tasks. Furthermore, we observe that the proposed
model performs poorly on learning rates of 0.001 and 0.0001, which shows that the model fails to converge on high
learning rates. In most cases, a lower learning rate produces better results. Especially when the learning rate is 2e− 05
model achieves the highest accuracy on the user study dataset for both tasks. Furthermore, we choose a batch size from
a range of [4, 8, 16, 32, 64, 128]. Fig. 6 reveals that change in batch size has less impact on model performance for
argument similarity task and full data setup of intent classification. The model produces a higher accuracy on batch
sizes of 16 and 32 for the full data setup of intent classification. However, batch size has a significant impact on model
performance for the 10-shot intent classification setup. The model performance increases with a small batch size of 4
and 8. Especially when batch size is 8, the model achieves the highest accuracy of 74.6%. As the value of batch size
increases, the number of mini-batches decreases, and model performance decreases. We explore the following values
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Figure 7: Effect of hidden size on model performance
for intent classification and argument similarity tasks
on User study data set.

h = [64, 128, 256, 512, 1024] for hidden dimensions of LSTM. From Fig. 7 we can observe that the performance of the
model does not change significantly for different sizes of hidden dimensions of LSTM. Results suggest that the proposed
model is robust to hidden dimensions of LSTM for intent classification and argument similarity tasks. Furthermore, a
lower learning rate and smaller batch size yield better results especially for the 10-shot intent classification setup.

6.5 Ablation Study

To demonstrate the effectiveness of different aspects of the intent classifier model, we conduct an ablation study on the
two datasets. The results are shown in table 7. It shows that adding BiLSTM and ArgSim representation improves the
performance of the plain fine-tuned BERT model. Adding BiLSTM provides performance improvement of 1.3%, 1.1%,
0.6%, and 0.2% for 10-shot, 20-shot, 30-shot, and full-data respectively on user study dataset, and 0.6%, 0.7%, 0.7%,
and 0.2% improvement on the Banking77 dataset. Furthermore, adding representation from the argument similarity

Table 7: Evaluation results of intent classifier ablation on the Users Study and Banking77 datasets for 10-shot, 20-shot,
30-shot, and full training data setups.

User Study Banking77
Model 10-shot 20-shot 30-shot Full-data 10-shot 20-shot 30-shot Full-data
BERT-tuned 71.5 82.1 85.1 89.3 82.0 86.7 88.5 93.2
BERT+BiLSTM 72.8 83.2 85.7 89.5 82.6 87.4 89.2 93.4
BERT+BiLSTM + ArgSim 74.6 85.0 87.3 89.7 83.5 88.1 90.2 93.9
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Table 8: Evaluation results of argument similarity model ablation on User Study and STSB datasets.

Model User Study STSB
Accuracy SPEARMAN

ArgSim 95.2 85.1
- BiLSTM 94.0 84.0
- BERT 93.2 71.0

model further improves the performance of the proposed model especially in the 10-shot, 20-shot, and 30-shot scenario
and corresponding improvements on user study dataset are 1.8%, 1.8%, 1.6% respectively. The overall performance
gains over BERT-tuned are 3.1%, 2.9%, 2.2%, and 0.4% respectively for the user study dataset, and 1.5%, 1.4%, 1.2%
and, 0.7% improvement for the Banking77 dataset.

We start the ablation of argument similarity (ArgSim) model by removing different components in our model to get an
understanding of their importance. We first remove the BERT part (-BERT) to check model performance with only
the BiLSTM part, and then remove the BiLSTM part (-BiLSTM) to check model performance with only the BERT
part. Table 8 shows the ablation results on user study and STS dataset. From the results, we observe that the BERT
part plays a significant role in model performance, and removing the BERT part decreases the model performance by
around 2% in terms of accuracy on user study dataset and 14.1% in terms of spearman correlation on STSB dataset.
Next, we show that the BiLSTM part is also an important contributor to model performance, and removing the BiLSTM
part decreases the model performance by around 1.2% in terms of accuracy on user study dataset and 1.1% in terms
of spearman correlation on STSB dataset. These results indicate both BERT and LSTM parts are important for the
argument similarity model.

7 Discussion and Conclusion

Throughout this work, we introduced an NLU approach for argumentative dialogue systems in the domain of information
seeking and opinion building. Our approach detects arguments addressed by the user within his or her utterance and
distinguishes between multiple intents including user preferences towards the respective arguments. Our approach was
applied and tested in an actual argumentative dialogue system on data collected in an extensive user study. Additionally,
we evaluated the proposed intent classifier and argument similarity models on the Banking77 and STS benchmark
datasets. Throughout the evaluation, we assessed the performance of the NLU components against state-of-the-art
baselines on different datasets, the robustness of the proposed approach against new topics, and the robustness of the
approach against different language proficiency and cultural diversity. Besides, the performance of the intent classifier
model is assessed in full data and few-shot setups. Our results show a clear advantage of our model against baselines
approaches for intent classification in both full data and few-shot setups. Furthermore, results show the superior
accuracy of the proposed model against baselines models for argument similarity tasks as well as the accuracy of 87.7%
in complete pipeline testing. Moreover, no significant difference between utterances from UK users and Chinese users
was detected. The results indicate that our model has to be trained only once for each system in order to learn the
required system-specific intents but does not require pre-training for new topics or user groups which ensures high
flexibility of the respective system.

Our future work will be focused on two separate aspects. First, we want to explore different confirmation strategies in
the dialogue management in order to further improve the recognition rate of the complete system. Moreover, we will
extend the capacities of the NLU to allow the user to introduce new arguments which will be learned by the system
during the discussion.
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